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Abstract General versions of Hermite—Hadamard type
inequality for pseudo-fractional integrals of the order o > 0
on a semiring ([a, b], @, ©) are studied. These inequali-
ties include both pseudo-integral and fractional integral. The
well-known previous results are shown to be special cases of
our results. Finally, two open problems for further investiga-
tions are given.
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1 Introduction

The study on pseudo-analysis, as a generalization of the clas-
sical analysis, is an interesting subject for many researchers
in different fields, such as functional equations, variational
calculus, probability and measure theory, functional analysis,
optimization theory, semiring theory, etc. (Pap 1990, 2005,
1993; Pap and Ralevi¢ 1998; Pap and Stajner 1999; Pap
2002; Pap and Strboja 2010). Notice that pseudo-integrals
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were started to attract mathematicians’ attentions in several
applications, for example in the area of nonlinear partial dif-
ferential equations occurring in different applied fields, see
Pap (2005) as well as the edited volume (Maslov and Sam-
borskij 1992).

Inequalities play a central and fundamental role in the
fields of probability and measure theory, classical analysis,
optimization theory, mathematical finance and economics.
One of the most well-known inequalities for the class of
convex functions is the Hermite—Hadamard inequality. This
inequality was first published by Hermite in 1883 in an
elementary journal and independently proved in 1893 by
Hadamard Hadamard (1983). In the classical analysis, many
researchers gave the refinements and generalizations to add
a substantial contribution in the literature. For example,
in 2010, Farissi (2010) provided a refinement of Hermite—
Hadamard inequality. Recently, several papers have treated
the extension of Hermite-Hadamard inequality by means of
the theory of fractional calculus (Sarikaya et al. 2013). In
2013, in connection with the well-known Riemann—Liouville
fractional integral operator (Bardaro; Kilbas et al. 2006;
Samko et al. 1993), the Hermite—-Hadamard type inequal-
ity for fractional integral was considered by Sarikaya et al.
in (2013).

In pseudo-analysis, there are some known results con-
cerning with the pseudo-integral inequalities (Agahi 2010;
Boccuto et al. 2011; Pap and Strboja 2010). For example,
Chebyshev’s inequality for pseudo-integral was provided in
Agahi (2010). In 2015, Agahi et al. (2015) generalized the
previous results of Agahi (2010) to the case of pseudo-
fractional integrals of the order « > 0 on a semiring
([a,b]. ®, ©).

The main motivation of this paper is to obtain a general
version of the Hermite—Hadamard inequality for pseudo-
fractional integrals of the order « > 0 on a semi-
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Table 1 Some different types of Hermite~Hadamard inequality

Types Name Conditions
Main result Pseudo-fractional integral inequalities related to ®,0,a>0,1e[0,]1]
Theorem 3.1 Hermite-Hadamard type

Sarikaya et al. (2013)
Hermite-Hadamard type
Corollary 3.3
Hermite—Hadamard type
El Farissi (2010)

Niculescu and Persson (2006)
Dragomir et al. (1995)

The refinement of Hermite—-Hadamard inequality

A generalization of the Hermite—Hadamard inequality

A new generalized Hermite—Hadamard inequality

Fractional integral inequalities related to

®=4+,0=x,a>0,1r=1.

Pseudo-integral inequalities related to

D,0,a =A=1.
O=+,0=x,a=1,

L el0,1].
O=+0=x,a=11=3.
O=+,0=x,a=1,

A= a“w, b >a.
Sandor (1988) A generalized Hermite—-Hadamard inequality &=4+,0=x,a=1,
_ _a
A= Tairdh’ b>a.
Hadamard (1983) The classical Hermite—-Hadamard inequality =4+, 0=x,A=a=1.

ring ([a, b], ®, ®) . This inequality includes both pseudo-
integral and fractional integral as special cases, thus gener-
alizing some previous results (see Table 1).

The rest of the paper is organized as follows. Some notions
and definitions that are useful in this paper are given in Sect.
2.1In Sect. 3.4, we state the main results of this paper. Finally,
an Appendix is given and some conclusion are added.

2 Preliminaries

In this section, we recall some well-known results of pseudo-
operations, pseudo-analysis and pseudo-additive measures
and integrals. For the convenience of the reader, we provide
in this section a summary of the mathematical notations and
definitions used in this paper (see Agahi 2010; Pap 1993; Pap
and Strboja 2010).

Let [a, b] be a closed (in some cases can be considered
semiclosed) subinterval of [—o0, oo]. The full order on [a, b]
will be denoted by <.

Definition 2.1 A binary operation & on [a, b] is pseudo-
addition if it is commutative, non-decreasing (with respect to
<), continuous, associative, and with a zero (neutral) element
denoted by 0. Let [a, b]y = {x | x € [a, D], 0 < x}.

Definition 2.2 A binary operation ® on [a, b] is pseudo-
multiplication if it is commutative, positively non-decreasing,
ie,x < yimpliesx ©z = y©z forall z € [a,b];,
associative and with a unit element 1 € [a, b], i.e., for each
x € [a,b],1®x = x. We assume also 0 ® x = 0 and that
@® is distributive over @, i.e.,

XOQP)=x0y)Bx0Ox2)
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The structure ([a, b], @, ©) is a semiring (see Kuich 1986).

Let X be a non-empty set. Let A be a o-algebra of subsets
of aset X.

Definition 2.3 (Pap and Stajner 1999) A set function m :
A — [la, b]+ (or semiclosed interval) is a @-measure if
there holds:

(1) m (¢) = 0 (if & is not idempotent);
(2) m is o-@-(decomposable) measure, i.e.,

o o
m(U A,-) =P m)
i=1 i=1

holds for any sequence {A;};cy of pairwise disjoint sets from
A. If @ is idempotent operation condition (1) can be left
out and sets from sequence .A; do not have to be pairwise
disjointed.

Definition 2.4 (Pap 1993; Pap and Ralevi¢ 1998) The first
class of pseudo-integrals is when pseudo-operations are gen-
erated by a monotone and continuous function g : [a, b] —
[0, oc], i.e., pseudo-operations are given with

x@y=¢"'(gx)+g () and

xOy=¢"@Egxgm).

Then the pseudo-integral for a function f : [c,d] —
[a, b] reduces on the g-integral,

d
fodn =g ( / g (f(x))dx) :

c

(52

[e.d]
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Since the generator g is an increasing function, then f is
said to be integrable if f[iB a1 f ©dm < oo.

Definition 2.5 (Mesiar and Pap 1999) The second class of
pseudo-integrals is when x @ y = sup(x,y) and x O y =
g ' (g (x) g (), the pseudo-integral for a function f : R —
[a, b] is given by

®
/ J ) ©dm = sup (f(x) O ¢ (x)),
R R

xXe
where function v defines sup-measure m.

We denote by u the usual Lebesgue measure on R. We
have

m(A) =esssup(x |x € A)
"

=sup{la | u({x | x € A, x > a}) > 0}

Theorem 2.6 (Mesiar and Pap 1999) Let m be a sup-
measure on ([0, oo], B([0, o)), where B ([0, co]) is the
Borel o-algebra on [0, 00], m(A) = esssup, (¥ (x) |
x € A), and ¥ : [0, 00] — [0, 00] is a continuous density
function. Then for any pseudo-addition & with a generator
g there exists a family {m } of ®, -measure on ([0, 00), B),
where @, is generated by gV (the function g of the power
v) v € (0, 00), such that limy, oo m, = m.

Theorem 2.7 (Mesiar and Pap 1999) Ler ([0, o], sup, ©)
be a semiring with © with a generator g, i.e., we have x Oy =
g N (g(x)g(y)) for every x,y € [a, b]. Let m be the same
as in Theorem 2.6. Then there exists a family {m,} of ©,-
measures, where @, is generated by g7, y € (0, 00) such
that for every continuous function f : [0, co] — [0, 00]

sup EBV
/ fodn = 1im/ fodm,

y—>00

Jim (s7)”" ( / g (f () dx) :

3 Main results
Now, we state and prove the main results of this paper.

Theorem 3.1 Let b > a > 0. Let f : [a,b] — [a,b]
be a measurable convex function and let a generator g :
[a, b] — [0, oo] of the pseudo-addition @ and the pseudo-
multiplication © be a convex and increasing function. Then
the following inequalities

o8 @b

< [( G.0arf b+ 1 =1)a)® J%’Q(Abﬂlﬂ)a),f (a))

@ (J‘é@’(kbmf“aﬁf 0) ®IZ, oy f b+ (1= 1) a>)}
< 0L @ b),

hold for all . € [0, 1], where

oSl (a.b)

(T i (22 b - a)” A+ 2 —Na
'_([g (F<a+1> )Gf( 2 )]

(20 =% (b - a)® A+0b+1-1)a
®[g ( Fla+tD) )Gf( 2 )])
LY (a,b)

T L (b —a) -
(e (B Yo we s s a-na)

1= )b —a)
o(« (2L o arra-nas ren)].

and the symbol Jig, , f denotes pseudo-fractional integral of
the order o > 0 that is defined by

(&)
_ -1 1, el
Jga,@,ﬁf(f)—/[a)t](g ((F((x)) (r—x)* )Of(x))
x©dm,

t>a,

and

I% o f@) = /[j; (g*1 ((r @) (x - t)a*‘) of (x))

xQdm, t<b.

Here, I' () is the gamma function.

Proof If f is a convex and g is a convex and increasing
function, then the composition go f is also a convex function.
By “Appendix” [Part I: Eq. (4.2)], we have

2% (b — a)® A+ Q2 —N)a
T@+1) Of( 2 )

_ |:faxb+(1x)a ﬁ (O + (1 =2 a) _u)a—l gof (u)du:|

b+(1— —
+ [T s =@ g f () dv

1

Since function g is an increasing function, then g~ is also

an increasing function and we have
(22 (b —a) A+ (2—2)a

§ resn ¢°7 2
o (f,}b*“”“ g (b + (=) —w* ' go f (u)du)
<8 :

Ab+(1— —
+ [T S =@ go f (v dy

(3.1)
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For the right side of Eq. (3.1), we have

SR L (b + (1= 2y a) —w)* g o f () du

-1
8 Ab+(1—2 _
(+fa I — ) g o f () dy

(e (

+g (g

a

)

faxb+(1—x)a % (Ob+ (1 —2)a)—u)*'gof (u)du))
1 (fa/\bJr(l—*)“ ﬁ w—a)gof dv))

(RO (b (= 2y — ) g o f (o) du)

Cee ! (T s - g o £ ) dv)

- ~1 (faxb+<1—x)ag og! (ﬁ (b + (1 — 1) a) — u)oc—l) gof (u)du)
= _@g‘l (fa)»bJr(lfA)ag og! (ﬁ (v _a)a—l) g0 f () dv)

- -1 (fa)ulﬁ(lf)»)ag o (g—l (ﬁ (b + (1 =) a) — M)oz—l) o f(u)) du)

®
| © (f[a,xbm ~na) 8

oS Ob+(1=2)a) @I

®.0,0:b+(1=1)a)~ fa).

= @gil (fa;hb.‘_a—x)a go (871 (% (v — a)ot*]) of (v)) dv)

(f[?,xhﬂl—x)a] g (ﬁ (b + (1 =2)a) - M)O‘*]) O f (u) ®dm)
! (r 0= © f 0 Odm)

3.2)

So, (3.1) and (3.2) imply that

(22 (b —a)® A+ (2 —2)a
(r<a+1>)®f( 2 )
(22 (b—a)® M+ (2—)a

(r<+1> g°f( > ))

<Jg.oarf b+ (1 _)”)a)@“ﬂ@@(km-(l _na-f @-
(3.3)

Similarly, by “Appendix” (Part II: Eq. (4.3), we have

2(1 = 0% (b —a) Of((l-l—)»)b—i—(l—k)a)

T+ 1) 2
B ffb+(1—x)a ﬁ (b—w*"go f(u)du
et T @ = b+ (1= a)* g0 fdv |
(3.4)

Then by (3.4), we can prove that

(20 =% —-a) (14+M)b+0A=Na
( Tt )Qf( 2 )
< J%’mefmﬁf B ®Ig o f Ab+A=1)a).

(3.5)
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Now, (3.3) and (3.5) imply that

oS (a,b)
20% (b — a)* M+ 2—-Na
{( (F(H))Gf( 2 ))

2(1=20)%b—a)* 1+0b+(1—=N)a
ea(“”( FatD )Qf( 2 ))]

<[(Bourf Gb+ =D O 1 [ @)

® (3% o sy f D) ®T5 o, £ Ob+ (1 =1)a)].
Then the first inequality is proved. For the proof of the

second inequality, since g o f is convex then by “Appendix”
(Part IIT: Eq. 4.4), we have

Mb+(1-2a |
/ — b+ A =Na-w"go fu)du
a

T (@)
rb+(1—X1)a 1 ol
+/a ) w—a)*""go f(v)dv
A (b —a)®
S Tarh Eolf@tgefab+d-nal.

-1

Since g is an increasing function, then g~ is also an

increasing function and we have
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g_l fa)hb+(l—)»)a ﬁ AM+A=2)a— u)a—l go f(u)du
+ fa)»b-l-(l—)\)a % (v — a)a—l go f (v) dv

(M (b —a)® ~
<g (m[gof(a)'f‘gof()nb-f-(l A)a)]).
3.6)
Then by (3.6), we have
Jo0atf Qb+ A=V OTG o5t @
(A (b —a)
< (m)@(f(a)@f()»b+(l_)»)a))~
3.7

Similarly, by “Appendix” (Part IV: Eq. 4.5), we have

|:thb+(1—,\)a ey b= w* ' g o f () du :|

+ ot a Ty @ = (b + (1 =2 a)* g o f (v)d

(I=0%@b-—a)

gW[gof(kb—l—(l—)L)a)—l—gOf(b)].
(3.8)

Then by (3.8), we can prove that

J?é O, (Ab+(1— A)a)*f(b) EBJ%,@

<o ! ((1 — 1) (b—a)"‘)
I(ax+1)

OIf b+ =1a)® f ().

b fOb+(1=1)a)

(3.9)

Now, (3.7) and (3.9) imply that

[(Ja v.0at S OO+ A =2)0) @ g o 51000 f (“))

(J O()J)+(l )»)a)+f(b)@°]] Ob*f()\vb‘f'(l _)")a)):|

AY (b — a)®
[(g (F( +1 )Wf(a)@f(kbﬂl—x)a)))

(1= -a) .
( ( Fat D )G(f(kb+(1—?»)a)€9f(b)))]

= oY (a,b)

and the proof is completed. O

Example 3.2 Let g(x) = x. The corresponding pseudo-
operations are x @ y = x + y and x ©® y = xy. Then the
following inequalities for fractional integrals:

(a,)
P4.%)

[J(+ .ard Cb+ A=) +IC Gt q-pa-T @

(a,b)

3G 0. abra-natf O IG5 G0+ A=) “)}

(,2)
S Py @)

hold for all A € [0, 1], where

A
%)) @, b)

_ 2% (b — a)¥ M+ 2—-MNa
—([F(a+1)f( 2 )}

2(1 =% b —a)® (I+2M)b+(1-2)a
) ()

and

(a,2)
O, (@, b)

= [(M x[f@+f@ab+Q1 —)»)a)])
I(a+1)

" ((1 N (b—a)

CE) x[f(kb+(1—k)a)+f(b)])].

Notice that

e If A = 1, then we have

(o, 1) _Z(b—a)“ b+a)
b (@ B) = F(a+l)f( 2

<B4 ar f O T, @]
_20-0" fB) +f @)
S T(a+1) 2

(a,1)
= oY (@b,

which is Hermite-Hadamard type inequality for frac-
tional integrals Sarikaya et al. (2013).
e If o = 1, then we have

o0 (a,b) < /f(x)dx <o (@, b).

forall A € [0, 1], where

oY (a,b) =2 —a)

[Af,()»b—l—(z—)»)a) +a _)\)f((l-&-)»)b—;(l—)»)a)]’

and

o\ (a,b)
= (b—a)[f(/\b+(l—/\)a)+kf(a)+(1—>»)f(b)],

which is a refinement of Hermite—-Hadamard inequality
(El Farissi 2010).

e If « = A = 1, we have the classical Hermite—-Hadamard
inequality:

b
f(b+a)<bia/ fd < LD @

2 2
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As special cases of Theorem 3.1, we have the following
corollaries.

Corollary 3.3 Letb > a > 0. Let f : [a,b] — [a,b] be a
convex function and let a generator g : [a, b] — [0, o0] of
the pseudo-addition @ and the pseudo-multiplication © be a
convex and increasing function. Then the following inequal-
ities

095 (a,b)
< [(J@@,Hf b+ =D ST o iy T @)
® (I8 o st S B @y o f O+ (1 =D a))]
<ol (a,b),
hold for all % € [0, 1], where
08¢ (a.b)
= ([g*‘ Qrb—a) o f (W)]

® [g*l (2<1—A)(b—a))@f((l“”’;“‘“”)D,

42 (a,b)
=[(g7' b —a)O(f @& f b+ (-1 a))
S =-Db-—a)o(fOb+I-a)® fb))].

and the symbol JgB,O f denotes pseudo-integrals that are
defined by

®

Jo.0a+f () = fodm, t>a (3.10)
[a,1]

and
®

Joop )= fodm, t<b. (3.11)
[2,0]

Corollary 3.4 Let b > a > 0. Let f : [a,b] — |[a,b]

be a measurable convex function and let a generator g :
[a, b] — [0, o] of the pseudo-addition @ and the pseudo-
multtpllcanon ® be a convex and increasing function. Then
the following inequalities

1.1
58 (a,b)

08 @.b) <Th oo f ) ®IL o\ f (@) <

hold where

b
wSQWJO=[y*@w—a»@f( ;“)}

oL @ b)i= (7 (-0 @a fB))
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and the symbol JéB,@,quf andJé9 o.p- ) aredefinedin (3.10)
and (3.11), respectively.

Now we consider the second case, when & = sup and
O =g ' (gx)eH)).

Theorem 3.5 Letb > a > 0. Let f : [a,b] — [a,b] be
a continuous convex function and the pseudo-multiplication
© is represented by a convex and increasing multiplicative
generator g and m be the same as in Theorem 2.6. Then the
following inequalities
Yl (@ b)

<sup [sup (Jopo.00f Wb+ (1= 2)@) I 0 i £ @)

50p (3%, 0 syt £ ) Vo o b+ (1 =) @))]

(a,2)
<O @.b).

hold for all » € [0, 1] and a > 0, where

S
Paapr (@, )

B (209 (b - a)® A+ Q2—i)a
'_S“p([g (r(a+1>)®f( 2 )}

(20 =0 (b —a)® (A+0b+(1-Na
(s ) e ().

L") (a.b)
_ (M b —a) B
= sup ([g (71“ @t ) Osup (f (@), f b+ K)a))] ,

[ 1 ((1 =M (b—-a)
(=27

T(a+1) )qup(f(“’ﬂl —k)a),f(b))]),

and

sup o.a+f (@

sup
[a,1]

Gdm, t>a,

(e -0 orw)

and

Jgup,@,bff(t)

sup
= / (g_l
[2,b]

Gdm, t <b.

(Fr@e-0"")orw)

Proof Since f : [a,b] — [a,b] is a continuous convex
function, then proof is obtained immediately from Theorem
3.1, Theorem 2.7 and Proposition 1 in Mesiar and Pap (1999).

]

Example 3.6 Let g7 (x) = e¥* and ¢ (x) be from Theorem
2.6. Then

XOpy=x+y
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and

. 1
lim { —1In (eV’C + e”y) = max(x, y).
y—oo \ Y

Then the following inequalities

Pauprt (@)

<sup [SUP (Jgup.+.a+f (b + A =2 a) Iy o apra-na- S (a)) :
sup (Jgupﬁr.()nh#r(lf)»)a)*f ®). J‘:up,i»,b’ f @b+ (1—=2) a))}

A
< O8N (a.b),

hold for all A € [0, 1] and @ > 0, where

A A
80 (a.b) = ¢85 (a.b)

. l 20% (b — a)* M+Q2—-Na
._sup(|:yln( Tt D) )+f( > ):|

[lln<2(l—A)"‘(b—a)“)+f((1+)»)b+(l—}\)a)])’
y T(x+1) 2

o) (a.b) = ®5, (a.b)

. i AY (b —a)® . _

1= sup (|:y In (7F @t ) +sup (f (a), f (Ab+ (1 A)a))] ,
[lln(w)+g (f 0b+ (1 — 1) a) f(b))])

Y T+ sup @ :
and

Jgup,Oy,a+f(t)

_ 1 —1 a—1
= sup (— In (@)™ @ =)+ F @ +y (x)) ,
14

t>a,

and

J?up,@;,,h—f(t)

_ 1 —1 a—1
= sup (— In (M @)™ & =0~ ) + £ (1) +v (x)) ,
Y

t <b.

4 Conclusions

We have investigated the Hermite-Hadamard inequality
for pseudo-fractional integrals of the order « > 0 on
a semiring ([a, b], @, ®). This inequality includes both
pseudo-integral and fractional integral as special cases. For
the common addition and common multiplication (+, -), the
well-known previous results (El Farissi 2010; Sarikaya et al.
2013) are shown to be special cases of our results. As we
have seen, for « = 1, this inequality is related to Hermite—
Hadamard type for pseudo-integral. Notice that the third
important case @ = sup and ® = min has been studied

in Caballero and Sadarangani (2009) and Li et al. (2014),
where the pseudo-integral in such a case yield the Sugeno
integral (1974) when the considered measure is maxitive.

Lastly, we propose the following open problems for future
work.

Open problem 1: Recently, a generalization of convex
functions was introduced by VaroSanec (2007) which is
called the h-convex functions. Notice that the class of A-
convex functions generalizes the class of convex functions,
s-Breckner convex functions (1978), Godunova-Levin func-
tions (1985), P-functions (Dragomir et al. 1995). Let f be a
measurable s-convex function in Theorem 3.1. Under what
conditions does the Hermite—Hadamard inequality hold for
pseudo-fractional integrals of the order « > 0 on a semiring
([a,b], ®, ©)?

Open problem 2: Does the pseudo-fractional Hermite—
Hadamard inequality in Theorem 3.1 hold with weaker
conditions than convexity?
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Appendix

Since f is a convex function on [a, b], we have for x, y €
[a, b]

f(x+y)<f(X)+f(y)_ @1

2 = 2

Letr € (0,1).
Part I: For x = ta+ (1—-t)(Ab+ (1 —-2X)a),y =
1—-ta+t(b+ (1 —A)a), Eq. (4.1) implies that

2 f (kb+(2—k)a

> )gf(ta—i—(l—t)()\b—i—(l—)\)a))

+f((A=Da+tGb+ (1= a).

For A # 0, multiplying both sides by 7%, then integrating
the resulting inequality with respect to ¢ over [0, 1], we obtain

gf (Ab—l—(Z—A)a)
o 2

1
g/ 7 ta+ (1 =) b+ (1= a))de
0

1
+/ 7 =a+t b+ (1= a)de
JO

a b+ (1 —=na)—u)\*! du
I )
Ab+(1—N)a A(b—a) Aa—b)

Ab+(1—M)a v—a a—1 dv
+/a (A(b—a)) T e —a
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B /Ab+(l—)»)a ((/\b+ (I-Ma) - ”)a_l f () e
-/ G r(b—a)

Ab+(1—N)a v—a a—1 dv
+/a (A(b—a)) T -

So,

2% (b — a)® Ab+(2—k)a)
C(a+1) 2

M(—ha
</ (b= a)— w0 f ) du
. @

M+(1-Ma -
+/a I @) (v—a) f (v)dv. “4.2)
Part II: For x = t(Ab+ (1 —X)a)+ (1 —-1t)b,y =
(1—=1)(Ab+ (1 —X)a)+tb and Eq. (4.1), we have

2f((1+)»)b—;(l—k)a)
<F@Ob+1—=2a) +1—1)b)
+f(A=-)Ab+ A —-N)a)+1b)

For A # 1, multiplying both sides by t*~!, then integrating
the resulting inequality with respect to t over [0, 1], we have

2
~f

o

((l+k)b+(l—k)a>
2

1
g/ b+ A —a)+ 1 —0)b)dr
0

1
+ / LA =) b4+ (1 — 1) a) +th)dr
JO

Ab+(1—2)a b—u a—1 du
:/b ((b—a)(l—x)) T G a=n

b v—O0b+(1=1a)\*! dv
+/w+<17m( b—a -7 ) T = na-n

_ I (@) b 1
T -0 -a) ab+(1-nya I (@)
I (a) b
A =2*0b—a) Jupra-ra

(b—w)*" f (u)du

X T (la) W—0b+1=21a)* ! f(v)dv.
Then
20 =" -a)* ((1+A)b+(1—k)a)
F(e+1) 2
[ iona i © =0 f () du |
S L Baraena My @ = Qb+ (1= @)*~! f () dv
“4.3)

Part III: Since f is a convex, we have

fta+ 1 —1)b+(1—1) a)
<tf@+A -0 fAb+0A—-21)a)

@ Springer

and

F((A=ta+tOb+(1—21)a))
<A=0f@+tfAb+1=2N)a).

By adding these inequalities, we have

fa+A=0)Ab+ (1 -1 a))
+f((d=t)a+tAb+ (1 —1r)a))

Ltf@+A—=-t)fb+(1—-21)a)
+ A=) f@+tfAb+1-Na).

Then multiplying both sides by *~! and integrating the
resulting inequality with respect to # over [0, 1], we obtain

/()1t"‘_1f(ta+(1 —1)(Ab+ (1 — 1) a))dt
+/01z“‘f((1 —t)a+t b+ (1 —21)a))dt
<[f(@+fab+(Q —)»)a)]/olto‘ldt.
So,

rb+(1=N)a .
/a m(kb—i—(l—k)a—u) f (u)du

Mt(1-Ma | o
+/a F @) (v—a) f (v)dv
AY (b —a)®

ST @+ fOb+A-1a).

T+ 1) @

Part IV: The convexity of f implies that

faGb+A=2)a)+ (1 ~1)b)
<tf b+ (1 —1a)+ (1 —1) f(b)

and

F((1=1) b+ (1 —21)a)+1b)
<A=0)fOb+1 =N a)+1tf ).

By adding these inequalities, we have

FOb+ (=2 a)+(1—1)b)
+ (A =1) b+ (1 —1r)a)+1b)
<tfb+A-Ma)+A—1) f D)
+ A= FfOb+ =2 a)+tf (b).

Then multiplying both sides by r*~! and integrating the
resulting inequality with respect to ¢ over [0, 1], we obtain
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1
/ 7 Ob+ (1= a)
0

1

+ (l—t)b)dt+/ 7L =) Wb+ (1 = M) a) + th)de
0

1
<SIfF Qb+ (1 —2)a)+ f(b)]/o *~Lar.
Therefore,

f,\bh+(1—x)a gy 0 —w* ' f () du
L eme T (0 = G+ (1= @) f () dv
1 =00 -a)

< Fat D (f Qb+ A =2a)+ f (D).

4.5)
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