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Abstract The standard theory of quantum computation
relies on the idea that the basic information quantity is repre-
sented by a superposition of elements of the canonical basis
and the notion of probability naturally follows from the Born
rule. In this work we consider three valued quantum compu-
tational logics.More specifically,wewill focus on theHilbert
spaceC3, we discuss extensions of several gates to this space
and, using the notion of effect probability, we provide a char-
acterization of its states.

Keywords Quantum computational logics · Qutrits

1 Introduction

The usual notion of uncertainty seems to be tightly related
to an epistemic condition (Lindley 2006). A typical case: a
coin was flipped, but a specified knower could not see which
side of the coin faced up when it landed. It seems to be gener-
ally accepted that uncertainty deals with ignorance: a certain
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predicate is uncertain, with respect to a specific knower, if
the information available is not sufficient to determine its
applicability.

On the other hand, vagueness seems to be unrelated with
ignorance. Instead, this notion often refers to concepts whose
extensions are lacking in clarity (Keefe and Smith 1996; Fine
1975; Williamson 2002). Natural examples of vague con-
cepts are predicates admitting “border-line cases”, in which
it is hard to sharply determine whether an object falls com-
pletely in the extension of the predicate or not. Rather, an
object may possess specific properties to some extent. A suc-
cessful framework for dealing with vagueness is provided by
many-valued logics (Goguen 1969; Hàjek 1998).

In the microscopic domain, appreciable overlaps between
the concepts of uncertainty and vagueness are to mention. A
remarkable example is the “Stern–Gerlach experiment” that
shows how particles possess an intrinsic angular momentum
that can assume certain discrete values only. The experiment
is normally conducted using atoms or electrically neutral par-
ticles, that are treated as classical spinning dipoles; they will
precess in a magnetic field because of the torque that the field
exerts on the dipoles. If the magnetic field where the parti-
cles move through is not homogeneous, then the force on
one end of the dipole of each particle will be slightly greater
than the opposing force on the other end, so that there is a
net force which deflects the trajectory of the particles. If the
particles were classical spinning objects, one would expect
that the distribution of their spin angular momentum vectors
will be random and the spectrumwill be continuous, because
each particle will be deflected by a different amount, produc-
ing a density distribution on the detector screen. Instead, the
particles passing through the Stern−Gerlach apparatus are
deflected either up (say |0〉) or down (say |1〉) by a specific
amount, because—how is well know nowadays—the spec-
trum of quantum angular momentum is discrete.
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Formally speaking and by using the common Dirac nota-
tion, we describe the state of a particle that is passing through
a Stern−Gerlach apparatus as the following superposition.

|ψ〉 = a|0〉 + b|1〉, where |a|2 and |b|2 are the probabili-
ties to detect the particle with spin up or down, respectively.
The state |ψ〉 is a pure state, that represents a maximal piece
of information that cannot be increased by any further obser-
vation. However, once a state |ψ〉 is fixed, by its very nature,
it involves an amount of uncertainty, which in this case is a
property of the state not related to the observer’s knowledge.
A statemay also bemixed and it can represent a non-maximal
piece of information, mathematically represented by a den-
sity operator.

We will see that, at the microscopic level, uncertainty and
vagueness can be captured under several degrees of freedom
rendering the two notions amenable of interactions not avail-
able in the classical world.

Useful tools for inquiring into possible interplays of
vagueness and uncertainty in the quantum realm are provided
by quantum computational logics. These logics, investigated
by Maria Luisa Dalla Chiara, Roberto Giuntini and other
authors, including, for example, the present papers (Bertini
and Leporini 2007; Cattaneo et al. 2004a, b; Dalla Chiara
et al. 2004, 2005; Giuntini et al. 2011), differ from the well
known Birkhoff–von Neumann approach to quantum logic,
where propositions ascribing properties are represented by
projection operators—or, equivalently, by closed subspaces
of a Hilbert space. In quantum computational logics mean-
ings of sentences are no longer represented by projector
operators on a Hilbert space, but by means of quantum infor-
mation quantities: qubits, qutrits, density operators. In this
framework fuzzy-like structures appear at different levels,
and with different status. The aim of this paper is to discuss
this further bridge betweenmany-valued and quantum logics.

The paper is organized as follows: in Sect. 2 we provide
all the basic notions necessary to render the article self-
contained; in Sect. 3 we focus on the concepts of uncertainty,
mixedness and degrees of truth as a foundational motivation
in the context of many-valued quantum computational log-
ics; in Sect. 4 we discuss some unary quantum gates in the
context of standard andmany-valued quantumcomputational
logics; in Sect. 5we introduce the notion of effect probability.
This notion will be expedient in showing a characterization
of mixed states in C3. Finally, we close the paper with some
comments.

2 Basic notions

For the reader’s convenience, we recall in this section all the
basic notions required for a complete understanding of the
paper.

Consider the n-fold tensor product Hilbert space ⊗n
C
d ,

with n ≥ 1 and d ≥ 2.
The canonical orthonormal basisB(dn) of⊗n

C
d is defined

as follows:

B(dn) =
{
|x1, . . . , xn〉 : xi ∈

{
0,

1

d − 1
,

2

d − 1
, . . . , 1

}
,

∀i ∈ {1, . . . , n}
}

where

• |x1, . . . , xn〉 is an abbreviation for the tensor product
|x1〉 ⊗ · · · ⊗ |xn〉;

• the vector | i
d−1 〉 ∈ C

d (with 0 ≤ i ≤ d − 1) is a d-
dimensional column vector with 1 in the (i + 1)th-entry
and 0 in all the other d − 1 entries.

Definition 1 (Qudit) A unit vector in the Hilbert space C
d

(with d ≥ 2) is a qudit. As a special case, if d = 2 the
unit vector is the so called qubit, whose extensive expression
|ψ〉 = a|0〉 + b|1〉 (where |a|2 + |b|2 = 1) was already
mentioned in the previous section.

Definition 2 (Quregister and qumix) A quregister is a unit
vector in ⊗n

C
d and a qumix (or mixed state) is a density

operator in ⊗n
C
d .

So, a vector in ⊗n
C
d is a n-fold tensor product of d-

dimensional vectors. Trivially, qudits are special cases of
quregisters.

Definition 3 (Truth-values of a quregister) We say that the
truth-value of a quregister |x1, . . . , xn−1,

i
d−1 〉 ∈ ⊗n

C
d is

i
d−1 , with 0 ≤ i ≤ d − 1.

For, the truth-value of a quregister only depends on its last
component. In particular, if i = 0 we say that the register is
false and if i = d − 1 we say that the register is true.

Let us remark that the number of different truth-values
over the Hilbert space ⊗n

C
d is d, for any value of n.

Definition 4 (The truth-value projectors) A truth-value pro-
jection on ⊗n

C
d is a projector P(dn)

i
d−1

whose range is the

closed subspace spanned by the set of all quregisters whose
nth component is | i

d−1 〉, where P(dn)
i

d−1
= I (n−1) ⊗ P(d)

i
d−1

and

0 ≤ i ≤ d − 1.
In particular, the truth-projection of ⊗n

C
d is the pro-

jection operator P(dn)
1 whose range is the closed subspace

spanned by the set of all true quregisters of ⊗n
C
d .

As an example, let us note that the projector operators

P(22)
1 ∈ ⊗2

C
2 and P(4)

1 ∈ C
4, take, respectively, the form:
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P(22)
1 = I ⊗ P(2)

1 =

⎛
⎜⎜⎝
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠ and

P(4)
1 =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠.

For any qumix ρ ∈ ⊗n
C
d it is possible to introduce a

notion of probability, according with the Born rule, as fol-
lows:

Definition 5 ( i
d−1 − probabili t y) Let ρ be a qumix in

⊗n
C
d . The probability (Chiara et al. 2014) that ρ has the

truth-value i
d−1 (with 0 ≤ i ≤ d − 1) is defined by as:

Pr(d)
i

d−1
= tr

(
P(dn)

i
d−1

ρ

)
,

where tr is the trace functional.

From an intuitive point of view, Pr(d)
i

d−1
represents the prob-

ability that the information stored by the qumix ρ is the
truth-value i

d−1 .

The unitary evolution of quregisters and qumixes is dic-
tated by quantum logical gates. Quantum logical gates (and
the quantum operations they naturally induce) are unitary
transformations thatmap quregisters (qumixes) in⊗n

C
d into

quregisters (qumixes) in ⊗n
C
d . From a foundational per-

spective, it could be useful to distinguish between

• semiclassical quantumgates: unitary operators that trans-
form basis elements into basis elements;

• genuinely quantum gates: unitary operators that trans-
form basis elements into superposition states.

In the rest of the paper, we will mostly be interested in the
Hilbert space C3. We say that a unit vector in C

3 is a qutrit,
a density operator (qumix) in C3 is a qutrit-density operator
and a quantum logical gate on C

3 is a qutrit-gate.

3 Uncertainty and degrees of truth

3.1 Uncertainty

The concept of uncertainty has been a major topic of
discussion for engineers, philosophers and mathematicians
working on statistical theories. In particular, in the context
of risk analysis (Chernoff and Moses 2012), many schol-
ars categorize uncertainties into two main families: aleatoric
and epistemic uncertainty (Kiureghiana and Ditlevsen 2009;
Matthies 2007). The first family groups those deriving from

randomness in sampleswhile the second those that stem from
a lack of knowledge. Examples of aleatoric uncertainty are
the occurrence of an hurricane in the Gulf of Mexico, or the
hight of an arbitrary individual in a certain population. On
the other hand examples of epistemic uncertainty include,
for instance, the global effect clouds formation have on the
temperature of earth, or the nature of certain earthquake
mechanisms (Paté-Cornell 1999).Aleatoric uncertainty com-
prises unknowns that vary each time the same experiment
is performed. According with Kiureghiana and Ditlevsen
(2009), aleatoric uncertainty is related to the intrinsic ran-
domness of a phenomenon, and epistemic uncertainty is
caused by a lack of knowledge.

In both cases, however, the notion of uncertainty is tightly
related to a condition of the modeler. It is a concept that has
to deal with ignorance: a given predicate is uncertain, rela-
tive to a specific modeler, when the available information is
not sufficient to determine its applicability (Lindley 2006).
However, once we enter the quantum domain, the concept of
uncertainty assumes a different status, and new degrees of
freedom will be available for this concept. Let us recall for a
moment the classical two-slits experiment. A coherent light
source is placed in front of a screen that contains two parallel
slits. The wave nature of light causes the light waves pass-
ing through the two slits interfere, producing bright and dark
bands on the screen placed behind the slits. The interference
phenomenon is formally expressed by a superposition state
|ψ〉 = a|0〉+b|1〉where |ψ〉 represents the state of a photon
before coming up against one of the two slits, |0〉 and |1〉
represent the states of a photon after it passed through either
the first or the second slits, respectively, and |a|2 and |b|2
are the respective probabilities. Differently from the classi-
cal case, the state |ψ〉 is ontologically superposed: before a
measurement occurs, the photon is neither in the state |0〉 nor
in |1〉 but in a mere superposition between both. This feature
of |ψ〉 is unrelated to the ignorance of the modeler and this
fact is formally expressed by the unitarity of the state |ψ〉, in
fact |ψ〉 is said to be a pure state. The concepts of complete
knowledge (or maximal information), unit vector and pure
state are, in this context, one and the same notion.

From a quantum logical point of view also, once we agree
on a logical basis, uncertainty is related to proper features
of the state only, without any reference to any knowledge of
a possible observer (Dalla Chiara et al. 2003). Upon setting
|0〉 and |1〉 to be our choices for the truth values “false” and
“true” respectively, the superposed state |ψ〉 = a|0〉 + b|1〉
expresses a logical uncertainty (from now on simply uncer-
tainty) between the possible truth values: |0〉 and |1〉, with the
respective truth-probabilities |a|2 and |b|2 (with |a|2+|b|2 =
1), in accord with the Born rule.

However, it is not the case that, in general, any superpo-
sition state has non-zero truth-probability. Indeed, consider
the state |ψ ′〉 ∈ ⊗2

C
2:
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|ψ ′〉 = 1√
2
|00〉 + 1√

2
|10〉 =

(
1√
2
|0〉 + 1√

2
|1〉

)
⊗ |0〉.

(1)

It can be easily verified that |ψ ′〉 is a superposition state
whose truth-probability is 0. On the other hand (due to the
non-commutativity of the tensor product), the state |ψ ′′〉 =
|0〉 ⊗ ( 1√

2
|0〉 + 1√

2
|1〉) is both an uncertain and superposed

state in ⊗2
C
2.

3.2 Mixedness

The information a given system provides can be considered
along an alternative degree of freedom: its mixedness.

In general, a quantum system may not be in a pure state,
and the information quantity it describes may not be maxi-
mal. This could be due to, e.g., a non-complete efficiency
of a preparation procedure, or, in general, to the interac-
tion of the system with the environment, so that decoherence
phenomena may arise corrupting the experimenter’s knowl-
edge on the system. On the other hand, there are interesting
processes that cannot be represented by unitary evolutions.
For instance, consider the casewhen, at the end of a computa-
tional process, a non-unitary operation—a measurement—is
applied, and the state of the system collapses into a probabil-
ity distribution over pure states, namely a proper mixed state
(mixed state for short) (Timpson and Brown 2005). A mixed
state represents a non-maximal information on the system,
that could be increased by further observations. In this case
an evident epistemic feature comes into play. However, even
if the concept of mixed state patently involves an observer,
the property of “being mixed” should not be regarded as
an exclusively epistemic condition devoid of any ontolog-
ical commitment. In the microscopic context, indeed, any
observation substantially modifies a state; and the property
of “needing further observation to be completely known”
should be considered an ontological feature of a system.
As an example, quantum decoherence phenomena (Zurek
2007) consist in the loss of the coherence of the phase angles
between the components of a system in a quantum superpo-
sition: an amount of information from the system vanishes
into the environment (in accord with a sort of for all practi-
cal purposes pragmatic approach). This loss of the coherence
induces a decreasing of the information on the physical sys-
tem. For this reason, mixed states represent a crucial tool
in quantum decoherence theory (Schlosshauer 2007; Zurek
2007).

As a generalization of the unitary case, it is possible for
mixed states also to resort a notion of uncertainty that coher-
ently generalizes the concept considered in the case of pure
states. We say that a mixed state ρ represents an uncertain
piece of information if its probability value is in the interval

Table 1 .

Uncertain Not uncertain

Mixed

(
1 − λ 0
0 λ

)
with λ ∈ (0, 1)

⎛
⎜⎜⎝
0 0 0 0
0 1/2 0 0
0 0 0 0
0 0 0 1/2

⎞
⎟⎟⎠

Not mixed 1
2

(
1 1
1 1

) (
0 0
0 1

)

(0, 1). Let us remark that, differently from the unitary case,
for an arbitrary density operatorρ the property of beingmixed
is formally equivalent to the fact that

Tr(ρ2) < 1. (2)

This corresponds to the non-unitarity of ρ: in fact,
Tr(ρ2) = 1 if and only if ρ is a pure state. For any den-
sity operator ρ on⊗n

C
d , its (normalized) linear entropy SL,

defined as dn
dn−1 (1−Tr(ρ2)), provides ameasure of its degree

of mixedness, or impurity. Clearly, only when SL(ρ) = 0, ρ
represents a maximal piece of information. In this case ρ is
a pure state.

Although uncertainty and mixedness are proper features
of a state, they are independent of each other. The following
table exemplifies a few simple cases in which they can be
told apart (Table 1).

3.3 Degrees of truth

Quantum computational logics, in the interpretation ofMaria
Luisa Dalla Chiara, Giampiero Cattaneo and other authors,
including the present writers (Cattaneo et al. 2004a, b;
Dalla Chiara et al. 2003, 2004, 2005), depart from the
usual Birkhoff–von Neumann approach, where meanings of
sentences are projection operators, or, equivalently, closed
subspaces of a Hilbert space.

In this other approach, what really matters are quantum
information units: qubits, quregisters, and, more generally,
density operators on a given Hilbert space ⊗n

C
2 (Giun-

tini et al. 2011). Fuzzy-like structures have appeared in this
context which have been extensively studied (Dalla Chiara
et al. 2009, 2013; Giuntini et al. 2009). However, as noted in
Freytes et al. 2013, this fuzzy behavior is mainly due to prob-
abilistic features concerning uncertainty aspects of a state.
Namely, the probabilities of a state to be detected either in
the “false” state P(2n)

0 , or in the “true” state P(2n)
1 . In fact, the

backdrop is an Hilbert space which is a tensor power of the
space C2, where only two possible “truth-values” are avail-
able: |0〉 and |1〉. Within this approach, no other truth values
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are allowed. A state may be uncertain, of course; but it would
be uncertain with respect to the true and to the false projector.

Under several aspects, this standpoint may be considered
unduly restrictive. For, as mentioned in Bertini and Leporini
(2007) andMuthukrishnan and Stroud (2000), it is absolutely
conceivable to encounter cases in which a physical system
may collapse into several states. A definite case in point are
qutrits (Goyal et al. 2011; Tarasov 2002), where a state |ψ〉
may have probabilities a0, a 1

2
, a1 to be detected in the basis

states |0〉, | 12 〉, |1〉, respectively. Consider, for instance, the
states:

|ψ〉 = 1√
2
(|0〉 + |1〉)

|ψ ′〉 =
∣∣∣∣12

〉

in C
2 and C

3, respectively. On the one hand, |ψ〉 in the first
equation above is an uncertain and pure state. However, only
truth and false probabilities can be associated with |ψ〉, since
|ψ〉 is a state in C2.
On the other hand, the state |ψ ′〉 is neither uncertain, nor
mixed: it is the state | 12 〉. This other value should not be
considered as a superposition of basis elements, because it
is on its own another basis element. Indeed, for any n, in
the tensor power ⊗n

C
2, the only possible truth values are

classical; in C3 a new truth-value appears: | 12 〉.
The Hilbert space C

4 provides a neat example. The spaces
⊗2

C
2 and C

4 are clearly isomorphic. Actually they are the
same mathematical object. However, from the perspective of
quantum computational logics they provide distinct logical
semantics.
For instance, the vector

|ψ〉 = |01〉 =

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠

is a true register in ⊗2
C
2, because the last component of the

tensor product is |1〉.
On the other hand, this can be easily seen to be not the

case in C4, since

P(4)
1 = |1〉〈1| =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠

where |1〉 ∈ C
4.

This fact is a consequence of the assumptions we made
for the notions of true and false state.
According with Definition 3, it is evident that the outcome
of a measurement in ⊗2

C
2 is, in terms of truth and false

|ψ1

Δε2

ε0 + Δε2

|ψ 1
2

Δε1

ε0 + Δε1

|ψ0 ε0

Fig. 1 .

probabilities, necessarily two-valued, since it is committed
to a classical backdrop.
This won’t be longer the case if a different notion of truth
comes into play. For, in C

4, up to the choice of the basis,
there are four possible available values: |0〉, | 13 〉, | 23 〉, |1〉.

Accordingwith this idea, if we agree on the computational
basis, the state

|ψ〉 =

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠

would correspond to the state | 13 〉.
This brief observation is expedient to emphasize that the

choice of the quantum information units determines the con-
text in which quantum computational logics operate. If we
start with a quantum information unit in C2, then every pos-
sible quantum computational logic would rely on a classical
two-valued setting. On the other hand, if our choice is Cn ,
n > 2, new truth-values come into play.

From now on, let us focus on the Hilbert space C3.
A concrete physical system that should be necessarily

represented by a state inC3 is depicted in Fig. 1. Consider a 3-
levels energy system in an excited state |ψ1〉, whose energy is
ε0 + �ε2. Three events—with respective probabilities |a1|2,
|a2|2 and |a3|2 (related to the respective gap of energy)—are
possible:

1. the system remains in the same state |ψ1〉;
2. the system decays in the state |ψ 1

2
〉, whose respective

energy is ε0 + �ε1;
3. the system collapses to the ground state |ψ0〉, whose

respective energy is ε0.

The 3-levels energy system described above can be for-
mally expressed as a qutrit—a unit vector in C

3:
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|ψ〉 = a0|ψ0〉 + a 1
2
|ψ 1

2
〉 + a1|ψ1〉.

A natural example comes from the 3-levels laser in quantum
optics (Broers et al. 1992), that is a special case of the pop-
ulation inversion phenomenon that occurs when a system of
atoms exists in a non-equilibrium state such that more atoms
are in an excited state than in the ground energy level. In this
case, the evolution of the state should consider different pos-
sible decays from a state to another (different possible energy
transactions). The probability of each decay is related with
the respective gap of energy.During the decay process, a laser
is emitted and its wavelength depends on the corresponding
gap of energy.

As we will see in the next section, the observations above
induce effective consequences in the extension of the defin-
itions of some standard unary quantum logical gates on the
Hilbert space C3.

4 Extending the quantum gates

In this section we discuss extensions of several well known
quantum gates to the case of qutrits. These constructions
exploit the fact that in C

3—as well as in ⊗n
C
3—the new

truth value widens the usual behavior of gates inC2—as well
as in ⊗n

C
2—along distinct degrees of freedom. In fact, we

will see that single gates in C2 may admit several extensions
in the case of qutrits.

4.1 The negation

Qubit caseFor anyn ≥ 1, thenegation on⊗n
C
2 is the unitary

operator Not (2
n) such that, for every element |x1, . . . , xn〉 of

the computational basis B(2n) ,

Not(2
n)(|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗ |1 − xn〉 .

We have that:

Not(2
n) =

{
σx if n = 1;
I (n−1) ⊗ σx , otherwise,

where σx :=
(
0 1
1 0

)
is the “first” Pauli matrix.

Qutrit case Given the usual basis B(3) = {|0〉, | 12 〉, |1〉} of

C
3, it is possible to define a negation Not(3)| 12 〉 as expected by

Not(3)| 12 〉|x〉 = |1 − x〉,

where x ∈ {0, 1
2 , 1}. We use the subscript | 12 〉 to emphasize

the fact that | 12 〉 is a fixpoint of Not(3)| 12 〉, i.e. Not
(3)
| 12 〉| 12 〉 = | 12 〉.

We can easily obtain the matrix form Not(3)| 12 〉 =⎛
⎝0 0 1
0 1 0
1 0 0

⎞
⎠ such that:

Not(3)| 12 〉

⎛
⎝a
b
c

⎞
⎠ =

⎛
⎝c
b
a

⎞
⎠ .

This idea can be easily generalized to the other basis states
as follows:

Not(3)|0〉 =
⎛
⎝1 0 0
0 0 1
0 1 0

⎞
⎠ and Not(3)|1〉 =

⎛
⎝0 1 0
1 0 0
0 0 1

⎞
⎠ .

Let us remark that, for any i ∈ {0, 1
2 , 1}, Not(3)|i〉 · Not(3)|i〉 =

I (3).

Remark 1 Note that, given the computational basis B(4) =
{|0〉, | 13 〉, | 23 〉, |1〉}, and B(22) = {|00〉, |01〉, |10〉, |11〉} the
Not-like gates they induce are essentially different. Namely,

Not(4)| 12 〉 =

⎛
⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠

but

Not(2
2) = I (2) ⊗ Not(2)

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

4.2 The Hadamard gate

Qubit caseFor any n ≥ 1 , theHadamard gate on⊗n
C
2 is the

linear operator H (2n) such that for every element |x1, . . . , xn〉
of the computational basis B(2n):

H (2n)(|x1, . . . , xn〉) = |x1, . . . , xn−1〉
⊗ 1√

2

(
(−1)xn |xn〉 + |1 − xn〉

)
.

We have that

H (2n) =
{
H if n = 1;
I n−1 ⊗ H, otherwise,

where H is the Hadamard matrix:

H = 1√
2

(
1 1
1 −1

)
.
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The basic property of H (2n) is that, for any |ψ〉 ∈ ⊗n
C
2:

H (2n)(H (2n)(|ψ〉)) = |ψ〉 .

Qutrit case In Anwar et al. (2012), the following extension
of the Hadamard gate for qutrits is considered

H (3) = 1√
3

⎛
⎜⎜⎝
1 1 1

1 1
6 (−1 + i

√
3) − 1

6 (1 + i
√
3)

1 − 1
6 (1 + i

√
3) 1

6 (−1 + i
√
3)

⎞
⎟⎟⎠

as a tool in the framework of distillation protocols for fault
tolerant quantum computation-precisely magic state distilla-
tion.

We state without proof the main properties of H (3):

Lemma 1 1. For any |ψ〉 ∈ B(3), H (3)|ψ〉 = a|0〉+b| 12 〉+
c|1〉 s.t |a|2 = |b|2 = |c|2 = 1

3 ;
2. H (3) is a genuinely quantum gate;
3. H (3) · H (3) = Not(3)|0〉 �= I ;
4. for any density operator1 ρ onC3,SL(ρ) �=SL(H (3)(ρ)).

As shown in the previous lemma, H (3) preserves several
desirable features of H : it is a genuinely quantum gate that
transforms states in the logical base B(3) into superposition
states with uniformly distributed probabilities.

Along different lines, other possible extensions of the
Hadamard gate are the square root of the identity gates (Giun-
tini et al. 2011):

√
I
(3)
|0〉 = 1 ⊕ H(C2) =

√
2

2

⎛
⎝

√
2 0 0
0 1 1
0 1 −1

⎞
⎠ ;

√
I
(3)
| 12 〉 =

√
2

2

⎛
⎝1 0 1
0

√
2 0

1 0 −1

⎞
⎠ ;

√
I
(3)
|1〉 = H(C2) ⊕ 1 =

√
2

2

⎛
⎝1 1 0
1 −1 0
0 0

√
2

⎞
⎠

where ⊕ indicates the matrix direct sum.
Some properties of the gates above follow:

Lemma 2 For any i ∈ {0, 1
2 , 1} :

1.
√
I
(3)
|i〉 is a genuinely quantum qutrit-gate;

2.
√
I
(3)
|i〉 · √

I
(3)
|i〉 = I ;

1 The extensive definition of a density operator ρ on C
3 is provided in

the next section. When a qutrit quantum gate A is applied to a density
operator ρ onC3, the evolution of ρ is given by: AρA†. Since no danger
of confusion will be impending, for the sake of notational simplicity,
from now on we write A(ρ).

3. for any density operatorρ onC3,SL(ρ)=SL(
√
I
(3)
|i〉 (ρ)),

as in the qubit case;
4.

√
I
(3)
|0〉

⎛
⎝a
b
c

⎞
⎠ =

⎛
⎜⎜⎝

a

1√
2
(b + c)

1√
2
(b − c)

⎞
⎟⎟⎠ ; √

I
(3)
| 12 〉

⎛
⎝a
b
c

⎞
⎠

=

⎛
⎜⎜⎝

1√
2
(a + c)

b

1√
2
(a − c)

⎞
⎟⎟⎠ ; √

I
(3)
|1〉

⎛
⎝a
b
c

⎞
⎠

=
⎛
⎜⎝

1√
2
(a + b)

1√
2
(a − b)

c

⎞
⎟⎠ .

Let us remark that, in the Hilbert space C3 the Hadamard
gate H (3) does not behave as a square root of the iden-

tity. Instead,
√
I
(3)
|i〉 is a square root of identity for any

i ∈ {0, 1
2 , 1}.

4.3 The square-root of the negation

Qubit case For any n ≥ 1, the square root of the nega-
tion (Cattaneo et al. 2009) on ⊗n

C
2 is the unitary operator√

Not
(2n)

such that, for every element |x1, . . . , xn〉 of the
computational basis B(2n),

√
Not

(2n)
(|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗ 1

2
((1 + i) |xn〉

+ (1 − i) |1 − xn〉) .

The basic property of
√
Not

(2n)
is the following: for any

|ψ〉 ∈ ⊗n
C
2,

√
Not

(2n) (√
Not

(2n)
(|ψ〉)

)
= Not(2

n) (|ψ〉) .

From a logical point of view, therefore, the square root of
the negation can be regarded as a kind of “tentative partial
negation” that transforms precise pieces of information into
maximally uncertain ones. For, we have

Pr(2)
1

(√
Not

(2)
(|0〉)

)
= 1

2
= Pr(2)

1

(√
Not

(1)
(|1〉)

)
.

As noticed in Dalla Chiara et al. (2004), Lemma 17.1.11, this
gate possesses no Boolean counterpart.
Qutrit case As in the case of the gate Not(3)|i〉 , i ∈ {0, 1

2 , 1},
once we enter in the qutrit world, several possible widening

of
√
Not

(2)
are available. Namely, given the usual basis B(3)
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of C3, it is possible to define the gates
√
Not

(3)
|0〉 ,

√
Not

(3)
| 12 〉,

and
√
Not

(3)
|1〉 as follows:

√
Not

(3)
|0〉 = 1 ⊕ √

Not
(2) = 1

2

⎛
⎝2 0 0
0 1 + i 1 − i
0 1 − i 1 + i

⎞
⎠ ;

√
Not

(3)
| 12 〉 = 1

2

⎛
⎝1 + i 0 1 − i

0 2 0
1 − i 0 1 + i

⎞
⎠ ;

√
Not

(3)
|1〉 = √

Not
(3) ⊕ 1 = 1

2

⎛
⎝1 + i 1 − i 0
1 − i 1 + i 0
0 0 2

⎞
⎠ .

Similarly to
√
I
(3)
|i〉 , it can be seen that the gates

√
Not

(3)
|i〉

also, act “locally” as genuinely quantum gates on two of the
base vectors, leaving unchanged |0〉, | 12 〉, |1〉, respectively:

√
Not

(3)
|0〉

⎛
⎝a
b
c

⎞
⎠ =

⎛
⎜⎜⎝

a

1
2 [(1 + i)b + (1 − i)c]
1
2 [(1 − i)b + (1 + i)c]

⎞
⎟⎟⎠ ;

√
Not

(3)
| 12 〉

⎛
⎝a
b
c

⎞
⎠ =

⎛
⎝

1
2 [(1 + i)a + (1 − i)c]

b
1
2 [(1 − i)a + (1 + i)c]

⎞
⎠ ;

√
Not

(3)
|1〉

⎛
⎝a
b
c

⎞
⎠ =

⎛
⎜⎝

1
2 [(1 + i)a + (1 − i)b]
1
2 [(1 − i)a + (1 + i)b]

c

⎞
⎟⎠ .

Some interesting properties of the gates above are sum-
marized in the following:

Lemma 3 For any i ∈ {0, 1
2 , 1},

1.
√
Not

(3)
|i〉 is a genuinely quantum qutrit-gate;

2.
√
Not

(3)
|i〉 · √

Not
(3)
|i〉 = Not(3)|i〉 ;

3. for any density operator ρ on C
3, SL(ρ) = SL

(
√
Not

(3)
|i〉 (ρ)) (as in the qubit case).

5 Effect characterization of density operators on
C
3

As mentioned in Sect. 3.2, when an interaction between a
system and the environment comes into play, the state of the
system is represented by a qumix. It is well known that Pauli
matrices σ1, σ2, σ3 and I form a basis for the set of density
operators onC2, so that an arbitrary density operator ρ inC2

may be represented as

ρ = 1

2
(I + r1σ1 + r2σ2 + r3σ3)

where r1, r2 and r3 are real numbers such that r21 +r22 +r23 ≤
1. The vector (r1, r2, r3) represents the uniquely determined
point in the Bloch sphere associated with ρ: the Bloch-vector
ofρ. There is a one-to-one correspondence between the space
of the length-1 vectors in R

3 and the space of the density
operators in C2.

A representation of this sort can be obtained for any
n-dimensional Hilbert space through generalized Pauli-
matrices. In particular, in C3, Pauli matrices are generalized
by Gell-Mann matrices (Schlienz and Mahler 1995).

It can be seen that any density operator ρ in C
3 (Goyal

et al. 2011) can be written as

ρ = 1

3

(
I + √

3
8∑

i=1

riλi

)
, (3)

where ri are real numbers such that
∑8

i=1 |ri |2 = 1.
Let us observe that length-1 vectors in R

8 and the space
of the density operators in C

3 are not in one-to-one corre-
spondence. Indeed, if ri = 1 for i = 8 and ri = 0 otherwise,
then the eigenvalues of the corresponding operator ρ in Eq.
(3) would be { 23 , 2

3 ,− 1
3 }, against the positivity requirement.

In this section, we propose an alternative characterization
of density operators in C3 through the notion of effect prob-
ability.

Definition 6 Let H be a complex Hilbert space that repre-
sents the state space of a quantum system S. The set of effects
E(H) for S is the set of operators

{A : ∀|ψ〉 ∈ H, 0 ≤ 〈ψ |Aψ〉 ≤ 1}.

FollowingGudder (1998), an effect represents a yes–nomea-
surements (for example a measurement on a Stern–Gerlach
apparatus, whose outputs can only be spin up or spin down
(Bush et al. 1995, I.1.2) that may be unsharp (Giuntini
and Greulin 1989): sharp measurements are mere idealiza-
tion, impossible in practice, where measurements are always
imprecise to some degree. This unsharpness arises from the
interaction between the system and the environment. For
example, consider a geiger or a photon counter performing
a position measurement on a one-particle quantum system.
If the system is completely isolated from the environment
and the detector is perfectly accurate, then it clicks if and
only if the particle is detected within a certain sensitivity
domain B ⊂ R3. However, this situation is a limit condition,
not encompassing real situations, where the system inter-
acts with the environment and the measurement device is
not perfectly accurate. In this case, an adequate calibration
experiment classifies the confidence that the apparatus clicks
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when the particle is in B as a real value in (0, 1). According
to Gudder (1998), this can be considered an example of a
yes–no measurement quantum event (the particle is/is not in
a certain sensitivity domain B) to whose outcomes a proba-
bility value can be assigned.

Phenomena of this sort motivated the development of
positive operator valuedmeasure (POVM) theory, that gener-
alises standard positive valued measure (PVM) theory (Bush
et al. 1995, §1.3). POVM relies on the fact that the physical
reality is described as it emerges when investigated by mea-
suring processes, which are to be considered, themselves, as
physical processes. Perhaps, the striking difference between
PVM and POVM is that, while PVM considers only sharp
observables, represented by hermitian operators, and projec-
tive measurements, POVM widens this setting to unsharp
observables, represented by effects, to which effect-valued
measurements, that generalize within this context projective
measurements, are associated (Bush et al. 1995, p. 6). Indeed,
to any effect valued measurement a probability measurement
(effect probability) is naturally associated by the Born rule
(Bush et al. 1995, (1.21)):

Pr(E)(ρ) = tr(Eρ), (4)

where E and ρ are an effect and a density operator on an
Hilbert space H, respectively.

In the case ofC3, the notion of effect probability turns out
to be particularly expedient for our purposes if E in (4) is the
effect:

E =
⎛
⎝ 0 0 0
0 1

2 0
0 0 1

⎞
⎠ .

In fact, using this particular effect probability we can define
a three-valued quantum computational logic on C

3 that
consistently generalizes two-valued quantum computational
logic on C

3. Indeed, for any |i〉 in the computational basis,
Pr(E)(|i〉) = i . Moreover, Pr(E) is crucial in proving the
following:

Proposition 1 Let ρ be a density operator in C
3 and con-

sider the following set of gates: A = {I,Not(3)|0〉 ,
√
I
(3)
|i〉 ,√

Not(3)|i〉}i∈{0, 12 ,1}. Then ρ is uniquely characterized by the

following equations:

1. Pr(E)(ρ) = 1
6 (3 − √

3r3 − 3r8)

2. Pr(E)(Not
(3)
|0〉ρ) = 1

2 − r3√
3

3. Pr(E)(
√
I
(3)
|0〉ρ) = 1

12 (6 − 3
√
3r3 − 2

√
3r6 − 3r8)

4. Pr(E)(
√
I
(3)
| 12 〉ρ) = 1

2 − r4√
3

5. Pr(E)(
√
I
(3)
|1〉ρ) = 1

6 (3 − √
3r1 − 3r8)

6. Pr(E)(
√
Not

(3)
|0〉ρ) = 1

12 (6 − 3
√
3r3 − 2

√
3r7 − 3r8)

7. Pr(E)(
√
Not

(3)
| 12 〉ρ) = 1

2 − r5√
3

8. Pr(E)(
√
Not

(3)
|1〉ρ) = 1

6 (3 − √
3r2 − 3r8).

Proof Simply notice that the linearly independent Eqs. (1)–
(8) uniquely characterize the Bloch vector associated with
ρ.

6 Conclusions

The aim of this paperwas foundational. In particular, we tried
to spell out how the concepts of uncertainty and truth-degree
meet new degrees of freedom in the framework of quantum
computational logics. A natural future development of the
ideas in this paper would include:

• a study of binary qutrit-gates;
• a generalization of Proposition 1 to an arbitrary Hilbert
space.
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