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Abstract Estimation of parameters of chaotic systems
is a subject of substantial and well-developed research
issue in nonlinear science. From the viewpoint of opti-
mization, parameter estimation can be formulated as a
multi-modal constrained optimization problem with multi-
ple decision variables. This investigation makes a systematic
examination of the feasibility of applying a newly pro-
posed population-based optimization method labeled here
as teaching–learning-based optimization (TLBO) to iden-
tify the unknown parameters for a class of chaotic system.
The preliminary test demonstrates that despite its global fast
coarse search capability, teaching–learning-based optimiza-
tion often risks getting prematurely stuck in local optima.
To enhance its fine (local) searching performance of TLBO,
Nelder–Mead simplex algorithm-based local improvement
is incorporated into TLBO so as to continually search for
the global optima through the reflection, expansion, contrac-
tion, and shrink operators.Workingwith thewell-established
Lorenz system, we assess the effectiveness and efficiency of
the proposed improved TLBO strategy. The empirical results
indicate the success of the proposedhybrid approach inwhich
the global exploration and the local exploitation are well bal-
anced, providing the best solutions for all instances used over
other state-of-the-artmetaheuristics for chaotic identification
in literature, including particle swarm optimization, genetic
algorithm, and quantum-inspired evolutionary algorithm.
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1 Introduction

Identification of chaotic systemswith unknown parameters is
the subject of substantial and well-developed research issue
in nonlinear science, and a deliberated parameter estimation
for chaotic systems serves as the profound bases for chaotic
control (Hübler 1989; Ott et al. 1990; Grebogi and Lai 1997;
Liu et al. 2006) and synchronization of chaotic systems (Pec-
ora andCarroll 1990;Kapitaniak 1995;Boccaletti et al. 2002;
Liu et al. 2007; Coelho and Bernert 2009), wherein system
parameter uncertainties can destroy or even break the control
and synchronization in case the values of the parameters for
dynamical systems are unknown or not exactly determined
(Chen and Dong 1998; Fotsin andWoafo 2005; Fradkov and
Evans 2005; Wang et al. 2011).

During the last two decades, both academia and industry
in many fields not limited in nonlinear science have been
witnessing the pressing needs for new efforts in dealing with
the grand challenges arising from estimation of unknown
parameters for chaotic systems. This is motivated, on the
one hand by the fact that lots of natural and social systems
(e.g., physics, meteorology, physiology, biology, sociology
and economics) exhibit chaotic phenomena (Pecora et al.
1997; Sornette 2006), and to uncover the underlying chaotic
dynamics which drive the dynamics of the aforementioned
systems, the identification of a chaotic systemwith unknown
parameters is indispensable; on the other hand, by the fact
that the inherent complex characteristics of chaotic dynamics
(e.g., sensitive dependence on initial conditions as well as on
the variations of system parameter) bring about unique chal-
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lenges to the problem of identification of the chaotic systems
(He et al. 2007).

Over decades, the challenges brought by parameter esti-
mation of nonlinear chaotic systems have led to the rising
number of researches. Based on their estimating para-
digms, we roughly divide them into two basic categories—
control-based synchronization methods and optimization-
based methods.

The fundamental concept of control-based synchroniza-
tion method for parameter estimation is to feed certain
control inputs to the slave (response) system so that the
output of the slave system follows the output of the mas-
ter (drive) system asymptotically (Pecora and Carroll 1990;
Park 2005),meanwhile during the synchronizing process, the
unknown parameters of the slave system are estimated via
minimization of the synchronization errors (Chang 2006). A
vast variety of control-based synchronization methods have
been proposed for identifying chaotic systems. For instance,
based on adaptive control method (Huberman and Lumer
1990; Liao 1998; Chen and Lu 2002; Elabbasy et al. 2004;
Fotsin and Woafo 2005) designed an adaptive controller for
synchronizing and identifying the modified Van der Pol–
Duffing oscillators with large normalized parameters. Park
(2005) addressed the problem of synchronization of Rossler
systems with three uncertain parameters. Based on the Lya-
punov stability theory, an adaptive control law was derived
to make the states of two Rossler systems asymptotically
synchronized. Yassen (2005) presented an adaptive control
scheme for synchronization of Rossler and Lü systems when
the parameters of the master system were fully uncertain
or unknown and different with those of the slave system.
Based on Lyapunov stability theory, the sufficient conditions
for synchronization have been analyzed theoretically. Wang
and Ge (2001) considered the problem of adaptive synchro-
nization of uncertain nonlinear chaotic systems via adaptive
backstepping techniquewith tuning functions. Bowong et al.
(2006) proposed a robust adaptive observer -based response
system to synchronize the given uncertain chaotic system,
and to estimate unknown constants and uncertain parameters.
Hyun et al. (2006) developed an adaptive fuzzy observer to
estimate the unknownparameters, and the stability of the pro-
posed system was guaranteed via Lyapunov stability theory.
Maybhate and Amritkar (1999) introduced the combination
of feedback-based synchronization method and an adaptive
control method to estimate parameters for several chaotic
systems. Simulation results demonstrated that the hybrid
approach was effective and reasonably robust under noisy
environment. Saha et al. (2004) adopted the hybrid approach
proposed in Maybhate and Amritkar (1999) to estimate the
parameter of the transmitter for chaotic secure communica-
tion.

Beyond the control-based synchronization method, some
researchers are earnestly seeking for new ways to estimate

the unknown parameters for chaotic systems. They noticed
that parameter estimation for chaotic systems could be for-
mulated as multi-modal constrained functional optimization
problems with multi-dimensional decision variables. Gen-
erally, optimization-based methods attempt to find the best
fit model to the time series data generated from chaotic
dynamics with unknown parameters. A vast variety of
optimization-based methods have been propounded for iden-
tifying chaotic systems and tackling the difficulties. For
instance, basedon the time series data fromachaotic dynamic
model with unknown parameters, Parlitz et al. (1996, 1996)
estimated its parameters by minimizing the average syn-
chronization error. Moreover, for the past three decades, as
universal problem solvers, population-based metaheuristics
(PBMH), e.g., Genetic Algorithms (GAs) (Holland 1975;
Goldberg 1989), and Evolutionary Programming (EP) (Fogel
et al. 1966; Bäck 1996), have surfaced to become a main-
stay of optimization (Chen and Ong 2012; Jiang et al. 2014).
Population-based metaheuristics are characterized by iter-
ative, random, population-based and often biologically or
socially inspired features (Liu et al. 2011), and canbe applica-
ble to a wide range of optimization problems without being
tailored and can find near- or global-optimal solutions with
acceptable computational costs (Hart et al. 2004; Ong and
Keane 2004; Ong et al. 2007, 2009). In this respect, Dai
et al. (2002) adopted Genetic Algorithm (GA) (Holland
1975; Goldberg 1989) to estimate Lorenz system with one
unknown parameter. Chang (2006) appliedDifferential Evo-
lution Algorithm (DEA) (Storn and Price 1997) to identify
parameters of Rossler system via mutation, crossover, and
selection operations. Further, Ho et al. (2010) proposed a
hybrid algorithm by combing DEA with Taguchi-sliding-
level method to solve the problem of parameter identification
for Chen, Lü and Rossler systems. Wang and Li (2010)
enhanced the DEA by incorporating quantum-inspired oper-
ators for estimating parameters of theLorenz system.He et al.
(2007) propounded the Particle Swarm Optimization (PSO)
algorithm (Kennedy et al. 2001; Wang and Liu 2008; Hel-
wig et al. 2013; Lou et al. 2015) to estimate the parameters
of Lorenz system. Numerical simulation and the compar-
isons demonstrated the effectiveness and robustness of PSO.
Moreover, the effect of population size on the optimization
performances was investigated as well. Chang et al. (2008)
introduced theEvolutionary Programming (EP) (Bäck 1996)
for solving the parameter identification problem for Lorenz,
Lü, and Chen systems. Wang and Xu (2011) presented an
improved Biogeography-Based Optimization (motivated by
biogeography theory) for identifying chaotic system with
unknown parameters.

As a special incarnation of population-based metaheuris-
tic, teaching–learning-based optimization (TLBO), which is
inspired by the teaching and learning processes in a class,
has been proposed (Rao et al. 2011; Rao and Patel 2012,
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2013a, b) as an alternative to GA, PSO and DEA for func-
tional optimization. In TLBO, first, a population of solutions
is initialized randomly, in which the most knowledgeable
individual (solution with the best fitness value) is generally
regarded as the teacher, while the remaining individuals are
considered as students. Next, the population is evolved to
find optimal solutions through (1) teaching phase in which
the teacher helps the students to improve their grades, as
well as (2) learning phase in which the students improve
their grades through interactions among themselves. Com-
pared with GA, PSO and DEA, TLBO has some attractive
characteristics. First, it employs simple differential operation
between teacher and students to create new candidate solu-
tions, aswell as to guide the search toward themost promising
region. Second, TLBO works with real numbers in natural
manner and avoid complicated generic searching operators
in GA, and twofold updating strategy in PSO. Third, the
conventional TLBO only contains one adjustable controlling
parameter (i.e., population size), which facilitates easy tun-
ing and implementation, while in GA, PSO and DEA more
parameters need to be set in an appropriate manner so as to
guarantee the searching performance. Nowadays, TLBO has
attracted attention and applications in a few fields since its
birth in 2011 (Patel andSavsani;Crepinsek et al. 2012;Wagh-
mare 2013). For instance, Rao and Patel (2013c) enhanced
the conventional TLBO to form M-TLBO (named by the
authors of this paper) by incorporating three operations, i.e.,
group learning (number of teachers), adaptive teaching fac-
tor and self-motivated learning. I-TLBO (Patel and Savsani
2014a, b) was developed by introducing an additional oper-
ation, labeled as learning through tutorial operator into the
aboveM-TLBO. Application areas cover dynamic economic
emission dispatch (Niknam et al. 2012), structural optimiza-
tion (Dede 2013), power system (García Ansola et al. 2012),
heat exchangers (Rao and Patel 2013b; Patel and Savsani
2014b), thermoelectric cooler (Venkata Rao and Patel 2013)
and engineering optimization problems (Yu et al. 2014), etc.,
which demonstrate the effectiveness and efficiency of the
TLBO-based algorithms.

From our survey, to date, there has been a lack of research
studies that concentrate on TLBO for system identifica-
tion, let alone the parameter estimation for chaos systems.
The objective of this investigation is explicitly set out to
fulfill this role. We begin by introducing the parameter esti-
mation problem for chaotic systems which is cast into a
multi-dimensional numerical optimization problem. Subse-
quently,wegive a brief reviewand the implementation details
of TLBO. An analysis on the performance of TLBO on
parameter estimation of chaotic systems is then conducted,
which reveals TLBO often risks getting prematurely stuck in
local optima despite its global fast coarse search capability.
Based on the analysis, we incorporate Nelder–Mead simplex
algorithm (Lagarias et al. 1998) into TLBO to enhance its

local searching performance through reflecting, expanding,
contracting, and shrinking operators that would enrich the
searching modes and behaviors. It is worth noting that the
empirical results with the well-known Lorenz system indi-
cate the success of the proposed approach. Further, it is hoped
that the proposed methodology will serve as a vital parame-
ter estimationmethod for other systems, e.g., physical, social
and economic systems.

2 Problem formulation and chaotic system

2.1 Optimization problem for parameter estimation

Without loss of generality, n-dimensional chaotic system can
be stated as (He et al. 2007; Tien and Li 2012):

Ẋ = F(X, X0, θ0) (1)

where X = (x1, x2, . . . , xn)T ∈ Rn is the state vector, X0

is the initial state, and θ0 = (θ10, θ20, . . . , θd0)
T is a set of

original parameters.
The estimated chaotic system can be stated as Eq. (2),

given that the structure of the system is known in advance:

Ẏ = F(Y, X0, θ) (2)

where Y = (y1, y2, . . . , yn)T ∈ Rn is the state vector, and
θ = (θ1, θ2, . . . , θd)

T is the set of parameters to be estimated.
From the viewpoint of optimization, the problem of para-

meter estimation can be formulated as:

min J = 1

M

M∑

k=1

‖Xk − Yk‖2 by searching suitable θ∗ (3)

where M is the length of time series data used for parame-
ter estimation, Xk and Yk (k = 1, 2, . . . , M) are the state
vectors of the original and the estimated systems at time k,
respectively.

The principle of parameter estimation for chaotic systems
in sense of optimization can be illustrated in Fig. 1, where
the decision vector is θ and the optimization objective is to
minimize J .

In thepresent investigation, the conventional and improved
versions of TLBO are considered for solving the above
minimization problem which involves searching suitable
estimated parameters θ∗ by minimizing objective function
(3). Meanwhile, constraints arising from chaotic dynamics
(1) and (2) should be obeyed. In the experiments, the chaotic
dynamical system f : Rn → Rn is then instantiated with the
well-established Lorenz system.
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Fig. 1 The illustration of estimating unknown parameters for chaotic
systems

2.2 Chaotic system used

Lorenz system is described as follows (He et al. 2007):

⎧
⎨

⎩

ẋ1 = a(x2 − x1)
ẋ2 = bx1 − x1x3 − x2
ẋ3 = x1x2 − cx3

(4)

where a = 10, b = 28, c = 8/3 are the original parameters.

3 Teaching–learning-based optimization (TLBO)

In this section, the TLBOapproach is described. In the TLBO
system, a population of solutions corresponding to a group
of learners is initialized randomly. The most knowledgeable
individual, which is analogous to the elite solution with the
best fitness value in the search, then poses as the teacher,
while the remaining individuals in population are considered
as the learners or students. Each dimension of an individual
solution in the TLBO represents the grade of different subject
as attained by a teacher or learner. The population is then
evolved to locate optimal solutions through a teaching phase
inwhich the teacher helps the students to improve their grades
as well as a learning phase where students improve their
grades through interactions among themselves.

The i th individual in the d-dimensional search space at
generation t can be represented as Xi (t) = [xi,1, xi,2, . . . ,
xi,d ], (i = 1, 2, . . . , N P , where NP denotes the size of the
population). As the teacher is considered the most knowl-
edgeable person, the best member Xbest(t) of the current
population as defined by the objective function or fitness
value is considered as the teacher. In minimization problem,
the solution or individual with the smallest objective function
value is thus regarded as the best member. At each genera-
tion t , the teaching andlearning operations are applied on
the learners, and a new population arises. Then, compari-
son takes place, and the corresponding individuals from both
populations compete to comprise the next generation.

For each learner Xi (t), according to the teaching oper-
ation, an updated learner Vi (t) = [vi,1, . . . , vi, j , . . . , vi,d ]

is generated by adding the weighted difference between the
teacher and mean grade of learners to itself, which takes the
following form:

Vi (t) = R · ∗(Xbest(t) − T · ∗M(t)) + Xi (t) (5)

where the arithmetic operator ·∗ is element-by-element
multiplication. R = [rand1, . . . , rand j , . . . , randd ] is d-
dimensional random weight vector which controls amplifi-
cation of the differential variation Xbest(t) − T · ∗M(t), and
each element rand j is the j-th independent random num-
ber which is uniformly distributed in the range of [0, 1].
As described previously, Xbest(t), the base vector to model
after, is the best member of the current population so that
the finest traits of the teacher can be passed to the learn-
ers. M(t) = [m1, . . . ,m j , . . . ,md ] denotes the mean grade
of the learners for each subject. T , known as the teaching
factor which represents the aptitude of the teacher, is a d-
dimensional random weight vector that controls the changes
to the mean grades of learners. The value for each element
of T is then either 1 or 2, as recommended in Rao et al. (Rao
et al. 2012).

After all the learners have completed the teaching phase,
the one to one selection operator is then applied on each
individual to decide whether the updated learner Vi (t) or
the original Xi (t) would become a member of the popula-
tion that would subsequently undergo the learning phase.
Thus, for each target individual, anew trial vector Ui (t) =
[ui,1(t), . . . , ui,d(t)] is generated and assigned to the value
Xi (t) if the target learner could not improve itself in the
teaching process; otherwise, Ui (t) is set to be Vi (t).

For each trial vector Ui (t) of the ith learner, through
the learning phase, learners improve themselves by learn-
ing from others in the group, which is described as following
(for minimization problem):

Wi (t)=
{
Ui (t) + Rand · ∗(Ui (t)−Uj (t)), if F(Ui (t))<F(Uj (t)),
Ui (t) + Rand · ∗(Uj (t) −Ui (t)), otherwise.

(6)

where Wi (t) is the trial vector of target individual i after
learning. Rand is a d-dimensional random weight vector
which controls amplification of the differential variation.
The subscript j of Uj (t) denotes a randomly selected tar-
get individual jfrom the population {1, 2, . . . , N P} and also
different from the current index i . F() means the objective
evaluation function, which is the value of Eq. (3) in our study.

Finally, the selection arises to decide whether the trial
vector Wi (t) would be a member of the population of the
next generation t + 1. For minimization problem, Wi (t) is
compared with Ui (t) using the following one to one greedy
based selection criterion:
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Xi (t + 1) =
{
Wi (t), if F(Wi (t)) < F(Ui (t)),
Ui (t), otherwise.

(7)

where Xi (t + 1) is the individual of the new population. The
best individual of the new population is then determined, and
then update Xbest(t) to Xbest(t + 1) by selecting the better
one between Xbest(t) and the best individual so far. The above
operations are iterated until the stopping criterion is met, and
Xbest is then the converged solution obtained. The proce-
dure described above is considered as the standard version
of TLBO. The key parameter in TLBO is NP (size of pop-
ulation). As described previously, the conventional TLBO
only contains one adjustable controlling parameter (i.e., size
of population) which facilitates easy tuning and implemen-
tation. This is in contrast to the GA, PSO and DEA, which
have more parameters that are required to be appropriately
defined to assert good and robust search performances.

4 Preliminary test on standard TLBO

This section investigates the feasibility of applying the
recently proposed population-based metaheuristics TLBO
for parameter estimation of chaotic systems. Working with
the dynamics of the well-established Lorenz system, we con-
duct the analysis of the performance of TLBO on parameter
estimation of chaotic system in terms of searching accuracy.

4.1 Optimization objective evaluation

Togenerate the initial state X0 for both original and estimated
systems, first let the original chaotic systemwith knownpara-
meters, incarnated as Lorenz system stated in Eq. (4), freely
evolve from a random selected initial state. Through a period
of transient process, a state vector is selected as the initial
state X0 for parameter estimation as shown in Fig. 1.

To generate the states Xk and Yk (k = 1, 2, . . . , M),
the initial state X0 is fed into both original and estimated
systems simultaneously. By solving the ordinary differential
equations, numbered as Eq. (1) (the original system with
determined known parameters) and Eq. (2) (the estimated
system with temporally estimated parameters by generate
and test), respectively, the time series of successive M states
(we take M=300 for Lorenz system) for both the original
and the estimated systems are obtained which are used for
computing estimation error J in Eq. (3), under the given set
of estimated parameters.

4.2 Simulation on Lorenz system

Next, we make a systematic examination of the feasibil-
ity and effectiveness of TLBO for estimating the unknown

parameters for chaotic systems. Preliminary test is con-
ducted, meanwhile the results are examined to assess the
relative performance of standard TLBO to other representa-
tive state-of-the-art metaheuristics for chaotic identification
in literature, including particle swarm optimization (He et al.
2007), genetic algorithm (Dai et al. 2002), and quantum-
inspired evolutionary algorithm (QEA) (Han andKim 2002).
It has been commented that QEA has superior performance
to classical evolutionary algorithms in terms of convergence
rate, searching quality, and robustness (Wang and Li 2010).
Besides, as observed from previous researches that several
variants of TLBO algorithms, e.g., M-TLBO (Rao and Patel
2013c), I-TLBO (Patel and Savsani 2014a, b) performed
well, we also implement the two improved TLBO algo-
rithms for estimating the unknown parameters for chaotic
systems.

To allow for a fair comparison, we set the maximum func-
tion evaluation times which in this regard are the product of
the maximum generation/iteration times and the population
size to be same among all algorithms covered in this study.
Specifically, we adopt from the above literature the values for
the maximum generation number of 100 and population size
of 20, 40 and 120 when the number of unknown parameter is
1, 2 and 3, respectively. In M-TLBO and I-TLBO, an addi-
tional control parameter, the number of teachers, requires to
be specified. We adopt the values of 5 for population size of
20 and 40, and 10 for population size of 120. Furthermore,
searching ranges of the estimated parameters are the same to
all algorithms, that is, the estimated parameters a, b, and c are
set in the range of [9, 11], [20, 30], and [2, 3], respectively.

4.2.1 One-dimensional parameter estimation

We first test the searching performance of TLBO for estima-
tion of chaotic system with one unknown parameter, that is,
each time only one of the three parameters a, b, and c needs to
be identified. TLBO and its variants (I-TLBO andM-TLBO)
are run 20 times independently for each case. The statisti-
cal results achieved by three TLBO-based algorithms for the
three cases are listed in Table 1 together with the simulation
results of other three algorithms in the literature, including
PSO, GA, and QEA.

From Table 1 (excluding the last three lines of TLBO-SM,
which would be used in latter section), it can be seen that
TLBO can achieve optimal estimated values in the statistical
meaning of Best, which validates the feasibility of TLBO
to identify the chaotic system with one unknown parame-
ter. Next, we examine the statistical results of Average and
Worst, and find that (1) for parameter a, TLBO is more or
less as competent as PSO and GA, and superior to QEA;
(2) for parameter b, TLBO is almost as competent as QEA,
inferior to PSO, but superior to GA; and the same holds for
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parameter c. This phenomenon reveals TLBO suffers from
the risks getting prematurely stuck in local optima. It is worth
noting that both M-TLBO and I-TLBO perform best among
all the algorithms for identifying the chaotic systemwith one
unknown parameter.

4.2.2 Two-dimensional parameter estimation

Then, we examine the searching performance of TLBO for
estimation of chaotic system with two unknown parameters,
that is, each time two of the three parameters need to be
identified. TLBO is run 20 times independently for each case.
The statistical results obtained by TLBO-based algorithms
for the three cases are listed in Tables 2, 3, 4 together with the
simulation results of other three algorithms in the literature.

From Table 2 for estimating a and b (excluding the last
column of TLBO-SM, which would be discussed in latter
section), it can be seen that PSO performs best among the six
algorithms, and TLBO can achieve almost the same search
accuracy as PSO.The improved versions of TLBO,M-TLBO
and I-TLBO perform better than standard TLBO. Besides,
TLBO performs better than GA and QEA. The same conclu-
sion holds for the results in Tables 3 and 4, which validates
the feasibility of TLBO to identify the chaotic system with
two unknown parameters. And by examining the statistical
results of Average andWorst of TLBO, it could be found that
TLBO still suffers from the risks of being trapped into local
optima.

4.2.3 Three-dimensional parameter estimation

Last, we assess the searching performance of TLBO for esti-
mating of all three unknown parameters simultaneously. The
statistical results obtained by TLBO for running 20 times are
listed in Tables 5.

From Table 5 for estimating all three unknown parameters
(excluding the last column of TLBO-SM, which would be
discussed in latter section), it can be seen that TLBO-based
algorithms and PSO perform better than GA and QEA in
the statistical meaning of Best, Average, and Worst criteria.
Further, PSO is superior to TLBO in the criterion of Best,
while PSO is inferior to TLBO in the criteria of Average and
Worst. It is worth noting that M-TLBO and I-TLBO perform
superiorly to PSOand standardTLBO in the criterion ofBest,
Average and Worst.

In summary, standard TLBO has received very interesting
and notable results on the problem of parameter estimation
for chaotic system, but generally TLBO lacks impetus in the
search plateau, which suggests TLBO faces risks of getting
prematurely stuck in local optima. In the following section,
we will make an attempt to enhance the fine (local) search- Ta
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8 ing ability of TLBO by incorporating Nelder–Mead simplex

algorithm-based local search (Lagarias et al. 1998).

5 Hybrid TLBO with Nelder–Mead simplex
algorithm (TLBO-SM)

To date, algorithm hybridization is one of the most impor-
tant mainstays in the field of optimization, especially in
the designing of memetic algorithms which is a union of
a population-based global search and local improvements
(Moscato 1989; Hart et al. 2004; Ong et al. 2007, 2009,
2010; Chen et al. 2011). It is well established that com-
bining the features of distinct methods in a complementary
manner may result in more effective and robust optimiza-
tion approach (Ong et al. 2003; Liu et al. 2005; Zhu et al.
2007; Liu et al. 2011). Several studies have been focused on
how to achieve a reasonable combination of global search
and local search, and how to make a good balance between
exploration and exploitation (Ishibuchi et al. 2003; Ong et al.
2006). Traditionally, most of the MAs rely on the use of one
single population-basedmetaheuristic algorithm for globally
rough exploration and one single local search for locally fine
improvements. Some recent studies on the choice of local
searches have shown that the choice significantly affects the
searching efficiency (Ong and Keane 2004; Krasnogor and
Smith 2005; Pan et al. 2008; Liu et al. 2010, 2011).

Inspired by the aforementioned research work in memetic
algorithms which have materialized in the form of hybridiza-
tion between the population-based search and refinement
procedures (Liu et al. 2010; Chen et al. 2011; Le et al.
2012), we examine the effects of the incorporation of a local
refinement method labeled here as Nelder–Mead simplex
algorithm (Lagarias et al. 1998) into the population- based
metaheuristic TLBO to form a hybrid optimization algorithm
coined as TLBO-SM.

5.1 Nelder–Mead simplex search

The Nelder–Mead simplex search is a direct search method
for unconstrained optimization without relying on problem’s
gradient information. Nelder–Mead simplex search algo-
rithm uses a simplex of n + 1 points for n−dimensional
vectors x . The algorithm first makes a simplex around the
initial guess x0 by adding α% of each component x0(i) to
x0, and using these n vectors as elements of the simplex
in addition to x0. Then, the algorithm modifies the simplex
repeatedly through the reflection, expansion, contraction, and
shrink operators, until certain stopping criteria are satisfied.
The details of implementation ofNelder–Mead simplex algo-
rithm can be found inNelder andMead (1965), Lagarias et al.
(1998) and Avriel (2003), and to save space we omit the pro-
cedure of Nelder–Mead simplex search.
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Fig. 2 The framework of
TLBO-SM

Teaching Phase:  the teacher helps the students to improve their grades
according to Eq. (5);
Learning Phase:  students improve their grades through interactions among 
themselves according to Eq. (6);
Population Updating Phase: generate new population via on one to one greedy 
based selection criterion according to Eq. (7)

)(tX best

Global Search: 
Teaching-learning-based optimization

Local Search: Nelder-Mead simplex algorithm

Take the                 as the initial guess point;  
Perform local search via reflection, expansion, contraction, and shrink operators;
Feed the updated                to TLBO system.

)(tX best

)(tX best

)(tX best

)(tX bestupdated    

5.2 TLBO-SM

We materialize the TLBO-SM in the form of hybridization
between the population-based TLBO search and Nelder–
Mead simplex algorithm-based refinement procedure, whose
framework is depicted in Fig. 2.

As illustrated in Fig. 2, the hybrid TLBO-SM represents a
form of synergistic combination between population-based
and local refinement heuristic, wherein first, via the multi-
individual stochastic parallel search mechanism of TLBO,
TLBO-SM provides better coverage of the searching domain
(i.e., exploration), and provides a fast and reliable estimate
of the global optimum; second, by taking advantage of ini-
tial guess point of high quality from TLBO (in this respect,
Xbest(t)), the Nelder–Mead simplex algorithm concentrates
the searching effort in the neighborhood of the best solutions
found so far (i.e., exploitation) to produce better solutions
more efficiently.After one roundofTLBOplusNelder–Mead
simplex algorithm search, the updated Xbest(t) generated
via Nelder–Mead simplex algorithm would be fed back into
TLBO system as the new best solution (i.e., teacher) for
the next round search until certain termination criteria are
reached.

6 Numerical simulation on TLBO-SM

We have investigated the feasibility and effectiveness of
standard TLBO in Sect. 4 for the problem of identifying para-

meters of Lorenz system with one, two, and three unknown
parameters, respectively. The preliminary test results demon-
strate that as a viable method, standard TLBO has received
very notable results, but TLBO still faces risks of getting pre-
maturely stuck in local optima despite its global fast coarse
search capability. In this section, we will make a systematic
assessment of the proposed TLBO-SM algorithm in terms of
searching accuracy and rate of convergence, so as to check
whether the fine exploitation capability of TLBO could be
enhanced by Nelder–Mead simplex algorithm-based local
search procedure.

The results from TLBO-SM will be compared with those
of standardTLBO,M-TLBO (Rao andPatel 2013d), I-TLBO
(Patel and Savsani 2014a, b), particle swarm optimization
(He et al. 2007), genetic algorithm (Dai et al. 2002), and
quantum-inspired evolutionary algorithm (QEA) (Han and
Kim 2002). In Sect. 4, the maximum function evalua-
tion times are 2000 (one unknown parameter), 4000 (two
unknown parameter), and 12,000 (three unknown parame-
ters), respectively. To make fair comparisons, we set the
maximum function evaluation times to be same among all
algorithms involved in this research.

6.1 One-dimensional parameter estimation

We assess the searching performance of TLBO-SM for esti-
mation of chaotic system with one unknown parameter. We
return back to Table 1, whose last three rows list the statistical
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results obtained by running TLBO-SM 20 times indepen-
dently. As shown in Table 1, TLBO-SM achieves the best
values in the statistical meaning of Best, Average, andWorst,
which not only validates the feasibility of TLBO-SM to iden-
tify the chaotic systemwith one unknown parameter, but also
reveals that the local refinement ability of TLBO-SM has
been improved greatly by incorporating Nelder–Mead sim-
plex algorithm.

6.2 Two-dimensional parameter estimation

Next, we examine the searching performance of TLBO-SM
for estimation of chaotic system with two unknown parame-
ters. The statistical results obtained by TLBO-SM for the
three cases are listed in the last column of Tables 2, 3, 4,
respectively. As demonstrated in Tables 2, TLBO-SM per-
forms best among all the algorithms. The same conclusion
holds for the results in Tables 3 and 4, which suggests TLBO-
SMcould achievenotable results on the problemof parameter
estimation for chaotic system, and could jump out of the local
minima by being equipped with Nelder–Mead simplex algo-
rithm.

6.3 Three-dimensional parameter estimation

Last, we assess the searching performance of TLBO-SM for
estimating of all three unknown parameters simultaneously,
which is more difficult. The statistical results obtained by
TLBO-SM are listed in the last column of Table 5. From
Table 5, it can be seen that TLBO-SM performs best in all of
the statistical meanings.

For the case of estimating Lorenz system with three
unknown parameters, we show the typical tuning trajectories
of estimating parameters a, b and c in Figs. 3, 4, 5, respec-
tively. As depicted in Fig. 3, after going through about 400
function evaluations, TLBOgets trapped into local minimum
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Fig. 3 Tuning trajectories of parameter a for Lorenz system
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Fig. 4 Tuning trajectories of parameter b for Lorenz system
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Fig. 5 Tuning trajectories of parameter c for Lorenz system

(the estimated value is 9) until it exhausts its entire allocated
computation budget, which suggests TLBO lacks impetus
in the search plateau. Nevertheless, TLBO-SM has a faster
decline to estimated value of 9 around the number of func-
tion evaluation of 100, then TLBO-SM encounters the same
situation as TLBO, that is, TLBO-SMgets prematurely stuck
in local optima (the estimated value is also 9). Fortunately,
TLBO-SM jumps out of the local optima to the global optima
after hovering in the plateau about 400 function evaluations,
which could be credited with the employment of Nelder–
Mead simplex algorithm as the local refinement procedure,
as well as the effective information exchange between TLBO
and Nelder–Mead simplex algorithm.

The parameter tuning curves for b are illustrated in Fig. 4,
from which it could be observed that TLBO-SM has a faster
trend to global optima than TLBO; moreover, TLBO could
be easily stuck in local optima and stagnates in the plateau for
longer time. Even though TLBO jumps out of local minima
for several times, it is pity that TLBO cannot find the global
optima within the available time.
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Fig. 6 The convergence curve of objective value J for estimating
Lorenz system with three unknown parameters

Further, we depict the turning curves for parameter c in
Fig. 5. It is obvious that searching pattern of TLBO in Fig.
5 is more or less like that manifesting in Fig. 4. On the other
side, TLBO-SM rapidly experiences its first premature con-
vergence, whereas it promptly finds its best value after very
short stagnation.

Finally, we demonstrate the convergence curves of objec-
tive value J for estimating Lorenz system with three
unknown parameters by TLBO and TLBO-SM, respectively.
As observed in Fig. 6, TLBO stagnates in different plateaus
for several times, each time it needs to travel for a long time
so as to jump from the current localminima. However, TLBO
cannot find the global optima within the given computational
budget. Yet, TLBO-SM rapidly meets with its first premature
convergence, whereas it promptly jumps out of the plateau,
and finds the global optima by going through about 500 func-
tion evaluation.

From the viewpoint of accuracy (effectiveness) and rate
of convergence (efficiency), TLBO-SM possesses high-
performance searching competence, which could be ascribed
to the fact that combining the different features from TLBO
(more explorative) and Nelder–Mead simplex algorithm
(more exploitative) in a complementary manner could bring
about more effective and efficient optimization approach. In
specific, the TLBO-SM hybrid could be materialized in the
organized formof diversified searching operators, e.g., teach-
ing, learning, and competing operations from TLBO, as well

as the reflecting, expanding, contracting, and shrinking oper-
ators from Nelder–Mead simplex algorithm.

7 Statistical analysis

To show the statistical significance of the comparative results
among the algorithms covered in this study, we conduct non-
parametric pairwise comparisons (Sign test and Wilcoxon
test) and multiple comparisons (Friedman’s rank test and
Holm post hoc procedure) on the results achieved by TLBO,
I-TLBO, M-TLBO, PSO, GA, QEA and our proposed
TLBO-SMfor parameter estimation of nonlinear chaotic sys-
tem.

7.1 Pairwise comparisons

We first perform two prevailing pairwise statistical tests,
i.e., Sign test and Wilcoxon test (Derrac et al. 2011; Rao
and Patel 2013d) to demonstrate the performance difference
between any pair of algorithms in an intuitive way. In the
above statistical tests, the average performances of multiple
independent running for each algorithm on every problem
are used. In our study, seven algorithms (i.e., TLBO, PSO,
GA,QEA, TLBO-SM, I-TLBO andM-TLBO) are utilized to
solve seven-parameter estimation problems in total, includ-
ing three one-dimensional parameter estimation problems,
three two-dimensional parameter estimation problems, and
one three-dimensional parameter estimation problem.

Bymeans of Sign test, the average performance of TLBO-
SM is compared separately with each algorithm, the results
of which are summarized in Table 6. Wins (Loses) count
the times when TLBO-SM performs superior (inferior) to
its counterpart algorithm in the criterion of Average. The
detected difference indicates that TLBO-SM outperforms
TLBO, GA, and QEA with a significance level of 0.05.

Furthermore, compared with Sign test, a more power-
ful pairwise test tool, Wilcoxon test (Derrac et al. 2011) is
utilized which could take into consideration the degree of
difference among searching performances. Specifically, the
difference between two algorithms will be ranked according
to its absolute value among all test instances (in our study,
7 instances). The sum of ranks that TLBO-SM is superior
(inferior) to other algorithms is indicated by R+ (R−) in
Table 7.

Table 6 Result of sign test
TLBO-SM TLBO PSO (He

et al. 2007)
GA (Dai et al.
2002)

QEA (Wang
and Li 2010)

I-TLBO M-TLBO

Wins (+) 7 5 7 7 4 4

Loses (−) 0 2 0 0 3 3

Detected differences 0.05 – 0.05 0.05 – –
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Table 7 Result of Wilcoxon’s test

Comparison R+ R− p value

TLBO-SM versus TLBO 28 0 0.018

TLBO-SM versus PSO 25 3 0.063

TLBO-SM versus GA 28 0 0.018

TLBO-SM versus QEA 28 0 0.018

TLBO-SM versus I-TLBO 22 6 0.176

TLBO-SM versus M-TLBO 22 6 0.176

As observed from Table 7, the p values that TLBO-SM
performs better than TLBO, GA, and QEA are at signifi-
cance level of 0.05, and better than PSO at significance level
of 0.1. Though the p values of Wilcoxon test cannot support
that TLBO-SM outperforms I-TLBO or M-TLBO in statis-
tical means, TLBO-SM performs better as the complexity of
problem increases (with more parameters to be estimated,
depicted from Table 5).

7.2 Multiple comparisons

To make up the imperfection resulting from simple pairwise
test in which the evaluation result between one pair of algo-

rithms is uncorrelated with other algorithms, we implement
multiple comparisons tests (Derrac et al. 2011) to analyze
the results achieved by various algorithms jointly. Friedman
test is often used to identify the existence of differences in
average performance among a group of algorithms. The null
hypothesis H0 is that there is no significant difference among
algorithms, while the alternative hypothesis H1 indicates
the presence of significant differences. Table 8 indicates the
results of Friedman test for all the algorithms involved in our
study, including the rank of the performance for each algo-
rithm, Friedman test statistic, critical value and p value. The
null hypothesis is rejected since p value is less than signifi-
cance level 0.05, which suggests that there exist significant
differences among the algorithms.

To go a step further, we conduct Holm post hoc test (Patel
and Savsani; Derrac et al. 2011) which considers comparison
between a control method and a set of counterpart algorithms
(1×N comparisons) or between all the algorithms with each
algorithm as a control method (N × N comparisons). Table
9 lists the adjusted p values calculated by Holm procedure
for multiple comparisons among all algorithms. As observed
fromTable 9 that the first 7 adjusted p values are<0.1, mean-
while the first 4 adjusted p values are <0.05, we conclude
that the null hypothesis can be rejected at the correspond-

Table 8 Friedman rank test for
all parameter estimation
problems

Algorithm One-dimensional
estimation problem

Two-dimensional
estimation problem

Three-dimensional
estimation problem

Overall
rank

a b c a, b a, c b, c a, b, c

TLBO 7 6 6 5 5 5 4 38

PSO 5 1 1 2 2 4 5 20

GA 5 7 7 7 7 7 7 47

QEA 5 5 5 6 6 6 6 39

TLBO-SM 3 4 4 1 1 1 1 15

I-TLBO 1 3 2 3 4 2 2 17

M-TLBO 2 2 3 4 3 3 3 20

Number of observations: 49 Number of algorithms: 7 Number of problems: 7

sum of squares of ranks: 132.4 Friedman test statistic: 30.6122 Degree of freedom: 6

Critical value: 12.59 p value: 0.000

Conclusion: The data have not identical effects (H0 is rejected)

Table 9 Adjusted p values for multiple comparisons (N × N comparison) among all algorithms

Algorithmsa Adjusted p value Algorithmsa Adjusted p value Algorithmsa Adjusted p value

3–5 0.001580726 1–6 0.131246758 5–7 1

3–6 0.004120084 2–4 0.243634778 2–5 1

3–7 0.015895915 4–7 0.243634778 6–7 1

2–3 0.015895915 1–7 0.285477016 2–6 1

4–5 0.050753005 1–2 0.285477016 5–6 1

1–5 0.070944133 1–3 1 1–4 1

4–6 0.097392866 3–4 1 2–7 1

a1-TLBO, 2-PSO, 3-GA, 4-QEA, 5-TLBO-SM, 6-I-TLBO, 7-M-TLBO
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Table 10 Adjusted p values for multiple comparisons (1× N compar-
ison) among all algorithms (TLBO-SM as the control method)

Algorithmsa Adjusted p value

5–3 0.000451636

5–4 0.014927354

5–1 0.017736033

5–2 1

5–7 1

5–6 1

a1-TLBO, 2-PSO, 3-GA, 4-QEA, 5-TLBO-SM, 6-I-TLBO, 7-M-TLBO

ing significance levels which suggests that the performances
between those algorithms are significantly different. Table
10 shows the adjusted p value with TLBO-SM as the control
method, from which the improvement of TLBO-SM over
GA, QEA and TLBO can be confirmed at the significance
level of 0.05.

8 Conclusions

Identification of chaotic systems with unknown parameters
is the subject of substantial and active research field. Over
the decades, the challenges brought about by this problem
have led to the rising number of researches, as well as led
to the pressing needs for new efforts in dealing with the
grand challenges by estimation of nonlinear chaotic systems.
After performing a concise review on the state-of-the-art
methodology for estimating chaotic systems, we found there
has been a lack of research studies that concentrate on
teaching–learning-based optimization (TLBO) for system
identification to date, let alone the parameter estimation for
chaos systems. The objective of this investigate is explicitly
set out for fulfilling this role.

The preliminary analysis was conducted by applying
TLBO to the estimation of chaotic systems with unknown
parameters, which revealed that TLBO often risked getting
prematurely stuck in local optimum despite its global fast
coarse search capability. Inspired by the research work in
memetic algorithms which have materialized in the form
of hybridization between the population-based search and
refinement procedures, we proposed a new hybrid optimiza-
tion algorithm coined as TLBO-SM by incorporating a local
refinement method (Nelder–Mead simplex algorithm) into
the population-basedmetaheuristic TLBO.As observed from
simulation results togetherwith the comparisonwith state-of-
the-art metaheuristics in literature, including particle swarm
optimization, genetic algorithm, and quantum-inspired evo-
lutionary algorithm, TLBO-SM succeeded in solving the
parameter identification problem.This could be credited, first
to that multi-individual stochastic parallel search of TLBO

provides better coverage and exploration of the searching
domain; second to that the fine (local) searching ability
has been greatly enhanced by incorporating the local search
operators fromNelder–Mead simplex algorithm, e.g., reflect-
ing, expanding, contracting, and shrinking; third to that the
information has been efficiently exchanged and utilized by
both counterpart algorithms. In this regard, TLBO provides
high-quality initial guess points to Nelder–Mead simplex
algorithm which is sensitive dependent on the initial starting
points, meanwhile the solutions generated by Nelder–Mead
simplex algorithm through fine exploitation would be fed
back into TLBO system as the new best solution which offers
the population more explorative stimulants.

We hope the proposed methodology could serve as a vital
parameter estimation method for other systems, e.g., phys-
ical, social and economic systems (Ginsburgh and Keyzer
2002; Liu et al. 2012). Our future work will investigate the
performances of TLBO-SM on such systems. Furthermore,
wewant to designTLBO-based algorithm formulti-objective
optimization problems (Jiang et al. 2014), aswell as to design
TLBO-based feature selection algorithm to big data (Zhai
et al. 2014).
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