
Soft Comput (2017) 21:949–964
DOI 10.1007/s00500-015-1825-z

METHODOLOGIES AND APPLICATION

Solving the multi-objective path planning problem in mobile
robotics with a firefly-based approach

Alejandro Hidalgo-Paniagua1 · Miguel A. Vega-Rodríguez1 ·
Joaquín Ferruz2 · Nieves Pavón3

Published online: 20 August 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Currently, autonomous robotics is one of the
most interesting and researched areas of technology. At the
beginning, robots only worked in the industrial sector but,
gradually, they started to be introduced into other sectors
such as medicine or social environments becoming part of
society. In mobile robots, the path planning (PP) problem is
one of the most researched topics. Taking into account that
the PP problem is an NP-hard problem, multi-objective evo-
lutionary algorithms (MOEAs) are good candidates to solve
this problem. In this work, a new multi-objective approach
based on the flashing behavior of fireflies in nature, the
multi-objective firefly algorithm (MO-FA), is proposed to
solve the PP problem. This proposed algorithm is a swarm
intelligence algorithm. The proposed MO-FA handles three
different objectives to obtain accurate and efficient solutions.
These objectives are the following: the path safety, the path
length, and the path smoothness (related to the energy con-

Communicated by V. Loia.

B Alejandro Hidalgo-Paniagua
ahidalgop@unex.es

Miguel A. Vega-Rodríguez
mavega@unex.es

Joaquín Ferruz
ferruz@cartuja.us.es

Nieves Pavón
npavon@dti.uhu.es

1 Department of Technologies of Computers and
Communications, University of Extremadura, Polytechnic
School, Cáceres, Spain

2 Department of Systems Engineering and Automation,
University of Sevilla, Higher Technical School of
Engineering, Sevilla, Spain

3 Department of Information Technology, University of Huelva,
Higher Technical School of Engineering, Huelva, Spain

sumption). Furthermore, and to test the proposedMOEA, we
have used eight realistic scenarios for the path’s calculation.
On the other hand, we also compare our proposal with other
approaches of the state of the art, showing the advantages
of MO-FA. In particular, to evaluate the obtained results we
applied specific quality metrics. Moreover, to demonstrate
the statistical evidence of the obtained results, we also per-
formed a statistical analysis. Finally, the study shows that
the proposed MO-FA is a good alternative to solve the PP
problem.

Keywords Path planning · MO-FA · Swarm intelligence ·
Robotics · Realistic maps · Energy consumption

1 Introduction

Nowadays, robotics is one of the most important areas of
technology due to its rapid development and implementation
in many aspects of the real world, and not only in the indus-
trial sector. At first glance, robots can be classified in two
well-differentiated groups: mobile and non-mobile robots.
The first ones are equipped with a locomotion system that
allows them to navigate through a specific environment. In
robot navigation, the main problem is to calculate a feasible
path from a starting to a target point of the environment. This
problem is known as path planning (PP) problem (Shih et al.
2013). Currently, PP is one of the most researched topics in
the field of robotics.

In this sense, several approaches tackling the PP prob-
lem have been proposed. The main disadvantage of these
approaches is that most of them are only focused on a sin-
gle objective, normally minimizing the path length (LaValle
2006). However, from our point of view, in the case of PP, it
is essential to handle several objectives simultaneously with

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-015-1825-z&domain=pdf

950 A. Hidalgo-Paniagua

the aim of obtaining accurate solutions. Specifically, three
fundamental objectives can be taken into account: the path
safety, the path length, and the path smoothness. Thefirst one,
the path safety, is related to the objects of the environment
presented in the path. The paths containing fewer objects will
be the best (safest). The path length objective is focused on
obtaining paths as short as possible. This objective is mainly
related to the robot operation time, since a shorter path will
be traveled in less time. Finally, it is important to highlight
that robots do not have an infinite energy source (usually bat-
teries are used). The last objective, the path smoothness, has
as a goal to minimize the number of bends of the path. The
path smoothness objective is related to the energy consump-
tion, due to the influence of the number and magnitude of
turns on the consumed energy (Ahmed and Deb 2013; Jun
and Qingbao 2010). Thus, a path in which the robot has to
turn minimally will involve less energy consumption.

Path planning (PP) is an NP-hard optimization problem
(Davoodi et al. 2013); for this reason it can be tackled by
using MOEAs.

In this manuscript, we present an efficient multi-objective
version of the firefly algorithm (FA) (Yang 2010), a swarm
intelligence algorithm based on the flashing behavior of fire-
flies in nature. Some important contributions of our work are
that, unlike many previous works, we tackle the PP problem
in a multi-objective manner, applying an MOEA not previ-
ously used, and using realistic maps for the calculation of
the paths. For the PP problem, we handle the three essen-
tial objectives explained above, that is, the path safety, the
path length, and the path smoothness (directly related to the
energy consumption). This is also important because many
previous works use less objectives or are not aware of the
energy consumption. Regarding the evolutionary operators,
we developed our own specific operators to solve PP. This is
another contribution of our work.

As NSGA-II (Non-dominated Sorting Genetic Algorithm
II) (Deb et al. 2002) is the MOEA mainly used by other
authors who tackled the same problem (with the same objec-
tives) in a multi-objective manner, we used this algorithm as
a reference, comparing the results of multi-objective firefly
algorithm (MO-FA)with several implementations of NSGA-
II proposed by other authors. This comparison is based on a
complete statistical study, with 8 scenarios and 31 indepen-
dent repetitions per experiment.

The rest of the paper is organized as follows. Section 2
discusses the relatedwork. InSect. 3, the environmentmodel-
ing, the path encoding, and the objectives considered to solve
the PP problem are clearly explained. A brief explanation of
both, the MOEAs and the evolutionary operators used by
them, is presented in Sect. 4. In this section, we also explain
two new mechanisms to improve the initial population of
MOEAs. In Sect. 5, the methodology used to test MOEAs,
that is, the datasets (scenarios), the parameters configuration,

and the metrics used are presented. Finally, the results, com-
parisons with the state of the art, and conclusions are shown
and analyzed in Sects. 6 and 7, respectively.

2 Related work

In recent years, several studies have been proposed in
which MOEAs are applied to tackle the PP problem.
Despite this, some of these works really handle a single-
objective optimization (EAs). For example, in Geetha et al.
(2011), Guo et al. (2009), Hao and Qin (2011), Krishnan
et al. (2009), Masehian and Sedighizadeh (2010), Masehian
and Sedighizadeh (2010), and Masehian and Sedighizadeh
(2010), the authors use a single-objective optimization,
although in the paper titles indicate that multiple objectives
are used. More specifically, all these articles are based on
an aggregation scheme (weighted sum) to calculate the fit-
ness function. On the other hand, almost all the real MOEAs
applied to the PP problem used the popular NSGA-II algo-
rithm. In Wei and Liu (2010), an NSGA-II was presented,
which manages only two objectives. In particular, the algo-
rithm optimizes the path length and the path curvature. In
Ahmed and Deb (2011), Chang and Liu (2009), and Davoodi
et al. (2013), different variants of NSGA-II were proposed,
which also use two objectives: the path length and the path
safety (referred to the obstacles), but ignoring the energy
consumption. Other works in which the authors used these
same objectives, also without taking into account the energy
consumption, can be found in Gong et al. (2011), Geng et al.
(2013), Wang et al. (2009), and Zhang et al. (2013). On the
other hand, Sedaghat also applied NSGA-II and proposed a
variant of these twoprevious objectives, in particular she used
the path length in combinationwith the path difficulty to solve
the problem in Sedaghat (2011), also ignoring the energy
consumption. These studies took into account only two
objectives, and theMOEAwe present in this study uses three
objectives to solve the problem (our third objective is the path
smoothness, related to the energy consumption). For this rea-
son, we could not compare with their obtained results. Other
variants of MOEAs which optimize two different objectives,
in this case the path length and the path smoothness, can be
found in Mo et al. (2013) and Wang and Zhu (2013).

On the other side, some authors applied MOEAs optimiz-
ing three different objectives, for example, in Ahmed and
Deb (2013) and Jun and Qingbao (2010) an NSGA-II algo-
rithmwas used that took into account the path length, the path
safety, and the path smoothness. These authors optimized the
same objectives as we handle in our work. For this reason,
we have used these proposals to do a fair comparison with
the state of the art, showing the goodness of our approach.

Finally, in Kim and Kim (2009) and Kim et al. (2009),
MOEAs were applied to solve the PP problem in a robot

123

Solving the multi-objective path planning problem in mobile robotics... 951

soccer system. This robotics environment is very different
to our robotics environment. In fact, they used very differ-
ent objectives. More specifically, they used the following
three objectives: path time, heading direction, and posture
angle error. Furthermore, none of them takes into account
the energy consumption. Again, all of these authors com-
pared their obtained results with the corresponding NSGA-II
algorithm.

In this paper, we tackle the PP problem by using a swarm
intelligence algorithm known as MO-FA. MO-FA is based
on the flashing behavior of fireflies in nature. Unlike other
authors, in this work we use realistic maps of the environ-
ment.On the other hand, due to the importance andpopularity
of the NSGA-II algorithm in the related literature, we also
compare our results with the ones obtained by the different
NSGA-II algorithms proposed by Ahmed and Deb (2013)
and Jun and Qingbao (2010). To the best of our knowledge,
no other works have tackled the PP problem by using a MO-
FA.

3 Path planning

The PP problem consists in finding a path that allows a robot
to move from a starting point to a target point in a certain
environment. In the following subsections, we explain the
environment modeling, the path encoding, and the handled
objectives to solve the PP problem. Note that, in this work,
we consider the robot and the environment geometry in a 2D
space.

3.1 Environment modeling

When working with mobile robots, it is essential to build
a computational representation of the environment to carry
out motion planning operations. As we said at the begin-
ning of Sect. 3, in this work, the environment is modeled
in a 2D space using a grid structure. Unlike other authors
who tackled the PP problem too, we used realistic maps of
the environment. The process to get the final computational
representation of the environment involves two steps. The
first one consists of partitioning the real map of the environ-
ment. As the final representation will be based on a 2D grid,
the map is partitioned into several rows and columns. Each
region of the map determined by a specific row and column
is known as a partition. For this reason, the resolution of the
final representation will depend on the number of rows and
columns used to partition the source map. Figure 1 shows an
example of the map partitioning.

Taking as input the partitioned map, the second step aims
to obtain a grid structure representing the occupancy of each
partition. The occupancy of a partition refers to the amount
of objects contained in it, and is expressed as a percentage.

Fig. 1 Map partitioning: a source map, and b partitioned map

Taking this into account, if in a partition any object does not
appear, the value in the final grid will be 0%. Conversely, if a
partition is fully occupied byobjects, the corresponding value
of the cell in the final grid will be equal to 100%. In the same
way, a partition neither fully occupied nor completely empty
will have a value between 0 and 100 %. To detect the objects
existing in the environment, we used two different colors
in the source map. The background of the map is always
white. This color represents the empty space. The walls of
the environment have always been associated with the green
color.Anyother object of the environmentwill have anyother
color (neither white nor green). The reason for representing
the walls with a different color is that we consider them as
dangerous objects. For example, if the robot collides with a
little object of the environment, probably the object will be
moved from its initial position without damaging the robot.
However, if the robot collides with a wall, the most likely
result is that the robot will be damaged. For this reason, the
partitions in which walls appear will correspond to a special
value in the final structure. This value is equal to 1000 %.
This penalty has as a goal to avoid, firstly, the dangerous
objects during the path calculation. Finally, the resulting grid
structure is shown as a gray-level image in which cells with
values equal to or greater than 100% correspond to the black
color, the completely empty cells with the white color, and
those cells not fully occupied with a gray-level color (see
Fig. 2).

3.2 Path encoding

In this work, we handle paths as sorted lists of grid coordi-
nates. A grid coordinate is a pair (row, column). For a specific
path, the first element of a list corresponds with the starting
point of the path and, respectively, the last element of the list
corresponds with the target point of the path. The number
of intermediate coordinates in the list is variable and, in the-
ory, without limit. This representation of the paths implicitly

123

952 A. Hidalgo-Paniagua

Fig. 2 Example of a final grid structure generated

Fig. 3 Example of path encoding

encodes the segments forming the paths; thus, two consec-
utive coordinates in the list correspond to a segment of the
path. Figure 3 shows an example of path encoding.

3.3 PP objectives

The MOEAs in this work, MO-FA and NSGA-II, manage
three different objectives to get accurate and efficient solu-
tions. These objectives are the following:

– Path Length (related to the robot operation time).
– Path Safety (related to avoiding obstacles).
– Path Smoothness (related to the energy consumption).

Note that all the objectives presented in this study are
to be minimized by the MOEAs. The following subsections
explain clearly the calculation of these objectives.

3.3.1 Path length objective

The path length objective aims to get paths as short as pos-
sible. Mathematically, it is the sum of the lengths of each
segment of a path. The segment length is based on the Euclid-
ean distance between the points (coordinates) forming the
segment. The Euclidean distance between two coordinates

of the path, C1 = (r1, c1) and C2 = (r2, c2), is calculated
using Eq. 1:

d(C1,C2) =
√

(r1 − r2)2 + (c1 − c2)2. (1)

Remembering that the path is encoded as a sorted list of n
grid coordinates, the total length of a specific path can be
calculated using Eq. 2:

PL =
n−1∑

i=1

d(L[i], L[i + 1]), (2)

where L refers to the sorted list of grid coordinates (points)
forming the path, and L[i] and L[i + 1] refer to the path
segment defined by the i − th and (i + 1) − th coordinates
of the list. Note that this objective is directly related to the
robot operation time; thus, a shorter path implies less time to
walk the path.

3.3.2 Path safety objective

When the robot moves through space, it is important to do it
without colliding with the objects of the environment. This is
the aim of the path safety objective. This objective is calcu-
lated by adding the occupancy (see Sect. 3.1) of the stepped
cells of the grid by the robot along the path. In this work,
we consider that the robot has the same size as a cell of the
grid representing the environment. Equation 3 shows how to
calculate the value of this objective:

PS =
n−1∑

i=1

SCellsi,i+1, (3)

where SCellsi,i+1 is the sum of the occupancies of the
stepped cells by the robot in the segment defined by the coor-
dinates i−th and (i+1)−th of the sorted list representing the
path. The size of the path, in terms of number of coordinates,
is determined by n.

3.3.3 Path smoothness objective

The path smoothness objective aims to measure how much
snaky is a specific path. This objective is directly related to
the robot energy consumption. To calculate the path smooth-
ness for a specific path, we add the angles between each two
consecutive segments of the path. Note that the best angle
is the closest to 180◦ (this number defines a straight path).
Equation 4 shows how the path smoothness is calculated.

Pα =
nα∑

i=1

(180◦ − αi), (4)

123

Solving the multi-objective path planning problem in mobile robotics... 953

Fig. 4 Path smoothness

where nα is the number of angles of the path, and αi refers
to the value of the i th angle of the path (measured in degrees
in the range from 0◦ to 180◦). Note that the equation has the
operation (180◦ − αi). The reason for this is that the best
angle value is 180◦ (a straight segment) and the objective is
to be minimized by the MOEAs. Figure 4 shows a graphical
explanation of the path smoothness.

4 Multi-objective evolutionary algorithms

In the following subsections, the MOEAs used to solve the
PP problem (MO-FA and the two versions of NSGA-II) are
clearly explained.

4.1 MO-FA

In this work, the algorithm proposed to solve the PP problem
is MO-FA. This algorithm is a multi-objective version of the
original firefly algorithm (FA). The FA is a swarm intelli-
gence algorithm based on the flashing behavior of fireflies in
nature. It was proposed by Yang (2010).

The algorithm reproduces the attraction among thefireflies
depending on the amount of light that they emit. The brightest
fireflies attract the least bright ones. Every firefly represents
a solution to the problem. The brightness of a specific firefly
is associated with the quality of its solution (a better solution
implies a brighter firefly). Algorithm 1 shows the MO-FA
pseudocode.

As we can see in Algorithm 1, our multi-objective version
of FA executes two basic steps. Once the initialization step
is complete (lines from 1 to 8), the first one is to bring closer
the less bright fireflies to the brightest ones (lines from 11 to
27). In this step, all fireflies are compared with the other ones
taking into account the epsilon dominance,�ε (line 17). The
epsilon dominance allows a firefly to learn also from those
others that are a bit worse in terms of flashing. Regarding this,
this type of dominance handles an extra value, epsilon, which
added to the values of the objective functions determines the
fireflies from which to learn. If a firefly epsilon dominates
another one, the less bright one will be brought closer to
the brightest one (lines 16, 17, and 18). The obtained firefly

Algorithm 1MO-FA Pseudocode.
1: NF ← Number of f ire f lies.
2: NDSArchive ← ∅.

3: #I ni tiali zation.

4: Fire f lies ← Generate N F random f ire f lies.
5: generations ← Number of i terations of the algori thm.

6: Fmoved ← Number of f ire f lies moved in each generation
of the algori thm.

7: StagCont ← Percentage of f ire f lies f or stagnation control.
8: Limit F ← Maximum number of times that a f ire f ly tries

unsuccess f ully to evolve.
9:
10: for i = 1 to generations do
11: #Evolution of the swarm.

12: Fmoved ← 0
13: for j = 1 to NF do
14: Fire f lyA ← Fire f lies[j]
15: for k = 1 to NF do
16: Fire f lyB ← Fire f lies[k] #Fire f lyB �= Fire f lyA
17: if Fire f lyA �ε Fire f lyB then
18: Fire f lyR ← bringCloser(Fire f lyB , Fire f lyA)

19: if Fire f lyR ≺ Fire f lyB then
20: Fire f lies[k] ← Fire f lyR
21: Fmoved ← Fmoved + 1
22: else
23: increment Limit (Fire f lies[k], 1)
24: end if
25: end if
26: end for
27: end for
28:
29: #Stagnation control.
30: if Fmoved < (NF ∗ StagCont)/100 then
31: for m = 1 to NF do
32: if Limit (Fire f lies[m]) > Limit F then
33: Fire f lies[m] ← new random f ire f ly.
34: end if
35: end for
36: end if
37:
38: #Save population to the N DSArchive.
39: export Fire f lies(Fire f lies, NF, NDSArchive)
40:
41: end for

will replace the original firefly only if it is better in terms
of dominance (lines 19 and 20). In this step, the number
of fireflies moved to the better ones are counted to detect
if the population is stagnated (line 21). Furthermore, those
stagnatedfireflies are identifiedby increasing their limit value
(line 23). The limit value indicates the number of times that
a firefly tries unsuccessfully to evolve.

The second step consists in determining if the firefly popu-
lation is stagnated. Taking into account the number of fireflies
that moved to the brightest ones and their limit values, we
consider that the population is stagnated when the number
of fireflies brought closer to the brightest ones is less than
a percentage, StagCont. If the population is stagnated, all
the fireflies whose limit values are bigger than the LimitF
value will be replaced by new random fireflies (lines from

123

954 A. Hidalgo-Paniagua

29 to 36). Finally, at the end of each generation of the algo-
rithm, the valid individuals of the population are saved to the
NDSArchive to avoid losing good solutions already achieved
(line 39).

Moreover, in this work, we also propose new evolutionary
operators. These problem-aware operators are applied along
the algorithm procedure with a priority criterion. While the
value of the path safety (see Sect. 3.3.2) is greater than a cer-
tain threshold (in this case 500 %), the algorithm will apply
the path safety operator. When the path safety is less than
the threshold value, the algorithm will apply the correspond-
ing operator depending on the maximum value of the path
length (see Sect. 3.3.1), the path safety (see Sect. 3.3.2) and
the path smoothness (see Sect. 3.3.3). That is, we evaluate
which is the objective with the worst value and try to improve
it with the corresponding operator. In the following subsec-
tions, the proposed evolutionary operators, the mechanisms
for improving paths, and the generation of the initial popu-
lation are clearly explained.

4.1.1 Path length operator

The path length operator aims to reduce the length of a path
when it is too long. As we said previously (see Sect. 3.3), the
length of a path is directly related to the robot operation time;
thus, a shorter path will be walked by the robot in less time.
To reduce the path length, this operator deletes a path coor-
dinate (point). Deleting a path coordinate implies that a new
segment from the previous to the next coordinate appears (see
Fig. 5). In this sense and taking into account MO-FA, to sim-
ulate the attraction between two fireflies in terms of the path
length, we perform the following procedure. Given two dif-
ferent fireflies (paths), A and B, we determine if A epsilon
dominates B. If this is true, then the firefly B (dominated
firefly) must be approached by the firefly A (non-dominated
firefly). The approximation consists of deleting a firefly B
coordinate executing two steps: the first step is to determine
the average length of the segments of the firefly A. Once
the average length has been determined, two sets of path
segments will be created. One of these sets will contain the
segments with length greater than the average length calcu-
lated previously and the other will contain the segments with
length less than the average length calculated before. The sec-
ond step is to select a random segment and finally deleting
one of the coordinates forming the selected segment.

4.1.2 Path safety operator

The path safety operator aims to minimize the number of
objects existing in the calculated path, reducing the number
of possible collisions. To accomplish this goal, the operator
takes as input a segment of the path and then tries to reduce
the possible collisions presented in it. In the case of the MO-

Fig. 5 Evolutionary operator for the path length

FA algorithm, and taking into account the path safety, to
simulate the attraction between two fireflies we perform two
basic steps. Given two fireflies as input, A and B, the first
one consists of determining if A epsilon dominates B. If A
epsilon dominates B, the firefly B (dominated firefly) must
be approximated to the firefly A (non-dominated firefly). The
approximation consists of reducing the collision probability
of the segment of the firefly B whose path safety value is
greater than the average path safety of the segments of the
firefly A.

To avoid objects rapidly, as first step, the operator tries
to determine the shape of the objects. Thus, we classify the
objects, in terms of shape, into three categories: vertically
shaped objects, horizontally shaped objects, and irregularly
shaped objects. The first ones refer to the objects with a com-
pletely vertical shape, the second ones with fully horizontal
objects, and the last ones with objects which have neither a
clear vertical nor horizontal shape. When a segment crosses
over a vertically shaped object, the operator determines the
collision point and then replaces it with the aim of avoiding
the object. In this type of objects, the new candidate pointwill
be searched in the vertical direction of the collision point.
Note that, applying this operator, we obtain two new candi-
date points, one corresponding to the top point and the other
corresponding to the bottom point. Finally, to choose the best
alternative, we weigh the candidate solutions. To weigh the
candidate solutions, the operator takes into account the object
shape, the value of the path safety (see Eq. 3) of the new pos-
sible segments, and the Euclidean distances from the point to
be replaced to the new candidate points. Thus, if the object
is irregularly shaped, the vertical and horizontal weights will
have different values. Regarding the possible candidate seg-
ments, they will have a greater weight value when they do
not cross any object. Furthermore, the candidate point with
lowest Euclidean distance from the collision point will have a
greater weight value. Finally, the candidate point for replac-
ing the collision point will be the one with the greater global
weight value. Figure 6 shows a graphical explanation of the
path safety operator applied to vertically shaped objects.

In Fig. 6, pm is the point to be modified (the collision
point), cp1 (candidate point 1) and cp2 (candidate point 2)

123

Solving the multi-objective path planning problem in mobile robotics... 955

Fig. 6 Path safety operator. Vertically shaped object

Fig. 7 Path safety operator. Horizontally shaped object

Fig. 8 Path safety operator. Irregularly shaped object

refer to the candidate points determined to avoid the object,
and ss1 (superior segment 1), ss2 (superior segment 2), is1
(inferior segment 1), and is2 (inferior segment 2) correspond
to the possible candidate segments that could appear when
the collision point will be replaced with one of the candidate
points.

In the case of horizontally shaped objects, the procedure is
basically the same, but with the difference that the candidate
points for replacing the collision point will be searched in the
horizontal direction of the collision point. Figure 7 shows an
example of the path safety operator applied to a horizontally
shaped object.

In Fig. 7, pm refers to the point to be modified (the colli-
sion point), cp1 (candidate point 1) and cp2 (candidate point
2) refer to the candidate points determined to avoid the object,
and ls1 (left segment 1), ls2 (left segment 2), rs1 (right seg-
ment 1), and rs2 (right segment 2) are the candidate segments
that could appear by replacing the collision point with one
of the candidate points.

Finally, when the object is irregularly shaped, the opera-
tor behaves as a mixture of the cases in which the object is
horizontally shaped or vertically shaped. Figure 8 shows a
graphical explanation of this operator applied to an irregu-
larly shaped object.

Regarding Fig. 8, at first glance the object does not have
a well-defined shape, so we need to handle four candidate
points, two corresponding to the vertical candidates and the
other ones corresponding to the horizontal candidates. In this
figure, pm is again the point to be modified (the collision
point). The parameters hcp1 (horizontal candidate point 1),
hcp2 (horizontal candidate point 2), hls1 (horizontal left seg-
ment 1), hls2 (horizontal left segment 2), hrs1 (horizontal
right segment 1), and hrs2 (horizontal right segment 2) are
handled when the possible solutions are searched horizon-
tally. Conversely, parameters vcp1 (vertical candidate point
1), vcp2 (vertical candidate point 2), vss1 (vertical superior
segment 1), vss2 (vertical superior segment 2), vis1 (vertical
inferior segment 1), and vis2 (vertical inferior segment 2) are
handled when the possible solutions are searched vertically.

Note that, in all the cases, a contour window is used to find
the new candidate points far from objects. The contour win-
dow identifies as candidate points those which are far enough
from the dangerous object, reducing thus the possibility that
the candidate segments collide with the object to avoid.

4.1.3 Path smoothness operator

The path smoothness operator tries to obtain a path as straight
as possible. To reduce the turns magnitude of the path, the
operator takes as input two consecutive segments of the path
and then tries to improve the angle between them. The angle
is better when it is close to 180◦ and, conversely, is worse
when it is close to 0◦. In the case of MO-FA, and to simulate
an approximation in terms of smoothness, the operator takes
as input two different fireflies, A and B. The first step is to
determine if the firefly A epsilon dominates the firefly B. If
this is true, the second step consists of improving the angle
of the firefly B (dominated firefly) whose value is less than
the average angle value of the firefly A (non-dominated fire-
fly). To improve the selected angle, the operator changes the
point of the path that matches with the vertex of the angle by
the middle point of the next or previous segment of the path.
The selection between the next and the previous segment is
random. Accordingly, the segments forming the angle will
be modified too. This operation produces a better angle in
the path, reducing thus the turn magnitude. Remember that
the smoothness is an important parameter in the PP prob-
lem because it is directly related to energy consumption. See
Fig. 9 for a graphical example of this PP operator.

Note that the operator will modify both segments at the
input and the point corresponding with the angle vertex.

4.1.4 Generation of the initial population

In EAs, the first step always consists of generating the initial
population. This step produces a certain number of possible
solutions tomake themevolve along the algorithmprocedure.

123

956 A. Hidalgo-Paniagua

Fig. 9 Path smoothness operator

Fig. 10 Population initialization. Selection window example

In this work, we developed a selection window to generate
new population individuals. The selection window selects
the new valid candidate points to add to the path in the sur-
rounding area of the last point added to the path. Among all
these valid candidate points, one of them will be randomly
selected. A point is valid if it can be linked safely (without
crossing objects) with the last point added to the path. If valid
candidate points do not exist, a random point is selected. By
using the selection window, we try to generate paths with
less segments crossing objects. On the other hand, this win-
dow is used to search the new candidate points in the target
point direction, trying thus to obtain paths as short as pos-
sible. To select the new points in the target point direction,
we place the selection window in different places of the map,
applying this to the area in which the new candidates will be
searched. For example, if the starting point of the search is in
the upper-left corner of the map and the target point is in the
lower-right corner of the map, the upper-left corner of the
selection window will match with the starting point of the
search. Figure 10 shows an example of the selection window
behavior.

As we said previously (see Sect. 3.2), the individuals
obtained in the initialization step are of variable size. In this
work, the generation of an individual endswhen the last point
added to the path can be safely linked with the target point
of the path.

Fig. 11 Example of the mechanism for improving length

Fig. 12 Deleting loops example

4.1.5 Mechanism for improving length

After the population initialization step, usually, the items cor-
respond to non-optimized individuals. In this sense, they are
usually composed of extra segments and loops. This mech-
anism aims to delete the extra segments presented in the
individuals of the initial population.Todelete these segments,
this mechanism, for each coordinate, tries to find the farthest
point of the path with which it can be linked safely; that is
to say, a collision-free link. The search starts from the target
point and finishes when the starting point will be reached.
Figure 11 shows a graphical explanation of this mechanism.
Note that this operation deletes points and, consequently, seg-
ments from the original path at the input. Furthermore, this
improving step is only used after the population initializa-
tion. At the end of the process, the algorithm starts running
with a more or less good population at the input.

4.1.6 Mechanism for deleting loops

This mechanism aims to delete the loops presented in the ini-
tial population. To delete these useless segments of a specific
path, the mechanism tries to determine if two different seg-
ments cross themselves. This indicates that there is a loop in
the path. To suppress the loop, the mechanism deletes all the
coordinates and segments forming the loop and then adding
to the path a new point, corresponding to the intersection
point of the loop. The process is complete when there are no
segments crossing themselves. At the end of the process, the
algorithm starts running with a free-loop population. Note
that this mechanism is only used after the population ini-
tialization step. Figure 12 shows a graphical explanation of
loops erasing.

123

Solving the multi-objective path planning problem in mobile robotics... 957

Algorithm 2 NSGA-II Pseudocode.
1: populationSi ze ← Number of individuals.
2: NDSArchive ← ∅.

3: #I ni tiali zation.

4: population ← ini tiali zatePopulation(populationSi ze)
5: generations ← Number of i terations of the algori thm.

6: for i = 1 to generations do
7:
8: #Crossover.
9: of f spring ← crossPopulation(population)

10: #Mutation.

11: of f spring ← mutatePopulation(of f spring)
12: population = population + of f spring
13: population ← f ast NonDominatedSort (population,

(populationSi ze ∗ 2))
14: population ← crowdingDistanceAssignment

(population, (populationSi ze ∗ 2))
15: #Replacement.
16: population ← select Better I ndividuals(population,

populationSi ze)
17: #Save population to the N DSArchive.
18: export Population(population, populationSi ze,

NDSArchive)
19:
20: end for

4.2 NSGA-II from Jun and Qingbao (2010): optimizing
the 3 objectives

NSGA-II (Non-dominated Sorting Genetic Algorithm II) is a
well-knownmulti-objective metaheuristics proposed by Deb
et al. (see Deb et al. 2002). This algorithm has been used in
Jun and Qingbao (2010) for solving the path planning prob-
lem with the same three objectives as we handle in our work:
the path length, the path safety, and the path smoothness.
For this reason, in Sect. 6, we include comparisons with this
algorithm, and in this Section we present a brief explanation
of the algorithm. The NSGA-II algorithm tries to improve an
initial solution set (population) by applying classical genetic
operators: selection, crossover, mutation, and replacement.
Algorithm 2 shows the NSGA-II pseudocode.

The NSGA-II algorithm (Algorithm 2) begins with the
population initialization (line 4). The initialization consists
of generating a random set of individuals (paths). Once the
initialization is completed, the algorithm tries to evolve the
population by executing four basic steps. The first step has
as a goal to cross over the initial population to obtain the
offspring population (line 9). The crossover uses the binary
tournament to select the parents of each generated offspring.
The second step consists of a mutation process. The muta-
tion step is performed for each new obtained individual (line
11). Note that, for both, the crossover step and the muta-
tion step, two different probabilities are used with the aim of
determiningwhen the operation should be performed. Before
executing the last step, a new population formed by the initial
individuals and the obtained offspring is generated, sorted,

and evaluated by using the crowding distance (lines 12−14).
Finally, in the fourth step, the best individuals are considered
to continue evolving in the process (line 16). For a more
detailed explanation of the algorithm, see Jun and Qingbao
(2010).

Note that, in this case, the evolutionary operators formuta-
tions, the population initialization and the mechanisms for
improving individuals are the same as in the MO-FA algo-
rithm (see Sects. 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.1.5, and 4.1.6).

4.3 NSGA-II from Ahmed and Deb (2013): Optimizing
two objectives and using the smoothness
as a decision maker

This algorithm has been used in Ahmed and Deb (2013) for
solving the PP problem. Although these authors used the
same three objectives as we manage in this work, the main
difference between this algorithm and the one presented in
Sect. 4.2 is that they used the path smoothness as a decision
maker instead of an objective to be optimized (that is, there
are only two objectives to optimize: the path length and the
path safety). To introduce the path smoothness as a criterion
to prefer smooth paths, they modify the NSGA-II’s selection
scheme (see Sect. 4.2). This means that, in the binary tour-
naments or in choosing the final front members, when two
different paths have the same rank, they check the smoothness
instead of using the crowding distance. The path with better
smoothness (the one with the lower value) will be selected.
On the other hand, the crowding distance is only taken into
account when two different paths (solutions) have the same
non-domination rank and smoothness values. In this case,
the one with the higher crowding distance will be selected.
In Sect. 6, we also include comparisons with this algorithm
of the state of the art. For a more detailed explanation of the
algorithm see Ahmed and Deb (2013).

Note that, to do a fair comparison among the different
algorithms, the evolutionary operators for mutations, the
population initialization, and the mechanisms for improv-
ing individuals are the same as in the MO-FA algorithm (see
Sects. 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.1.5, 4.1.6).

5 Methodology

In this section and subsections, we present the proposed
scenarios to make the study (Sect. 5.1), explain clearly the
MOEAs configuration (Sect. 5.2), the metrics used to eval-
uate the obtained results (Sect. 5.3), and the software and
hardware specifications for the tests.

5.1 Scenarios

To evaluate theMOEAs presented in Sect. 4, an input data set
is required. Each data set is known as a scenario. A scenario is

123

958 A. Hidalgo-Paniagua

formed by amap, the starting point, and the target point of the
path we want to calculate. In this work, we use eight pairs
of points, distributed between two different realistic maps
of the environment, that is to say, eight different scenarios.
Figure 13 shows the proposed maps.

Taking into account the map coordinate system (see
Fig. 1), the starting and the target points of the paths have
been established in the main directions of each map (paths
direction). These directions are the main diagonal (MD), the
secondary diagonal (SD), the horizontal axis (HA), and the
vertical axis (VA). Tables 1 and 2 show the proposed scenar-
ios.

Note that the datasets used in this study can be downloaded
from http://arco.unex.es/mavega/pathplanning.html.

5.2 MOEAs configuration

Different methodologies can be used for tuning the para-
meters of evolutionary algorithms. Although some of these
methodologies are automatic (such as irace López-Ibáñez
et al. (2011)), many researchers in path planning use man-
ual methodologies (Ahmed and Deb 2013; Jun and Qingbao

Fig. 13 Realistic maps proposed for the study

Table 1 Scenarios (Map A)

Config.Scenario A B C D

Starting point (93,6) (93,93) (31,8) (83,32)

Target point (23,75) (6,11) (35,89) (11,26)

Path direction SD MD HA VA

Map A A A A

Table 2 Scenarios (Map B)

Config.Scenario E F G H

Starting point (94,6) (94,90) (28,17) (93,48)

Target point (9,90) (6,6) (46,91) (6,49)

Path direction SD MD HA VA

Map B B B B

2010), as in this work. In particular, in our case, to adjust
the parameter configuration of the MOEAs (see Sect. 4),
numerous experiments were performed. First, we perform
several runs to observe which are the most influential para-
meters. Thus, the most influential parameter will be the first
to be set up, and so on. In each experiment, we performed 31
independent runs, with this number of executions being suf-
ficient to ensure the statistical significance of the obtained
results. To select the tested values for each parameter, we
examined its range of possible values, establishing a mini-
mum of four possible uniformly distributed values. If in any
case two distinct values present similar results, we estab-
lish a new intermediate value and repeat the process. The
parameter value that finally achieves the best results [using
the hypervolume (Zitzler and Thiele 1999) as quality met-
ric, because the hypervolume is regarded as a rather fair
measure since it has favorable theoretical properties (Zit-
zler et al. 2003), giving it an outstanding importance among
quality indicators (Beume and Fonseca 2009)] will be estab-
lished. This process is repeated for all the parameters and
all the algorithms. Tables 3 and 4 show the tested values
for each parameter of each algorithm [MO-FA and NSGA-II
from Ahmed and Deb (2013) and Jun and Qingbao (2010),
respectively] and the selected values taking into account the
configuration process.

5.3 Quality metrics and statistical analysis

To select the best MOEA applied to the PP, different quality
metrics were used. The quality metrics are the hypervolume
(HV) (Zitzler and Thiele 1999) and the set coverage (SC)
measurement (Zitzler et al. 2000).

Regarding the quality metrics, the HV measures the vol-
ume (in the objective function space) covered by solutions
of a non-dominated set of solutions. In a multi-objective
optimization problem with d objective functions to mini-
mize, we calculate the size of the region of the objective
space (HV) of a non-dominated set of solutions A =
{a1, a2, . . . , an} bounded by a reference point r =
(r1, r2, . . . , rd). The corresponding hypercube for each
element ai of the set A is calculated as follows: h(ai) =
[ai1, r1] x [ai2, r2] x . . . x [aid , rd]. Finally, the HV of A is
calculated by the union of these |A| hypercubes, with repeat-
edly covered hypercubes being counted once. Equation 5
shows how to calculate the HV:

HV (A, r) = L

⎛

⎝
|A|⋃

i=1

h(ai) | ai ∈ A

⎞

⎠ . (5)

In Eq. 5, L refers to the Lebesgue measure Bartle (2011).
On the other hand, the set coverage is an indicator that

measures the fraction of non-dominated solutions in a Pareto

123

http://arco.unex.es/mavega/pathplanning.html

Solving the multi-objective path planning problem in mobile robotics... 959

Table 3 MO-FA configuration
parameters

Parameter Tested values Selected value

MO-FA Configuration parameters

Population size {50, 100, 150, 200, 250, and 300} 200

Generations {100, 120, 150, 200, 300, and 600} 150

Epsilon (Dominance) {0.025, 0.050, 0.075, 0.1, and 0.125} 0.05

StagCont % {5, 10, 15, 20, 40, 60, and 80} 20

LimitF {1, 5, 10, 15, 20, 25, 30, and 35} 5

Table 4 NSGA-II from Ahmed
and Deb (2013) and Jun and
Qingbao (2010) configuration
parameters

Parameter Tested values Selected value

NSGA-II from Ahmed and Deb (2013) and Jun and Qingbao (2010) Configuration parameters

Population size {50, 100, 150, 200, 250, and 300} 200

Generations {100, 120, 150, 200, 300, and 600} 150

Mutation probability % {5, 10, 15, 20, and 25} 25

Crossover probability % {70, 80, 90, and 100} 90

front B = {b1, b2, . . . , bm}, which are covered by the
non-dominated solutions in A = {a1, a2, . . . , an} (see
Eq. 6).

SC(A, B) = |{b ∈ B; ∃a ∈ A : a � b}|
|B| . (6)

If SC(A, B) = 1, all the solutions in B are covered by
solutions in A. Conversely, if SC(A, B) = 0 it means that
none of the solutions in B is covered by the solutions in A.
Note that, as the dominance operator (�) is not symmetric,
it is necessary to calculate both SC(A, B) and SC(B, A),
since SC(B, A) is not necessarily equal to 1−SC(A, B). SC
has been selected because it is a binary metric (in contrast
to HV, which is a unary metric), and in its calculation, it
is not necessary to know the optimal Pareto front. These
two complementary metrics (HV and SC) were presented by
Zitzler and Thiele (1998) and Zitzler and Thiele (1999). The
HV combines the three criteria (convergence, distribution,
and extent of the obtained non-dominated front) (Zitzler et al.
2000).On theother hand, the set coverage canbeused to show
that the outcomes of an algorithm dominate the outcomes of
another algorithm (Zitzler et al. 2000).

Once the quality metrics have been defined, the statistical
analysis is explained. In every experiment, we performed 31
independent runs. The statistical analysis aims to demon-
strate formally that the differences between the results
obtained by applying the previous quality tests are signifi-
cant. Figure 14 shows the statistical analysis scheme.

As we can see in the statistical analysis scheme (see
Fig. 14), the first step is to determine if the input data set
follows a Gaussian distribution. To carry out this check, we
use the Kolmogorov–Smirnov test. For non-Gaussian distri-
bution, we perform a non-parametric analysis, in this case

Fig. 14 Statistical analysis scheme

the Kruskal–Wallis test. However, if the results of the test
assert that the input data follows a Gaussian distribution, we
will need to check the homogeneity of the variances. This
is the second step. To check the homogeneity of the vari-
ances, the Levene test (test for homoscedasticity) is used.
If the test result is negative, we perform the Kruskal–Wallis
test. Finally, if the test result is positive, the ANOVA analy-
sis (parametric variance analysis) will be performed. A more
detailed explanation of these tests can be found in Sheskin
(2011).

Note that, in this paper, the confidence level in the statisti-
cal test is always 95 % (a significance level of 5 % or p-value
less than 0.05). This means that the differences are unlikely
to have occurred by chance with a probability of 95 %.

5.4 Software and hardware specifications

In this study, all the MOEAs have been developed using the
C/C++ programming language. The MOEAs presented in

123

960 A. Hidalgo-Paniagua

Table 5 Hardware and software specifications

Parameter Value

CPU AMD Opteron 6176 / 2.3 GHz

CPU released Q4 2010

Memory DDR3 1333 MHz, 16 GB

Cache 12 MB L3

Storage 500 GB

O.S. Ubuntu 12.10

Compiler GCC 4.4.5

this study have been developed from scratch because the
reference authors do not provide their source codes. It is
important to remark that for the experiments, all the MOEAs
execute the same number of fitness function evaluations. This
number is equal to 30,000. On the other hand, Table 5 shows
the hardware and software specifications in which all the
experiments have been executed.

6 Results

In this section, we present and analyze the results obtained
by the different MOEAs over eight different scenarios (see
Sect. 5.1). Note that, in this study, the experiments were

made by partitioning the scenarios into a grid with a size of
100 rows by 100 columns. Table 6 shows the median hyper-
volume, the interquartile range of the hypervolume values,
and the results obtained by applying the statistical tests. Fur-
thermore, to show the results graphically, Fig. 15 shows the
hypervolume box plots for the different proposals.

In Table 6, the first column refers to the scenario used
for the tests. The second and the third columns indicate the
results obtained by the corresponding algorithm to calculate
the paths specified by the different scenarios. Finally, the
fourth column, SSD (Statistically Significant Differences),
is the result of the statistical analysis (see Sect. 5.3). In this
case, the statistical analysis indicates that the results obtained
by both algorithms (MO-FAvs.NSGA-II from Jun andQing-
bao (2010), or MO-FA vs. NSGA-II from Ahmed and Deb
(2013)) are significantly different in all the scenarios. Note
that cells corresponding to the second and the third columns
have the format XY , where the X value refers to the median
hypervolume and Y to the interquartile range of hypervol-
ume.

As we can see, for all the scenarios, the results obtained
by MO-FA are always better than when NSGA-II from Jun
and Qingbao (2010) is used. These hypervolume values indi-
cate that the MO-FA algorithm covers a greater space of the
solution area. In the sameway, almost all the results obtained
by MO-FA are better than when NSGA-II from Ahmed and
Deb (2013) is used.

Table 6 Median and interquartile range of the hypervolume

NSGA-II from Jun and Qingbao (2010) MO-FA SSD NSGA-II from Ahmed and Deb (2013) MO-FA SSD

Scenario A 0.599 0.082 0.713 0.021 � 0.564 0.095 0.713 0.021 �
Scenario B 0.771 0.042 0.793 0.003 � 0.773 0.045 0.793 0.003 �
Scenario C 0.754 0.014 0.778 0.008 � 0.754 0.014 0.778 0.008 �
Scenario D 0.779 0.020 0.807 0.005 � 0.778 0.022 0.807 0.005 �
Scenario E 0.862 0.011 0.869 0.001 � 0.877 0.012 0.869 0.001 �
Scenario F 0.702 0.061 0.803 0.012 � 0.718 0.069 0.803 0.012 �
Scenario G 0.627 0.135 0.821 0.005 � 0.660 0.176 0.821 0.005 �
Scenario H 0.544 0.132 0.716 0.009 � 0.554 0.151 0.716 0.009 �
NSGA-II from Jun and Qingbao (2010) & NSGA-II from Ahmed and Deb (2013) & MO-FA

Fig. 15 Hypervolume boxplots: a NSGA-II from Ahmed and Deb (2013) & MO-FA, and b NSGA-II from Jun and Qingbao (2010) & MO-FA

123

Solving the multi-objective path planning problem in mobile robotics... 961

Table 7 Set coverage results (MO-FA, NSGA-II from Jun and Qingbao (2010)) & (MO-FA,NSGA-II from Ahmed and Deb (2013))

SC.Scenario A B C D E F G H

SC [NSGA-II from Jun and Qingbao (2010), MO-FA] 0.064 0.068 0.177 0.047 0.098 0.069 0.014 0.017

SC [MO-FA, NSGA-II from Jun and Qingbao (2010)] 0.737 0.642 0.659 0.893 0.695 0.697 0.964 0.850

SC [NSGA-II from Ahmed and Deb (2013), MO-FA] 0.064 0.068 0.177 0.047 0.098 0.069 0.014 0.017

SC [MO-FA, NSGA-II from Ahmed and Deb (2013)] 0.737 0.642 0.659 0.893 0.695 0.697 0.964 0.850

Table 8 Scenarios reference points (path safety, path length, path
smoothness)

Ideal Nadir

Scenario A (0, 98.290, 0) (8541, 288.363, 1352)

Scenario B (0, 119.553, 0) (11677, 333.122, 1227)

Scenario C (0, 81.098, 0) (12290, 285.299, 1271)

Scenario D (0, 72.249, 0) (12841, 273.247, 1347)

Scenario E (0, 119.503, 0) (10306, 376.517, 1533)

Scenario F (0, 121.655, 0) (7630, 325.508, 2102)

Scenario G (0, 76.157, 0) (10049, 339.670, 2222)

Scenario H (0, 87.005, 0) (13772, 344.052, 1829)

Regarding the associated interquartile range values, we
can assert that the results obtained by applying the MO-FA

algorithm are always less sparse than when we apply the
NSGA-II algorithm in any of its two versions (Jun and Qing-
bao 2010 or Ahmed and Deb 2013). For this reason we can
assert that theMO-FAalgorithm ismore reliable thanNSGA-
II in terms of results.

Tomake amore reliable assertion about the best alternative
to solve the PP problem,we also used the set coveragemetric.
Table 7 shows the SC results.

Set coverage (SC) results (Table 7) confirm that MO-FA
is always better than NSGA-II (any of its two versions, Jun
and Qingbao 2010 or Ahmed and Deb 2013). For this reason,
we can state that the MO-FA algorithm is a better alternative
versus the NSGA-II algorithm to solve the PP problem.

Note that, in this study, two reference points were used
for each scenario to compute the HV and test the MOEAs.
On the one hand, an ideal reference point (the best values of

Fig. 16 Approximate Pareto fronts for scenario A

123

962 A. Hidalgo-Paniagua

Fig. 17 Approximate Pareto fronts for scenario G

the problem objectives) is calculated as follows. For the path
safety, the ideal value is obtained when a specific path does
not cross any of the objects appearing in the environment, that
is to say, a value equal to 0. In the case of the path length, the
ideal value is obtained when the starting and the target points
of the path can be linked by a single segment. For this reason,
the best value for this objective is the Euclidean distance from
the starting point to the target point of the path. Taking into
account that the best hypothetical path is formed by a single
segment, the ideal value for the path smoothness is 0. This
is due to the fact that in a path formed by a single segment,
no turns exist. On the other hand, a nadir reference point
is formed by the worst values of the considered objectives.
These values are calculated by adding an offset equal to 30%
to the worst values of the objectives, which were obtained as
result of the configuration tests (see Sect. 5.2). Table 8 shows
the reference points considered for each scenario.

To view the results graphically, Figs. 16 and 17 show
the approximate Pareto f ront corresponding to the results
obtained by applying the MOEAs over two different sce-
narios, in this case scenarios A and G. Please observe that
we have selected a scenario for each map (see Fig. 13 and
Tables 1 and 2). The Pareto fronts represented are those that

Fig. 18 Graphical solution for the scenarioA: aMO-FA, andbNSGA-
II from Jun and Qingbao (2010)

obtain the median hypervolume for that algorithm in each
scenario.

In all graphics (Figs. 16 and 17), points representing non-
dominated solutions of the MO-FA algorithm (red squares)
clearly tend to approach the ideal point (represented as a
yellow translucent circle), while the points belonging to
NSGA-II (any of its two versions, from Jun and Qingbao
(2010) or Ahmed and Deb (2013)) remain farther from the

123

Solving the multi-objective path planning problem in mobile robotics... 963

Fig. 19 Graphical solution for the scenarioA: aMO-FA, andbNSGA-
II from Ahmed and Deb (2013)

Fig. 20 Graphical solution for the scenarioG: aMO-FA, andbNSGA-
II from Jun and Qingbao (2010)

ideal solution. This again demonstrates that MO-FA is a bet-
ter alternative versus NSGA-II to solve the PP problem.

Finally, Figs. 18, 19, 20, and 21 show the best paths corre-
sponding to the approximate Pareto fronts shown in Figs. 16
and 17, respectively. These paths represent the solution closer
to the ideal reference point in each case (Euclidean distance
is used for this). Again, these images show the advantages of
using MO-FA versus NSGA-II when they are applied to the
PP problem.

7 Conclusions and future work

In this work, the use of a multi-objective approach based
on the flashing behavior of fireflies in nature (MO-FA) has
been proposed to solve the path planning problem. In this
study, our approach handles three different objectives: the
path safety, the path length, and the path smoothness (see
Sect. 3.3). Furthermore, to obtain accurate and effective paths
(solutions), we proposed new evolutionary operators too (see
Sect. 4.1).Moreover,with the aimof comparingwith the state
of the art, we also used the well-known NSGA-II algorithm
(specifically, the approaches proposed by Jun and Qingbao

Fig. 21 Graphical solution for the scenarioG: aMO-FA, andbNSGA-
II from Ahmed and Deb (2013)

(2010) andAhmed andDeb (2013)), which has been themost
commonly used algorithm by other authors in the literature.
Regarding the obtained results, they have been evaluated by
using both, multi-objective metrics HV and SC, to ensure
the quality of the obtained results, and a statistical analysis
to demonstrate the statistical relevance of the results. The
comparison showed differences in the approximate Pareto
fronts and the solutions provided by each MOEA; that is,
MO-FA and NSGA-II (from Jun and Qingbao (2010) and
Ahmed and Deb (2013)) (see Figs. 16, 17, 18, 19, 20, and 21
in Sect. 6). To test the MOEAs, and unlike other authors, we
used eight different realistic scenarios. Taking into account
the results presented in Sect. 6, we can assert that MO-FA
is clearly a better alternative versus NSGA-II when they are
applied to the PP problem.

As future work, and taking into account the good results
obtained by MO-FA, it could be interesting to compare
with other multi-objective algorithms based on swarm intel-
ligence. On the other hand, another possible future work
consists of calculating paths in dynamic environments, since
this work only considers static environments.

Acknowledgements This work was partially funded by the Projects
of Excellence from the Junta de Andalucía (Spain) ROMOCOG I and
ROMOCOG II (P09-TEP-4479 and P10-TEP-6412). Theworkwas also
partially funded by the Spanish Ministry of Economy and Competitive-
ness and the ERDF (European Regional Development Fund), under the
contract TIN2012-30685 (BIO project).

References

Ahmed F, DebK (2011)Multi-objective path planning using spline rep-
resentation. In: Proceedings of the IEEE International Conference
on Robotics and Biomimetics (IEEE-ROBIO 2011), pp. 1047–
1052. doi:10.1109/ROBIO.2011.6181426

Ahmed F, Deb K (2013) Multi-objective optimal path planning using
elitist non-dominated sorting genetic algorithms. Soft Comput
17(7):1283–1299. doi:10.1007/s00500-012-0964-8

123

http://dx.doi.org/10.1109/ROBIO.2011.6181426
http://dx.doi.org/10.1007/s00500-012-0964-8

964 A. Hidalgo-Paniagua

Bartle R (2011) The Elements of Integration and Lebesgue Measure.
Wiley, Wiley Classics Library

BeumeN, Fonseca C, López-IbáñezM, Paquete L, Vahrenhold J (2009)
On the complexity of computing the hypervolume indicator. Evol
Comput IEEE Trans 13(5):1075–1082. doi:10.1109/TEVC.2009.
2015575

Chang, H.C., Liu, J.S.: High-quality path planning for autonomous
mobile robots with n3-splines and parallel genetic algorithms. In:
Robotics and Biomimetics, 2008. ROBIO 2008. IEEE Interna-
tionalConference on, pp. 1671–1677 (2009). doi:10.1109/ROBIO.
2009.4913252

Davoodi M, Panahi F, Mohades A, Hashemi SN (2013) Multi-objective
path planning in discrete space. Appl Soft Comput 13(1):709–720.
doi:10.1016/j.asoc.2012.07.023

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist
multiobjective genetic algorithm: NSGA-II. Evol Comput, IEEE
Trans 6(2):182–197. doi:10.1109/4235.996017

Geetha, S., Chitra, G., Jayalakshmi, V.: Multi objective mobile robot
path planning based on hybrid algorithm. In: ElectronicsComputer
Technology (ICECT), 2011 3rd International Conference on, vol.
6, pp. 251–255 (2011). doi:10.1109/ICECTECH.2011.5942092

Geng, N., Gong, D., Zhang, Y.: Robot path planning in an environ-
ment with many terrains based on interval multi-objective PSO.
In: Evolutionary Computation (CEC), 2013 IEEE Congress on,
pp. 813–820 (2013). doi:10.1109/CEC.2013.6557652

Gong DW, Zhang JH, Zhang Y (2011) Multi-objective particle
swarm optimization for robot path planning in environment with
danger sources. J Comput 6(8):1554–1561. doi:10.4304/jcp.6.8.
1554-1561

Guo, F., Wang, H., Tian, Y.: Multi-objective path planning for unre-
stricted mobile. In: Automation and Logistics, 2009. ICAL ’09.
IEEE International Conference on, pp. 1046–1051 (2009). doi:10.
1109/ICAL.2009.5262574

Hao, W., Qin, S.: Multi-objective Path Planning for Space Exploration
Robot Based on Chaos Immune Particle Swarm Optimization
Algorithm. In: H. Deng, D. Miao, J. Lei, F. Wang (eds.) Artifi-
cial Intelligence and Computational Intelligence, Lecture Notes in
Computer Science, vol. 7003, pp. 42–52. Springer, Berlin Heidel-
berg (2011). doi:10.1007/978-3-642-23887-1_6

Jun, H., Qingbao, Z.: Multi-objective mobile robot path planning based
on improved genetic algorithm. In: Intelligent Computation Tech-
nology and Automation (ICICTA), 2010 International Conference
on, vol. 2, pp. 752–756 (2010). doi:10.1109/ICICTA.2010.300

Kim, Y.H., Kim, J.H.: Multiobjective quantum-inspired evolutionary
algorithm for fuzzy path planning ofmobile robot. In: Evolutionary
Computation, 2009. CEC ’09. IEEE Congress on, pp. 1185–1192
(2009). doi:10.1109/CEC.2009.4983080

Kim JH, Kim YH, Choi SH, Park IW (2009) Evolutionary multi-
objective optimization in robot soccer system for education.
Comput Intell Mag IEEE 4(1):31–41. doi:10.1109/MCI.2008.
930985

Krishnan, P., Paw, J., Kiong, T.S.: Cognitive map approach for mobility
path optimization using multiple objectives genetic algorithm. In:
Autonomous Robots and Agents, 2009. ICARA 2009. 4th Interna-
tional Conference on, pp. 267–272 (2009). doi:10.1109/ICARA.
2000.4803970

LaValle, S.M.: Planning Algorithms. Cambridge University Press
(2006)

López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The
irace package, iterated race for automatic algorithm configuration.
Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de
Bruxelles, Belgium (2011)

Masehian, E., Sedighizadeh, D.: Amulti-objective pso-based algorithm
for robot path planning. In: Industrial Technology (ICIT), 2010
IEEE International Conference on, pp. 465–470 (2010). doi:10.
1109/ICIT.2010.5472755

Masehian E, Sedighizadeh D (2010) Multi-objective PSO- and NPSO-
based algorithms for robot path planning. Adv Electr Comput Eng
10(4):69–76. doi:10.4316/AECE.2010.04011

Masehian E, SedighizadehD (2010)Multi-objective robot motion plan-
ning using a particle swarm optimization model. J Zhejiang Univ
Sci C 11(8):607–619. doi:10.1631/jzus.C0910525

Mo, H., Xu, Z., Tang, Q.: Constrained multi-objective biogeography
optimization algorithm for robot path planning. In: Y. Tan, Y. Shi,
H. Mo (eds.) Advances in Swarm Intelligence, Lecture Notes in
Computer Science, vol. 7928, pp. 323–329. Springer, Berlin Hei-
delberg (2013). doi:10.1007/978-3-642-38703-6_38

Sedaghat, N.: Mobile robot path planning by new structured multi-
objective genetic algorithm. In: Soft Computing and Pattern
Recognition (SoCPaR), 2011 International Conference of, pp. 79–
83 (2011). doi:10.1109/SoCPaR.2011.6089099

Sheskin, D.: Handbook of Parametric and Nonparametric Statistical
Procedures, Fifth Edition. A Chapman & Hall book. Chapman &
Hall/CRC, Boca Raton (2011)

Shih BY, Chang H, Chen CY (2013) Path planning for autonomous
robots - a comprehensive analysis by a greedy algorithm. J Vib
Control 19(1):130–142. doi:10.1177/1077546311429841

Wang, D., Kwok, N., Liu, D., Ha, Q.: Ranked pareto particle
swarm optimization for mobile robot motion planning. In: D.
Liu, L. Wang, K. Tan (eds.) Design and Control of Intelligent
Robotic Systems, Studies in Computational Intelligence, vol. 177,
pp. 97–118. Springer, Berlin Heidelberg (2009). doi:10.1007/
978-3-540-89933-4_5

Wang, F., Zhu, Z.: Global path planning of wheeled robots using a
multi-objective memetic algorithm. In: Yin, H., Tang, K., Gao, Y.,
Klawonn, F., Lee, M., Weise, T., Li, B., Yao X. (eds.) Intelligent
Data Engineering and Automated Learning IDEAL 2013, Lecture
Notes in Computer Science, vol. 8206, pp. 437–444. Springer,
Berlin Heidelberg (2013). doi:10.1007/978-3-642-41278-3_53

Wei, J.H., Liu, J.S.: Generating minimax-curvature and shorter n3-
spline path using multi-objective variable-length genetic algo-
rithm. In: Networking, Sensing and Control (ICNSC), 2010
International Conference on, pp. 319–324 (2010). doi:10.1109/
ICNSC.2010.5461496

Yang XS (2010) Firefly algorithm, stochastic test functions and design
optimisation. Int J Bio-Inspired Comput 2:78–84. doi:10.1504/
IJBIC.2010.032124

Zhang Y, Gong DW, Zhang JH (2013) Robot path planning in
uncertain environment using multi-objective particle swarm opti-
mization. Neurocomputing 103:172–185. doi:10.1016/j.neucom.
2012.09.019

Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary
algorithms - a comparative case study. In: Eiben, A., Back, T.,
Schoenauer, M., Schwefel H.P. (eds.) Parallel Problem Solving
from Nature PPSN V, Lecture Notes in Computer Science, vol.
1498, pp. 292–301. Springer, Berlin Heidelberg (1998). doi:10.
1007/BFb0056872

Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolu-
tionary algorithms: empirical results. Evol Comput 8(2):173–195.
doi:10.1162/106365600568202

Zitzler E, Thiele L, Laumanns M, Fonseca C, da Fonseca V (2003)
Performance assessment of multiobjective optimizers: an analysis
and review. Evol Comput IEEE Trans 7(2):117–132. doi:10.1109/
TEVC.2003.810758

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach. Evol
Comput IEEE Trans 3(4):257–271. doi:10.1109/4235.797969

123

http://dx.doi.org/10.1109/TEVC.2009.2015575
http://dx.doi.org/10.1109/TEVC.2009.2015575
http://dx.doi.org/10.1109/ROBIO.2009.4913252
http://dx.doi.org/10.1109/ROBIO.2009.4913252
http://dx.doi.org/10.1016/j.asoc.2012.07.023
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/ICECTECH.2011.5942092
http://dx.doi.org/10.1109/CEC.2013.6557652
http://dx.doi.org/10.4304/jcp.6.8.1554-1561
http://dx.doi.org/10.4304/jcp.6.8.1554-1561
http://dx.doi.org/10.1109/ICAL.2009.5262574
http://dx.doi.org/10.1109/ICAL.2009.5262574
http://dx.doi.org/10.1007/978-3-642-23887-1_6
http://dx.doi.org/10.1109/ICICTA.2010.300
http://dx.doi.org/10.1109/CEC.2009.4983080
http://dx.doi.org/10.1109/MCI.2008.930985
http://dx.doi.org/10.1109/MCI.2008.930985
http://dx.doi.org/10.1109/ICARA.2000.4803970
http://dx.doi.org/10.1109/ICARA.2000.4803970
http://dx.doi.org/10.1109/ICIT.2010.5472755
http://dx.doi.org/10.1109/ICIT.2010.5472755
http://dx.doi.org/10.4316/AECE.2010.04011
http://dx.doi.org/10.1631/jzus.C0910525
http://dx.doi.org/10.1007/978-3-642-38703-6_38
http://dx.doi.org/10.1109/SoCPaR.2011.6089099
http://dx.doi.org/10.1177/1077546311429841
http://dx.doi.org/10.1007/978-3-540-89933-4_5
http://dx.doi.org/10.1007/978-3-540-89933-4_5
http://dx.doi.org/10.1007/978-3-642-41278-3_53
http://dx.doi.org/10.1109/ICNSC.2010.5461496
http://dx.doi.org/10.1109/ICNSC.2010.5461496
http://dx.doi.org/10.1504/IJBIC.2010.032124
http://dx.doi.org/10.1504/IJBIC.2010.032124
http://dx.doi.org/10.1016/j.neucom.2012.09.019
http://dx.doi.org/10.1016/j.neucom.2012.09.019
http://dx.doi.org/10.1007/BFb0056872
http://dx.doi.org/10.1007/BFb0056872
http://dx.doi.org/10.1162/106365600568202
http://dx.doi.org/10.1109/TEVC.2003.810758
http://dx.doi.org/10.1109/TEVC.2003.810758
http://dx.doi.org/10.1109/4235.797969

	Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach
	Abstract
	1 Introduction
	2 Related work
	3 Path planning
	3.1 Environment modeling
	3.2 Path encoding
	3.3 PP objectives
	3.3.1 Path length objective
	3.3.2 Path safety objective
	3.3.3 Path smoothness objective

	4 Multi-objective evolutionary algorithms
	4.1 MO-FA
	4.1.1 Path length operator
	4.1.2 Path safety operator
	4.1.3 Path smoothness operator
	4.1.4 Generation of the initial population
	4.1.5 Mechanism for improving length
	4.1.6 Mechanism for deleting loops

	4.2 NSGA-II from Jun and Qingbao (2010): optimizing the 3 objectives
	4.3 NSGA-II from Ahmed and Deb (2013): Optimizing two objectives and using the smoothness as a decision maker

	5 Methodology
	5.1 Scenarios
	5.2 MOEAs configuration
	5.3 Quality metrics and statistical analysis
	5.4 Software and hardware specifications

	6 Results
	7 Conclusions and future work
	Acknowledgements
	References

