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Abstract Nadir points play an important role in many-
objective optimization problems, which describe the ranges
of their Pareto fronts. Using nadir points as references, deci-
sion makers may obtain their preference information for
many-objective optimization problems. As the number of
objectives increases, nadir point estimation becomes a more
difficult task. In this paper, we propose a novel nadir point
estimation method based on emphasized critical regions for
many-objective optimization problems. It maintains the non-
dominated solutions near extreme points and critical regions
after an individual number assignment to different critical
regions. Furthermore, it eliminates similar individuals by
a novel self-adaptive ε-clearing strategy. Our approach has
been shown to perform better on many-objective optimiza-
tion problems (between 10 objectives and 35 objectives) than
two other state-of-the-art nadir point estimation approaches.
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1 Introduction

In the solution set of an multi-objective optimization prob-
lem (MOP), some points are very important, such as ideal
points, knee points, and nadir points. It is easy to obtain an
ideal point by optimizing every single objective separately.
Around a knee point (Branke et al. 2004), a small improve-
ment of any objective leads to a large degeneration of other
objectives. Knee points are interesting to decision makers if
they do not know their preferences. A nadir point is derived
from the extreme points in a non-dominated solution set,
which describes the range of the non-dominated solution set
indirectly. Therefore, nadir points play an important role in
MOPs, especially in many-objective optimization problems.

Many-objective optimization problems (MaOPs) are a
type of MOPs with more than three objectives (Khare et al.
2003). One of the challenges in this research area is that
the non-dominated solution set becomes too large to handle
effectively as the dimension of the objective space increases.
Recently,many newMOEAs have been designed forMaOPs.
For example, NSGA-III (Deb and Jain 2014) uses a set of ref-
erence points to maintain diversity; Two_Arch2 (Wang et al.
2015) tackles convergence and diversity in separate archives;
MOEA/D-DU (Yuan et al. 2015b) tries to introduce NSGA-
III’s diversity maintenance scheme into MOEA/D; and
θ -dominance (Yuan et al. 2015a) introduces a newdominance
relation that can provide more selection pressure for MaOPs,
inspired by penalty-based boundary intersection (PBI).

Usually, decision makers do not need the entire solution
set. They only need the solutions in their interested regions. In
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such situations, preference-based many-objective optimiza-
tion (Thiele et al. 2009) can be used to obtain those solutions.
However, it is not easy to obtain a comprehensive view of
the preferences of decision makers (Fan and Liu 2010; Hsu
and Wang 2011; Dai et al. 2013; He et al. 2015) without
knowing the range of the non-dominated solution set before
running preference-based multi-objective evolutionary algo-
rithms (MOEAs). Nadir points can provide more accurate
information about preferences for decision makers (Branke
et al. 2008; Deb and Kumar 2007). Nadir points can also
be used for normalizing objectives and portfolio problems
(Amiri et al. 2010).

Approaches to obtain nadir points can be classified into
two categories, namely non-evolutionary and evolutionary
approaches:

Non-evolutionary approachesThe pay-off table (Benay-
oun et al. 1971) is the earliest nadir point estimation method.
All the objective values of the optimal solutions for every
single objective are listed on the pay-off table. Then, the
worst objectives from the table are obtained to construct a
nadir point. The pay-off table is easy to construct but does
not guarantee to obtain the true nadir points (Szczepanski
and Wierzbicki 2003; Klamroth and Miettinen 2008; Deb
et al. 2006). Several improvements to the pay-off table were
proposed (Dessouky et al. 1986; Korhonen et al. 1997). For
example, the method proposed in (Ehrgott and Tenfelde-
Podehl 2003) decomposes anm-objective optimization prob-
lem into C2

m 2-objective optimization problems. However, it
is impractical for MaOPs because of its high computational
cost. There are some other nadir point estimation methods
based on reference directions (Korhonen et al. 1997) and
points (Metev and Vassilev 2003) in nadir regions. However,
these methods still cannot obtain the true nadir points.

Evolutionary approaches According to (Deb and Miet-
tinen 2009), the existing nadir point estimation approaches
based on evolutionary approaches can be classified into three
types—‘Surface-to-Nadir’, ‘Edge-to-Nadir’, and ‘Extreme-
point-to-Nadir’. Popular MOEAs such as NSGA-II (Deb
et al. 2002a), MOEA/D-IR (Li et al. 2015), MOEA-DLA
(Chen et al. 2015), MOEA/DVA (Ma et al. 2015) and
MOEA/D-ACO (Ke et al. 2013) can obtain extreme points
from the entire Pareto front (PF) to construct a nadir point.
All the MOEAs mentioned above follow the ‘Surface-to-
Nadir’ approach. ‘Surface-to-Nadir’ approaches cannot be
applied to MaOPs because of their unsatisfactory perfor-
mance on MaOPs (Praditwong and Yao 2007). One of the
‘Edge-to-Nadir’ approaches (Szczepanski and Wierzbicki
2003) decomposes the original problem into C2

m 2-objective
subproblems to build a nadir point from the obtained solu-
tions of those subproblems, which leads to C2

m edges. As the
method in (Szczepanski and Wierzbicki 2003) only consid-
ers two objectives at a time, it does not guarantee to obtain
the true nadir points in all cases. The ‘Extreme-point-to-

Nadir’ approach focuses on extreme points rather than the
entire solution set or edges to build nadir points, such as
Worst Crowded NSGA-II (Deb et al. 2006) and Extremized
Crowded NSGA-II (Deb et al. 2006). Since nadir point esti-
mation can be seen as a special preference problem of MOPs
(Thiele et al. 2009), the task of nadir point estimation was
treated as solving a preference problem in nadir regions in
(Amiri et al. 2010). Also, NSGA-III views nadir point esti-
mation as a preference problem by employing m reference
points nearm extreme points (Deb and Jain 2014). However,
these reference points are based on some strong assumptions,
which may not hold for different PF structures.

‘Extreme-point-to-Nadir’ approaches are shown to be the
most effective methods to obtain nadir points so far (Deb
et al. 2010). Only extreme points are needed for the extrac-
tion of a nadir point. That is the reason why the existing
approaches focus on extreme points. Based on the frame
of ‘Extreme-point-to-Nadir’ approaches, some local search
strategies (Deb et al. 2010, 2009; Bechikh et al. 2010;
Miettinen et al. 2010) are applied to further improve their
performance, but extra computational expenses are added
inevitably. For example, a reference-point-based bi-level
local search approach with scalarizing functions is adopted
in (Deb et al. 2010), and a bi-level optimization method is
needed to suit the characteristics of the specific problem.
Therefore, a hybrid approach can improve performance for
nadir point estimation on specific problems rather than gen-
eral problems.

However, focusing on extreme points too much causes
poor diversity in the population during search. The popu-
lation is easily trapped into local optima. Therefore, poor
extreme points may be obtained in the population with poor
diversity. The performance of the existing approaches such
as Worst Crowded and Extremized Crowded NSGA-II (Deb
et al. 2006) on MaOPs has been shown less than satisfac-
tory. In order to improve their performance, we propose
a novel ‘Extreme-point-to-Nadir’ based estimation method
(non-hybrid approach, the local search strategies in (Debet al.
2010, 2009;Bechikh et al. 2010;Miettinen et al. 2010) can be
employed to improve its performance), named emphasized
critical regions based nadir point estimation (ECRNPE). Its
main idea is to employ the emphasized critical regions strat-
egy (ECR) to add more diversity in the population to obtain
extreme points more effectively. The proposed method can
be easily incorporated into a wide range of MOEAs to obtain
nadir points by replacing their diversity maintenance meth-
ods with ECR. The detailed contributions of our paper are
summarized.

Emphasized critical regions strategy In nadir point esti-
mation approaches, only focusing on extreme points during
the search does not help the convergence towards extreme
points. Meanwhile, it is unnecessary either to keep the entire
PF for nadir point estimation, which increases the computa-
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tional cost significantly. In order to find the trade-off between
these two extreme cases, ECR is employed in this paper. Crit-
ical regions are the regions of the best objective values, which
approximate the outline of a PF. Nadir regions are in critical
regions. A PF can be simply expressed by critical regions.
Therefore, the individuals near extreme points as well as crit-
ical regions are emphasized by ECR.

Individual number assignment in critical regions ECR
selects the individuals in different critical regions indepen-
dently. Thus, it is very important to assign a number of
individuals in different regions for diversitymaintenance and
balanced computational cost. The number of individuals in
each critical region is assigned self-adaptively in ECR.

Self-adaptive ε-clearing strategy The ε-clearing strat-
egy (Ben Said et al. 2010) has been widely used for diversity
maintenance. For nadir point estimation, the approach in
(Amiri et al. 2010) adopts the ε-clearing strategy, where a
pre-defined parameter ε is required. However, ε is sensitive
to the distribution of the population. Therefore, a fixed ε

might not help accurate nadir point estimation. In this paper,
a self-adaptive ε-clearing strategy is proposed, which adjusts
the parameter ε according to the distribution of the current
population.

The rest of this paper is organized as follows: Problemdef-
initions are introduced in Sect. 2. Section 3 gives the details
of ECRNPE. Section 4 describes the simulation experiment
to analyze the behavior of ECRNPE. The Sect. 5 presents the
concluding remarks.

2 Problem definitions

2.1 Multi-objective and many-objective optimization

An MOP (Miettinen 1999) with m objectives can be
described by

Minimize F(x) = ( f1(x), f2(x), . . . fm(x))T

Subject to x ∈ X,
(1)

where X ⊂ R
n is the feasible space, x = {x1, x2, . . . , xn}T is

the decision variable vector, and F(x) is the objective vector.
Thefinal result of anMOP is a set of non-dominated solutions
(or Pareto optima). The set of all Pareto optimal objective val-
ues is called the Pareto front (PF). An MaOP (Khare et al.
2003; Hughes 2005) is an MOP with more than 3 objectives.
For MaOPs, it is hard to select good solutions by the Pareto
dominance relation, because most solutions cannot be dom-
inated by others (Ishibuchi et al. 2008). The PFs of MaOPs
are hard to be described by a limited number of solutions,
which makes MaOPs very challenging (Praditwong and Yao
2007; Purshouse and Fleming 2003).

Fig. 1 Illustration of important points for MOPs

2.2 Important points for MOPs

As illustrated in Fig. 1, there exist several important points
which can be used to characterize the solution set of anMOP.

An ideal point is constructed by all the optimal objec-
tive values as shown in Eq. (2), where m is the number of
objectives. An ideal point describes the ideal situation of an
MOP. Ideal points cannot be achieved as solutions, because
the objectives ofMOPs are usually in conflict with each other
(Deb et al. 2010).

zideal = (min( f1), . . . ,min( fi ), . . . ,min( fm)), 1 ≤ i ≤ m

(2)

A worst point is constructed by all the worst objective
values in the feasible area as shown in Eq. (3). It describes
the worst situation to an MOP (Deb et al. 2010).

zworst = (max( f1), . . . ,max( fi ), . . . ,max( fm)), 1 ≤ i ≤ m

(3)

A nadir point is constructed by all the worst objective
values on the PF as shown in Eq. (4). It describes the range
of the PF (Deb et al. 2010).

znadir = (max( f1), . . . ,max( fi ), . . . ,max( fm)),

fi ∈ PF, 1 ≤ i ≤ m
(4)

There arem extreme points for anMOPwithm objectives.
The definition of the i th extreme point is given in Eq. (5).
Obtaining these m extreme points is equivalent to obtaining
a nadir point. The extraction method of a nadir point from
extreme points is given in Sect. 3.3.4.

zextreme
i = ( f1(x), . . . , fi (x), . . . fm(x)),

x = argmin( fi ),
fi ∈ PF, 1 ≤ i ≤ m

(5)
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Fig. 2 Illustration of critical regions

3 Nadir point estimation based on emphasized
critical regions

3.1 Critical region

The critical region of an MOP is defined as the region on the
PF with the best value of one objective. Theoretically, there
are m critical regions for an MOP with m objectives. The
critical regions can be seen as the boundaries of the solution
set in the objective space. Taking the 3-objective optimization
problem in Fig. 2 as an example, points A, B, and C are
extreme points, and edges BC, CA, and AB representing the
best objective values of f3, f2, f1, respectively, are from
critical regions. The dimension of the critical region depends
on the structure of the PF.

3.2 Main idea of ECRNPE

ECR is a diversity maintenance method for nadir point esti-
mation. As shown in Fig. 3, the selection of conventional
MOEAs aims at convergence and diversity. By simply replac-
ing their diversity maintenance methods with ECR, any
conventionalMOEAscanbeused to estimate nadir points.By
adding nadir point extraction at the end of ECR, it becomes
ECRNPE, a method to obtain nadir points. In other words,
ECRNPE is used (instead of common diversity maintenance
methods) in every generation of MOEAs to obtain nadir
points.

Fig. 3 Embed ECR in conventional MOEAs

As a nadir point is extracted from extreme points, search-
ing extreme points is essential to nadir point estimation
approaches. Extreme points are a small part of the entire
PF. Only focusing on extreme points during search does not
help the convergence towards extreme points. Therefore, the
main idea of ECR is to maintain diversity in both the areas
near extreme points and critical regions. In ECR, the indi-
viduals near extreme points and critical regions are ranked
higher for selection. As shown in Fig. 4, ECR has three
main parts, i.e., the individual number assignment, the critical
region emphasizing strategy, and the self-adaptive ε-clearing
strategy. Every objective has a critical region, in which the
individuals have the best value of this objective. ECR first
assigns the number of the individuals which should be main-
tained in those different critical regions. Then, it is repeated
for m times to select a fixed number of individuals by the
critical region emphasizing strategy and the ε-clearing strat-
egy. The outputs from ECR will be the selected individuals,
which are then used for the final step of ECRNPE (nadir
point extraction). The details of ECRNPE are explained in
the following sections.

3.3 Proposed approach

3.3.1 Individual number assignment to critical regions

According to the definition in Sect. 3.1, an MOP with m
objectives and N solutions in its population has m extreme
points and m critical regions. ECR selects the individuals in
different critical regions separately. It is necessary to assign
the same number of individuals in m critical regions to bal-
ance the computational cost of the later individual selection.
The number of the maintained individuals in each region is
n1 (�N/m�). Because of the round-off operation in n1, the
remaining n2 (N − mn1) individuals are randomly selected
from different regions. As n2 is very small in comparison to
the population size N , those n2 individuals have very little
influence on the uniformity of the assignment. The unifor-
mity of different critical regions will be shown through the
PF results in Sect. 4.3.2.

3.3.2 Emphasized critical regions strategy

The emphasized critical regions strategy is the first step of
individual selection in the critical region of one objective,
which essentially ranks the unselected individuals in the pop-
ulation. It first assigns the highest rank to extreme points.
Then, it assigns ranks to the remaining individuals according
to their distances to critical regions. Taking a minimization
objective fi as an example, the individual with the worst fi
which can be seen as an extreme point in the current popu-
lation is ranked as “1”; the remaining individuals are ranked
by sorting the values of objective fi in an ascending order.
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Fig. 4 Flow-chart of ECRNPE

By applying this emphasized critical regions strategy, the
individuals close to extreme points and critical regions are
emphasized with higher ranks.

As shown in Fig. 4, the emphasized critical regions strat-
egy and the ε-clearing strategy work together in m iterations
to select the individuals close to the critical region of objec-
tive fi (i = 1, . . . ,m). After each iteration, n1 individuals
are selected. They will not be considered in the later iter-
ations for other critical regions. An individual with better
values on both objectives fi and f j will be selected for either
objective. Therefore, the order of the individual selection of
different regions has no influence on the final selected indi-
viduals. In this paper, ECR uses the sequential order from f1
to fm .

3.3.3 Self-adaptive ε-clearing strategy

In order to avoid selecting similar individuals, ECR applies
the ε-clearing strategy (Ben Said et al. 2010) to eliminate
similar individuals from the sorted population obtained from
the emphasized critical regions strategy. The pseudo-code of
the selection is shown in Algorithm 1:

Algorithm 1 Pseudo code of the ε-clearing strategy (Ben
Said et al. 2010) for the selection in the critical region of fi .
1: Input: POP-population of non-dominated individuals ranked by

the emphasized critical regions strategy on objective fi as in Sect.
3.3.2, n1-the number of individuals in this critical region, N -
population size, ε-neighborhood parameter, S-boolean list of POP
to indicate whether individuals are selected, counter -the counter of
selected individuals in critical region of fi .

2: counter = 0, % initialize the counter,
3: S[1] = 1, counter = counter + 1,% extreme point POP[1] for

objective fi is selected firstly,
4: For k = 2 : N
5: If S[k] == 0 and POP[k] is not in the ε-neighborhoods of any

selected individual,
6: S[k] = 1, counter = counter + 1, % it is deleted from

emphasized critical regions for other objectives,
7: If counter == n1, % n1 individuals for critical region of fi

have been selected,
8: Break,
9: End
10: End
11: End
12: Output: the updated list S.

The ε-clearing strategy is an effective technique to main-
tain diversity (Amiri et al. 2010; Ben Said et al. 2010).
In previous studies, parameter ε was fixed. However, it is
very difficult to choose an optimal parameter ε in advance.
Furthermore, a fixed ε may not be suitable for different
distributions of individuals in a population in the process
of optimization. Therefore, we propose a self-adaptive ε-
clearing strategy. Parameter ε is self-adaptive according to
the distribution in the current population and calculated by
Eq. (6), in which n1 is the number of the maintained individ-
uals in one critical region, fi is the i th objective value in the
current population.

ε =
√∑m

i=1
(max( fi ) − min( fi ))2/n1 (6)

3.3.4 Extraction of the nadir point

As the individuals obtained are approximate extreme points,
the last step of ECR is to extract the nadir point from the
population. The details are described in Algorithm 2.

Algorithm 2 Pseudo code for extracting the nadir point.
1: Input: POP-population of non-dominated individuals,m-the num-

ber of objectives, N -the number of individuals in POP .
2: For i=1:m
3: Find the worst individual on objective fi .
4: Nadiri=max(POP[1 : N ]. fi )
5: End
6: Nadir = (Nadir1, . . . Nadiri , . . . Nadirm)

7: Output:Nadir .

3.3.5 Discussion

ECRappears to divide a population intom sub-populations as
in an island model (Branke et al. 2000). Island model is well
known for its separate sub-populations, which independently
optimize and occasionally interact each other. In fact, ECR
is not the case, only the selected individuals are divided into
m parts for those m different selections to different regions.
Neither the population nor the final selected population is
divided. As we know, the interaction between different sub-
populations is the main characteristic of an island model.
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Table 1 True ideal and nadir points of the DTLZ and WFG problems

DTLZ1-4 WFG1-9

Ideal point (0,0,…,0) (0,0,…,0)

Nadir point (1,1,…,1) (2,4,…,2m)

Different from the island model, ECR does not apply such
interactions as crossover among multiple populations.

4 Simulation experiments

As ECR can be embedded in any MOEA, we embed ECR in
both Pareto-based MOEAs [NSGA-II (Deb et al. 2002a) and
Two-Archive Algorithm (TwoArch) (Praditwong and Yao
2006)] and non-Pareto-based MOEAs (IBEA Zitzler and
Künzli 2004) in our experiments to evaluate ECR’s effec-
tiveness in finding nadir points. Through the experiments
below, the performance of ECR is analyzed from different
aspects.

4.1 Metric, test problems, and parameters

As the nadir point is not a solution to an MOP, most metrics
cannot be used in our experiments, such as Hypervolume
(Zitzler and Thiele 1999; Jiang et al. 2014). Error metric E
(Deb et al. 2002b) has been used for evaluating the accuracy
of obtaining nadir points, which describes the distance from
the estimated nadir point to the true nadir point. The formula
is shown in Eq. (7), where zideal and znadir stand for the true
ideal point and nadir point, and z is the estimated nadir point.
It is clear that E is a normalized distance. The scales of
different objectives have no influence on E .

E =
√∑m

i=1

((
znadiri − zi

)
/
(
znadiri − zideali

))2
(7)

Recently, many benchmark MOPs were proposed
(Ishibuchi et al. 2014), such as the ZDT problems (Zitzler
et al. 2000), the DTLZ problems (Deb et al. 2002b), theWFG
problems (Huband et al. 2006), and some other problems
(Szczepanski and Wierzbicki 2003; Klamroth and Miettinen
2008). The DTLZ and WFG problems are selected as the
test problems in this paper because they can be extended to
MaOPs and their nadir points are known as listed in Table 1.
We use the same parameter setting as that used in (Deb et al.
2002a) [SBX crossover (η = 15) and polynomial mutation
(η = 15)]. All the experiments were repeated independently
for 29 times. The population size is set to 100 for the prob-
lems with 2–10 objectives, and 200 for the problems with
more than 10 objectives.

4.2 Experiments on self-adaptive ε-clearing strategy

The self-adaptive ε-clearing strategy is one of our main con-
tributions in this paper. In the following experiment, we
compare ECR NSGA-IIs with and without the self-adaptive
ε-clearing strategy on DTLZ2 with 10 objectives. Both algo-
rithms repeated for 29 independent times with a population
of 100 individuals and for 1000 generations. The metric E is
employed to evaluate the performance of these two algo-
rithms. The boxplot of E of the final result is shown in
Fig. 5. According to Fig. 5, the ECR NSGA-II without the
self-adaptive ε-clearing strategy cannot obtain the true nadir
point within 1000 generations, while the ECRNSGA-II with
the self-adaptive ε-clearing strategy can. As the ε-clearing
strategy eliminates similar individuals, more individuals in
critical regions can be maintained for better diversity. Thus,
the self-adaptive ε-clearing strategy improves the conver-
gence to the true nadir point.

4.3 Experimental study on computational time and
scalability

4.3.1 Comparative experiments

ECR NSGA-II, Extremized Crowded NSGA-II (Deb et al.
2006), NSGA-II, ECR TwoArch, TwoArch, ECR IBEA, and
IBEAare included in our comparisons in this section. We test
theDTLZ problemswith 2–20 objectives. Because of the dif-
ferent difficulties of different problems, the true nadir points
of the DTLZ1 with 2–15 objectives, the DTLZ2 with 2–20
objectives, the DTLZ3 with 2–10 objectives, and the DTLZ4

Fig. 5 Boxplot of E for ECR NSGA-IIs with and without the self-
adaptive ε-clearing strategy on DTLZ2 with 10 objectives. Obviously,
the ECR NSGA-II with the self-adaptive ε-clearing strategy found the
true nadir point while the ECR NSGA-II without the self-adaptive ε-
clearing strategy did not find the true nadir point
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with 2–20 objectives can be obtained within a limited com-
putational cost. Normally, these approaches run for a fixed
number of generations. In order to fairly evaluate the conver-
gence speed to nadir points, the stopping criterion is changed
to E < 0.01, which indicates very close approximation to
the true nadir points. Under this criterion, an algorithm with
the smallest number of function evaluations has the high-
est speed. The metric E is calculated in every generation.
If E < 0.01, the algorithm stops. It is worth noting that
the true nadir point is only used for calculating E . The true
nadir point has no influence on the behaviors of the compared
algorithms. It is only used for performance evaluation. The
parameter settings were given in Sect. 4.1. The numbers of
function evaluations of the seven algorithms under the same
stopping criterion (E < 0.01) are listed in Fig. 6.

It is clear that the Original NSGA-II had difficulties in
converging to the true nadir point when the number of objec-
tives increases. With the increasing number of objectives,
the required function evaluations of the Original NSGA-
II increase more significantly in comparison with the other
twoNSGA-IIs.Extremized Crowded NSGA-II performs bet-
ter than ECR NSGA-II on problems with a smaller number
of objectives. With more than 7 objectives for DTLZ1, 6
objectives for DTLZ2, and 10 objectives for DTLZ4, ECR
NSGA-II uses fewer function evaluations than Extremized
Crowded NSGA-II. For DTLZ3 with 2 to 10 objectives,
Extremized Crowded NSGA-II uses fewer function evalu-
ations than ECR NSGA-II. As DTLZ3 is hard to converge
to its true PF, we speculate that the diversity in the critical
regions cannot improve convergence.

Fig. 6 Function evaluations with a variable number of objectives on the DTLZ problems within limited computational time
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For TwoArch, we can find that ECR improves the nadir
point estimation performance of the Original TwoArch on
most of the DTLZ problems. When the number of objec-
tives increases, the Original TwoArch does not obtain the
true nadir point, while ECR TwoArch performs well on
these problems. Since the Original TwoArch is specifically
designed for MaOPs, both algorithms perform unsatisfaco-
rily on the 2-objective problems. For DTLZ4, we find that
the required number of function evaluations ofECRTwoArch
does not increase with the number of objectives. Especially,
the number of function evaluations for the DTLZ4 with 7
objectives is the smallest. DTLZ4 is the easiest problem to
obtain the solutions near its extreme points among all of the
DTLZ problems. Furthermore, there are only three kinds of
solutions (the non-dominated solutions with domination, the
non-dominated solutions without domination, and the dom-
inated solutions) in the Original TwoArch, which increases
the convergence speed on DTLZ4. However, this character-
istic of the Original TwoArch leads to varied performance
on the same problem in different runs. That is the reason why
the curve of DTLZ4 becomes such irregular.

For IBEA, we find that ECR can improve its nadir point
estimation ability significantly. For DTLZ1, DTLZ3, and
DTLZ4, the Original IBEA did not obtain any points close
to extreme points. Even for DTLZ3 with two objectives, the
Original IBEAdoes not obtain the nadir point within the lim-
ited computational time. After adding ECR, IBEA improves
the performance of nadir point estimation on MaOPs.

Comparing the above results from different algorithms,
we find that the results of ECR IBEA are not better than
that of ECR NSGA-II. Theoretically, IBEA is an excellent
MOEA on MaOPs. We expect that it should perform better
than NSGA-II, especially in terms of convergence. However,
because IBEA has almost no diversity maintenance mecha-
nisms, extreme points are harder to be maintained in IBEA
than in NSGA-II, which might explain the worse results
fromECR IBEA (its maximum number of objectives is much
smaller than 20). Similarly, comparing the results of IBEA
to those of TwoArch, we find that the results of ECR IBEA
are not better than those of ECR TwoArch, either. However,
it is worth noting that the performance of estimating nadir

Fig. 7 Final populations of all the runs ofECRNSGA-II,ExtremizedCrowded NSGA-II, andOriginalNSGA-II on the 3-objectiveDTLZproblems
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points is not the same thing as the performance for solving
the MOP itself.

4.3.2 Discussion

In order to analyze the mechanism of ECR, we show the final
populations of ECR NSGA-II, Extremized Crowded NSGA-
II, and Original NSGA-II on the DTLZ problems with 3
objectives in Fig. 7. According to Fig. 7, the final popula-
tion of the Original NSGA-II is distributed on the entire PF,
that from Extremized Crowded NSGA-II is distributed in the
regions of extreme points, and that from ECR NSGA-II is
distributed in the critical regions most uniformly as expected
in Sect. 3.3.1.

The results show different behaviors caused by different
diversity maintenance strategies on different problems. The
solutions of Original NSGA-II are distributed on the entire
PF.OriginalNSGA-II are not suitable for the nadir point esti-
mation of MaOPs. Extremized Crowded NSGA-II improves
the above disadvantages by concentrating on extreme points.
In order to maintain the diversity of the current population,
Extremized Crowded NSGA-II maintains some individuals
in critical regions. It can solve some MOPs with 15–20
objectives. However, its diversity is unsatisfactory. The indi-
viduals are distributed in some areas non-uniformly. To
overcome this weakness, ECR NSGA-II applies the self-
adaptive ε-clearing strategy to delete similar individuals for
better diversity. Larger diversity in critical regions helps to
improve convergence to the true nadir point. ECR NSGA-II
performs better than Extremized Crowded NSGA-II on most
MaOPs.

However, the individuals in the critical regions of DTLZ3
cannot be maintained as well as we expected, which was
shown in Fig. 7. The critical regions of DTLZ3 sre hard
to obtain. In ECR, we only keep the individuals of criti-
cal regions, which is of insufficient diversity for DTLZ3.
Because we cannot obtain the expected individuals, the
behavior of ECR NSGA-II on DTLZ3 was less satisfactory.

4.3.3 Scalability and extension

We find that ECR NSGA-II can solve DTLZ2 with 20 objec-
tives easily. DTLZ2 with 25–35 objectives are chosen to test
the scalability of ECR. In our experiments, the stopping cri-
terion is set as E < 0.01. All the experiments are repeated
with 29 independent runs. Thenumber of objectives increases
until ECR is not able to find satisfactory nadir points. The
results in Table 2 show that ECR can find the nadir points for
MOPs with 25–35 objectives within a reasonable number of
function evaluations.

DTLZ2 has no local optima, which might be the rea-
son why the scalability of proposed method can be up to
35 objectives. Fairly, we take another group of experiments

Table 2 Number of function evaluations of ECR NSGA-II (the stop-
ping criterion is E < 0.01) on DTLZ2

Obj # Best Median Worst

25 1440000 1965600 4258800

30 2650200 5426400 10290000

35 4320000 8736000 21110400

Table 3 Number of function
evaluations of ECR NSGA-II
(the stopping criterion is
E < 0.01) on DTLZ1 with α

from 0 to 20

α Best Median Worst

0 71100 84900 108600

5 77400 115200 121800

10 76800 100200 178800

15 74700 87900 111600

20 54900 76800 109200

to analyze the sensitivity from local optima by a series
of modified DTLZ1 problems with 5 objectives. g(xM ) =
100[|xM | + ∑

xi∈xM ((xi − 0.5)2 − cos(απ(xi − 0.5)))] in
DTLZ1 controls the local optima, and α controls the fre-
quency of local optima. In the following experiment, we run
ECR NSGA-II (the stopping criterion is set as E < 0.01) on
DTLZ1 with α from 0 to 20 (no local optima to large amount
of local optima). From the result in Table 3, we find that the
amount of local optima weakly affects the performance of
our method.

The existing test problems all have special PFs, on which
a single Pareto optimal solution has the best values of all
objectives. NSGA-III (Deb and Jain 2014) is based on such
a strong assumption to assign reference points, which is
the reason why it can perform well on nadir point estima-
tion. However, the PFs of MOPs may have very different
structures in practice. In order to thoroughly evaluate the
performance of our method, we use a modified DTLZ2 by
changing its PF structure as shown in Fig. 8. The modified
DTLZ2 is given in Eq. (8). Thus, only one single Pareto
optimal solution has the best objective value of a single objec-
tive on the PF of the new DTLZ2. Its true nadir point is
(1,1,…,1).

f1(x) = (1 + g(xM ))(1 − cos(x1π/2) · · · cos(xm−1π/2))
f2(x) = (1 + g(xM ))(1 − cos(x1π/2) · · · sin(xm−1π/2))
...

fm(x) = (1 + g(xM ))(1 − sin(x1π/2))
xM = {xi |i = m, . . . n}, n > m
0 ≤ xi ≤ 1(i = 1, 2, . . . n)

where g(xM ) = ∑
xi∈xM (xi − 0.5)2

(8)

ECRNSGA-II,ExtremizedCrowdedNSGA-II andNSGA-
III are selected for the comparison. The constraint g(x) of the
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Fig. 8 PF of the modified DTLZ2 with 3 objectives

newDTLZ2has 10 dimensions,which is the same as the orig-
inal DTLZ2 problem. The stopping criterion is E < 0.01.
Other parameters are shown in Sect. 4.1.

FromTable 4,wefind thatECRNSGA-II performed better
thanExtremizedCrowdedNSGA-II on thismodifiedDTLZ2.
Comparing to the results in Sect. 4.3, the nadir point of the
modified DTLZ2 is harder to obtain than that of the original
DTLZ2. Extremized Crowded NSGA-II cannot obtain the
nadir point of the new DTLZ2 with more than 4 objectives.
ECR NSGA-II cannot work well on the new DTLZ2 with
more than 7 objectives. Such results show that the structure
of PF influences significantly the behaviors of different nadir
point estimation methods. Additionally, NSGA-III fails to
solve the modified DTLZ2 with more than 2 objectives,
because it assumes the extreme point as (1,0,…,0) rather than
the true situation (0,1,…,1).

4.4 Experimental study on accuracy

From the results in Sect. 4.3, we now understand the general
performance of these compared algorithms. However, the

true nadir point is usually unknown in practice. Involving
the true nadir point is only a method to evaluate the perfor-
mance of different algorithms. We carry on the comparison
of their accuracy in this section. The stopping criterion of the
experiments is set as a fixed number of function evaluations.

Acomparative experiment betweenECRNSGA-II,Extrem-
ized Crowded NSGA-II, ECR TwoArch, and ECR IBEA on
the WFG problems with 10 objectives for 900000 function
evaluations is conducted. The metric E is calculated in every
generation to show the results. The experiment runs for 29
independent times, and the average and standard deviation
values of the metric E are given in Table 5. The results are
analyzed byKruskal–Wallis testwithTukey test (Derrac et al.
2011) in Table 6.

From the results on the E values and the nonparametric
statistical test, TwoArch and IBEA are not suitable for esti-
mating nadir points even after embedding ECR. The reason
is that both algorithms do not have strategies to keep extreme
points. NSGA-II has advantages in this aspect. Therefore, the
E values of ECRNSGA-II and Extremized Crowded NSGA-
II are much better than that of ECR TwoArch and ECR IBEA
on all WFG problems.

The nadir points of the WFG problems are harder to be
obtained than that of the DTLZ problems, especially WFG1,
WFG3, WFG5, WFG6, WFG8, and WFG9. Although ECR
NSGA-II performs better than Extremized Crowded NSGA-
II on WFG1, WFG6, and WFG8, the advantages are not as
significant as that on the DTLZ problems. The performance
ofECRNSGA-II andExtremizedCrowdedNSGA-II are sim-
ilar in the remaining WFG problems.

Figure 9 is the average E values ofECRNSGA-II,Extrem-
ized Crowded NSGA-II, ECR TwoArch, and ECR IBEA on
WFG1 with 10 objectives in 29 independent runs. TwoArch
and IBEA embedded with ECR are not suitable to estimate
nadir points of the WFG problems. NSGA-II has significant
advantages on nadir point estimation. As ECR keeps solu-
tions in the critical regions, the diversity of ECR NSGA-II is
better than Extremized Crowded NSGA-II. That is the reason
whyECRNSGA-II has a faster convergence speed to the true
nadir point than Extremized Crowded NSGA-II.

Table 4 Number of function
evaluations of ECR NSGA-II,
Extremized Crowded NSGA-II,
and NSGA-III (the stopping
criterion is E < 0.01) on the
new DTLZ2 problem

Obj # ECR NSGA-II Extremized crowded NSGA-II NSGA-III

Best Median Worst Best Median Worst Best Median Worst

2 5100 7500 8400 5100 6000 9000 4200 4800 8700

3 11100 12000 15300 82200 455700 900000 – – –

4 20100 34500 55200 900000 900000 900000 – – –

5 70500 117600 243600 – – – – – –

6 79800 188400 257100 – – – – – –

7 153000 361200 487500 – – – – – –

The values in bold face means the best result
“–” means that the algorithm cannot obtain the nadir point within limited computational time

123



Nadir point estimation for many-objective optimization problems based on emphasized critical… 2293

Table 5 E values of ECR
NSGA-II, Extremized Crowded
NSGA-II, ECR TwoArch, and
ECR IBEA (the stopping
criterion is 900000 function
evaluations) on the WFG
problems with 10 objectives

ECR NSGA-II Extremized crowded
NSGA-II

ECR TwoArch ECR IBEA

WFG1 0.1101 ± 0.0426 0.1583 ± 0.1016 0.8133 ± 0.0292 0.6187 ± 0.1112

WFG2 0.0006 ± 0.0014 0.0002 ± 0.0003 0.8537 ± 0.0102 0.6028 ± 0.1196

WFG3 0.1961 ± 0.0002 0.1962 ± 0.0000 0.9125 ± 0.0182 0.1962 ± 0.0000

WFG4 0.0000 ± 0.0000 0.0000 ± 0.0000 0.7771 ± 0.0258 0.1948 ± 0.0012

WFG5 0.0095 ± 0.0006 0.0095 ± 0.0004 0.4662 ± 0.2710 0.1576 ± 0.0461

WFG6 0.0121 ± 0.0080 0.0205 ± 0.0119 0.7763 ± 0.1091 0.1843 ± 0.0260

WFG7 0.0000 ± 0.0000 0.0001 ± 0.0001 0.7961 ± 0.0698 0.1918 ± 0.0027

WFG8 0.1472 ± 0.0250 0.1678 ± 0.0215 0.6486 ± 0.0658 0.1952 ± 0.0006

WFG9 0.1583 ± 0.0347 0.1526 ± 0.0595 0.8387 ± 0.0335 0.1865 ± 0.0068

Table 6 p vales of Kruskal–Wallis test with Tukey test on the results
in Table 5, where A–D stands for ECR NSGA-II, Extremized Crowded
NSGA-II, ECR TwoArch, and ECR IBEA

A B C D

WFG1

A 0.00 0.98 0.00 0.02

B 0.98 0.00 0.00 0.06

C 0.00 0.00 0.00 0.26

D 0.02 0.06 0.26 0.00

WFG2

A 0.00 1.00 0.00 0.04

B 1.00 0.00 0.00 0.02

C 0.00 0.00 0.00 0.27

D 0.04 0.02 0.27 0.00

WFG3

A 0.00 0.41 0.00 0.03

B 0.41 0.00 0.00 0.62

C 0.00 0.00 0.00 0.10

D 0.03 0.62 0.10 0.00

WFG4

A 0.00 0.39 0.00 0.00

B 0.39 0.00 0.00 0.22

C 0.00 0.00 0.00 0.27

D 0.00 0.22 0.27 0.00

WFG5

A 0.00 1.00 0.00 0.02

B 1.00 0.00 0.00 0.03

C 0.00 0.00 0.00 0.41

D 0.02 0.03 0.41 0.00

WFG6

A 0.00 0.88 0.00 0.01

B 0.88 0.00 0.00 0.09

C 0.00 0.00 0.00 0.27

D 0.01 0.09 0.27 0.00

WFG7

A 0.00 0.26 0.00 0.00

Table 6 continued

A B C D

B 0.26 0.00 0.00 0.26

C 0.00 0.00 0.00 0.26

D 0.00 0.26 0.26 0.00

WFG8

A 0.00 0.72 0.00 0.01

B 0.72 0.00 0.00 0.13

C 0.00 0.00 0.00 0.27

D 0.01 0.13 0.27 0.00

WFG9

A 0.00 0.65 0.00 0.31

B 0.65 0.00 0.00 0.94

C 0.00 0.00 0.00 0.02

D 0.31 0.94 0.02 0.00

Fig. 9 The evolution of the average E values of ECR NSGA-II,
Extremized Crowded NSGA-II, ECR TwoArch, and ECR IBEA on
WFG1 with 10 objectives in 29 independent runs
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5 Concluding remarks

Nadir point estimation based on emphasized critical regions
is proposed in this paper, which can estimate nadir points of
MaOPswith better performance than the other existingmeth-
ods. It has been shown that the proposed method is capable
of estimating the nadir point for the DTLZ2 with up to 35
objectives. In this paper, three major contributions have been
made, as follows:

5.1 Emphasized critical regions

ECR emphasizes not only extreme points but also critical
regions, which increases the diversity of the current popula-
tion. For a MaOP, the objective space is large, and it is hard
to select individuals only by the Pareto dominance relation.
Therefore, the emphasized critical regions strategy is impor-
tant for improving both diversity and convergence. Although
the diversity in critical regions seems to be useless for finding
nadir points directly, it improves the convergence to extreme
points, from which better estimation of nadir points can be
obtained.

5.2 Individual number assignment to critical regions

In ECR, the computational cost is assigned uniformly among
all critical regions. Individual number assignment in critical
regions in ECR maintains the balance of searching different
critical regions.

5.3 Self-adaptive ε-clearing strategy

In ECR, the ε-clearing strategy is adopted self-adaptively,
which deletes similar individuals to enhance the diversity of
the population. Parameter ε can be set automatically accord-
ing to the distribution of the current population.

Although ECR achieves good performance on theMaOPs
tested here, there is room for improvement. For example, it
has been found that our ECRmethod cannot solve the MOPs
with more than 35 objectives; the performance on the WFG
problems is less than satisfactory. Our future work includes:
1) Some local search strategies such as (Deb et al. 2010)
could be added to ECR. 2) More studies should focus on the
impact of the structures of PFs on the performance of ECR.
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