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Abstract In this paper, it is shown that the Hadamard
integral inequality for r -convex functions is not satisfied
in the fuzzy context. Using the classical Hadamard integral
inequality, we give an upper bound for the Sugeno integral
of r -convex functions. In addition, we generalize the results
related to the Hadamard integral inequality for Sugeno inte-
gral from 1-convex functions (ordinary convex functions) to
r -convex functions. We present a geometric interpretation
and some examples in the framework of the Lebesgue mea-
sure to illustrate the results.

Keywords Sugeno integral · The Hadamard inequality ·
r -convex function · Seminormed Sugeno integral

1 Introduction

The process of combining several numerical values into
a single representative one is called aggregation, and the
numerical function performing this process is called an
aggregation function, see Grabisch et al. (2009). Several
methods for combining evidence produced bymultiple infor-
mation sources have been studied by different researchers
and some synthesizing functions have been proposed. For
example, arithmetic mean, geometric mean and median can
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be regarded as a basic class, because they are often used and
very classic. However, these operators are not able to model
an interaction between criteria. For having a representation
of interaction phenomena between criteria, fuzzy integrals
have been proposed by Sugeno (1974). The fuzzy integral
is a nonlinear functional that is defined with respect to a
fuzzy measure, which in turn is either a belief or a plausi-
bility measure in the sense of Dempster–Shafer belief theory
(Wierzchon 1982). The fuzzy integral combines objective
evidence for a hypothesis with the system’s expectation of
the importance of that evidence to the hypothesis, see Wang
and Klir (1992) and Chen et al. (2014).

Two main classes of the fuzzy integrals are Choquet
and Sugeno integrals. The properties and applications of
the Sugeno integral have been studied by many authors.
Ralescu and Adams (1980) studied several equivalent def-
initions of Sugeno integral. Román-Flores et al. (2007a, b)
(Flores-Franulič and Román-Flores 2007; Román-Flores
and Chalco-Cano 2006, 2007) studied the level-continuity
of Sugeno integral, H -continuity of fuzzy measures and
geometric inequalities for fuzzy measures and integrals,
respectively. Wang and Klir (1992) had a general overview
on fuzzy measurement and fuzzy integration theory.

Recently, many authors have studied the most well-
known integral inequalities for Sugeno integral. Agahi
et al. (2010a, b, 2011, 2012a, b) and Agahi and Eslami
(2011) proved general Minkowski-type inequalities, gen-
eral extensions of Chebyshev-type inequalities and general
Barnes–Godunova–Levin-type inequalities for Sugeno inte-
grals. Caballero and Sadarangani (2009, 2010a, b, c, 2011)
proved Hermite–Hadamard-type inequalities, Chebyshev-
type inequalities, Cauchy and Fritz Carlson’s type inequal-
ities for Sugeno integral. Kaluszka et al. (2014) gave
the necessary and sufficient conditions guaranteeing the
validity of Chebyshev type inequalities for the general-
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ized Sugeno integral in the case of functions belonging to
a much wider class than the comonotone functions. Wu
et al. (2010) proved two inequalities for the Sugeno inte-
gral on abstract spaces generalizing all previous Chebyshev’s
inequalities.

Most of the integral inequalities studied in the Sugeno
integration context normally consider conditions such as
monotonicity or comonotonicity. In this paper, the main
purpose is to consider the Sugeno integral for r -convex
functions using the Hadamard integral inequality. The clas-
sical measure theory is closely connected with probability
theory. A probability measure, as any other classical mea-
sure, is a set function that assigns 0 to the empty set and a
nonnegative number to any other set, and that is additive.
However, a probability measure requires, in addition, that 1
be assigned to the universal set in question. Hence, proba-
bility theory may be viewed as a part of classical measure
theory. It is shown by Klir and Folger (1988) that clas-
sical (additive) probability measure can capture only one
of several types of uncertainty that can clearly be recog-
nized when the additivity property is abandoned. On the
other hand, in many applications, assumptions about the
convexity of a probability distribution allow just enough spe-
cial structure to yield a workable theory. So, we believe
that our results will be useful in non-additive probabili-
ties.

The paper is organized as follows: Somenecessary prelim-
inaries and summarization of some previous known results
are presented in Sect. 2. In Sect. 3, we deal with the upper
bound of Sugeno integral for r -convex functions and give
some examples. In Sect. 4, a geometric interpretation is pre-
sented to illustrate the results. Finally, a conclusion is given
in Sect. 5.

2 Preliminaries

In this section, we are going to review some well-known
results from the theory of non-additive measures. Let X be a
non-empty set and � be a σ -algebra of subsets of X .

Definition 1 (Ralescu and Adams 1980) Suppose that μ :
� −→ [0,∞) is a set function. We say that μ is a fuzzy
measure if it satisfies

1. μ(∅) = 0.
2. E, F ∈ � and E ⊂ F imply μ(E) ≤ μ(F).
3. En ∈ � (n ∈ N), E1 ⊂ E2 ⊂. . . , imply limn→∞ μ(En) =

μ(
⋃∞

n=1 En) (continuity from below).
4. En ∈ � (n ∈ N), E1 ⊃ E2 ⊃ . . . , μ(E1) < ∞,

imply limn→∞ μ(En) = μ(
⋂∞

n=1 En) (continuity from
above).

The triple (X, �,μ) is called a fuzzy measure space.
Let (X, �,μ) be a fuzzy measure space. By Fμ(X) we

denote the set

Fμ(X) = { f : X −→ [0,∞) : f is measurable with respect to �} .

For f ∈ Fμ(X) and α > 0, we denote by Fα and Fα̃ the
following sets

Fα = {x ∈ X : f (x) ≥ α} and Fα̃ = {x ∈ X : f (x) > α}.

Note that if α ≤ β, then Fβ ⊂ Fα and Fβ̃ ⊂ Fα̃ .

Definition 2 (Durante and Sempi 2005) A function T :
[0, 1] × [0, 1] −→ [0, 1] is said to be a semicopula if, and
only if, it satisfies the two following conditions:

(T1) T (x, 1) = T (1, x) = x for any x ∈ [0, 1].
(T2) For any x1, x2, y1, y2 ∈ [0, 1] with x1 ≤ x2 and
y1 ≤ y2, T (x1, y1) ≤ T (x2, y2).

A semicopula T is a t-norm if

(T3) T (x, y) = T (y, x) for any x, y ∈ [0, 1].
(T4) T

(
T (x, y), z

) = T
(
x, T (y, z)

)
for anyx, y, z ∈

[0, 1].

A function S : [0, 1] × [0, 1] −→ [0, 1] is called a t-
conorm (Klement et al. 2000), if there is a t-norm T such
that S(x, y) = 1 − T (1 − x, 1 − y).

Example 1 The following functions are t-norms:

1. TM (x, y) = min{x, y}.
2. TP (x, y) = x · y.
3. TL(x, y) = max{x + y − 1, 0}.
4. TD(x, y) =

{
0, if(x, y) ∈ [0, 1)2;
min(x, y), otherwise.

Notice that if T is a t-norm, as an immediate consequence
of (T1), (T3) and (T4), the drastic product TD is the weakest,
and the minimum TM is the strongest t-norm, i.e., for each
t-norm T we have

TD ≤ T ≤ TM . (1)

Between the four basic t-norms we have these strict inequal-
ities (see Klement et al. 2000, 2004):

TD < TL < TP < TM .

Definition 3 (Pap 1995; Sugeno 1974;Wang and Klir 1992)
Let (X, �,μ) be a fuzzy measure space, f ∈ Fμ(X) and
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A ∈ �, then the Sugeno integral of f on A with respect to
the fuzzy measure μ is defined by

∫

−
A
f dμ =

∨

α≥0

(
α ∧ μ(A ∩ Fα)

)
,

where ∧ is just the prototypical t-norm minimum and ∨ the
prototypical t-conorm maximum. If A = X , then

∫

−
A
f dμ =

∨

α≥0

(α ∧ μ(Fα)) .

The following properties of Sugeno integral are well
known and can be found in Pap (1995) and Wang and Klir
(1992).

Theorem 1 Let (X, �,μ) be a fuzzy measure space, A, B ∈
� and f, g ∈ Fμ(X) then

(F1)
∫−A f dμ ≤ μ(A).

(F2)
∫−A kdμ = k ∧ μ(A), k non-negative constant.

(F3) If f ≤ g on A then
∫−A f dμ ≤ ∫−A gdμ.

(F4) If A ⊂ B then
∫−A f dμ ≤ ∫−B f dμ.

By using the concept of semicopulas, García and Álvarez
(1986) proposed the following family of fuzzy integrals.

Definition 4 Let T be a semicopula. Then the seminormed
Sugeno integral of a function f ∈ Fμ(X) over A ∈ � with
respect to T and the fuzzy measure μ is defined by

∫

T,A
f dμ =

∨

α∈[0,1]
T (α, μ(A ∩ Fα)) .

It should be noted that the seminormedSugeno integralswere
independently introduced not only as (N ) fuzzy integral due
to Zhao (1981), but also as the weakest universal integrals
(on [0, 1]) with respect to a given semicopula, see Klement
et al. (2010).

Notice that the Sugeno integral of f ∈ Fμ(X) over A ∈ �

is the seminormed Sugeno integral of f over A ∈ � with
respect to the semicopula TM .

In virtue of (1),

∫

T,A
f dμ =

∨

α∈[0,1]
T
(
α,μ(A ∩ Fα)

)

≤
∨

α∈[0,1]

(
α ∧ μ(A ∩ Fα)

)

=
∫

−A f dμ. (2)

Proposition 1 (García and Álvarez 1986) Let (X, �,μ) be
a fuzzy measure space and T be a semicopula. Then

1. For any A ∈ � and f, g ∈ Fμ(X) with f ≤ g, we have

∫

T,A
f dμ ≤

∫

T,A
gdμ.

2. For A, B ∈ � with A ⊂ B and any f ∈ Fμ(X),

∫

T,A
f dμ ≤

∫

T,B
f dμ.

The power mean Mr (x, y; λ) of order r of positive num-
bers x, y is defined by

Mr (x, y; λ) =
{(

λ f (x)r + (1 − λ) f (y)r
) 1
r , r 
= 0;

f (x)λ f (y)1−λ, r = 0.

A positive function f is r -convex on a real interval [a, b] if
for all x, y ∈ [a, b] and λ ∈ [0, 1] we have

f (λx + (1 − λ)y) ≤ Mr (x, y; λ).

We have that 1-convex functions are ordinary convex func-
tions. Moreover, 0-convex functions are simply log-convex
functions. It will be convenient to invoke the generalized log-
arithmic mean Lr (x, y) of order r of two positive numbers
x, y, which is given by

Lr (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r
r+1 · xr+1−yr+1

xr−yr , r 
= 0,−1, x 
= y,

x−y
ln(x)−ln(y) , r = 0, x 
= y,

xy · ln(x)−ln(y)
x−y , r = −1, x 
= y,

x, x = y.

The followingHadamard inequality provides an upper bound
for the mean value of an r -convex function f : [a, b] −→ R,
see (Gill et al. 1997):

1

b − a

∫ b

a
f (x)dx ≤ Lr ( f (a), f (b)) . (3)

3 The main results

To simplify the calculation of the Sugeno integral, for a given
f ∈ Fμ(X) and A ∈ �, we write

� = {α | α ≥ 0, μ(A ∩ Fα) > μ(A ∩ Fβ) for any β > α
}
.

It is easy to see that

∫

−
A
f dμ =

∨

α∈�

(
α ∧ μ(A ∩ Fα

)
.
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Notice that if X is the set of real numbers (X = R), � is the
Borel field and μ is the Lebesgue measure, then (X, �,μ) is
a fuzzymeasure space; but it should be noted that the Sugeno
integral is not an extension of the Lebesgue integral.

The following example shows that the Hadamard integral
inequality for r -convex functions is not valid in the fuzzy
context.

Example 2 Let � be the Borel field and μ be the Lebesgue
measure on R. Take the non-negative and 1

2 -convex function
f (x) = 2x−2 on [0, 1]. We have

∫

−
1

0
2x−2dμ =

∨

α≥0

(
α ∧ μ

(
[0, 1] ∩

{
2x−2 ≥ α

}))

=
∨

α≥0

(

α ∧ μ

(

[0, 1] ∩
{

x ≥ ln(α)

ln(2)
+ 2

}))

=
∨

α≥0

(

α ∧
(

−1 − ln(α)

ln(2)

))

.

In this expression, −1 − ln(α)
ln(2) is a decreasing continuous

function of α when α ≥ 0. Hence, the supremum will be
attained at the point which is one of the solutions of the
equation

α = −1 − ln(α)

ln(2)
,

that is, at α ≈ 0.383. So, we have

∫

−
1

0
2x−2dμ ≈ 0.383.

On the other hand, L 1
2

(
f (0), f (1)

) ≈ 0.368. This proves
that the Hadamard integral inequality (3) for r -convex func-
tions is not satisfied in the fuzzy context.

In the sequel, we will establish an upper bound on Sugeno
integral of r -convex functions (r 
= 0). Some specific exam-
ples will be given to illustrate the results.

Theorem 2 Let ([a, b], �,μ) be a fuzzy measure space. Let
r > 0 and f : [a, b] −→ [0,∞) be an r-convex function
with f (a) 
= f (b). If f (b) > f (a), then

∫

−
b

a
f dμ ≤

∨

α∈�

(

α ∧ μ

([

(b − a)
αr − f (a)r

f (b)r − f (a)r
+ a, b

]))

,

where � = [ f (a), f (b)
)
. If f (a) > f (b), then

∫

−
b

a
f dμ ≤

∨

α∈�

(

α ∧ μ

([

a, (b − a)
αr − f (a)r

f (b)r − f (a)r
+ a

]))

,

where � = [ f (b), f (a)
)
.

Proof As f is r -convex, for x ∈ [a, b] we have

f (x) = f

((

1 − x − a

b − a

)

a + x − a

b − a
b

)

≤
((

1 − x − a

b − a

)

f (a)r + x − a

b − a
f (b)r

) 1
r

= g(x).

By (F3) of Theorem 1 and Definition 3, we get

∫

−
b

a
f dμ ≤

∫

−
b

a

((

1 − x − a

b − a

)

f (a)r + x − a

b − a
f (b)r

) 1
r

dμ

=
∫

−
b

a
gdμ =

∨

α≥0

(
α ∧ G(α)

)
, (4)

where G is the distribution function associated with g given
by

G(α) = μ
([a, b] ∩ {g ≥ α}).

If f (b) > f (a), then

G(α) = μ

(

[a, b] ∩
{((

1− x − a

b − a

)

f (a)r + x − a

b − a
f (b)r

) 1
r ≥ α

})

= μ

(

[a, b] ∩
{

x ≥ (b − a)
αr − f (a)r

f (b)r − f (a)r
+ a

})

= μ

([

(b − a)
αr − f (a)r

f (b)r − f (a)r
+ a, b

])

. (5)

Thus, � = [
f (a), f (b)

)
and we only need to consider

α ∈ [ f (a), f (b)
)
.

If f (b) < f (a), then

G(α) = μ

⎛

⎝[a, b] ∩
⎧
⎨

⎩

((

1 − x − a

b − a

)

f (a)r + x − a

b − a
f (b)r

) 1
r ≥ α

⎫
⎬

⎭

⎞

⎠

= μ

(

[a, b] ∩
{

x ≤ (b − a)
αr − f (a)r

f (b)r − f (a)r
+ a

})

= μ

([

a, (b − a)
αr − f (a)r

f (b)r − f (a)r
+ a

])

. (6)

Thus, � = [
f (b), f (a)

)
and we only need to consider

α ∈ [ f (b), f (a)
)
.

Finally, the assertions of this theorem are true in view of
(4), (5) and (6). ��
Remark 1 In the case f (a) = f (b) in Theorem 2, we have
g(x) = f (a) and using (F2) and (F3) of Theorem 1, we get

∫

−
b

a
f dμ ≤

∫

−
b

a
gdμ =

∫

−
b

a
f (a)dμ = f (a) ∧ μ([a, b]).
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Remark 2 In Theorem 2, if we suppose r < 0, then for
f (b) > f (a),

∫

−
b

a
f dμ ≤

∨

α∈�

(

α ∧ μ

([

a, (b − a)
αr − f (a)r

f (b)r − f (a)r
+ a

]))

,

where � = ( f (a), f (b)
]
. If f (a) > f (b), then

∫

−
b

a
f dμ ≤

∨

α∈�

(

α ∧ μ

([

(b − a)
αr − f (a)r

f (b)r − f (a)r
+ a, b

]))

,

where � = ( f (b), f (a)
]
.

Corollary 1 Let � be the Borel field and μ be the Lebesgue
measure on R. Let r > 0 and f : [a, b] −→ [0,∞) be an
r-convex function with f (a) 
= f (b). Then for f (b) > f (a),

∫

−
b

a
f dμ ≤ β,

where β is one of the solutions of the equation

(b − a)αr + ( f (b)r − f (a)r )α = (b − a) f (b)r

belonging to
[
f (a), f (b)

)
. If f (b) < f (a), then

∫

−
b

a
f dμ ≤ β,

where β is one of the solutions of the equation

(b − a)αr + ( f (a)r − f (b)r )α = (b − a) f (a)r

belonging to
[
f (b), f (a)

)
.

Proof According to Theorem 2, we have

∫

−
b

a
f dμ

≤
⎧
⎨

⎩

∨
α∈
[
f (a), f (b)

)
(
α ∧ (b − a)

f (b)r−αr

f (b)r− f (a)r

)
, f (b)> f (a),

∨
α∈
[
f (b), f (a)

)
(
α ∧ (b − a)

f (a)r−αr

f (a)r− f (b)r

)
, f (b)< f (a).

In the case f (b) > f (a), (b − a)
f (b)r−αr

f (b)r− f (a)r
is a decreasing

continuous function of α when α ∈ [
f (a), f (b)

)
. Hence,

the supremum will be attained at the point which is one of
the solutions of the equation

α = (b − a)
f (b)r − αr

f (b)r − f (a)r
,

i.e.,

(b − a)αr + ( f (b)r − f (a)r )α = (b − a) f (b)r .

In the case f (b) < f (a), (b− a)
f (a)r−αr

f (a)r− f (b)r is a decreas-

ing continuous function ofα whenα ∈ [ f (b), f (a)
)
. Hence,

the supremum will be attained at the point which is one of
the solutions of the equation

α = (b − a)
f (a)r − αr

f (a)r − f (b)r
,

i.e.,

(b − a)αr + ( f (a)r − f (b)r )α = (b − a) f (a)r .

��
Remark 3 In Corollary 1, if we suppose r < 0, then for
f (b) > f (a),

∫

−
b

a
f dμ ≤ β,

where β is one of the solutions of the equation

(b − a)αr + ( f (a)r − f (b)r )α = (b − a) f (a)r

belonging to
(
f (a), f (b)

]
. If f (b) < f (a), then

∫

−
b

a
f dμ ≤ β,

where β is one of the solutions of the equation

(b − a)αr + ( f (b)r − f (a)r )α = (b − a) f (b)r

belonging to
(
f (b), f (a)

]
.

Example 3 Let � be the Borel field and μ be the Lebesgue
measure onR. Consider the non-negative and 1

2 -convex func-

tion f (x) = ex
2−1 on [0, 1].As f (0) = 1/e, f (1) = 1, using

Corollary 1 we can get the following estimate:

∫

−
1

0
ex

2−1dμ ≤
∨

α∈
[
1/e,1

)

(

α ∧ 1 − √
α

1 − 1/
√
e

)

.

In this expression, 1−√
α

1−1/
√
e
is a decreasing continuous func-

tion of α when α ∈ [1/e, 1). We put

β =
∨

α∈
[
1/e,1

)

(

α ∧ 1 − √
α

1 − 1/
√
e

)

.

So, β is one of the solutions of the equation

√
α + (1 − 1/

√
e
)
α = 1
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belonging to
[
1/e, 1

)
, that is, β ≈ 0.590. Consequently, we

have

∫

−
1

0
ex

2−1dμ ≤ 0.590.

Example 4 Let � be the Borel field and μ be the Lebesgue
measure onR. Consider the non-negative and 1

2 -convex func-
tion f (x) = (3/2)x −x on [0, 2]. As f (0) = 1, f (2) = 1/4,
by Corollary 1 we may approximate the upper bound of the
Sugeno integral of f on [0, 2] by
∫

−
2

0

(
(3/2)x − x

)
dμ ≤

∨

α∈
[
1/4,1

)

(

α ∧ (2 − 0)
1 − √

α

1 − 1/2

)

=
∨

α∈
[
1/4,1

)

(
α ∧ 4(1 − √

α)
)
.

In this expression, 4(1 − √
α) is a decreasing continuous

function of α when α ∈ [1/4, 1). We put

β =
∨

α∈
[
1/4,1

)

(
α ∧ 4(1 − √

α)
)
.

So, β is one of the solutions of the equation

2
√

α + (1 − 1/2)α = 2

belonging to
[
1/4, 1

)
, that is, β ≈ 0.686. Therefore,

∫

−
2

0

(
(3/2)x − x

)
dμ ≤ 0.686.

It should be noted that the exact solution of
∫−2
0 ((3/2)x − x)

dμ cannot be easily calculated. But surely the exact solution
is less than or equal to 0.686.

In the following proposition,we dealwith the seminormed
fuzzy integral on [0, 1] based on the semicopula TP . It should
be noted that TP -based integrals are standardly known as
Shilkret integral, see Pap (1995).

Proposition 2 Let� be theBorel field andμbe theLebesgue
measure on R. Let r > 0 and f : [0, 1] −→ [0, 1] be an
r-convex function with f (0) 
= f (1). Then

∫

TP ,[0,1]
f dμ ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r
f (1)r− f (0)r

(
f (1)

(r+1)
1
r

)r+1
, f (1) > f (0),

r
f (0)r− f (1)r

(
f (0)

(r+1)
1
r

)r+1
, f (1) < f (0).

Proof For an r -convex function f : [0, 1] −→ [0, 1] with
f (0) 
= f (1), according to Proposition 1 and Corollary 1
with semicopula TP , we have

∫

TP ,[0,1]
f dμ

≤

⎧
⎪⎪⎨

⎪⎪⎩

∨
α∈(0,1]

(

α · f (1)r−αr
(
f (1)r− f (0)r

)

)

, f (1) > f (0)

∨
α∈(0,1]

(

α · f (0)r−αr
(
f (0)r− f (1)r

)

)

, f (1) < f (0)

=

⎧
⎪⎪⎨

⎪⎪⎩

r
f (1)r− f (0)r

(
f (1)

(r+1)
1
r

)r+1

, f (1) > f (0),

r
f (0)r− f (1)r

(
f (0)

(r+1)
1
r

)r+1

, f (1) < f (0).

��

Example 5 Let � be the Borel field and μ be the Lebesgue
measure on R and consider the non-negative and 1

2 -convex
function f (x) = 3−x on [0, 1]. As f (0) = 1 and f (1) =
1/3, using Proposition 2, we can get the following estimate:

∫

TP ,[0,1]
3−xdμ ≤ 1/2

1 − √
1/3

(
1

(3/2)2

)3/2

≈ 0.351.

4 Geometric interpretation

Let � be the Borel field and μ be the Lebesgue measure on
R. If f : A ⊆ R −→ [0,∞) is a continuous function, then
the geometric significance of

∫−A f dμ is the edge’s length of
the largest square between the curve of f (x) and the x-axis.

In Example 3, for the real 1
2 -convex function f (x) =

ex
2−1 on [0, 1], there exists the real function

g(x) =
(
(1 − x)

√
1/e + x

)2

such that

∫

−
1

0
ex

2−1dμ ≤
∫

−
1

0

(
(1 − x)

√
1/e + x

)2
dμ. (7)

Geometric interpretation of (7) is shown inFig. 1. The lengths
of the lines 1 and 2 are the solutions of the integrals in left
and right hand sides of (7), respectively. We have a similar
geometric interpretation for Example 4 (Fig. 2)

In Example 5, for the real 1
2 -convex function f (x) = 3−x

on [0, 1], we have
∫

TP ,[0,1]
3−xdμ ≤ 0.351.
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Fig. 1 Geometric interpretation of Example 3

Fig. 2 Geometric interpretation of Example 4

Fig. 3 Geometric interpretation of Example 5

The length of the line 1 in Fig. 3 is the solution of
∫−1
0 3

−xdμ
belonging to the interval (0.5, 0.6). This shows that [cf. the
inequality (2)]

∫

TP ,[0,1]
3−xdμ ≤ 0.351 ≤

∫

−
1

0
3−xdμ.

5 Conclusion

The Hadamard integral inequality is the first fundamental
result for r -convex functions defined on an interval of real
numbers with a natural geometrical interpretation and a loose
number of applications for particular inequalities. In this
paper, we established the Hadamard integral inequality for
the Sugeno integral based on r -convex functions which is a
useful tool to approximate unsolvable integrals of this kind.
In addition, there are numerous applications of Sugeno inte-
gral, and thus the study of Hadamard and similar inequalities
for Sugeno integral is an important and interesting topic for
the further research.
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