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Abstract Machine learning-based computational intelli-
gence methods are widely used to analyze large-scale data
sets in this age of big data. Extracting useful predictive mod-
eling from these types of data sets is a challenging problem
due to their high complexity. Analyzing large amount of
streaming data that can be leveraged to derive business value
is another complex problem to solve. With high levels of
data availability (i.e., Big Data), automatic classification of
them has become an important and complex task. Hence, we
explore the power of applyingMapReduce-based distributed
AdaBoosting of extreme learning machine (ELM) to build
a predictive bag of classification models. Accordingly, (1)
data set ensembles are created; (2) ELM algorithm is used
to build weak learners (classifier functions); and (3) builds a
strong learner from a set of weak learners. We applied this
training model to the benchmark knowledge discovery and
data mining data sets.

Keywords Extreme learning machine · AdaBoost ·
Ensemble methods · MapReduce

1 Introduction

It is clear that there has been an unexpected increase in the
quantity and variety of data generated worldwide by comput-
ers, mobile phones, and sensors. Just as computer technology
evolved, the quantity and variety of data have also increased,
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becoming more focused on storing every type of data, the so-
called Big Data. As the volume of data to build a predictive
model increases, the complexity of that training increases
too. As a result, building actionable predictive modeling of
a large-scale unstructured data set is a definitive Big Data
problem. Predictive learning models try to discover patterns
of training data and label new data instances to the correct
output value. To efficiently handle unstructured large-scale
big data sets, it is critical to develop new machine learn-
ing methods that combine several boosting and classification
algorithms.

Extreme learningmachine (ELM)was proposed byHuang
et al. (2006b) based on generalized single-hidden layer feed-
forward networks (SLFNs). Themain characteristics of ELM
are small training time compared to traditional gradient-
based learning methods, high generalization property of
predicting unseen examples with multi-class labels and para-
meter free with randomly generated hidden nodes. ELM
algorithm is used in many different areas including docu-
ment classification (Zhao et al. 2011), bioinformatics (Wang
and Wang 2006) multimedia recognition (Zong and Huang
2011; Lan et al. 2013).

In recent years, much computational intelligence research
has been devoted to building predictive modeling of distrib-
uted and parallel frameworks. In this research, the proposed
learning model creates data chunks with varying size and
bag of classifier functions using ELM algorithm trained
with these arbitrary chosen sub-data sets with AdaBoosting
method for large-scale predictions. By creating data chunks
from the training data set using the MapReduce paradigm,
each subset of the training data set is used to find out the set
of ELM ensembles as a single global classifier function.

The main objective of this work is to train large-scale
data sets using ELM and AdaBoost. Another objective is to
achieve the model’s classification performance with same or
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close to the conventional ELM method. Conventional ELM
training cannot be applied to large-scale data sets on a sin-
gle computer because of their complexity. Then experiments
section is split into two subsections: “commonly used data
sets” in Sect. 5.1.1 and “large-scale data sets” in Sect. 5.1.2.
Commonly used data sets are suitable for training on a single
computer with the conventional ELM algorithm. We trained
these data sets both conventional and proposed methods to
show the classification performance changes of the proposed
method.Classificationperformance results are shown inSect.
5.3.

The contributions of this paper are as follows:

– A generative MapReduce technique-based AdaBoosted
ELM classification model is proposed for learning and,
thus, faster classification model training is achieved.

– This research proposes a new learning method for
AdaBoosted ELM that achieves parallelization both in
the large-scale data sets and reduced computational time
of learning algorithm.

– Training computations of working nodes are independent
of each other, thus minimizing the data communication.
The other approaches, including Support VectorMachine
training, need data communication for the support vector
exchange (Lu et al. 2008; Sun and Fox 2012; Catak et al.
2013).

The rest of the paper is organized as follows: Sect. 2 briefly
introduces some of the earlier works related to our prob-
lem. Section 3 describes algorithm ELM, AdaBoost and
MapReduce technique. Sections 4 and 5 evaluate the pro-
posed learning model. Section 6 concludes this paper.

2 Related work

In this section, we describe the general overview of the liter-
ature review. Section 2.1 describes the general distributed
ELM methods. Section 2.2 shows the MapReduce-based
ELM training methods.

2.1 Literature review overview

MapReduce-based learning algorithms from distributed data
chunks have been studied by many researchers. Many dif-
ferent MapReduce-based learning solutions over arbitrary
partitioned data have been proposed recently. Some popular
MapReduce-based solutions to train machine learning algo-
rithms in the literature include the following. Panda et al.
proposed a learning tree model which is based on the series
of distributed computations, and implements each one using
the MapReduce model of distributed computation (Panda
et al. 2009). Zhang et al. (2012) develop some algorithms

using MapReduce to perform parallel data joins on large-
scale data sets . Sun et al. (2009) use batch updating-based
hierarchical clustering to reduce computational time and data
communication. Their approach uses co-occurrence-based
feature selection to remove noisy features and decrease the
dimension of the feature vectors. He et al. proposed par-
allel density-based clustering algorithm (DBSCAN). They
developed a partitioning strategy for large-scale non-indexed
data with a 4-stages MapReduce paradigm (He et al. 2011).
Zhao et al. (2009) proposed parallel k-means clustering based
on MapReduce. Their approaches focus on implementing
k-means with the read-only convergence heuristic in the
MapReduce pattern.

2.2 MapReduce-based ELM training methods

Sections 2.2.1, 2.2.2, 2.2.3, 2.2.4 and 2.2.5 describe five dif-
ferent MapReduce training methods of ELM algorithm.

2.2.1 ELM�

Xin et al. proposedMapReduce-based ELM training method
called as ELM∗ (Xin et al. 2014). The main idea behind this
method is to calculate matrix multiplication of ELM to find
weight vector. They show that Moore–Penrose generalized
inverse operator is themost expensive computation part of the
algorithm. As we know, matrix multiplication can be divided
into smaller parts. Using this property, they proposed an effi-
cient implementation of training phase to manage massive
data sets. The final output of this method is a single classifier
function. In this paper, they proposed two different versions
of ELM∗, naive and improved. In naive-ELM∗, the algo-
rithm has two classes, ClassMapper andClass Reducer. Both
classes contain only one method. In improved ELM∗, they
decompose the calculation of matrix multiplication using
MapReduce framework. Moreover, the proposed algorithm
decreases the computation and communication cost. In the
experimental platform, they used their synthetic data sets to
evaluate the performance of the proposed algorithms with
MapReduce framework.

2.2.2 OS-ELM-based classification in hierarchical P2P
network

Sun et al. proposed OS-ELM (Liang et al. 2006)-based dis-
tributed ensemble classification in P2P networks (Sun et al.
2011). They apply the incremental learning principle of
OS-ELM to hierarchical P2P network. They proposed two
different versions of the ensemble classifier in hierarchical
P2P, one-by-one ensemble classification and parallel ensem-
ble classification. In one-by-one learning method, each peer,
one by one, calculates the classifier with all the data. There-
fore, this approach has a large network delay. In the parallel
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ensemble learning, all the classifiers are learnt from all the
data in a parallel manner. Conversely to ELM∗, their exper-
imental results are based on three different real data sets
downloaded from the UCI repository.

2.2.3 Parallel online sequential ELM: POS-ELM

Wang et al. (2013) have been proposed parallel online
sequential extreme learning machine (POS-ELM) method.
Themain idea behind in this approach is to analyze the depen-
dency relationships and the matrix calculations of OS-ELM
(Liang et al. 2006). Their experimental results are based on
nine different real data sets downloaded from the UCI repos-
itory.

2.2.4 Distributed and kernelized ELM: DK-ELM

Bi et al. (2013) have been proposed both distributed and
kernelized ELM (DK-ELM) based on MapReduce. The dif-
ference between ELM and kernelized ELM is that K-ELM
applies kernels opposite to create random feature map-
pings. They provide a distributed implementationRBFkernel
matrix calculation in massive data learning applications.
Their experimental results are based on four different real
data sets downloaded from the UCI repository and four syn-
thetic data sets.

2.2.5 ELM-MapReduce

Chen et al. (2013) have been proposed MapReduce-based
ELM ensemble classifier called ELM-MapReduce, for large-
scale land cover classification of remote sensing data. Their
approach contains two sequential phases: parallel training of
multiple ELM classifiers and voting mechanism. In paral-
lel training phase of proposed method, each Map function
computes an ELM classifier with a given training data set.
In second phase called voting mechanism, a new MapRe-
duce job is executed with a new partitioned test set into each
Map function with notation data j . In Reduce function of
this phase, each data j is predicted with each ELM classifier
trained in parallel training phase. Final classification predic-
tions are the output of final Reduce function. Therefore, this

approach has a high communication cost. Their experimental
results are based on synthetic remote sensing image of the
training data.

2.3 The differences between proposed model and
literature review

The main differences are:

– In ELM�, they use matrix multiplication decomposi-
tion. Each Map function is responsible to calculate the
Moore–Penrose generalized inverse operation. And their
method produces one single classifier. In the proposed
model in our paper, each Reduce function produces
ensemble classifier based on AdaBoost method. The
final output ensemble classifier is a voting-based com-
bination of ensemble classifier trained in each Reduce
phase.

– In OS-ELM-based classification in hierarchical P2P Net-
work, POS-ELM and DK-ELM, they propose ensemble
classifier that combines multiple classifier trained with
data chunks. Each peer classifier is learned from the
local data. Therefore, each peer produces a single ELM
classifier. In our method, each node (or peer) pro-
duces ensemble classifier to increase the classification
accuracy.

– In ELM-MapReduce, they propose ensemble classifier
with two different MapReduce jobs. In first MpaReduce
job, their approach produces a single ELM classifier in
each Map function. In second MapReduce job, the test
set is partitioned into each Map function and produces
final predicted labels based on the voting mechanism of
ELM classifiers that are trained in the first MapReduce
job. In our method, prediction is not included; our aim is
to create a final ensemble classifier in only one MapRe-
duce job.

Table 1 shows the main differences of all proposed meth-
ods. There are five different columns that are ensemble
methods, single pass MapReduce, matrix multiplication,
entire data set and network communication. Ensemble col-
umn shows that the method builds a set of classifier function

Table 1 The differences
between proposed model and
literature review

Method Ensemble Single pass
MapReduce

Matrix mul-
tiplication

Entire data
set

Network
communication

ELM� No Yes No Yes No

OS-ELM Yes Yes No No Yes

POS-ELM Yes Yes No Yes No

DK-ELM Yes Yes No Yes No

ELM-MapReduce Yes No No Yes Yes

Proposed method Yes Yes No No No
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(i.e., ensemble model) to improve the accuracy performance
of the final classification model. If an ensemble method is
applied, then the performance of final model will have better
accuracy result (Kuncheva and Whitaker 2003). Single pass
MapReduce column shows that an iterative approach is not
applied to the model. Entire learning phase is performed in
a single pass of data through the job. Matrix multiplication
column shows that the hidden layer matrix is calculated in
each Map function. The hidden layer matrix computation is
a compute intensive operation. Entire data set column shows
that each Map operation needs entire data set to build a final
classifiermodel.Network communication column shows that
each MapReduce job needs to communicate with another
job. Network communication will affect negatively on train-
ing time of the algorithm.

3 Preliminaries

In this section, we introduce preliminary knowledge of ELM,
AdaBoost and MapReduce briefly.

3.1 Extreme learning machine

ELM was originally proposed for the single-hidden layer
feedforward neural networks (Huang et al. 2006a, b). Then,
ELM was extended to the generalized single-hidden layer
feedforward networks where the hidden layer may not be
neuron like (Huang and Chen 2005, 2006). The main advan-
tages of the ELM classification algorithm are that ELM can
be trained hundred times faster than traditional neural net-
work or support vector machine algorithm since its input
weights and hidden node biases are randomly created and
output layer weights can be analytically calculated using a
least-squares method (Tang et al. 2015; Huang et al. 2008).
The most noticeable feature of ELM is that its hidden layer
parameters are selected randomly.

Given a set of training data D = {(xi , yi ) | i =
1, . . . , n}, xi ∈ R

p, yi ∈ {1, 2, . . . , K }} sampled indepen-
dently and identically distributed (i.i.d.) from some unknown
distribution. The goal of a neural network is to learn a func-
tion f : X → Y where X is instance and Y is the set of all
possible labels. The output label of an single hidden-layer
feedforward neural networks (SLFNs) with N hidden nodes
can be described as:

fN (x) =
N∑

i=1

βi G(ai , bi , x), x ∈ R
n, ai ∈ R

n (1)

where ai and bi are the learning parameters of hidden nodes
and βi is the weight connecting the i th hidden node to the
output node.

The output function of ELM for generalized SLFNs can
be identified by

fN (x) =
N∑

i=1

βi G(ai , bi , x) = β × h(x) (2)

For the binary classification applications, the decision
function of ELM becomes

fN (x) = sign

(
N∑

i=1

βi G(ai , bi , x)

)
= sign (β × h(x)) (3)

Equation 2 can be written in another form as:

Hβ = T (4)

where H and T are, respectively, hidden layer matrix and
output matrix. Hidden layer matrix can be described as:

H(ã, b̃, x̃) =
⎡

⎢⎣
G(a1, b1, x1) · · · G(aL , bL , x1)

...
. . .

...

G(a1, b1, xN ) · · · G(aL , bL , xN )

⎤

⎥⎦

N×L

(5)

where ã = a1, . . . , aL , b̃ = b1, . . . , bL , x̃ = x1, . . . , xN .
Output matrix can be described as:

T = [
t1 . . . tN

]T
(6)

Thehiddennodes ofSLFNscanbe randomlygenerated.They
can be independent of the training data.

3.2 AdaBoost

The AdaBoost (Freund and Schapire 1995) is a supervised
learning algorithm designed to solve classification problems
(Freund et al. 1999). The algorithm takes as input a training
set (x1, y1), . . . , (xn, yn) where the input sample xi ∈ R

p,
and the output value, yi , in a finite space y ∈ 1, . . . , K .
AdaBoost algorithm assumes, like ELM, a set of train-
ing data sampled independently and identically distributed
(i.i.d.) from some unknown distribution X .

Given a space of feature vectors X and two possible class
labels, y ∈ {−1,+1}, AdaBoost goal is to learn a strong
classifier H(x) as a weighted ensemble of weak classifiers
ht (x) predicting the label of any instance x ∈ X (Landesa-
Vzquez and Alba-Castro 2013).

H(x) = sign( f (x)) = sign

(
T∑

t=1

αt ht (x)

)
(7)
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Pseudocode for AdaBoost is given in Alg. 1

Algorithm 1 The AdaBoost algorithm.
1: Inputs:

D = {{(xi, yi) | i = 1, ..., n},xi ∈ R
p, yi ∈ {−1,+1}}m

i=1
2: Initialize D(i) = 1

m for all i
3: while t < T do
4: Train WeakLearner using distribution Dt

5: get back a weak hypothesis ht : X → {1, 2, ...,K}
6: calculate the error of ht : εt = Pri∼Dt

[ht(xi) �= yi]
7: Sets αt = 1

2 ln
1−εt

εt

8: update distribution Dt+1 = Dt

Zt
×

{
e−αt , if ht = yi

eαt , if ht �= yi

9: equivalently Dt+1 = Dt×exp(−αtyiht(xi))
Zt

where Zt is a normalization
constant.

10: end while
11: Outputs:

final hypothesis h∗ = sign
T
t=1 αtht(x)

3.3 MapReduce

MapReduce is a new programming model to run parallel
applications for large-scale data sets processing to support
data-intensive applications. It is derived from the map and
reduce function combination from functional programming.
Users specify a map function that processes a key/value pair
to generate a set of intermediate key/value pairs, and a reduce
function that merges all intermediate values associated with
the same intermediate key. The MapReduce was originally
developedbyGoogle andbuilt onprinciples in a parallelman-
ner (Dean andGhemawat 2008). TheMapReduce framework
first takes the input, divides it into smaller data chunks, and
distributes them to worker nodes. MapReduce is divided into
three major phases called map, reduce and a separated inter-
nal shuffle phase. The MapReduce framework automatically
executes all those functions in a parallel manner over any
number of processors/servers (Schatz 2009).

Pseudo-code ofMapReduce framework is shown in Eq. 8.

map(key1, value1) → list(key2, value2)

reduce(key2, list(value2)) → list(key3, value3)
(8)

Mapreduce programming technique is widely used on dif-
ferent scientific fields, i.e., cyber-security (Choi et al. 2014;
Ogiela et al. 2014), high energy physics (Bhimji et al. 2014),
and biology (Xu et al. 2014).

4 Proposed approach

In this section, we provide the details of the MapReduce-
based distributed AdaBoosted ELM algorithm. The basic
idea of AdaBoost-ELM based on MapReduce technique is
introduced in Sect. 4.1. The MapReduce implementation of
AdaBoosted ELM is described in Sect. 4.3.

Table 2 Commonly used variables and notations

Variables/notation Description

M Data chunck split size

h A single classifier function

Xm Data chunck m of input values of D
Ym Data chunck m of output values of D
ε Error rate

# Chunk Number of data chunk

T AdaBoost T size

# H. Nodes Number of hidden nodes used in ELM

Acc Accuracy of classifier hypothesis

k Number of classes

4.1 Basic idea

Our main task is to parallel and distributed execute the
computation of AdaBoosted ELM classification method.
AdaBoosted ELM’s basic idea is to calculate ensemble of
classifier functions over partitioned data (Xm,Ym) in a par-
allel manner. In Table 2, a summary of commonly used vari-
ables and notations to assess the classifiermodel performance
of the AdaBoosted ELM method is given for convenience.

4.2 Analysis of the proposed algorithm

Barlett showed that the size of the weights is more important
than the size of the neural network (Bartlett 1998). Kragh et
al. also showed that ensemblemethods of neural networks get
better accuracy performance over unseen examples (Krogh
and Vedelsby 1995). The main motivation of the this work
is the idea that small size ELM ensembles can obtain more
accurate classifier model that are comparable to individual
classifiers.

In the proposedmodel, at every data chunk, there is a set of
classifier functions that acts as a single classification model.
The single model at every data chunkm is defined as follows:

f (m)(x) = argmaxk

T∑

t=1

αt ht (x) (9)

The selected ensemble ELM classifier models from the
reduce phase of MapReduce algorithm are combined into
one single classification model.

ĥ(x) = argmaxk

m∑

i=1

f (m)(x) (10)

4.3 Implementation of the model

The pseudo-codes of MapReduce-based AdaBoost ELM are
shown in Algorithm 2 and Algorithm 3. The Map proce-
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dure of our training model is implemented based on random
assignment of each row of the training data set with split
size of data, M , in line 2 of Algorithm 2. The input, x , is
a row of training data set D. Map procedure partition the
input matrix by row, producing < randomSpli t I d, x >

key-value pairs. randomSpli t I d is the identifier of the data
chunk and is transferred as the input key to Reduce phase.
The pseudo-code of Reduce phase is shown in Algorithm
3. Reduce procedure is implemented based on the for-loop
of lines 3 - 8 of Algorithm 3. The output ELM classifier of
sub-data set (Xk, yk) is calculated usingAdaBoost constantly
block by block, so every reduce task completes training phase
and outputs an AdaBoosted set of classifier functions. The
mapper ’s input k is the randomSpli t I d to create the data
chunk and created in the Map phase of our training model.

Algorithm 2 AdaBoostedELM::Map
1: Inputs:

Training record (x, y) ∈ D, Data set split size M
2: k ← rand(0, M)
3: Output(k, (x, y))

Algorithm 3 AdaBoostedELM::Reduce
1: Inputs:

Key k, Value Set V ,AdaBoost Iteration Size T
2: Split V into input space Xn and out labels yn with (Xn,yn) ← V
3: for t = 1..T do
4: Train sub data set with ELM: ht ← ELM(X, y)
5: ypred, εt ← ht(X)
6: αt ← 1

2 ln
1−εt

εt

7: Dt+1 = Dt×exp(−αtyiht(xi))
Zt

8: end for
9: Outputs:

Final hypothesis for the reduce function m :
hm ← argmaxk

T
t=1 αtht(x)

5 Experiments

In this section, we perform experiments on real-world data
sets from the public available data set repositories. Public
data sets are used to evaluate the proposed learning method.
Then, classification models of each data set are compared
for accuracy results with the single instance of learning algo-
rithm performance.

In Sect. 5.1, we explain the data sets and parameters that
are used in experiments. The conventional ELM is applied all
data sets and we find the accuracy performance over number
of hidden nodes in Sect. 5.3. In Sect. 5.2, we show the empir-
ical results of proposed distributed Adaboost ELM training
algorithm.

5.1 Experimental setup

In this section, we apply our approach to five different data
sets to verify its effectivity and efficiency. To demonstrate
the effectiveness and performance of the proposed model,
we apply it on various classification data sets from public

Table 3 Description of the testing data sets used in the experiments

Data set #Train #Test #Classes #Attributes

Pendigit 7494 3498 10 16

Skin 220,543 24,507 2 3

Statlog/Shuttle 43,500 14,500 7 9

Page-blocks 4500 973 5 10

Waveform 4400 600 3 21

data set repositories. To obtain an optimal value of Mapper
size, m, we range it in the range from 20 to 100.

5.1.1 Commonly used classification data sets

Weexperiment on five public data setswhich are summarized
in Table 3, including Pendigit, Letter, Statlog, Page-blocks
and Waveform. They are all multiclass data sets. All experi-
ments are repeated 5 times and the results are averaged. All
data sets are publicly available in svmlight format on the
LIBSVM website (LIBSVM 2015).

Pendigit data set is a collection of pen-based recognition
of handwritten digits (Alimoglu and Alpaydin 1996). The
data set contains 250 samples from 44 people. The first 7494
instances written by 30 people are used for the training data
set, and the digits written by other 14 people are used for the
independent testing purpose.

Skin data set is a collection of skin segmentation con-
structed over R, G, B color space (Bhatt et al. 2009).
The data set contains face images of different age groups
(young, middle, old), genders and racial groups (White,
Black, Asian). The data set contains 245,057 instances; out
of which 50,859 is the skin labeled instances and 194,198 is
non-skin instances.

Statlog/shuttle data set is a collection of space shuttle cre-
ated by NASA (Hsu and Lin 2002). The data set contains
43,500 training instances and 14.500 testing instances. 80 %
of the data belong to class 1.

Page blocks data set is a collection of page layout of a
document that has been detected by a segmentation process
(Malerba et al. 1996). The data set contains 4500 training
instances and 973 testing instances.

Waveform data set is a collection of Breiman’s waveform
domains of CART book’s (Breiman et al. 1984). The data set
contains 4400 training instances and 600 testing instances.

5.1.2 Large-scale classification data sets

Weexperiment on three public large-scale data setswhich are
summarized in Table 4, including “Record Linkage Com-
parison Patterns (Donation)”, “SUSY” and “HIGGS”. All
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Table 4 Description of the testing large-scale data sets used in the
experiments

Data set #Train #Test #Classes #Attributes

Donation 5,749,132 1,000,000 2 12

SUSY 5,000,000 50,000 2 18

HIGSS 11,000,000 1,000,000 2 28

experiments are repeated 5 times and the results are aver-
aged.

Donation represent individual data, including first and
family name, sex, date of birth and postal code, which were
collected through iterative insertions in the course of sev-
eral years. The comparison patterns in this data set are based
on a sample of 100.000 records dating from 2005 to 2008
(Schmidtmann et al. 2009). The data set contains 5,749,132
training instances and 1,000,000 testing instances. The data
set is available on UCI website (UCI 2011).

SUSY is a classification data set that distinguishes between
a signal process which produces supersymmetric particles
and a background process which does not (Baldi et al. 2014).
The first 8 features are kinematic properties measured by
the particle detectors in the accelerator. The last ten features
are functions of the first 8 features. The data set contains
5,000,000 training instances and 50,000 testing instances.
The data set is available on UCI website (UCI 0000).

HIGSS is a classification problem to distinguish between
a signal process which produces Higgs bosons and a back-
ground process which does not (Baldi et al. 2014). The first
21 features (columns 2–22) are kinematic properties mea-
sured by the particle detectors in the accelerator. The last
seven features are functions of the first 21 features. The data
set contains 11,000,000 training instances and 500,000 test-
ing instances. The data set is available on UCI website (UCI
2014).

5.2 Evaluation

Since the data sets that are used in our experiments are highly
imbalanced, traditional accuracy-based performance evalua-
tion is not enough to find out an optimal classifier. We used
four different metrics, the overall prediction accuracy, aver-
age recall, average precision (Turpin and Scholer 2006) and
F score, to evaluate the classification accuracy, which are
commonmeasurementmetrics in information retrieval (Man-
ning et al. 2008; Makhoul et al. 1999).

Precision is defined as the fraction of retrieved samples
that are relevant. Precision is shown in Eq. 11.

Precision = Correct

Correct + False
(11)

Recall is defined as the fraction of relevant samples that is
retrieved. Recall is shown in Eq. 12.

Precision = Correct

Correct + Missed
(12)

The proposed evaluation model calculates the precision and
recall for each class from prediction scores and then finds
their mean. Average precision and recall are shown in Eqs.
13 and 14.

Precisionavg = 1

nclasses

nclasses−1∑

i=0

Preci (13)

Recallavg = 1

nclasses

nclasses−1∑

i=0

Recalli (14)

F-measure is defined as the harmonic mean of precision and
recall. The

F1 = 2 × Precavg × Recallavg
Precavg + Recallavg

(15)

5.3 Data set results with conventional ELM

Figure 1 shows that the accuracy performance of ELM for
experimental data sets becomes steady state after a threshold
value of N . The testing classification performance is mea-
sured through accuracy, precision, recall and F1 measure. N
varies from 150 to 500.

Table 5 shows the best performance of the conventional
ELM method of each data set.

The conventional ELM training algorithm can be applied
only in Sect. 5.1.1. The large-scale data sets in Sect. 5.1.2 are
not feasible to train on a single computer.

5.4 Testing accuracy analysis

Because two different data set types (“commonly used”,
“large scale”) are used, the results are divided into two differ-
ent sections. In Sect. 5.4.1, the figures and the plots show the
implementation results of commonly used classification data
sets. Section 5.4.2 shows the large-scale data sets results.

5.4.1 Commonly used classification data sets

The results of accuracy and performance tests with real data
are shown in Table 6 and Figs. 2, 3, 4, 5 and 6. According
to the these results, AdaBoost T size and Mapper size have
more impact on the accuracy of ensemble ELM classifier
than number of hidden nodes in ELM network.

The accuracy of classification models is visualized by
heatmap color coding according to
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Fig. 1 Number of hidden nodes in ELM versus classifier precision. a Statlog data set, b Skin data set, c Pen digit data set, d Waveform data set,
e Page blocks data set

– Map size (M)–AdaBoost size (T )
– Map size (M)–Number of hidden nodes (nh)
– AdaBoost size (T )–Number of hidden nodes (nh)

Figure 2, 3, 4, 5 and 6 are used to plot the quantitative
differences in accuracy score of each data set. Heatmaps
are two-dimensional graphical representations of data with
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Table 5 Data set results with conventional ELM

Data set F1 Recall Precision Accuracy

Pendigit 0.8404 0.8393 0.8416 0.8407

Skin 0.9754 0.9956 0.9583 0.9894

Statlog 0.8871 0.8556 0.9237 0.9757

Page-blocks 0.9873 0.9764 0.9988 0.9977

Waveform 0.8372 0.8368 0.8375 0.8376

Table 6 Best performance results of data sets

Data set # C. T # H.N. Acc Prec. Recall F1

Pendigit 20 10 21 0.8256 0.8369 0.8234 0.8301

Skin 21 5 21 0.9892 0.9773 0.9913 0.9842

Statlog 11 2 21 0.9103 0.7486 0.5069 0.6045

Page Blocks 1 1 340 0.9404 0.9027 0.5756 0.7030

Waveform 19 6 40 0.862 0.8680 0.8605 0.8642

a pre-defined colormap to display the values of a matrix
(Khomtchouk et al. 2014). Heatmaps can be used to under-
standwhat parameters affect the accuracy of the classification
model. The figures are used to comparatively illustrate accu-
racy levels across a number of different parameters including

Map size, AdaBoost size and the number of hidden nodes in
ELMalgorithmobtained from the proposed learningmethod.

According to Table 7, classification performance results
of the proposed method have almost the same values with
the conventional ELM method.

5.4.2 Large-scale classification data sets

Figure 7 shows the speed up on mapper size over proposed
method on large-scale data sets. To asses the effectiveness
of the learning algorithm, the time is measured with varying
mapper size. Because of high dimensionality, the data sets
cannot be trained on a single computer. Then, the standard
speed up percentage is modified, such that

Sp = targminm∈M
tp

(16)

where targminm∈M is the total time on minimum mapper that
can be achieved to build a classifier model.

As can be seen from the figure, the data sets achieve per-
formance improvement in learning time of the algorithm. By
examining the trends observed as the number of mappers
increases, one can see that non-linear speed up is achieved.
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Fig. 4 Skin data set heatmap. a Split size and adaboost T size, b Split size and number of nh, c Adaboost T size and number of nh

1 3 5 7 9 11 13 15 17 19 21
1
2
3
4
5
6
7
8
9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

20
40
60
80

100
120
140
160
180
200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

20
40
60
80

100
120
140
160
180
200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1(a) (b) (c)

Fig. 5 Page blocks data set heatmap. a Split size and adaboost T size, b Split size and number of nh, c Adaboost T size and number of nh

1 3 5 7 9 11 13 15 17 19 21
1
2
3
4
5
6
7
8
9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21

20
40
60
80

100
120
140
160
180
200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

20
40
60
80

100
120
140
160
180
200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1(a) (b) (c)
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Table 7 Performance comparison of ELM and proposed model

Data set Method F1 Recall Precision Accuracy

Pendigit Conventional 0.8404 0.8393 0.8416 0.8407

Proposed 0.8301 0.8234 0.8369 0.8256

Skin Conventional 0.9754 0.9956 0.9583 0.9894

Proposed 0.9842 0.9913 0.9773 0.9892

Statlog Conventional 0.8871 0.8556 0.9237 0.9757

Proposed 0.6045 0.5069 0.7486 0.9103

Page-blocks Conventional 0.9873 0.9764 0.9988 0.9977

Proposed 0.7030 0.5756 0.9027 0.9404

Waveform Conventional 0.8372 0.8368 0.8375 0.8376

Proposed 0.8642 0.8605 0.8680 0.8620
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Fig. 7 Stability analysis of ensembleELMclassifierswithMapper size
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5.5 Stability analysis

Standard deviation of testing accuracyof themethod is shown
in Fig. 8a, b.We analyzed the stability of ensembleELMclas-
sifier with two aspects, Mapper size and AdaBoost T size.
Mapper size is the most important variable for the model sta-
bility according to the Fig. 8a. From Fig. 8a, b, we can find
that standard deviation of testing accuracy decreases enor-
mouslywith the increasing ofMapper function size. Through
this analysis, one can argue that a model with high Mapper
function size has higher stability than low Mapper function
size.

6 Conclusion and future works

In this paper, a parallel AdaBoost extreme learning machine
algorithm implementation has been proposed for massive
data learning. By creating the overall data set into data
chunks, MapReduce-based learning algorithm reduces the
training time of ELM classification. To overcome the accu-
racy performance decreasing, distributed ELM is enhanced
with AdaBoost method. The experimental results show that
AdaBoosted ELM reduces not only the training time of large-
scale data sets, but also evaluation metrics of the accuracy
performance as compared with the conventional ELM.

The proposed AdaBoost-based ELM has three different
trade-off parameters which are (1) data chunk split size, M ,
(2) maximum number of iterations, T , in AdaBoost Algo-
rithm and lastly (3) number of hidden layer nodes nh in ELM
algorithm. The empirical results in heatmap figures show that
parameters M and T are more dominant than parameter nh
for the classification accuracy of the hypothesis.

The algorithm is designed to deal with large-scale data
set ELM training problems. Another objective is to achieve
the model’s classification performance with same or close to
the conventional ELM method. Classification performance
results are shown in Sect. 5.3. The empirical results show
us that classification performance results of the proposed
method have almost the same values with the conventional
ELM method.
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