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Abstract Quantum information has suggested new forms of
quantum logic, called quantum computational logics, where
meanings of sentences are represented by pieces of quantum
information (generally, density operators of some Hilbert
spaces), which can be stored and transmitted by means of
quantum particles. This approach can be applied to a seman-
tic characterization of epistemic logical operations, which
may occur in sentences like “At time t′ Bob knows that at
time t Alice knows that the spin-value is up”. Each epis-
temic agent (say, Alice, Bob,…) has a characteristic truth
perspective, corresponding to a particular orthonormal basis
of the Hilbert spaceC

2. From a physical point of view, a truth
perspective can be associated with an apparatus that allows
one to measure a given observable. An important feature
that characterizes the knowledge of any agent is the amount
of information that is accessible to him/her (technically, a
special set of density operators, which also represents the
internal memory of the agent in question). One can prove
that interesting epistemic operations are special examples of
quantum channels, which generally are not unitary. The act
of knowing may involve some intrinsic irreversibility due to
possible measurement procedures or to a loss of information
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about the environment.We also illustrate some relativistic-
like effects that arise in the behavior of epistemic agents.

Keywords Quantum logic ·Quantumoperations ·Epistemic
structures

1 Introduction

Quantum information has recently suggested new problems
and new investigations in logic. An interesting example
concerns an abstract theory of epistemic logical operations
(like “to know”) developed in a Hilbert space environment
(Beltrametti et al. 2012a, b). Most standard approaches to
epistemic logics have proposed a quite strong characteriza-
tion of epistemic operations. In such frameworks, knowledge
is generally modeled as a potential rather than an actual
knowledge. Accordingly, a sentence like “Alice knows that
the spin-value in the x-direction is up” turns out to have
the meaning “Alice could know” rather than “Alice actually
knows”. A consequence of these theories is the unrealis-
tic phenomenon of logical omniscience according to which
wheneverAlice knows a given sentence, thenAlice knows all
the logical consequences thereof. Hence, for instance, know-
ing the axioms of Euclidean geometry should imply knowing
all the theorems of the theory.

Amore realistic logical theory of knowledge can be devel-
oped in the framework of quantum computational logics
Dalla Chiara et al. (2005), which are new forms of quan-
tum logic suggested by the theory of quantum logical gates
in quantum computation. The basic ideas that underlie the
semantic characterization of these logics can be sketched as
follows. Pieces of quantum information (mathematically rep-
resented by density operators of convenient Hilbert spaces)
are regarded as possiblemeanings for the sentences of a given
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formal language. At the same time, the basic logical connec-
tives of this language are interpreted as particular quantum
logical gates: unitary quantum operations that transform den-
sity operators in a reversible way. Accordingly, any sentence
can be imagined as a synthetic logical description of a quan-
tum circuit.

Is it possible and interesting to describe logical epistemic
operations (say, “At time t Alice knows”) as a special kind
of quantum operation? We give a positive answer to this
question. The intuitive idea is the following: whenever ρ rep-
resents a piece of quantum information (for instance the qubit
|1〉), the operation Kat (say, “At time t Alice knows”) trans-
forms ρ into another piece of quantum information Katρ,
which lives in the same space of ρ and asserts that “At time
t Alice knows ρ”. Of course, generally, Katρ and ρ will be
different density operators. On this basis, one can study the
behavior of nested epistemic operations, like “At time t′ Bob
knows that at time t Alice knows ρ” (Kbt′Katρ).

Like any quantum information, also epistemic pieces
of information (say, Katρ) may be true or false or inde-
terminate, where truth values are defined in terms of a
natural notion of quantum probability. Conventionally, one
can assume that the two elements |1〉 and |0〉 of the canonical
orthonormal basis of the Hilbert space C

2 represent in this
framework the truth values, truth and falsity. Accordingly
(by application of the Born rule), the probability of being
true for a generic qubit |ψ〉 = a0|0〉+a1|1〉 will be the num-
ber p(|ψ〉) = |a1|2. The definition of Born-like probabilities
can be canonically extended to all density operators, living
in any product space C

2 ⊗ · · · ⊗ C
2

︸ ︷︷ ︸

n-times

.

The choice of an orthonormal basis for the space C
2 is,

obviously, amatter of convention.One can consider infinitely
many bases that are determined by the application of a unitary
operator T to the elements of the canonical basis. From an
intuitive point of view, we can think that the operator T gives
rise to a change of the truth perspective. While the canonical
truth perspective is identified with the pair of bits |1〉 and |0〉,
in the T-truth perspective truth and falsity are identified with
the two qubitsT|1〉 andT|0〉, respectively. In this framework,
it is not strange to guess that different epistemic agents may
have different truth perspectives, corresponding to different
ideas of truth and falsity.

From a physical point of view, each truth perspective can
be naturally regarded as associated to a physical apparatus
that allows one to measure a given observable. As an exam-
ple, consider a source emitting a pair of photons correlated in
polarization in such a way that both photons have the same
polarization (say, the horizontal polarization |H〉 or the ver-
tical polarization |V 〉). Suppose that the two photons are in
the entangled state

|ψ〉 = a|H, H〉 + b|V, V 〉

(with |a|2 + |b|2 = 1). The orthonormal basis B =
{|H〉, |V 〉} represents here a particular truth perspective. Let
us refer to an observer equipped with a polarizer that detects
45◦ and 135◦ polarized photons. The same state |ψ〉 will be
represented by the observer fromadifferent truth perspective,
corresponding to the orthonormal basis B ′ = {|45〉, |135〉}.
In fact, by applying the transformation

|H〉 = 1√
2
(|45〉 − |135〉); |V 〉 = 1√

2
(|45〉 + |135〉),

the observer will describe the state |ψ〉 as

|ψ〉 = a + b

2
(|45, 45〉 + |135, 135〉)

−a − b

2
(|45, 135〉 + |135, 45〉).

Notice that a truth perspective change gives rise to a different
description of one and the same physical state |ψ〉.

An important feature that characterizes the knowledge of
any agent is represented by the amount of information that
is accessible to him/her. Technically, the epistemic domain
of an agent can be identified with a special set of density
operators. From an intuitive point of view, this set can be
regarded as the set of pieces of information that our agent is
able to understand and to memorize. The limits of epistemic
domains can be used to avoid the unpleasant phenomenon of
logical omniscience. One can prove that epistemic operations
are not generally unitary. From an intuitive point of view, the
act of knowing seems to involve some intrinsic irreversibil-
ity due to possible measurement procedures or to a loss of
information about the environment.

In Sect. 1, we will see how quantum channels are deeply
connected with epistemic operations: special examples of
irreversible quantum operations that can be used to reach
the information stored by density operators. Finally, we will
also illustrate some relativistic-like effects that arise in the
behavior of epistemic agents.

An abstract study of epistemic operations in a Hilbert
space environment may have a double interest:

1. from a logical point of view, such analysis shows how
“thinking in a quantum-theoretic way” can contribute to
overcome some crucial difficulties of standard epistemic
logics.

2. Fromaphysical point of view, this analysis stimulates fur-
ther investigations about possible correlations between
the irreversibility of quantum operations and the kind
of “jumps” that seem to characterize acts of knowledge,
both in the case of human and of artificial intelligence.
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2 Truth perspectives and quantum logical gates

The general mathematical environment is the n-fold tensor
product of the Hilbert space C

2:

H(n) := C
2 ⊗ · · · ⊗ C

2
︸ ︷︷ ︸

n-times

,

where all pieces of quantum information live. The elements
|1〉 = (0, 1) and |0〉 = (1, 0) of the canonical orthonormal
basis B(1) of C

2 represent, in this framework, the two clas-
sical bits, which can be also regarded as the canonical truth
values, truth and falsity, respectively. The canonical basis of
H(n) is the set

B(n) =
{

|x1〉 ⊗ · · · ⊗ |xn〉 : |x1〉, . . . , |xn〉 ∈ B(1)
}

.

As usual, we will briefly write |x1, . . . , xn〉 instead of |x1〉⊗
· · ·⊗|xn〉. By definition, a quregister is a unit vector ofH(n).
Quregisters thus correspond to pure states, namely to max-
imal pieces of information about the quantum systems that
are supposed to store a given amount of quantum informa-
tion. We shall also make reference tomixtures of quregisters,
represented by density operators ρ ofH(n). Of course, qureg-
isters correspond to special cases of density operators. We
will denote by D(H(n)) the set of all density operators of
H(n), while D = ⋃

n

{

D(H(n))
}

will represent the set of all
possible pieces of quantum information.

As observed in Sect. 1, from an intuitive point of view,
a basis change in C

2 can be regarded as a change of the
truth perspective.While in the classical case, the truth values,
truth and falsity, are identified with the two classical bits |1〉
and |0〉, assuming a different basis corresponds to a different
idea of truth and falsity. Since any basis change in C

2 is
determined by a unitary operator, we can identify a truth
perspective with a unitary operator T of C

2. We will write:

|1T〉 = T|1〉; |0T〉 = T|0〉

and assume that |1T〉 and |0T〉 represent, respectively, the
truth values, truth and falsity, of the truth perspective T. The
canonical truth perspective is, of course, determined by the
identity operator I of C

2. We will indicate by B(1)
T the ortho-

normal basis determined by T, while B(1)
I will represent the

canonical basis.
Any unitary operator T ofH(1) can be naturally extended

to a unitary operator T(n) of H(n) (for any n ≥ 1):

T(n)|x1, . . . , xn〉 = T|x1〉 ⊗ · · · ⊗ T|xn〉.

Accordingly, any choice of a unitary operator T of H(1)

determines an orthonormal basis B(n)

T for H(n) such that:

B(n)

T =
{

T(n)|x1, . . . , xn〉 : |x1, . . . , xn〉 ∈ B(n)
I

}

.

InsteadofT(n)|x1, . . . , xn〉wewill alsowrite |x1T , . . . , xnT 〉.
The elements of B(1)

T will be called the T-bits of H(1),

while the elements of B(n)

T will represent the T-registers of
H(n).

On this ground, the notions of truth, falsity and probability
with respect to any truth perspective T can be defined in a
natural way.

Definition 1 (T-true and T-false registers)

– |x1T , . . . , xnT 〉 is a T-true register iff |xnT 〉 = |1T〉;
– |x1T , . . . , xnT 〉 is a T-false register iff |xnT 〉 = |0T〉.

In other words, the T-truth value of a T-register (which
corresponds to a sequence of T-bits) is determined by its last
element.1

Definition 2 (T-truth and T-falsity)

– The T-truth of H(n) is the projection operator TP(n)
1 that

projects over the closed subspace spanned by the set of all
T- true registers;

– the T-falsity ofH(n) is the projection operator TP(n)
0 that

projects over the closed subspace spanned by the set of all
T- false registers.

In this way, truth and falsity are dealt with asmathematical
representatives of possible physical properties. Accordingly,
by applying the Born rule, one can naturally define the prob-
ability value of any density operator with respect to the truth
perspective T.

Definition 3 T-(Probability) For any ρ ∈ D(H(n)),

pT(ρ) := Tr(TP(n)
1 ρ),

where Tr is the trace functional.

We interpret pT(ρ) as the probability that the information ρ

satisfies the T-truth.
In the particular case of qubits, we will obviously obtain:

pT(a0|0T〉 + a1|1T〉) = |a1|2.
1 As we will see, the application of a classical reversible gate to a
register |x1, . . . , xn〉 transforms the (canonical) bit |xn〉 into the target
bit |x ′

n〉, which behaves as the final truth value. This justifies our choice
in Definition 1.
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Two truth perspectivesT1 andT2 are called probabilistically
equivalent iff for any density operator ρ, pT1(ρ) = pT2(ρ).

For any choice of a truth perspective T, the set D of all
density operators can be pre-ordered by a relation that is
defined in terms of the probability function pT.

Definition 4 (Preorder) ρ 	T σ iff pT(ρ) ≤ pT(σ ).

This pre-order relation plays an important role in the
semantics of quantum computational logics. The logical con-
sequence relation between sentences is defined in terms of
	T (see Sect. 4).

As is well known, quantum information is processed by
quantum logical gates (briefly, gates): unitary operators that
transform quregisters into quregisters in a reversible way.

In this article, we will consider some well-known quan-
tum gates (Dalla Chiara 2015): the negation NOT(n), the
Toffoli gate T(n,m,p), the controlled-not gate XOR(n,m), the

Hadamard-gate
√
I

(n)
and the square root of the negation√

NOT
(n)

that play a special role both from the computational
and the logical point of view.

All gates can be naturally transposed from the canonical
truth perspective to any truth perspective T. Let G(n) be any
gate defined with respect to the canonical truth perspective.
The twin-gate G(n)

T , defined with respect to the truth perspec-
tive T, is determined as follows:

G(n)

T := T(n)G(n)T(n)†,

where T† is the adjoint of T.
AllT-gates, defined onH(n), can be canonically extended

to the set of all density operators of H(n). Let GT be any
gate defined on H(n). The corresponding unitary quantum
operation DGT is defined as follows for any ρ ∈ D(H(n)):

DGTρ = GTρ G†
T.

It is interesting to consider a convenient notion of dis-
tance between truth perspectives. As is well known, different
definitions of distance between vectors can be found in the
literature. For our aims, it is convenient to adopt the Fubini
study definition of distance between two qubits.

Definition 5 (The Fubini study distance) Let |ψ〉 and |ϕ〉 be
two qubits.

d(|ψ〉, |ϕ〉) = 2

π
arccos |〈ψ |ϕ〉|.

This notion of distance satisfies the following conditions:

1. d(|ψ〉, |ϕ〉) is a metric distance;
2. |ψ〉 ⊥ |ϕ〉 ⇒ d(|ψ〉, |ϕ〉) = 1;

3. d(|1〉, |1Bell〉) = 1
2 , where |1〉 is the canonical truth,

while |1Bell〉 = √
I

(1)|1〉 =
(

1√
2
,− 1√

2

)

represents the

Bell-truth (which corresponds to a maximal uncertainty
with respect to the canonical truth).

On this ground, one can naturally define the epistemic
distance between two truth perspectives.

Definition 6 (Epistemic distance) LetT1 andT2 be two truth
perspectives.

dEp(T1,T2) = d(|1T1〉, |1T2〉).

In other words, the epistemic distance between the truth
perspectivesT1 andT2 is identifiedwith the distance between
the two qubits that represents the truth value truth in T1 and
in T2, respectively.

3 Epistemic operations and epistemic structures

We will now introduce the concepts of (logical) epistemic
operation and of epistemic structure.

Definition 7 (Logical) epistemic operation and strong epis-
temic operation) A (logical) epistemic operation of the space
H(n) with respect to the truth perspective T is a map

E(n)

T : B(H(n)) �→ B(H(n)),

where B(H(n)) is the set of all bounded operators of H(n).
The following conditions are required:

1. E(n)

T is associated with an epistemic domain EpD(E(n)

T ),
which is a subset of D(H(n));

2. for any ρ ∈ D(H(n)), E(n)

T ρ ∈ D(H(n));

3. ∀ρ ∈ D(H(n)) : ρ /∈ EpD(E(n)

T ) ⇒ E(n)

T ρ = ρ0

(where ρ0 is a fixed density operator of D(H(n))).

An epistemic operation E(n)

T is called strong iff E(n)

T ρ 	T ρ,
for any ρ ∈ EpD(ET) (where 	T is the preorder relation
defined by Definition 4).

As expected, an intuitive interpretation of E(n)

T ρ is the
following: “the piece of information ρ is known/believed”.
The strong epistemic operation described by E(n)

T is limited
by a given epistemic domain (which is intended to represent
the information accessible to a given agent, or also his/her
memory, relatively to the space H(n)). Whenever a piece of
information ρ does not belong to the epistemic domain of
E(n)

T , then E(n)

T ρ collapses into a fixed element ρ0 (which
may be identified, for instance, with the maximally uncer-
tain information 1

2n I
(n) or with the T-falsity 1

2n−1
TP(n)

0 ). At
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Quantum approach to epistemic semantics 1385

the same time, whenever ρ belongs to the epistemic domain
of E(n)

T , it seems reasonable to assume that the probability

values of ρ and E(n)

T ρ are correlated: the probability of the
quantum information asserting that “ρ is known/believed”
should always be less than or equal to the probability of ρ.
Hence, in particular, we have:

pT(E(n)

T ρ) = 1 ⇒ pT(ρ) = 1.

But generally, not the other way around! In other words,
pieces of quantum information that are certainly known are
certainly true (with respect to the truth perspective in ques-
tion).

A strong epistemic operation E(n)

T is called non-trivial

iff for at least one density operator ρ ∈ EpD(E(n)

T ),

pT(E(n)

T ρ) < pT(ρ). Notice that strong epistemic opera-
tions do not generally preserve pure states (Beltrametti et al.
2012a, 2014).

One can prove that non-trivial epistemic operations cannot
be represented by unitary quantum operations, being gener-
ally irreversible (Beltrametti et al. 2012a). Their behavior is,
in a sense, similar to the behavior ofmeasurement operations.

At the same time, some interesting epistemic operations
can be represented by the more general notion of quantum
channel defined below.2

Definition 8 (Quantum channel)3 A quantum channel on
H(n) is a linear map E (n) from B(H(n)) to B(H(n)), such that
for some set I of indices there exists a set {Ei }i∈I of elements
of B(H(n)) satisfying the following conditions:

1.
∑

i E
†
i Ei = I(n);

2. ∀A ∈ B(H(n)) : E (n)(A) = ∑

i Ei AE
†
i .

A set {Ei }i∈I such that
∑

i E
†
i Ei = I(n) is usually called

a system of Kraus operators. One can prove that quantum
channels are trace preserving, and hence transform density
operators into density operators.

Of course, unitary quantum operations DG(n) are special
cases of quantum channels, for which {Ei }i∈I = {

G(n)
}

. As
expected, quantum channels can be defined with respect to
any truth perspective T.

2 Quantum channels represent particular cases of quantum operations.
The concept of quantum operation is a quite general notion that permits
us to represent at the same time symmetry transformations of quan-
tum states, effects and measurements. In particular, it has been shown
that for open systems, interacting with an environment, the Schrödinger
equation should be generalized to a superoperator equation, describing
how an initial pure state evolves into a mixed state, transformation that
has the form of a quantum operation. See, for instance, Chiribella et al.
(2008), Fan and Hu (2009).
3 This definition is based on the so-called Kraus first representation
theorem. See Kraus (1983).

Wedefinenowsomepossible properties of epistemic oper-
ations that have a significant logical interest. One is dealing
with strong conditions that are generally violated in the real
use of our intuitive notion of knowledge.

Definition 9 (Introspection, consistency and monotonicity)
A strong epistemic operationE(n)

T ofH(n)(with respect to the
truth perspective T) is called

1. positively introspective iff for any ρ ∈ D(H(n)):

pT(E(n)

T ρ) ≤ pT(E(n)

T E(n)

T ρ).

In other words, whenever we know/believe we know/
believe that we know/believe.

2. Negatively introspective iff for any ρ ∈ D(H(n)):

pT(DNOTTE
(n)

T ρ) ≤ pT(E(n)

T
DNOTTE

(n)

T ρ).

In other words, whenever we do not know/believe we
know/believe that we do not know/believe.

3. Probabilistically consistent iff for any ρ ∈ D(H(n)):

pT(E(n)

T ρ) ≤ pT(DNOTTE
(n)

T
DNOTTρ).

In other words,whenever we know/believe an informa-
tion, we do not know/believe its negation.

4. monotonic iff for any ρ, σ ∈ D(H(n)):

pT(ρ) ≤ pT(σ ) ⇒ pT(E(n)

T ρ) ≤ pT(E(n)

T σ).

Using the concepts defined above,we canfinally introduce
the notion of epistemic quantum computational structure.
From an intuitive point of view, an epistemic quantum com-
putational structure can be described as a system consisting
of a set of epistemic agents evolving in time [where time is
dealt with as a finite sequence of instants (t1, . . . , tn)]. Each
agent a is characterized by a truth perspective Ta, which
(for the sake of simplicity) is supposed to be constant in
time. At any time t and for any Hilbert space H(n), each
agent is associated with a strong epistemic operation E(n)

Ta ,at
,

whose epistemic domain represents the amount of informa-
tion that our agent is able to understand and to memorize at
that particular time (relatively to the space H(n)). When ρ

belongs to the epistemic domain of E(n)

Ta ,at
, then the number

pTa (E(n)

Ta ,at
ρ) represents the probability that agent a at time

t knows/believes the quantum information ρ.

Definition 10 (Epistemic quantum computational structure)
An epistemic quantum computational structure is a system

S = (T, Ag, Tr Persp, Inf, U, B, K),

where:
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1. T is a time sequence (t1, . . . , tn).
2. Ag is a set of epistemic agents where each agent a is

represented as a function of the time t in T . We will write
at instead of a(t).

3. Tr Persp is a map that assigns to any agent a a truth
perspective Ta (the truth perspective of a).

4. Inf is a map that assigns to any at and to any n ≥ 1 a
map, called (logical) information operation

Inf (n)

Ta ,at
: B(H(n)) �→ B(H(n)),

which is an epistemic operation with respect to the truth
perspective Ta (the truth perspective of agent a).

5. U is a map that assigns to any at and to any n ≥ 1 a map,
called (logical) understandig operation

U(n)

Ta ,at
: B(H(n)) �→ B(H(n)),

which is an epistemic operation with respect to the truth
perspective Ta.

6. B is a map that assigns to any at and to any n ≥ 1 a map,
called (logical) belief operation

B(n)

Ta ,at
: B(H(n)) �→ B(H(n)),

which is a strong epistemic operation with respect to the
truth perspective Ta.

7. K is a map that assigns to any at and to any n ≥ 1 a map,
called (logical) knowledge operation

K(n)

Ta ,at
: B(H(n)) �→ B(H(n)),

which is a strong epistemic operation with respect to the
truth perspective Ta. The following conditions are required:

(i) K(n)

Ta ,at
ρ 	T B(n)

Ta ,at
ρ, for any ρ ∈ EpD(K(n)

Ta ,at
);

(ii) B(n)

Ta ,at
ρ 	T U(n)

Ta ,at
ρ, for any ρ ∈ EpD(B(n)

Ta ,at
)

(where 	T is the preorder relation defined by Definition 4);
(iii) EpD(K(n)

Ta ,at
) ⊆ EpD(B(n)

Ta ,at
) ⊆ EpD(U(n)

Ta ,at
)

⊆ EpD(Inf (n)

Ta ,at
).

From an epistemic point of view, an agent can be certain
to have an uncertain information and vice versa.

4 Quantum noise channels as epistemic operations

We will now illustrate some examples of strong epistemic
operations that may be interesting from a physical point of
view. One is dealing with special cases of quantum noise
channels, which can be, generally, obtained from some uni-
tary operators, tracing out the ancillary qubits that describe
the environment.

Let α, β, γ be complex numbers such that |α|2 + |β|2 +
|γ |2 ≤ 1. Consider the following system of Kraus operators:

E0 = √

1 − |α|2 − |β|2 − |γ |2 I
E1 = |α|σx
E2 = |β|σy

E3 = |γ |σz
(where σx , σy , σz are the three Pauli matrices).
Define α,β,γ E (1) as follows for any ρ ∈ D(C2):

α,β,γ E (1)ρ =
3

∑

i=0

Ei ρ E†
i .

We have:

α,β,γ E (1)ρ = (1 − |α|2 − |β|2 − |γ |2)ρ + |α|2σxρσx

+|β|2σyρσy + |γ |2σzρσz .

One can prove that for any choice of α, β, γ (such that
|α|2 + |β|2 + |γ |2 ≤ 1), the map α,β,γ E (1) is a quantum
channel of the space C

2.
Let us refer to the Bloch-sphere corresponding toD(C2).

Any map α,β,γ E (1) induces the following vector-
transformation (the sphere is deformed into an ellipsoid cen-
tered at the origin):

⎛

⎝

x
y
z

⎞

⎠ �→
⎛

⎝

(1 − 2|β|2 − 2|γ |2) x
(1 − 2|α|2 − 2|γ |2) y
(1 − 2|α|2 − 2|β|2) z.

⎞

⎠

For particular choices of α, β and γ , one obtains some
special cases of quantum channels.

– For α = β = γ = 0, one obtains the identity operator.
– For β = γ = 0, one obtains the bit-flip channel αBF (1)

that flips the two canonical bits (represented as the pro-
jection operators IP(1)

0 and IP(1)
1 ) with probability |α|2:

IP(1)
0 �→ (1 − |α|2) IP(1)

0 + (|α|2) IP(1)
1 ;

IP(1)
1 �→ (1 − |α|2) IP(1)

1 + (|α|2) IP(1)
0 .

The sphere is mapped into an ellipsoid with x as symme-
try axis:

– For α = γ = 0, one obtains the bit-phase-flip channel
βBPF (1) that flips both bits and phase with probability
|β|2. The sphere is mapped into an ellipsoid with y as
symmetry axis.

– For α = β = 0, one obtains the phase-flip channel
γPF (1) that flips the phase with probability |γ |2. The
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Fig. 1 The amplitude damping channel

sphere is mapped into an ellipsoid with z as symmetry-
axis.

– For |α|2 = |β|2 = |γ |2 = p
4 , one obtains the depolar-

izing channel pD(1). If p = 1, the polarization along
any direction is equal to 0. The sphere is contracted by a
factor 1− p and the center of the sphere is a fixed point.

Another interesting example is the generalized amplitude
damping AD(1) induced by the following system of Kraus
operators:

E0 = √
λ

(

1 0
0

√
1 − p

)

E2 = √
1 − λ

(√
1 − p 0

0 1

)

E1 = √
λ

(

0
√
p

0 0

)

E3 = √
1 − λ

(

0 0√
p 0

)

,

where λ, p ∈[0,1].
This channel determines the following transformation on

the Bloch sphere (see Fig. 1):

⎛

⎝

x
y
z

⎞

⎠ �→
⎛

⎝

√
1 − p x√
1 − p y

(1 − p) z + p(2λ − 1)

⎞

⎠ .

The channelswe have considered above have been defined
with respect to the canonical truth perspective I. However,
as expected, they can be naturally transposed to any truth
perspective T. Given E (1) such that E (1)ρ = ∑3

i=0 Ei ρ E†
i ,

the twin channel E (1)
T of E (1) can be defined as follows:

E (1)
T ρ :=

∑

i

TEiT
† ρ TE†

i T
†.

So far, we have only considered quantum channels of the
space C

2. At the same time, any operation E (1)
T (defined on

C
2) can be canonically extended to an operation E (n)

T defined
on the spaceH(n) (for anyn > 1).Consider a density operator
ρ ofH(n) and let Redn(ρ) represent the reduced state of the
n-th subsystemofρ.Wehave:pT(ρ) = Tr(TP(1)

1 Redn(ρ)).
In other words, the T-probability of ρ only depends on the
T-probability of the n-th subsystem of ρ. On this basis, it is
reasonable to define E (n)

T as follows:

E (n)

T = I(n−1) ⊗ E (1)
T .

Notice that, generally, a quantum channel E (n) does not
represent a strong epistemic operation. We may have, for a
ρ (which is supposed to belong to the epistemic domain):

pI(
αBF (1)ρ) � pI(ρ),

against the definition of strong epistemic operation.
At the same time, by convenient choices of the epis-

temic domains, our quantum channels can be transformed
into strong epistemic operations.

Definition 11 (A bit-flip epistemic operation αKBF(n)

T ) Let

α �= 0. Define αKBF(n)

T as follows:

1. EpD(αKBF(n)

T ) ⊆ D = {ρ ∈ D(H(n)) |pT(ρ) ≥ 1
2 }. In

other words, an agent (whose strong epistemic operation
is αKBF(n)

T ) only understands pieces of information that
are not “too far from the truth”.

2. ρ ∈ EpD(αKBF(n)

T ) ⇒ αKBF(n)

T ρ = αBF (n)

T ρ.

Theorem 1 (Dalla Chiara 2015)

(i) Any αKBF(n)

T is a strong epistemic operation. In par-

ticular, αKBF(n)

T is a non-trivial epistemic operation if

there exists at least one ρ ∈ EpD(αKBF(n)

T ) such that

pT(ρ) > 1
2 .

(ii) the set D is the maximal set such that the corresponding
αKBF(n)

T is a strong epistemic operation.

(iii) Let |α|2 ≤ 1
2 and let EpD(αKBF(n)

T ) = D. The follow-

ing closure property holds: for any ρ ∈ D, αKBF(n)

T ρ ∈
D.

In a similar way, one can define strong epistemic opera-
tions that correspond to the phase-flip channel, the bit-phase
flip channel, the depolarizing channel and the generalized
amplitude-damping channel.
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Definition 12 (A phase-flip epistemic operation γKPF(n)

T )

Let γ �= 0. Define γKPF(n)

T as follows:

1. EpD(γKPF(n)

T ) ⊆ D(H(n)).

2. ρ ∈ EpD(γKPF(n)

T ) ⇒ γKPF(n)

T ρ = γPF (n)

T ρ.

Theorem 2 pT(γKPF(n)

T ρ) = pT(ρ), for any ρ ∈ EpD

(γKPF(n)

T ). Hence, γKPF(n)

T is a trivial epistemic operation.

Proof (i)–(ii) Suppose ρ ∈ EpD(γKPF(n)

T ) ⊆ D(H(n)).
Let us consider T†Redn(ρ)T = 1

2 (I + xσx + yσy +
zσz). We have pT(γKPF(n)

T ρ) = Tr(TP(n)
1 (γKPF(n)

T ρ) =
Tr( IP(1)

1

∑

i EiT
† Redn(ρ)TE†

i ) = 1−z
2 = pT(ρ).

Definition 13 (A bit-phase-flip epistemic operation
βKBPF(n)

T ) Let β �= 0. Define βKBPF(n)

T as follows:

1. EpD(βKBPF(n)

T ) ⊆ D = {ρ ∈ D(H(n)) |pT(ρ) ≥ 1
2 }.

2. ρ ∈ EpD(βKBPF(n)

T ) ⇒ βKBPF(n)

T ρ = βBPF (n)

T ρ.

Theorem 3 (i) Any βKBPF(n)

T is a strong epistemic opera-

tion. In particular, βKBPF(n)

T is a non-trivial epistemic

operation if there exists at least oneρ ∈EpD(βKBPF(n)

T )

such that pT(ρ) > 1
2 .

(ii) the set D is the maximal set such that the corresponding
βKBPF(n)

T is a strong epistemic operation.

(iii) Let |β|2 ≤ 1
2 and let EpD(βKBPF(n)

T ) = D. The
following closure property holds: for any ρ ∈ D,
αKBF(n)

T ρ ∈ D.

Proof Similar to the proof of Theorem 1.

Definition 14 (A depolarizing epistemic operation pKD(n)

T )

Let p �= 0. Define pKD(n)

T as follows:

1. EpD(pKD(n)

T ) ⊆ D = {ρ ∈ D(H(n)) |pT(ρ) ≥ 1
2 }.

2. ρ ∈ EpD(pKD(n)

T ) ⇒ pKD(n)

T ρ = pD(n)

T ρ.

Notice that for any truth perspectives T, pD(n)

T = pD(n)
I .

Theorem 4 (i) Any pKD(n)

T is a strong epistemic operation.

In particular,pKD(n)

T is a non-trivial epistemic operation

if there exists at least one ρ ∈ EpD(pKD(n)

T ), such that

pT(ρ) > 1
2 .

(ii) The set D is themaximal set such that the corresponding
pKD(n)

T is a strong epistemic operation.

(iii) Let EpD(pKD(n)

T )= D. Then, for any ρ ∈ EpD

(pKD(n)

T ), we have: pKD(n)

T ρ ∈ EpD(pKD(n)

T ).

Proof (i)–(ii) Suppose ρ ∈ EpD(pKD(n)

T ) ⊆ D. Let us
consider T†Redn(ρ)T = 1

2 (I + xσx + yσy + zσz). We

have pT(pKD(n)

T ρ) = 1−(1−p)z
2 . Hence, pKD(n)

T ρ 	T ρ ⇔
(1 − p)z ≥ z ⇔ z ∈ [−1, 0] ⇔ pT(ρ) ≥ 1

2 . Thus,
pKD(n)

T
is an epistemic operation.
(iii) pT(pKD(n)

T ρ) = 1−(1−p)z
2 ≥ 1

2 , since z ∈ [−1, 0].

Definition 15 (A generalized amplitude-damping epistemic
operation p,λKAD(n)

T ) Let p, λ ∈[0,1]. Define p,λKAD(n)

T as
follows:

1. EpD(p,λKAD(n)

T ) ⊆ AD = {ρ ∈ D(H(n)) |pT(ρ) ≥
1 − λ}.

2. ρ ∈ EpD(p,λKAD(n)

T ) ⇒p,λ KAD(n)

T ρ = p,λAD(n)

T ρ.

Theorem 5 (i) Any p,λKAD(n)

T is a strong epistemic oper-

ation. In particular, p,λKAD(n)

T is a non-trivial epis-
temic operation if there exists at least one ρ ∈ EpD
(p,λKAD(n)

T ) such that pT(ρ) > 1 − λ.
(ii) The set AD is the maximal set such that the correspond-

ing p,λKAD(n)

T is a strong epistemic operation.

(iii) Let EpD(p,λKAD(n)

T ) = AD. Then, for any ρ ∈
EpD(p,λKAD(n)

T ), we have: p,λKAD(n)

T ρ ∈ EpD

(p,λKAD(n)

T ).

Proof (i)–(ii) Suppose ρ ∈ EpD(p,λKAD(n)

T ) ⊆ AD. Let
us consider T†Redn(ρ)T = 1

2 (I + xσx + yσy + zσz).

We have pT(p,λKAD(n)

T ρ) = 1−(1−p)z−p(2λ−1)
2 . Hence,

p,λKAD(n)

T ρ 	T ρ ⇔ (1− p)z+ p(2λ−1) ≥ z ⇔ 2λ−1 ≥
z ⇔ pT(ρ) ≥ 1− λ. Thus, p,λKAD(n)

T is a strong epistemic
operation.
(iii) pT(p,λKAD(n)

T ρ) = 1−(1−p)z−p(2λ−1)
2 ≥ 1 − λ, since

2λ − 1 ≥ z.

The following theorem sums up some interesting proper-
ties of the strong epistemic operations defined above.

Theorem 6 (i) All strong epistemic operations αKBF(n)

T ,
γKPF(n)

T , βKBPF(n)

T , pKD(n)

T are probabilistically con-
sistent.

(ii) All strong epistemic operations p,λKAD(n)

T with λ ≥ 1
2

are probabilistically consistent.
(iii) All strong epistemic operations γKPF(n)

T aremonotonic,
and positively and negatively introspective.

(iv) All strong epistemic operations αKBF(n)

T (with |α|2 ≤
1
2 ),

βKBPF(n)

T (with |β|2 ≤ 1
2 ),

pKD(n)

T , whose epis-
temic domain is a subset of D = {ρ ∈ D(H(n)) |pT(ρ)

≥ 1
2 } are monotonic.
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(v) All strong epistemic operations p,λKAD(n)

T whose epis-
temic domain is a subset of AD={ρ ∈ D(H(n)) |pT(ρ)

≥ 1 − λ} are monotonic.

Proof LetK(n)

T ∈
{

αKBF(n)

T ,γ KPF(n)

T ,β KBPF(n)

T ,p KD(n)

T

}

and suppose thatK(n)

T is induced by the followingKraus oper-
ators:

E0 =
√

1 − |α|2 − |β|2 − |γ |2 I ; E1 = |α|σx ;
E2 = |β|σy; E3 = |γ |σz .

Assume that the fixed element ρ0 of our epistemic opera-
tions is TP(n)

0 . For any ρ, ρ′ ∈ D(H(n)), we can write:
T†Redn(ρ)T = 1

2 (I + xσx + yσy + zσz); T†Redn(ρ′)T =
1
2 (I + x ′σx + y′σy + z′σz).

(i) Let ρ ∈ D(H(n)). We have: ρ /∈ EpD(K(n)

T ) ⇒
pT(K(n)

T ρ) = 0; DNOTTρ /∈ EpD(K(n)

T ) ⇒ pT
(DNOTTK

(n)

T
DNOTTρ) = 1. Otherwise, we obtain:

pT(DNOTTK
(n)

T
DNOTTρ) = Tr( IP(1)

1 NOT(1) ∑

i

(EiNOT(1)T† Redn(ρ)TNOT(1)E†
i )NOT

(1)) =
1−(1−2|α|2−2|β|2)z

2 = pT(K(n)

T ρ). Consequently: pT
(K(n)

T ρ) ≤ pT(DNOTTK
(n)

T
DNOTTρ.

(ii) Similarly.
(iii) By Theorem 2.
(iv) Let ρ, ρ′ ∈ EpD(K(n)

T ). Suppose that |α|2 + |β|2 =
1
2 . Then we have: pT(K(n)

T ρ) = pT(K(n)

T ρ′) = 1
2 .

Otherwise we obtain: pT(K(n)

T ρ) ≤ pT(K(n)

T ρ′) ⇔
1−(1−2|α|2−2|β|2)z

2 ≤ 1−(1−2|α|2−2|β|2)z′
2 ⇔ 1−z

2 ≤
1−z′
2 ⇔ pT(ρ) ≤ pT(ρ′).

(v) Similarly.

Notice that in the general case the monotonicity property
can be violated by strong epistemic operations. In fact, the
following situation is possible:

– ρ 	T σ ;
– ρ ∈ EpD(K(n)

T ); σ /∈ EpD(K(n)

T );

– K(n)

T ρ �T K(n)

T σ .

Generally, the strong epistemic operations αKBF(n)

T ,
βKBPF(n)

T , pKD(n)

T , p,λKAD(n)

T are neither positively intro-
spective nor negatively introspective. Suppose, for example,
that EpD(K(n)

T ) = {K(n)

T
TP(n)

1 , TP(n)
1 }, where

K(n)

T ∈ {αKBF(n)

T , βKBPF(n)

T , pKD(n)

T , p,λKAD(n)

T }.

By definition of K(n)

T , we have for any ρ ∈ EpD(K(n)

T ):

pT(K(n)

T ρ) < pT(ρ). Hence, pT(K(n)

T
TP(n)

1 ) > pT(K(n)

T

K(n)

T
TP(n)

1 ). Thus, K(n)

T is not positively introspective.

Suppose then that EpD(K(n)

T ) = {DNOTTK
(n)

T
TP(n)

0 }.
We have: pT(DNOTTK

(n)

T
TP(n)

0 ) > pT(K(n)

T
DNOTTK

(n)

T
TP(n)

0 ), whereK(n)

T
TP(n)

0 = TP(n)
0 . Thus,K(n)

T is not nega-
tively introspective.

Truth perspectives are, in a sense, similar to different
frames of reference in relativity. Accordingly, one could try
and apply a “relativistic” way of thinking to describe how a
given agent can “see” the logical behavior of another agent.

As expected, the logical behavior of any agent turns out
to depend, in this framework, on two factors:

– his/her idea of truth and falsity;
– his/her choice of the gates that correspond to the basic
logical operations.

Both these factors are, of course, determined by the agent’s
truth perspective T.

As an example, let us refer to two agents Alice and Bob,
whose truth perspectives are TAlice and TBob, respectively.
Let {|1Alice〉, |0Alice〉} and {|1Bob〉, |0Bob〉} represent the sys-
tems of truth values of our two agents. Furthermore, for any
canonical gate DG(n) (defined with respect to the canonical
truth perspective I), let DG(n)

Alice and DG(n)
Bob represent the

corresponding twin-gates for Alice and for Bob, respectively.
According to the rule assumed in Sect. 2, we have:

DG(n)
Alice = D(T

(n)
AliceG

(n)T
(n)†
Alice).

In a similar way in the case of Bob, we will adopt the
following conventional terminology.

– When |1Bob〉 = a0|0Alice〉 + a1|1Alice〉, we will say that
Alice sees that Bob’s truth is a0|0Alice〉 + a1|1Alice〉. In
a similar way, for Bob’s falsity.

– When DG(n)
Alice = D(T

(n)
AliceG

(n)T
(n)†
Alice) and

DG(n)
Bob =

D(T
(n)
BobG

(n)T
(n)†
Bob) = DG(n)

1Alice
(where DG(n) and

DG(n)
1Alice

are canonical gates), we will say that Alice sees

Bob using the gateDG(n)
1Alice

in place of her gateDG(n)
Alice.

– When DG(n)
Alice = DG(n)

Bob we will say that Alice and
Bob see and use the same gate, which represents (in their
truth perspective) the canonical gate DG(n).

On this basis, one can conclude that, generally, Alice sees
a kind of “deformation” in Bob’s logical behavior.

In Dalla Chiara (2015), some examples have been dis-
cussed.

As another insightful example, consider the behavior of
the controlled-not gate described by the following theorem.

123



1390 G. Sergioli, R. Leporini

Theorem 7 Let Ta be the truth perspective of an agent a. If
DXOR(1,1)

Ta
= DXOR(1,1), then Ta = eiθI.

Proof Suppose DXOR(1,1)

Ta
= DXOR(1,1). One can eas-

ily show that: (Ta ⊗ Ta)XOR(1,1) = XOR(1,1)(Ta ⊗ Ta).
Consequently, by standard algebraic calculations we obtain:
Ta = eiθI.

As a consequence, one immediately obtains that two
agents a and b can see and use the sameXOR-gate only if their
truth perspectivesTa andTb are probabilistically equivalent.

Moreover, a relativisticwayof thinking can also be applied
to strong epistemic operations. Alice sees Bob using a phase-
flip channel instead of a bit-flip channel as strong epistemic
operation. Similarly, someother agent seesBob’s strong epis-
temic operation acts as a bit-phase-flip channel.

From a logical point of view, examples of epistemic situ-
ations as the one we have here investigated can be formally
reconstructed in the framework of a quantum computational
semantics (see Beltrametti et al. 2012b). Let us briefly recall
the basic ideas of this approach. We consider an epistemic
quantum computational language LEp consisting of:

– atomic sentences;
– logical connectives corresponding to the following gates:
negation, Toffoli, controlled-not, Hadamard and square
root of negation;

– names for epistemic agents (say, Alice, Bob, ...);
– logical epistemic operators, corresponding to (generally
irreversible) epistemic operations.

This language can express sentences like “Alice knows
that Bob does not know that the spin value in the x-direction
is up”. The semantics for LEp provides a convenient notion
of model, whose role is assigning informational meanings to
all sentences. Technically, a model of LEp is defined as a
map Mod that associates to any truth perspective T and to
any sentence α a density operator ρ = ModT(α), living in a
Hilbert spaceHα , whose dimension depends on the linguistic
complexity of α.

On this basis, one can give a natural definition for the
concepts of truth and of logical consequence in terms of the
notions of T-probability (pT) and of T-preorder (	T):

• a sentence α is true with respect to a model Mod and
to a truth perspective T (abbreviated as �Mod,T α) iff
pT(ModT(α)) = 1;

• a sentence β is a logical consequence of a sentence α

(abbreviated as α � β) iff for any model Mod and any
truth perspective T,

ModT(α) 	T ModT(β).

While truth is obviously dependent on the choice of a
truth perspective T, one can prove that the notion of logical
consequence represents an absolute relation that is invariant
with respect to truth perspective changes.

Theorem 8 (Beltrametti et al. 2012b)α � β iff for anymodel
Mod, ModI(α) 	I ModI(β), where I is the canonical truth
perspective.

On this basis one can conclude that:

– Alice and Bob may have different ideas about the logical
connectives, about truth, falsity and probability.

– In spite of these differences, the reasoning rules (which
are determined by the logical consequence relation) are
the same for Alice and for Bob. Apparently, assigning
the same interpretation to the logical connectives is not a
necessary condition to use the same reasoning rules.
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