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Abstract This research focuses on the establishment of
a constructive solid geometry-based topology optimization
(CSG-TOM) technique for the design of compliant structure
and mechanism. The novelty of the method lies in handling
voids, non-design constraints, and irregular boundary shapes
of the design domain, which are critical for any structural
optimization. One of the most popular models of multi-
objective genetic algorithm, non-dominated sorting genetic
algorithm is used as the optimization tool due to its ample
applicability in a wide variety of problems and flexibil-
ity in providing non-dominated solutions. The CSG-TOM
technique has been successfully applied for 2-D topology
optimization of compliant mechanisms and subsequently
extended to 3-D cases. For handling these cases, a new soft-
ware framework involving optimization routine for geometry
and mesh generation with FEA solver has been developed.
The efficacy of the approach has been demonstrated for 2-D
and 3-D geometries and also compared with state of the art
techniques.
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Abbreviations and symbols

CSG-TOM Constructive solid geometry-based topology
optimization methods

SIMP Solid isotropic material with penalization
ESO Evolutionary structural optimization
MOGA Multi-objective genetic algorithm
SBX Simulated binary crossover
ToPy Topology optimization using python
n Total nodes
m Variable nodes
k Fixed nodes
nvoid Special nodes
nsym Symmetry nodes
ηi Volume fraction of topology in ith generation
α Volume correction factor
ε Ratio of required volume fraction to current

volume fraction
W−,W+ Width selection operator
λ Symmetry condition operator

1 Introduction

One of the most important objectives for any feasible struc-
tural design is the achievement of best assembly of the
corresponding structural elements, while satisfying vari-
ous constraints such as amount of the given material, the
shape/size of the structure or both. Topology optimization
represents an advanced process of structural optimization
providing flexibility for considering both internal and exter-
nal boundary configurations simultaneously.

Optimization of topology in the context of compliant
mechanisms is broadly of two types: truss structure-based
approach (Bendsoe and Kikuchi 1988) and continuous sys-
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tem approach (Huang and Xie 2010), where the complete
spatial distribution of material is handled. Another pop-
ular method in topology optimization is solid isotropic
microstructure or material with penalization (SIMP) which
is renowned for the compactness of coding. It is suggested
by Bendsoe (1989). The SIMP method discretizes mater-
ial domain through uniform meshing, where every element
of the mesh is treated as a design variable. A sensitivity
analysis determines the importance of design variables by
computing the derivatives of the objective fun10on (strain
energy) with respect to design variables. Similar to the
ground truss approach is homogenization-based optimization
(HBO) technique proposed byNishiwaki et al. (1998). It con-
siders the geometric parameters of amicrostructure as design
variables and homogenizes the properties in that microstruc-
ture. Minimum compliance problem (minimizing flexibility
of the structure under given loads, subjected to a volume con-
straint) is a natural starting point and standard benchmark
objective for topology optimization. It is one of the sim-
plest type of design problem formulations under resource
constraints (Howell 2001). Here, the optimum distribution
of material is measured in terms of the overall stiffness of
structure.

The concept of inefficient material removal from a struc-
ture to obtain an optimal shape or topology is used in
evolutionary structural optimization (ESO), first proposed
by Xie and Steven (1993, 1994). A binary representation of
design variables for solid-void elements makes it possible to
produce a black and white (solid-void) optimal topology that
excludes any gray (i.e., fuzzy or intermediate density) regions
without using any filtering technique. This procedure is later
extended by the same authors considering frequency con-
straints (Xie and Steven 1996). A bi-directional evolutionary
structural optimization (BESO) (Young et al. 1999; Querin
et al. 2000) allows for addition as well as subtraction of ele-
ments from the finite element model simultaneously. Some
more works related to structural optimization are available
in (Jakiela et al. 2000; Wang and Tai 2005; Kudikala et al.
2009; Tavakoli 2014). These methods, however, have few
drawbacks in terms of development of checkerboard pat-
terns and point flexures inside the design domain leading
to configurations that may be impractical. Furthermore, the
local optimal solutions can be obtained due to gradient-based
optimization routines and may have problems due to fixed
mesh formulation as discussed by Rozvany et al. (2005);
Sigmund (2011). In addition, excessive computational power
required due to high number of design variables often acts as
a major hindrance. Ahmed et al. have addressed these issues
(2012) (Ahmed et al. 2013; Ahmed 2012) and proposed a
bettermethodwhich comprises placement of nodes and prim-
itives capable of formation of topologywith lesser number of
design variables. Through the use of population-based global
optimization algorithm,NSGA-II (Deb et al. 2002), the prob-

lem of trapping in local optimal solutions can be avoided.
Also, through adaptivemeshing the problemoffixedmeshing
can be subdued (Sigmund 2011). Another study by Hamza
and Saitou (2004) presented an evolutionary multi-objective
optimization study based on three-dimensional geometry
represented via constructive solid geometry (CSG). This
study extended NSGA-II for binary tree chromosomes with
customized crossover and mutation operators.

Apopular and simplistic yet powerful, technique proposed
by Braid and Lang (1974) allows for creation of complex
surfaces and objects by the use ofBoolean operators or primi-
tives. The instance-based primitives undergo transformations
as in scaling, rotation, translation and finally set-theoretic
operations of Euler operators like union, intersection and
difference. It offers several advantages like easy and faster
construction of solid model, conversion to boundary repre-
sentation and assurance of valid model.

The proposed methodology uses solid modeling tech-
niques as they provide an excellent way for representation
and visualization of topologies. Here, the topology is defined
as the complete, valid and unambiguous representation of
physical objects. The completeness implies that the object
has well-defined boundaries and finite size. Validity of the
model implies that the essential characteristics that define
geometry like vertices, faces, edges are all connected prop-
erly. Unambiguity refers to the one-to-one mapping that is
present between representation and actual geometry formed.
The presentwork is also extended to handle voids, both active
and passive for handling 2-D and 3-D geometries, width limit
detection and improved volume penalization operator. The
efficiency of our method is compared with popular SIMP
methodology (Xie and Steven 1994) applied on benchmark
problems.Thewidth limit operator for deciding the upper and
lower limits for the widths has been introduced to tackle the
issue of convergence and providing accurate and problem-
specific width limits. The volume penalization operator tries
to satisfy volume fraction constraints in a single iteration
of topology formation. For handling the imposed symmetry
conditions on the geometry the concept of symmetry nodes
has been introduced.

The paper is organized as follows. Sections 2 and 3
describe the methodology for two-dimensional and three-
dimensional geometries. Section 4 presents the results of
optimization. Finally, research towards future direction is
discussed with conclusions.

2 Methodology for two-dimensional geometries

The basic methodology involved in the proposed approach
comprises of utilizing a small set of points (nodes) and their
respective interconnectivity through rectangular primitives to
get compliant mechanisms or structures. Thus, the complete
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mechanism is composed of overlapping material segments
connected at different nodes.

The initial node locations are determined according to the
type of the node. Every node serves a particular purpose, for
example, the fixed nodes tend to define the characteristics
of the boundary conditions whereas special nodes (design
constraint nodes) only define the active or passive constraints
inside the design domain.

The complete topology can be defined by a set of nodes
and widths represented by n and W , respectively. The total
number of nodes, n can be divided into four categories:

1. Variable nodes (m) Consisting of nodes which can posi-
tion themselves anywhere in the design domain. These
are design variables, where the coordinates are dependent
on domain shape and size.

2. Fixed nodes (k) Consisting of nodes that remain fixed
in the design domain, and are used for applying bound-
ary conditions and loads. This is similar to the constraint
applied by SIMP on certain locations, for example, den-
sity (ρ) > 0 for the element where force is applied. The
utility of k fixed nodes lies in saving the repair opera-
tion step in making the topology comply with predefined
boundary conditions.

3. Symmetry nodes (nsym) These are present when the
designer wants to impose symmetry condition on the
domain by specifying a line of symmetry. nsym defines
the number of points on the symmetry line of the mecha-
nism,where only single degree of freedom exists in terms
of position.

4. Special nodes or void or design constraint nodes (nvoid)

To take into consideration active and passive voids during
iterations, we approximate the outer shape of these voids
(which are obviously inside the design domain) by a set of
nodes, nvoid . Here, nvoid can be interpreted in two ways:
(a) A set of points which when connected would define a
polygon, approximating the required outer boundary of
void, or (b) A set of representative points on boundary
of void, which are sufficient to actually give the actual
shape of void. For example, a circle represented by three
or more points on it. The circumcircle property is used
to get the circle back from this set of points. It depends
upon the problem and user to predefine, how the nvoid

points are to be used.
In the present work, nvoid is essentially a structure with
arrays containing information about these voids or non-
design entities, the interpretation of these arrays to get
geometric output is explained in later section.

The active voids are regions where the material is absent
from Ω , right from start of optimization procedure. Thus,
nvoid points lying on boundary of voids make sure that

the connectivity of domain is not dependent on nodes lying
inside the region. The material around the void should be
removable, allowing flexibility for void boundary change
or elongation. To facilitate the changes in void boundaries,
the widths between nvoid nodes are treated as normal width
design variables, which are changed during optimization pro-
cedure. The internal connections among nvoid nodes would
be absent or have negative widths for no material inside void.

However, in some cases material may be allowed to be
present around the void. This conserves the entire or part of
the shape of the void throughout the optimization process.
Hence, certain widths among nvoid nodes are fixed on the
void boundary, thus removing them from the width design
variable.

The passive void material constraint can be represented
in a similar manner. As connectivity of material is not an
issue when the material is added to the already connected
geometry, the passive void constraint can be represented by
a single internal node, where later through CSG union, the
exact shape can be added. However, this is generally discour-
aged because in such cases the non-design constraint shape
and size become independent or rather invisible to the opti-
mization procedure.

2.1 Optimization formulation

Defining design domain (Ω) completes with voids and outer
boundary.

2.2 Objectives

Single objective optimization formulation is represented in
Table 1. For multi-objective optimization, user can choose
from 2 or more objectives from Table 1.

The values of these objectives are taken to be fitness val-
ues, later used by our evolutionary algorithm to keep the best
geometries and eliminate the rest.

Table 1 Single objective problem formulation

S. no. Objective Equation

1 Minimize compliance f (x) = min
ρ

∫ 1
2 σεdΩ, where

ρ ∈ [0, 1]
2 Minimize maximum stress f (x) = min(Maxσ(ξ)), where

σ can be principal, von-mises
stress, etc. and ξ ∈ 	

3 Minimize average stress f (x) = min
∫
Ω

(
σ−σa

σa

)2
dΩ,

where σ is maximum stress
and σa is average stress

4 Minimize weight f (x) = min(
∫
	

ρdΩ)
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In our case, the value of density remains constant through-
out the elements after discretization for FEA, i.e., [ρ = 1] .
Rest of the equation remains the same.

2.3 Constraints

One or more constraints can be taken similar to above objec-
tives, where a predefined value given by user gives us the
constraint equality or inequality equation.

For example, weight constraint condition after discretiza-
tion (through meshing) done for FEA
∑N

1 Veρe ≤ f Vtotal, where f is the predefined volume frac-
tion constraint provided by the user.

⇒
N∑

1

Ve ≤ f Vtotal as ρe = 1 for all Ω where,

Ve, volume of a single bar; N , number of existing bars inside
the region between all nodes in Ω; Vtotal, total initial volume
of design domain (Ω).

2.4 Design variables

The design variable array for NSGA-II (Deb et al. 2002) is
taken as [width variables, location variables]

Number of nodes: n = m + k + nsym + nvoid , where n,
total number of nodes; m, total number of variable nodes; k,
fixed nodes, used for boundary conditions; nsym , nodes for
enforcing symmetry; nvoid nodes for void location and shape
definition.

Number of node location variables for 2-D topology,
N(x,y) = 2 ∗ m + λ ∗ nsym,

λ = 1, if symmetry condition is applied, else λ = 0
Number of width variables:

w = n
2C −

Nvoids∑

i=1

j
2C + β ∗ j

Nvoids , number of active voids present; j , number of sides
in ith void; β = 0, if void boundaries are user defined, else
β = 1

Total number of design variables, ndesign = N(x,y) + w

N(x,y) ∈ [0, 1] and w ∈ [
W−,W+

]

[W−,W+]: Limits given by the width selection operator.

2.5 Algorithm summary

The algorithm for topology generation can be summarized
in the following steps:

Step 1. Define total n nodes withm variable nodes and k fixed
nodes denoting the boundary conditions, n f i x denotes voids
or non-design constraints and nsym denotes symmetry line
points.
Step 2. Interpret variables to obtain actual positions of nodes
in the design domain.
Step 3. Use constrainedDelaunay triangulation to obtain con-
nectivity between all nodes.
Step 4. For the first topology, constant width allotment step
is used for determination of the lower and upper bound of
width.
Step 5. Interpret genes to obtain the widths of bars cor-
responding to edges in allowed connectivity set with only
positive values to be considered.
Step 6. Check topology consistency through graph-based
repair method.
Step 7. Use CSG tool to obtain the topology after union of
all bars. Apply symmetry condition if required. Also carry
out CSG removal of voids and CSG addition of non-design
constraints.
Step 8. Mesh the obtained topology using CSG-supported
mesh generator.
Step 9. Apply loads and boundary conditions at required
nodes.
Step 10. Use of finite element analysis to solve for deflections
and stresses.
Step 11. Calculate volume fraction of present topology and
apply volume penalization function if the output is greater
than required.
Step 12. Based on required output, return fitness and con-
straint values are calculated. Next generation of output
geometries is generated by NSGA-II, and we go to Step 2.

2.6 Defining and interpreting nodes

The boundary conditions and loads are user defined. The
locations and shape of voids and non-design regions are
defined in the form of representative nodes, nvoid . The loca-
tion of the variable nodes is parameterized (between 0 and
1) and when obtained as design variables from the optimiza-
tion procedure have to be interpreted to get the Cartesian or
Spherical Coordinates. These then provide locations where
material can be present or absent depending on the type of
node.

The distribution of variable nodes m inside the domain
has to be defined considering active voids as passive ones
which define the non-design constraint region boundaries,
so that they never lie inside these voids. To ensure this, we
interpret the actual location of the nodes, for example, multi-
plying by maximum x-coordinate of domain. The Cartesian
x-coordinate is thus obtained as xi and then to get the y-
coordinate, yi , we uniformly distribute the parameterized
y-coordinate from location design variable, along the x = xi
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Fig. 1 a Node placement of
different types within the design
domain, b constrained Delaunay
triangulation with edges
forming the outer shape of void,
c edges lying inside the voids
are removed, d bars between
node connections are added over
triangulation according to the
width design variables (the
arrow directions point towards
the following step)

line bounded by the design domain. The regions where the
constraint (mainly voids) encounters the line are skipped.
The node placement is explained in Fig. 1a, where n f i x have
been clearly defined lying on the vertices of rectangular and
triangular voids.

2.7 Nodal connectivity by triangulation

In this step, we find the underlying connectivity between
the nodes over which the primitives would then be placed.
The reason for choosing Delaunay triangulation (Lee and
Schachter 1980) ismainly to avoid inter-connections between
every node to another, thereby leading to n

2C connections,
making it extremely computationally intensive with large
number of intersecting bars. Also, there will be a lot of arti-
ficial node points created due to beam intersections, which
makes it for the optimization procedure to eliminate the non-
required widths. The geometry thus formed will be subjected
to excessive overlaps and high volume fractions.

To avoid these problems, ‘Delaunay Triangulation’ comes
in handy. It decreases the number of design variables in the

form of widths which would actually be used, leading to less
overlaps and artificial node formations. This decreases the
complexity in geometry formation and boundary information
extraction through decsg function ofMATLAB (Guide 1998;
Mathworks 2013).

Geometrical constraints put on Delaunay triangulation
method help to trace the outer boundaries of voids in
the shape of the polygonal vertices as illustrated in Fig.
1b. It always defines nodal connection outside of voids,
which in turn helps in identification and integration of void
presence in the algorithm itself so that artificial material
removal through CSG subtraction in step 7 is avoided. This
ensures that geometry defined by variables undergoes minor
changes, thus minor changes in fitness values after Step
7.

The set of edges obtainedby applying thismethodbetween
the nodes can be called as Base Skeleton of the topology. It
provides an easy way of visualization of node connections.
The internal set of edges inside the voids has to be eliminated
to give us the final skeleton over which in the next step we
would form the body as shown in Fig. 1c.

123



1162 A. Pandey et al.

2.8 Bar allotment in CSG

After obtaining the skeleton, the edges have to be replaced
by rectangular bars whose widths are passed on to us as
design variables by the optimization procedure. The bound-
aries around active voids if user defined would not be the part
of width design variables.

Care has to be taken that for special nodes representative
of constraint regions, the user provided widths are placed
at the correct positions, for example, for connections lying
inside the voids, width value has to be zero as shown in Fig.
1d.

The reason for not choosing the primitives different from
rectangles or cuboids is that it is the simplest shape capable
of defining the connections between a pair of nodes. Choos-
ing any other shape would always lead to increase in number
of design variables and thereby making it harder to find opti-
mized pareto-front solutions. However, one problem arising
out of this would be stress concentration around the ends of
rectangular primitives.

Taking round edges at the end of rectangular primitives
for stress concentration alleviation does not solve this prob-
lem due to two reasons. First, the sharp corners would still
be generated; as on every node through CSG union various
intersecting elements are joined and they cut each other at
various angles. Hence, the final topology will still have the
same problems as with rectangular bars. Secondly, as the
width decreases the tolerance level of CSG union has to be
decreased to take into account various small radii present at
the end of each bar. This in turn adds to the complexity and
time in getting the final topology from union of all elements.

The solution would work well if all the bars had same
width, thereby leading to formation of a circular shape around
the node. But that puts up the restriction in the range of solu-
tion one can get out of combination of design variables.

For the cases where one of the objectives is taken as the
von-mises stress value, it is taken to be the average stress
occurring in the entire topology. This leads us to elimi-
nate the geometries with higher stress concentration regions.
Also, this ensures that any geometry is not eliminated due to
one peak occurring because of stress concentration, which
would be the case if objective function is taken as max stress
value. Generally, the CSG Union of rectangular bars creates
such regions. These regions must be handled during post-
processing of geometries, for example, one way of reducing
sharp edges, and thereby the stress around the nodes is by
placement of small circles over them during CSG union.

2.9 Symmetry condition

The handling of symmetry conditions within the design
domain is sometimes essential for the topology. However,
with Delaunay triangulation, the achievement of triangu-

lation is difficult because the triangulation itself does not
support symmetry, even though the elimination of widths
and nodesmight align and after certain generations, converge
towards the intended symmetry.

The problem can be solved by enforcing the symmetry
required by designer along a line. This is achieved by lim-
iting the variable nodes to one side of the symmetry line,
forming the base skeleton and adding primitives. The sym-
metry condition is used tomirror the primitives on other side.
This seems to be simple, however, the problem lies in inter-
connectivity of the two regions as illustrated in Fig. 2. If there
are points on the line of symmetry, then it is ensured, but this
might not be the case. To alleviate this problem, we include
another set of nodes, nsym which are just like variable nodes,
but have only one degree of freedom to move along the line
of symmetry, hence represented by a single design variable.
This ensures that symmetry as well as connectivity issues
arising out of enforcing it is addressed simultaneously.

2.10 Topology repair operator

This technique is introduced to handle any inconsistencies
in topology which might arise due to lack of interconnectiv-
ity caused due to certain width variables having zero values.
This would lead to failure in FEA analysis and give an error,
ending the entire process. Hence, detection and corrective
action before the FEA step is necessary. Rejecting or penaliz-
ing the geometries would further waste function evaluations
and would waste the space of one population member with
valid topology. The disconnected geometry can be formed in
the following ways:

1. The point at which load is applied and boundary condi-
tions for the nodes are disconnected.

2. Nodes representing non-design constrained regions.
3. Presence of non-connected materials in the topology.

The algorithm for repair operator is explained in “Appendix
1” and briefly illustrated through an example in Fig. 3.

The repair operation seems artificial as topology is
changed after getting the design variables from the opti-
mization process, but at the same time it is vital for getting
the connected geometry among all the nodes. The mod-
ified design variables then replace the original ones thus
promoting only those population members where the repair
operation is not needed at all.

The voids where the external boundaries are not given
by the designer are not included in the ’Special Set’ so
that flexibility is available for elimination of more regions
around void if required and the void is not always bounded by
material.
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Fig. 2 Illustration explaining the importance and need of ‘Symmetry Points’ for handling symmetry conditions within given design domain

2.11 Width limit detection

At the start of the optimization procedure, the width lim-
its,

[
W−,W+

]
, have to be decided and specified for width

design variables. The limits stretch from a negative to a pos-
itive value to decide the interconnectivity among the nodes.
For a positive value, the node connection is present in the
triangulation and for negative value it is absent. The nega-
tive width actually gives power to the optimization code to
remove unwanted segments. Initialization and further func-
tionality of width variables inside the width limits both lower
and upper, not only decides the probability pwidth of num-
ber of segments definitely present in the geometry, but also
contributes towards convergence of the algorithm. It can be
observed that if the probability is made too small for negative
widths then elimination of certain nodes from the geometry
might not at all be possible. The possibility of eliminat-
ing certain unwanted nodes helps in formation of simpler

geometries which might be the solution. On the other hand,
if positive width probability is kept low then all the solu-
tions might find simpler geometries, through topology repair
operator.

At this point, it should be noted that MOGA is capa-
ble enough of dealing with these probabilities and moving
towards a global maxima. However, the parameters to handle
them might imply more time or generations for convergence
to pareto-optimal front. Also, it might need a larger pop-
ulation size. Here, the term ‘Global Maxima’ obviously is
dependent on the number of nodes. So for creating a sense of
balance we take the probabilities to be 50% (pwidth = 0.5)
or the lower and upper limit having the same numerical value.

The positive width limit is always decided from the width
limit operator and the negative width limit is decided accord-
ingly to attain the required value of probability. If pwidth <

0.5, i.e., the negative width becomes greater than the posi-
tive it may lead to greater than required widths. To avoid this
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Fig. 3 An example of repair operation for obtaining connected and valid geometries

condition when applying the repair operator, if the numer-
ical value of the negative width becomes greater than the
numerical value of the positive width, then it is made equal
to the positive width limit. This ensures that the optimization

functions like crossover and mutation remain unaffected and
work in the full range {W−,W+} whereas, in repair operator
the widths remain equal or smaller than the actual positive
width limit decided by the width operator.

123



Topology optimization of compliant structures and mechanisms using constructive solid. . . 1165

If the design domain is changed in size or the number of
nodes is altered, the width limits have to be accommodated
accordingly. This is done through the following steps:

1. For the first topology, we take constant positive widths
for all segments, starting from a low value, example 0.5.

2. This constant width is increased in predefined steps.
3. The topology is formed and volume fraction is

calculated.
4. If the current volume fraction for ith iteration,ηi is greater

than 0.9 or the change from previous iteration is less than
5%, then we limit the numerical width limit as two times

Fig. 4 Width limit is decided based upon the percentage of area, the maximum width allotment can cover the design domain (different segments
defining the topology are shown in different colors) (color figure online)
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that of the current constantwidth,Wi .Otherwise, go back
to Step 2.

5. Calculate the respective positive or negative width limits
as:
Positive width limit, W+ = 2 ∗ Wi

Negative width limit, W− = −[W+ ∗ (1 − pwidth)].

The iterations for different widths are shown in Fig. 4
until the final width is obtained. The W+ is kept twice as
all the segments with maximum width limits (a rare case)
would certainly not be present. This increases the range of
volume fractions that can be covered by the width limits.
This best works for requirements of geometries with volume
fractions below 0.7 and a yet higher multiplication factor
to W+ would further increase this range. If at the end of
iterations η f inal < f (required volume fraction) implying
that most of the topology cannot be covered or approximated
by these particular set or number of nodes; in such cases, the
number of nodes is to be increased to cover more regions and
the algorithm is run again to ascertain new limits.

If the required optimization has put constraints on the vol-
ume fraction for the final topology, it would be better if this
information is in some way integrated in the process of def-
inition of width limits itself. This is done by replacing limit
on current volume fraction in Step 4 by ηi = 1.5 ∗ f . A
smaller range of widths for primitives helps in satisfaction of
the volume fraction constraint by generating topologies with
volume fractions around f itself. This process surely helps
for faster convergence as a greater range poses an unneces-
sary challenge for MOGA to overcome. It also reduces the
number of initial population members required to explore
and solve the problem.

The widths that are too small in size to be manufac-
turable/machinedhave to be removedor repaired in away that
interconnectivity is still maintained. So the tolerance value,
δ (taken as 0.1) for widths is decided and any value lower
than that is brought up to the value δ helping in elimination
of poor and impractical linkages.

The parametric study in our case would primarily involve
types and number of nodes taken and other is the shape of
the bars. Number and type of nodes to be taken for bound-
ary condition definition or active/passive design constraint
depend on the shape and condition that is applied. Different
boundary conditions have been shown in various examples.

The need for width limit detection itself came from the
difficulty in identification of correct parameters required for
variable nodes. For the number of variable nodes, the width
limit detection ensures that it is formulated beforehand and is
sufficient enough for covering the entire topology. If the vari-
able nodes are not enough then the maximum design domain
would not be covered even by increasing the range of widths.
The operator in the beginning itself performs a parametric
study to determine the nodes ideal for representing the topol-
ogy.

2.12 Volume penalization operator

The minimization or limitation of volume/ weight is one
of the most common and important objectives in topology
optimization (Sokolowski and Zolesio 1992). For single or
multi-objective problems where finding different topologies
for different volume fractions is one of the objective, this
volume penalization operator need not be used. This exam-
ple has a constraint of 50% volume utilization ( f = 0.5),

Fig. 5 Trimming operation to get the final geometry inside the design domain, deleting the outside parts through CSG operations
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Fig. 6 Final geometry
formation with meshing done on
it. The actual and deflected
geometries after analysis in
Abaqus are shown

Fig. 7 3-D delaunay
triangulation

where topologies using above this limit would be deemed
infeasible.

Without any particular estimate of the amount of overlap-
ping that is taking place among the segments at the nodes, the
exact change in width required cannot be determined. Pre-
viously in Cuillière et al. (2013), the correction operator to
avoid any infeasible topologies would calculate the volumes
and then for those showing constraint violation multiplies
their current widths with the ratio,

ε = f

ηi
(2)

whereηi i s the volume fraction for the topology in i thiteration.
ε denotes the violation of the set volume fraction limit. Larger
the violation, less is the value of ε. With the information
about the extent of violation of constraint, subsequently the
new volume is calculated. This process is repeated until the
constraint violation is eliminated.
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Fig. 8 Process of 3-D topology formation and analysis inside FEA Solver

The process although, always favorable for constraint sat-
isfaction, still takes up valuable time in terms of multiple
times geometry formation. A need is felt for an opera-
tor which is able to do this in a single iteration. The
ratio ε which was previously multiplied to the widths of
all segments is now replaced by α to account and cor-
rect the severity of volume fraction violation in a single
iteration.

α = min[ε(1+ε), 0.9] where new width variables Wnew,
in case of violation become Wnew = W/α.

The ceiling for the value of α is necessary to make the
small constraint violations (η just greater than f ) equal to
zero. As the severity of constraint violation increases, the
original widths are reduced more.

Wnew replaces W in the parent population, thereby mak-
ing sure the solutions have least possible violation of volume
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fraction constraint. This helps in converging towards geome-
tries already satisfying the required volume constraints. The
process in some cases makes the volume fraction too small
and well below the limit because of raised power on ε or it
might fail in bringing it inside the limit. The lower volume
fraction geometries can still climb up towards the volume
fraction limit ( f ) in the next set of generations. The trade-
off for time and function evaluation with the exactness of
constraint satisfaction can easily be observed and the sav-
ings due to elimination of function evaluations wasted on the
same topology make it a worthy choice.

2.13 CSG subtraction and addition: trimming

Even though the nodes are always kept inside the respective
domain, but due to the addition of widths between them as
material, it may violate the boundaries. A small portions of
the geometry might go out of the bounding boxes and inter-
fere with the void boundaries. On the other hand, thematerial
for the non-design constrained region has to be added. So,
this operation subtracts the voids along their boundary and
applies CSG union for adding the required material. When
the void boundaries are removed through CSG intersection
then at the void boundary vertices, the condition of point
flexure might occur. To solve this problem we take small
rectangular patches which are then placed at all the vertices.
This ensures that a segment does not have a connection only
at a single point, avoiding point flexure. This condition only
arises when the material is removed through CSG difference
in the cases of voids.

Also, the outer boundaries have to be enforced. For that
we take a bigger square with sides equal to the maximum
length/width possible. Then, the internal boundary is sub-
tracted from the bigger square. This is later subtracted from
the repaired geometry of the previous step. This gives us the
final geometry as in Fig. 5.

2.14 Meshing, FEA analysis and output

The final geometry from previous step is then triangu-
larlymeshed throughMATLAB (Mathworks 2013) followed
by mesh refinement if deemed necessary. This is done to
improve accuracy by increase in node density inside the
design domain. The boundary conditions and load nodes
are found and written in the input file for the commercial
FEA solver, Abaqus (2006). The final output for compliance,
stresses is obtained from the result file generated at the end
of the analysis and can be visualized as shown in Fig. 5.

2.15 Multi-objective optimization algorithm, NSGA-II

NSGA-II is one the most popular algorithms to handle
multiple objectives simultaneously. NSGA-II has shown its

efficacy in many structural (Abaqus 2006) and other engi-
neering problems (Datta andDeb 2011;Deb andDatta 2012).
In NSGA-II-based algorithm, the natural selection criteria
decide the emergence of a better solution and the conver-
gence criteria are set when the best solution does not change
for succeeding generations (Figs. 6, 7, 8).

Sensitivity analysis-based algorithms like SIMP define
sensitivity as:
dc
dρe

, c is the objective and ρe represent the design variables
where (e = 1 . . . n), which in this case are the individual
density values of the discretized blocks.

For our case, the density-based approach is not employed
because the design variables defining the location and width
in their own sense do not have any physical significance in
terms of affecting the objective value. It is after theCSGoper-
ations that we get the final topology and objective value. So,
the sensitivity-based approach does not work with the kind
of variables we are using to define our problem. Only non-
gradient-based optimization algorithms have to be employed.
As the search for the right topology is fastened through
population-based methods, the decision to go for NSGA-II
was made.

The crossover operation in NSGA-II between two par-
ent genes is meaningful if the variables represent the same
entity. In the present study, the variables representing node
locations (N(x,y)) are sorted according to x-coordinate. The
index of the width corresponding to connection between
nodes i and j in the width variable array can be calculated
as:

Width Index =
(

n− i

2

)

∗ (i−1) + ( j − i), where j > i

Fig. 9 Benchmark solution and comparison
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Table 2 Problem information with relevant parameter values

Number of variable nodes, m 5

Number of fixed nodes, k 3

Number of special nodes, nvoid 7

Number of symmetry nodes, nsym 0

Total number of variables, n 106

Population size 40

Generations 100

This ordering of variables ensures that location and width
variables are crossed with their same counterpart in the pop-
ulation making crossover more useful.

3 Methodology for three-dimensional geometries

The methodology for handling of three-dimensional topolo-
gies is quite similar to that explained in the previous section
for two-dimensional geometries.

3.1 Implementation

The formation and analysis of three-dimensional geometries
warrant the use of python-based (Abaqus 2006) application
programming interface, which overcomes the current lim-
itation of CSG implementation toolbox (Mathworks 2013)
in MATLAB. The scripts can be used for the entire analysis

Fig. 10 a Design domain with free boundary of voids. b SIMP methodology solution (Wang et al. 2011) along with c CSG-TOM solution are
shown
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right from topology formation to viewing results fromoutput,
which exactly serves our purpose. The optimization proce-
dure, the geometry formation through repair operator remains
the same. The interconnectivity of the nodes is decided and
then processed through python-based script for primitive for-
mation, assembly, meshing and analysis. The output of the
analysis is further processed by a MATLAB routine (Braid
andLang1974) and the objective functions are calculated and
passed to the optimization routine for that particular topol-
ogy.

However, the MATLAB-based implementation for two-
dimensional geometries has a major advantage over Python-
based implementation for three-dimensional geometries
related to the volume penalization operator. For 2-D topolo-
gies since themeshingwas being done byMATLABonly, the
volume of any geometry could be readily obtained. This is
not possible for 3-D as the geometries are being formed in the
Abaqus (2006) interface itself and, therefore, have to assem-
bled, steps for analysis defined, geometry analysis performed
and from output the volume has to be obtained. Therefore, it
takes more time in computation of volume fraction for con-
straint satisfaction.

3.2 Miscellaneous differences

The interconnectivity of nodes through skeleton formation
between them has to be carried out through the process
of tetrahedron-based Delaunay triangulation. The geometry
formed due to the union of various rectangular parts, in a
bounding domain, would lead certainly to a complex geom-
etry. The geometry might comprise of multiple small edges
and faces which can be eliminated to yield a simpler, more
comprehensible and reliable geometry both for designer and
manufacturer.

One of the other notable differences is the usage of topol-
ogy repair function to handle cases where the edges are too
small due to the vertices in the geometry formed being too
close. This causes FEA solver to fail in the final analysis
due to the in-built tolerance value in incremental steps taken
to solve the problem. These cases of topologies have to be
repaired by merging the two vertices.

Also, handling of the poor distorted elements is important
for avoiding failures in analysis. The element type used for
meshing these elements is of tetrahedron type, tetrahedron,
which is seeded and completed by FEA solver itself. Now, it

Fig. 11 a i Design domain with fixed boundary condition around voids. ii Single objective solution obtained is shown, iii deflected solution is
visualized, b multi-objective Pareto-Front for von-mises stress and mean compliance, c multi-objective pareto-optimal front for volume fraction
and mean compliance
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Fig. 12 Design domain along
with literature solution (Abaqus
2006)

Fig. 13 Graphs of mean compliance and volume fraction with increasing number of generations

may happen that three closely located nodes lying in a plane
might form triangular planar elements. These elements then
are to be assigned as ‘Homogeneous Shell Section’ due to
absence of the third dimension.

The nodes are on the end faces of the cuboidal primitives
used to join them. The node location where the bound-
ary conditions and loads would be applied has to be found
out on these faces, but the meshing operation might not be
able to make the respective nodes of the tetrahedron ele-

ments on exactly the same coordinate. The partitioning of
the geometry along the node is sometimes made useless by
the trimming operation. To resolve this problem, the regions
where the boundary conditions and loads have to be applied
are added artificially in the form of small volume primi-
tives so that the faces or vertices where these are applied
always remain unchanged. As these are common among the
different topologies, desirable node locations can easily be
detected.
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Fig. 14 Trestle solution for single objective of mean compliance a
solution for m = 5, b solution for m = 2

4 Results

4.1 Two-dimensional geometries

4.1.1 Benchmark problem

The effectiveness of CSG-TOM method was established
previously by Ahmed (2012), Ahmed et al. (2013), which
compared it with various sensitivity analysis-based algo-
rithms and results showed better or comparable efficiency
with these popular methodology solutions. For the rec-
tangular domain of (120 × 40)mm2 (Fig. 9), a minimum
compliance of 179.1N-mm was reported. Also, for the case
of symmetric loading the wheel type structure was obtained
whose minimum compliance was reported to be around
9.83N-mm.

The solution obtained for cantilever beam problem was
found to be slightly better in terms of minimum compliance
from the solution obtained through SIMP methodology both
when using Sensitivity and Heaviside analysis (Sigmund
2007).

Upon application of our new methodology, the solutions
obtained have minimum compliance of 193.2N-mm for the
cantilever beam problem when run for 150 generations.
For this simple case of cantilever loading, we have used
m = 15 and η = 18, also nsym and nvoid are kept zero.
This makes the parameters same as used in Ahmed (2012).
The small change in fitness value can be attributed to the
volume penalization operator, which is forcing the geome-
tries to satisfy volume fraction constraint in only one extra
function evaluation through width reduction and subsequent
replacement of original design variable with the reduced
ones.

The optimization algorithm, NSGA-II parameters com-
mon to all the case studies are pc = 0.5,ηc = 15, (probability
and distribution index for SBX crossover Deb and Agrawal
1995) and pm = 0.01, ηm = 20 (probability and distribution
index for polynomial mutation).

The material data for problems are taken to be E =
10GPa, ν = 0.3. The material density is taken to be
2700kg/m3 (Table 2).

Fig. 15 a Pareto-Front for multi-objective problem. Numbers in the
figure indicate the solutions shown in (b). b Different volume fraction
solutions taken from the Pareto-optimal front as shown in (a)

4.1.2 Test problem

This case study is divided into two parts differentiated by
the boundary conditions around the two voids present inside
the design domain. In the first case, the void boundaries have
fixed boundary conditions, whereas in latter, void boundaries
are free.

General problem information common to all studies with
different objectives for Case 1 is provided in Table 1.

For free void boundaries, the solution with SIMPmethod-
ology is compared with that obtained by CSG-TOM in Fig.
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10. The likeness of the two solutions is evident and clear.
The CSG-TOM methodology using m = 5 to achieve the
possible global solution, which using rectangular primitives
can only represent an approximation due to curves being part
of it.

Figure 11a shows different solutions obtained with vary-
ing set of objectives for the presence of fixed boundary
condition on void boundaries. It implies that the material
placed between fixed nodes and voidswould experiencemin-
imal load influence, so the material in this domain should be
minimal (just enough to keep the fixed nodes connected).
Thus, material on the other side of voids should be added
through node placement primarily deciding the values of
mean compliance and stresses.

It is observed in Fig. 11b that a truss type structure
helps to minimize the compliance whereas for minimum
von-mises stress the material tends to align itself closer to
the fixed boundary condition leading to less average stress
across the whole topology. The single objective solution
has compliance of 0.94 N-mm which is better than any of
the multi-objective solutions, as they are solved using same
population size and optimization parameters as single objec-
tive.

In Fig. 11c topologies with different volume fractions
are shown. For high η solutions, the widths used are larger
in size, whereas for low η nodes are eliminated to give
simpler geometries. Also, as compared to Fig. 11b, the com-
pliance axis has more range owing to low volume fraction
solutions.

4.2 3-Dimensional geometries

The applications of three-dimensional geometry are pre-
sented for cases not requiring symmetrical nodes or special
nodes (as voids and non-design regions are not considered in
the following case studies).

The topology optimization through python (‘ToPy’) (Van-
Rossum and Drake 2010; Hunter 2009) is a python-based
code which uses discretization of domain with multiple fil-
ters for smoothening and checkerboard correction to provide
us with an optimized topology without FEA solver. It basi-
cally works on SIMP methodology and the implementation
and analysis have been made fast and easy.

4.2.1 Test problem 1

The design domain is an equal sided ’cube’ loaded (Fig. 12)
in the center at the top with the bottom four corners fully
constrained. For the solution found in literature a simple four-
legged trestle is formed without any traces, citing the reason
that four corners are not allowed to move at all.

4.3 Single objective: mean compliance

For single objective case, we take population size as 20
and maximum number of generations as 140. The fixed
nodes, k = 3, make the total number of variables to be 43
(Fig. 13).

Fig. 16 Design domain (L-shaped beam) along with literature solution (Michell 1904) comparison purposes. a Design domain with loads. b
Solution
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Taking the case of only 2 variable nodes (m = 2), the
solution in Fig. 14b is reached pretty quickly, as the literature
solution (Fig. 12b) demands less complexity. Also, the four
leg-shaped structures are evolved, without any braces, which
is the case when m = 5 is taken (Fig. 14a).

The introduction of more nodes demands the evolutionary
algorithm to identify and eliminate the unwanted widths, for
example, in the case of 5 variable nodes the numbers of width
design variables are 24. Now with pwidth = 0.5, widths are
initialized and after the tetrahedron Delaunay triangulation,
someunwanted nodes andwidths have to be removed through
evolution. Either they be removed or the nodes come together
in a way to form the legs of the trestle. For an increased
number of nodes, this would require a larger population and
generations to achieve. Hence, the solution for single objec-
tive case in Fig. 14a can be improved with aforementioned
optimization parameters.

4.4 Multiple objectives: mean compliance and volume

For multi-objective case, we take population size as 40 and
maximum number of generations as 50. The total number of
variables remains as 43.

Different solutions with different volume fractions are
shown in Fig. 15b. For solutions having smaller topologies,
it can be seen that 4 variable node connections which have
been eliminated to attain leaner geometries. As the volume
fraction increases, the CSG-TOM methodology tends to go
either way by adding more nodes, which generates more rec-
tangular primitives. This may result in either higher volume
or increase in the widths of the already present connections.
The nodes may not all lie in a plane to make a straight leg,
but rather could lead to formation of braces. Again, use of
more population with generations can resolve the problem
of sub-optimal solution and can improve the pareto-front by

Fig. 17 a Single objective solution for L-shaped beam problem, b graphs of mean compliance and volume fraction with increasing numbers of
generations, c rough approximation of the literature topology for getting an estimate of the compliance value of literature solution for comparison
purposes
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adding more points on it, giving us diverse volume fraction
topologies as well.

4.4.1 Test problem 2

The design domain is an L-shaped (‘dogleg’) prism fully
constrained at one end as shown in Fig. 16. The domain is
loaded with point load of 100N downwards in the center on
the near side of the domain at the right.

Here, we take population size as 20 andmaximumnumber
of generations as 50. The fixed nodes, k = 3, make the total
number of variables to be 43.

The solution presented through our method cannot attain
a tube-like structure through only 8 nodes with the reliance
on CSG union of rectangular primitives only. But here in
our solution, it can be observed that the region removed as

shown in Fig. 17a is similar to that in the literature (Fig. 16b).
The region around the wall is removed between the two fixed
nodes. The overall shape is similar to that of the literature,
when considered with the limitations. The mean compliance
for the solution obtained is 52.1 N-mm. The mean compli-
ance value for the solution in literature could not be found,
hence a simplistic model as shown in Fig. 17c was created to
get an approximate idea of compliance which comes out to
be 50.1 N-mm.

4.5 Some limitations of current methodology

The limitations of current methodology lie in the basic fact
that it approximates every topology through the use of only
rectangular primitives. The number of nodes is a finite set and
their connections are in turn limited by Delaunay triangula-

Fig. 18 Solutions obtained for Mitchell Truss problems. The arising differences are discussed
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Fig. 19 Literature solution
compared with solution
obtained by CSG-TOM upon
application of symmetry nodes

tion. The limited node connections might prove inadequate
for proper approximations of especially curves present in the
topology. The example of Mitchell trusses (Bendsoe 1995;
Michell 1904) formed for the simple domain is shown in Fig.
17. As volume fraction is decreased for the Mitchell truss
problem, the thicker trusses start dissociating into multiple
thinner trusses, all happening between the circular non-
design constraints and concentrated force node. The solution
cannot be matched by that obtained through our methodol-
ogy due to the complex nature of approximation involved.
Although one can observe that for relatively small number
of generations and function evaluations, we see that the area
on the other side of the non-design constraint has been elim-
inated similar to solution shown in Fig. 17b. The symmetry
condition without being enforced the solution seems highly
irregular in shape and progresses towards the formation of
local optima wherein the bulk of the material lies in between
the non-design constraint and load resembling a beam-like
structure.

The CSG-TOM does not have the inherent capability to
identify symmetry condition or provide us with symmetric
solution when design problem itself seems to offer it. If the
designer identifies symmetry or wants it enforced on the
domain, this information alongwith the number of symmetry
points can be supplied to CSG-TOM, which then applies it
to the domain (Fig. 18).

Other limitations include importance to certain design
variables, whereas complete ignorance of some while for-
mulation of any geometry. For example, after Delaunay
triangulation, only specific widths form part of geometry
and the rest do not influence the fitness value in any way.
As the number of nodes is increased, the number of unused
design variables increases (n2C) nullifying the low variable
advantage over SIMP (Bendsoe 1989; Nishiwaki et al. 1998)
methodology. Thus, the ignored design variable widths are
not guiding the optimization routine towards convergence,
but rather adding to the complexity. A more focused number
of design variables by identification and distinction among

the whole set of possible widths need to be implemented
for better optimization routine and quicker results (Fig.
19).

5 Conclusion and future work

CSG-TOM shows advantages in terms of population-based
approach for faster pareto-optimal search in case of mul-
tiple objective, as well as enables geometric complexity
control by taking number of nodes as input from user. The
current work extends the new technique of CSG-TOM to
include various design constraints and domain shapes in
two-dimensional topologies. The primary motivation of the
proposed approach is the need to develop and enhance CSG-
TOM to include different test problems that could be handled
by the present popular techniques of topology optimization.
First, a thorough literature survey was carried out into the
existing methods to try and improve the shortcomings of
CSG-TOM method like reduction in computational time,
slower convergence and more function evaluations. More-
over, methods for finding out suitable width limits based on
node number, domain shape and size were introduced.

Thereafter, the work also extends the CSG-TOM method
for three-dimensional topologies through the use of novel
MATLAB–python-based software implementation with
NSGA-II C code converted to MATLAB version. The
compliance minimization problems with volume fraction
constraints are solved and compared with those present in
the state of the art. Moreover, multi-objective problems with
trade-off solutions are analyzed for some problems which in
turn could help decisionmaker to come upwith better design.

The current work has built-up the basic framework
required for topology optimization of any structure with
complex geometry and boundary condition. The usage of
these techniques could be found in smart structures, and
MEMS, which have been explored by other techniques of
topology optimization. The usage ofCSG-TOMin the above-

123



1178 A. Pandey et al.

mentioned areas would definitely establish it as a viable
topology optimization method with practical utility, and help
in popularizing the method for further research.

As a future work, the repair process can be included
in the optimization procedure itself by the use of genetic
programming-based topology optimization, which forms a
tree structure between the nodes. Since tree structure ensures
they are always connected, we always get a connected topol-
ogy andfinal topologywith no further need of repair operator.

The improvement can be done in terms of 3-D topol-
ogy simplification or smoothening of rough geometries with
multiple faces to a simple easy to manufacture practical
geometry. Also, the establishment of primitives or methods
to introduce curves (for example, through splines) (Michiel
2001; Deaton and Grandhi 2014) in the topology along with
automated symmetry condition detection can be done. In
addition to that, the application of many objective optimiza-
tion in this field can open up new vistas to explore the
trade-offs in high-dimensional requirements specifications.
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6 Appendix 1

In ‘TopologyRepairOperation’, the geometries are viewed as
graph of connected nodes. A bunch of inter-connected nodes
is termed as a ‘Set’. Following steps are taken to obtain the
final geometry:

1. Find the ‘Sets’ of inter-connected nodes.
2. Find the ‘Special Sets’ containing k fixed nodes and non-

design constrained sets. If they fall in the same set, then
go to Step 7.

3. Using the initial triangulation data, find the connectivity
between each pair of sets which were removed by the
optimization variables.

4. Obtain the graph of connectivity between sets. Weight
of connection between any two sets is through the nodes
joined by the minimum edge length.

5. Using breadth first search (BFS) from each set in the
graph, find the minimum connections required to join
all the ‘Special Sets’. The absolute values of widths are
taken for this new connection.

6. Join the pair of nodes for each new connection made to
form a single connected ‘Set’.

7. Ignore all other sets and form the final geometry using
the singly connected ‘Set’.
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