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Abstract Biometric identification has caused a multitude
of problems in the networking environment, such as the stor-
age of user’s biometric template and the leakage of user’s
privacy, therefore, biometric encryption has been the focus
of the recent studies which are based on Fuzzy Vault, Fuzzy
Commitment, and dynamic key generation. However, due to
fuzzy information inherent biological characteristics, essen-
tially deterministic analysis techniques, Fuzzy Vault, and
Fuzzy Commitment have been accused of stored biomet-
ric templates and short keys. Fuzzy Information Processing
needs suitable technology, such as fuzzy logic, to obtain
better results. In this paper, we propose a new fingerprint
encryption scheme which utilizes the high-dimension space
projection. Unlike the reliance on biometric templates in
FuzzyVault-based schemeor “encrypted” templates inFuzzy
Commitment-based scheme, this new scheme, similar to the
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dynamic biometric key generation scheme, protects biomet-
ric key in a polynomial, and hence saves “nothing” on the
biometric characteristics. Thus, it integrates the advantages
of Fuzzy Vault, Fuzzy Commitment, and dynamic key gen-
eration into one scheme.
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1 Introduction

The rapid development of cloud computation and big data
technology facilitates people’s life, work, and study. The
downside of this development is that the problems of
information security and individual’s privacy are becom-
ing extremely serious. Biometric authentication can be used
to ensure information security (Kikuchi et al. 2010; Choi
et al. 2012; Tistarelli and Schouten 2011). However, it
has a lot of problems, such as the finite number of bio-
metric traits and the information leakage caused by stolen
biometric templates. Taking these imperfections into con-
sideration, biometric encryption (Bodo 1994) was proposed
as an alternative. Compared with biometric authentication,
apart from requiring sufficient similarity of biometric char-
acteristics, biometric encryption can not only store a key
securely and reliably, but also extract an identical and sta-
ble key dynamically. Therefore, it has better performance
in terms of security, since it combines biometric identifica-
tion with traditional cryptography (Cavoukian and Stoianov
2007). Recently, many researchers studied biometric encryp-
tion based on Fuzzy Vault (Uludag et al. 2005; Gaddam and
Lal 2010; Li et al. 2010b), Fuzzy Commitment (Sutcu et al.
2008), and dynamic biometric key generation scheme (Li
et al. 2011).
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Biometric encryption based on Fuzzy Vault is a classic
scheme. However, this scheme cannot work well in the net-
work environment since the servers need to store biometric
templates or the converted templates. Uludag et al. (2005)
and Clancy et al. (2003) implement of fingerprint vaults,
respectively, with the assumption that fingerprint features
are pre-aligned. However, it is impractical. Then, helper data
which contains maximum curvature points and maximum
curvatures on fingerprint ridges were used to solve calibra-
tion problem (Nandakumar et al. 2007). Although alignment
issues can be solved, the biometric cryptosystem still have
security problems. Zhang et al. (2011) found that as long as
two register vault templates and helper data are collected,
the success rate of attacking a biometric cryptosystem can
be up to 60% in the case of nine order polynomial, such as
when we analyze cross-matching loopholes of Fuzzy Vault
scheme. This may lead to information leakage. Besides, a
common problem is the storage of biometric templates. As
noted in Scheirer and Boult (2007), if variable vaults of the
same biometric characteristics are collected, user’s biometric
templates will be easily inferred by comparing these vaults.
In order to better protect biological templates, cancelable
biometrics technique is proposed (Rathgeb and Uhl 2011;
Khan et al. 2015). Cancelable biometric template technol-
ogy works through biological template deformation or salt,
so the template cannot be restored, and information contained
in biometric templates is protected from leakage. Although
the deformable biological template can increase the security,
it may also reduce the accuracy of biometric identification.

Another recent research topic is Fuzzy Commitment. It
can deal with hamming errors between different biometric
samples. It also demands a fixed-length binary biometric fea-
ture of high distinction. However, it is difficult to design an
effective and stable key generation algorithm. The key gen-
erated by the algorithm is usually short and unstable. Sutcu
et al. (2008) employed a user-specific cuboid to partition
the minutia set, and they used principle component analysis
(PCA) on the computed feature vectors to generate a binary
output vector, which is combined with low-density parity
check (LDPC) codes to obtain a secure fingerprint biometric.
Nagar et al. (2010) extracted fingerprint features from minu-
tias and ridges. Bringer et al. (2008) focuses on the selection
of error correction code (ECC). Li et al. (2012) employed
minutia triplets as the basic input features to extract feature
strings and then used linear discriminant analysis (LDA) to
reduce the dimension of these strings and to eliminate the
correlation among fingers. Rathgeb et al. (2013) tried to use
a feature fusion technology to achieve a higher efficiency of
error correction code. Iris cryptosystems were also imple-
mented (Zhou et al. 2012). Despite various efforts on this
scheme, it still suffers from a short and unstable key. In addi-
tion, it has to save an “encrypted” template which is obtained
by an XOR operation with the fix-length biometric feature

and corresponding code-word. Usually, the code-word con-
tains the secret and it is vulnerable to decodability attack
(Kelkboom et al. 2011). Thus, this scheme cannot work very
well in the network environment either.

Biometric encryption based on dynamic key generation
is a promising scheme. It extracts a biometric key directly
from the biometric template. The advantage of this scheme
is that it does not need to store templates or biometric keys.
Moreover, the dynamic keys binding to user’s identity can
work together with the current mainstream cloud storage
security technologies, such as attribute-based encryption (Li
et al. 2011), attribute-based signatures (Li and Kim 2010),
attribute-based outsourcing (Li et al. 2014), and the deriva-
tive technology with attribute-based encryption (Castiglione
et al. 2015; Wang et al. 2015; Esposito et al. 2013), pro-
viding more natural and flexible encryption methods. Li
et al. (2014) proposed an outsourcing encryption scheme
based on attribute-based encryption. If the attributes could be
provided bydynamic biometric keys, the outsourcing encryp-
tion would use more flexible keys in a more natural way.
Castiglione et al. (2015) proposed a cloud-based adaptive
compression and secure management services for 3D health-
care data. If the services could bind user’s identity in a more
subtle way, the healthcare data would possess more security
privacy. To generate a stable key, a biometric key requires
highly consistent biometrics, even reproducible ones. How-
ever, biometric samples usually do not meet this requirement
due to environmental and physiological factors. Hoque et al.
(2005) partitioned feature space into subspaces and into cells
with the purpose of deriving relatively long keys. Atah and
Howells (2009) used a combination of stable features from
the human voice to generate biometric keys directly with a
novel method of feature concatenation. Sheng et al. (2008)
modeled the intra and inter-user variation of statistical fea-
tures extracted from metric samples by clustering the data
into natural clusters using a fuzzy genetic clustering algo-
rithm. Then, a reliable key was generated by selecting the
most consistent features for each user individually. Li et al.
(2010a) proposed a fuzzy keyword search technology over
encrypted data. Esposito et al. (2015) proposed a service
selection technology based on fuzzy logic. Lim et al. (2012)
used a dynamic reliability-dependent bit allocation algorithm
for biometric discretization to allocate bits dynamically to
every feature element based on a binary reflected gray code.
Although these attempts can extract a biometric key, they
suffer from a short key or a relatively long key with high
equal error rate (EER).

In this paper, we propose a fingerprint encryption scheme
based on high-dimension space projection (HDSP). Unlike
the reliance on templates in the Fuzzy Vault-based scheme or
the “encrypted” templates in the Fuzzy Commitment-based
scheme, it protects biometric key in a polynomial, and thus
saves “nothing” about biometric characteristics, being simi-
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lar to dynamic biometric key generation scheme. Moreover,
HDSP can extract a relatively long key, achieve a higher
secure performance, and therefore can be deployed on-line
conveniently.

2 Models

2.1 Encryption fingerprint with minutia

Cryptographic keys extracted from biometric templates are
named “Biometric keys”. It lays out security considerations
that not only can protect the information confidentiality, but
also protect the privacy of biometric information by itself.
In the current biometric key extraction, the fingerprint is the
most versatile and accurate biometric feature. Normally, we
use fingerprint minutia to extract “Biometric keys”. But the
minutias are not so stable, but always fuzzy. Extracting sta-
ble “Biometric keys” from fuzzy minutias is the goal of this
article.

2.2 Threshold (t, n)

After preprocessing, the fingerprint thinning image could be
got, and the minutias are extracted from the thinning image.
Normally, the minutias of the same fingerprint with different
sampling images have a large difference. That is, theminutias
in a sample may not exist in the other sample, although they
come from the same fingerprint. A fault-tolerant mechanism
is required for extracting stable “Biometric keys” from fuzzy
minutias to tolerate possible minutias that may not occur.
Threshold (t, n) is a possible choice.

A threshold (t, n) scheme can be explained as follows:
dividing a key (or something else) into n pieces, then it will
be easily computed if any t or more pieces are given, and it
will be undetermined if t−1 or fewer pieces are given. This
is a useful scheme to share a key.

An order n polynomial P (x) in a finite field GF (p) can
be written as:

P (x) = K0 + K1 · x + · · · + Kn · xn (1)

For a given set T = {xi |i = 1, 2, . . . , n + 1}, P (T ) =
{P (xi ) |i = 1, 2, . . . , n + 1} and a set

PV = { (xi , P (xi ))| i = 1, 2, . . . , n + 1}

will be evaluated. As we can see, for another given set

PQ = {(
x ′
i , yi

)∣∣ i = 1, 2, . . . , n + 1, . . . , γ
}
,

the polynomial P (x) is able to be reconstructed according to
the set PQdespite someelements not lyingon the polynomial,

Fig. 1 the schematic plot → the aligned fingerprint image

if and only if PQ ⊇ PV . That is to say, if we traverse the
whole set PQ, the set PV will be selected ultimately, and
P (x) will be obtained correctly. This can be regarded as a
fault-tolerant mechanism of threshold (t, n).

2.3 Fingerprint image alignment

Strictly speaking, the biometric key needs to be extracted
from blind fingerprints, so there is no reference template for
feature alignment. And in actual situation, there are a lot of
non-alignment phenomena such as translation and rotation
in the fingerprint sample. This will make it very difficult to
extract the stable key. The sample alignment is essential for
the biometric key extraction task at this stage. It can bring
us more consistency, and more advantageous for extracting
“Biometric keys”. So fingerprint image alignment is a critical
technique in the now field of biometric encryption. One dis-
advantage of current alignment algorithms is that they need
to store some Help Data, which could be the potential source
of user’s fingerprint information leakage. To avoid this, a
novel alignment algorithm which is suitable for our biomet-
ric encryption scheme is presented below.

Our algorithm transforms all fingerprint images into a
valid status. Figure 1 shows the schematic plot of this algo-
rithm. The detailed steps are as follows:

(1) Calculate the horizontal and vertical translations between
the core coordinate and the center of the fingerprint
image. Then translate the minutia coordinates based on
them.

(2) Scan each coordinate in the annulus whose center is the
center of the image and radius is 15–60pixs.Calculate the
angle between the horizontal and the line,which connects
the core coordinate to the scanned coordinate. Record the
coordinate and the difference between the angle and the
orientation of the scanned coordinate.

(3) Find the smallest difference and calculate the mean of
corresponding coordinates. Then the rotation angle θ

between the vertical and the line is calculated. The line
connects the core coordinate to the mean coordinate. If
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the smallest difference is close to 0, the rotation angle θ

can be regarded as an accurate rotation parameter.
(4) Rotate the minutia coordinates (and orients, directions, if

exist) according to the rotation angle θ . Then alignment
fingerprint features are obtained.

This algorithm highly relies on the core coordinate. Thus,
if the core coordinate is inaccurate, the alignment algorithm
may be invalid.

2.4 Feature high-dimension space projection

As we know, a feature vector t from one fingerprint can be
expressed in different forms (n feature vectors, for example,−→
ti , i = 1, 2, . . . , n ) when noise is present within a certain
range. Then, the idea is that if some transformation can con-
vert these noisy feature vectors to a stable one, the stable
biometric key will be extracted from the stable vectors. This
can be described as Eq. (2), where PROMAT is a projection
matrix:

⎡

⎢
⎢
⎢
⎣

−→
t1−→
t2
...−→
tn

⎤

⎥
⎥
⎥
⎦

· PROMAT =

⎡

⎢
⎢
⎢
⎣

−→
t−→
t
...−→
t

⎤

⎥
⎥
⎥
⎦

(2)

In fact, it is impossible to calculate the exact noiseless fea-
ture vector t. Moreover, extracting a number of noisy feature
vectors from t is impractical. Alternatively, n random feature
vectors based on the extracted noisy feature vector within a
certain error band, a mean vector of these vectors, are gen-
erated. Let −→ti and t be the random vectors and mean vector,
respectively. Then, t = ∑n

1
−→
ti /n will be obtained. Figure 2

depicts the distribution of feature vectors before and after
they are projected. The vectors tend to be projected to the
mean vector by the matrix PROMAT. Therefore, for a feature
vector that is close to t, it will tend to be projected to t within
a slight tolerance boundary by corresponding PROMAT. Nor-
mally, Eq. (2) may be contradiction, and the matrix PROMAT

is the least square solution of linear equations or contradic-
tion equations. It means that in the linear space of the known

training samples, Eq. (2) can get the optimal solution based
on Euclidean distance. Then, if the testing sample falls into
the linear space of the training samples, we can get the opti-
mal solution of the linear projection of the testing sample.

2.5 Fingerprint feature quantitation

Due to various environmental and physiological factors, the
same feature would be expressed in different coordinates.
This variance makes it difficult to extract the exactly identi-
cal minutia coordinates. Hence, either the polynomial P (x)
or the key is undetermined according to threshold (t, n). To
obtain the identical minutia coordinates as much as possi-
ble, error correction code (ECC) and quantitation method
are used to compensate deformation of minutia features and
to stabilize them. In this paper, we use quantitationmethod to
stabilize minutia coordinates. The quantitation formula can
be written as Eq. (3).

The quantitation threshold D is the range of an interval
that the number lies in. For example, if D = 10 and a minutia
feature coordinate is (156, 39), 156 will be quantified to 159
as it is in the interval (154 164], and 39 will be changed to
38 for the interval (33 43]. At last, (156, 39) is quantified to
(159, 38).

3 High-dimension space projection-based
fingerprint cryptosystem implementation

As it has been described before, feature projection tends to
fix fingerprint features. This is available to quantitate the
noisy features, which originates from the identical features,
to a stable one. Along with a fault-tolerant scheme threshold
(t, n), a cryptosystem is implemented in this section. The
fingerprint feature vector used in this system is defined as

{x, y, dir, O, d1, d2, d3, d4},

where {x, y} is the minutia coordinate of the feature, dir is
the direction of the coordinate; O is the average orientation
of the rectangle decided by the present coordinate and the
fingerprint’s core coordinate; d1, d2, d3, d4 are the distance
from the current coordinate to the center, the top left, the top
right, and the bottom left of a fingerprint image, respectively.
The system is composed of two parts: enrollment phase and
recall phase. The overall flowchart of the cryptosystem is
illustrated in Fig. 3.

Λ(x) =
{

D
2 + (D + 1) · i (D + 1) · i < x ≤ (D + 1) · i + D (i = 0, 1, · · ·) , mod (D, 2) = 0
D−1
2 + D · i (i − 1) · D + 1 < x ≤ D · i (i = 1, 2, · · ·) , mod (D, 2) = 1

(3)

3.1 Enrollment phase

In this phase, the true fingerprint feature vectors, denoted as

T =
{−→
ti = (xi , yi , diri , oi , d1i , d2i , d3i , d4i , · · · ) |i = 1, 2, · · · , s}
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random features
 average ot the
random features

 average of the
random features
     features
before projection
     features
after projection

(a) (b)

Fig. 2 Feature projection (a) random feature vectors and mean-feature vector (b) feature vectors after projection

Fig. 3 Framework of threshold (t, n) based fingerprint cryptosystem. a Enrollment phase, b recall phase

with s coordinates, are extracted from two finger images of
the samefinger. The overall flowchart of the enrollment phase
is illustrated in Fig. 3a. The detailed steps of enrollment algo-
rithm are as follows.
(1) For each −→

ti , it generates dim−1 feature vectors ran-
domly based on −→

ti with a certain error boundary ROM.
Get a matrix of dim×8 dimension.Then these dim vec-
tors are extended to dim dimension using nonlinear
method.Get amatrix of dim× dim dimension. Calculate
the average vector-matrix of these extended vectors.

−→
tai = {(xai , yai , dirai , Oai ,

d1ai , d2ai , d3ai , d4ai , · · ·) |i = 1, 2, . . . , dim}

Calculate the projection squarematrix PROMATi accord-
ing to Eq. (2). Define the whole projection square
matrixes as

PM = {PROMATi |i = 1, 2, . . . , dim}

and the projected fingerprint feature vectors as

T =
{−→
tai = (xai , yai , dirai ,

Oai , d1ai , d2ai , d3ai , d4ai , . . .) |i = 1, 2, . . . , dim}

(2) Quantify the minutia coordinates of T. If the quantified
feature is repeated, only one will be recorded. Due to the
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relatively small variance of the same minutia feature of
two finger images coming from the same fingerprint, it
is possible to quantify the minutia coordinates to reduce
difference and stabilize fingerprint features. Choose an
appropriate quantization threshold D, and then quantify
T according to Eq. (3). For convenience, the quantified
features will be denoted as Tq{(xi , yi ) |i = 1, 2, . . . , s}
with s features.

(3) Concatenate the ordinate of minutia features, then the
features are denoted as

Tc = {XYi = xi |yi ; i = 1, 2, . . . , s}

For example, if xi = 100 and yi = 200, then turn xi and
yi to binary, we can obtain

XYi = xi |yi = (01100100)| (11001000) = (25800)10

(4) n + 1 random numbers are generated as the sub keys,
denoted as B = {Bi |i = 0, 1, . . . , n}. And the sub keys
determine the polynomial P (x), which is expressed in
Eq. (4)

P (x) = B0 + B1 · x + · · · + Bn · xn (4)

(5) Calculate h (B0) with the one-way hash function h
and the projection value P (Tc) = {P (ti ) |i = 1 . . . , s}
according to Eq. (4).

(6) Delete all the intermediate data T, Tc, Tq , {Bi |i =
1, 2, . . . , n}, {Ci |i = 1, 2, . . . , n}, and only save the
common parameters n, D, GF(p), P (Tc), h (B0) and PM
in a database V .

3.2 Recall phase

In this phase, query fingerprint features are defined as

Q = {−→qi = (
xi , yi , diri , Oi , d1i , d2i , d3i , d4i |i = 1, 2 . . . , s′)}

with s′ features. Theoverall flowchart of the enrollment phase
is illustrated in Fig. 3b. The detailed steps of recall algorithm
are as follows:

(1) For each −→qi , the same nonlinear extension method in
enrollment phase is applied, and the extended feature
vector

−→qei =
{
(xi , yi , diri, oi, d1i, d2i, d3i , d4i , · · · ) |i = 1, 2, · · · s ′}

with dim elements is obtained. Then calculate the pro-
jected vector by the following equation:

−→qei · PROMATi
= −→

Ri , i = 1, 2, 3 . . . , s, (5)

where

−→
Ri = (

xai j , yai j , dirai j , Oai j , d1ai j , d2ai j , d3ai j , d4ai j , . . .
)

i = 1, 2, . . . , s
′
, For each i, if−→qei−−→

Ri iswithin the bound-
ary, −→qei will be considered as close to an average feature
vector. And

−→
Ri can be used to recover the very key. For all

the
{−→
Ri |i = 1, 2, . . . , s

′}
within that boundary, record

their minutia coordinates {(xai , yai ) |i = 1, 2, . . . , s
′ }.

For convenience, the recorded coordinates are overwrit-
ten as Q = {(xi , yi ) |i = 1, 2, . . . , }.

(2) Quantify the query minutia coordinates s Q by Eq. (3)
with the parameter D got from the database V. If the
quantified feature is repeated, only one will be recorded.
For convenience, the quantified query features will be
denoted as Qc = {(xi , yi ) |i = 1, 2, . . . ,m} with m fea-
tures.

(3) As we know, reconstruct an order n polynomial P (x)
needs at least n+1 points. Therefore, if m < n+ 1, P (x)
is unable to be reconstructed, then the system returns
S =NULL and then aborts. Or else it will go on.

(4) Concatenate the ordinate of minutia features in Qc. then
the features are denoted as Qs = {qi = xi |yi ; i =
1, 2, . . . ,m}.

(5) Select n+1 numbers from Qs and P (T ) in the database
V, respectively. And then a set

U = {(
qi , P

(
t j

)) |i, j = 1, 2, . . . , n + 1
}

can be obtained. There are (n + 1)! combinations in total
in U. Assure the polynomial reconstruction is

P∗ (x) = k∗
0 + k∗

1 · x + · · · + k∗
n · xn (6)

Then the possible key is k′ = k′
0||k′

1|| · · · ||k′
n where ||

denotes a connector. If h (B0) = h
(
k′
0
)
, it means the key

k is the key needed and it returns k. Or if U = ∅, return
K = NULL. IfU = ∅, repeat the step 5). Since only part
of the information stores hash value, replacing the use of
B with B0 can improve security and computing speed,
but it will make the integrity testing of the hash function
imprecise. However, if we allocate enough random keys,
so that no fingerprints correspond to a user of the same
B0, then the test will always return the correct key.

4 Experimental results and analysis

4.1 Databases and evaluation indicators

Weuse two fingerprint databases to evaluate the performance
of the proposed fingerprint cryptosystem, including: (1) an
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aligned minutia
 on DB1 5−1.tif

aligned minutia
 on DB1 5−1.tif
aligned minutia
 on DB1 5−3.tif

 minutia aligned
without core points
   on DB1 18−5.tif

  minutia aligned
without core points
   on DB1 18−5.tif
aligned minutia
on DB1 18−1.tif

minutia aligned with
 wrong parameters
   on DB1 28−7.tif

minutia aligned with
 wrong parameters
   on DB1 28−7.tif
aligned minutia
on DB1 28−2.tif

(a) (b) (c)

(d) (e) (f)

Fig. 4 Aligned image and aligned minutias on DB1 (a, b) accurate translation and rotation parameter (c, d) an inaccurate core coordinate (e, f)
wrong rotation parameter

in-house database (SF for short); (2) FVC2002DB1 database
(DB1 for short). SF database is an in-house database with 42
fingers and 25 samples for each finger. DB1 is a public data-
base with 100 fingers and eight samples for each finger. The
image in DB1 database has a medium quality, and SF data-
base has a relatively better quality. To assure the robustness of
the fingerprint cryptosystem, common feature vector of one
fingerprint is extracted from two samples whose common
minutias are between 20–28 (if all are less than 20, search
the maximum, if all are more than 28, search the minimum.)
common feature vectors of each finger within the two data-
bases are used in the enrollment phase, and the rest for the
recall phase. To evaluate the performance, genuine accept
rate (GAR) and false accept rate (FAR) are used as the main
indicators.

4.2 Analysis of fingerprint image alignment

Figure 4a–f shows the alignment results. Figure 4a, c, e are
single fingerprint images, (b, d, f) are the synthesis of two
samples into one image to illustrate the different situations

encountered during the process of fingerprint alignment.
Figure 4a, b shows the aligned images and minutia (DB1
5_1.tif and 5_5.tif). We find that almost all the aligned minu-
tias on 5_1.tif and 5_5.tif are in a small error boundary.
However, the alignment algorithm in Sect. 2 highly relies
on the core coordinate of fingerprint image. If the core coor-
dinate is incorrect, the alignment algorithm will be invalid.
There are 708̃0 inaccurate core coordinates on DB1 and 50
ones on SF. The inaccuracy of these core coordinates is the
main reason why most unaligned feature vectors cannot be
adjusted correctly, as the translation and rotation of these
feature vectors are calculated according to the wrong core
coordinates. Figure 4c, d show the aligned image andminutia
with an inaccurate core coordinate (DB1 18_5.tif). Figure 4e,
f show the aligned image and minutia with wrong rotation
parameter (DB1 28_7.tif). There are two reasons that explain
the incorrect rotation parameter: (1) the core coordinate is
close to the edge of the corresponding fingerprint image,
thus it cannot find a point in the fixed annulus to meet the
requirement that the rotation angle needs to be close to 0;
(2) As many points that make close to 0 may be found, the
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Fig. 5 Average GR(%) & FR with different ERR_BAND and dim

average coordinate that acts as a substitution may introduce
some errors. Considering all the errors, a genuine alignment
rate of DB1 and SF is about 80 and 95%.

4.3 Analysis of HDSP performance

Equation (2) in Sect. 2.4 shows that if a feature vector
is close to t, it tends to be projected to t by correspond-
ing PROMAT. However, the PROMAT does not always work
well, it may cause an incorrect projection. In this section,
an experiment is conducted to test the correct rate (CR)
and false rate (FR) of projected feature vectors that are
close to t. In this experiment, two parameters, feature vector
dimension dim and error boundary ERR_BAND are chosen.
The former parameter determines the projection matrix of
dimension, and the latter is the error boundary before and
after projection to determine whether it is the same feature
point.

Ten feature points are selected randomly from one finger
as the base vectors to generate other vectors and then they
are extended to dim dimension. For each feature vector, its
projection matrix is calculated. Assuming that the generated
vectors of the 10 base vectors are −→

ti j , i = 1, 2, . . . , 10, j =
1, 2, . . . , dim. To evaluate the correct rate, 10,000 random
feature vectors are generated for each base vector and also
they are extended to dim dimension. Assuming that these
vectors are −→

pti j , i = 1, 2, . . . , 10, j = 1, 2, . . . , 10, 000,

and those after projection are −−→
ptpi j , i = 1, 2, . . . , 10, j =

1, 2, . . . , 10, 000, respectively. CR is conducted with

∣
∣
∣
−−→
ptpi j − −→

pti j
∣
∣
∣< ERR_BAND

for each i when j ranges from 1 to 10,000. FR is cal-
culated as follows: select 50 fingers and eight images of
each finger, extract ten feature points from each finger, and
extend feature vector to dim dimension. Supposing that the
extended feature vectors of image j of finger m of i-th point is−−→
ptmji ,m = 1, 2, . . . , 50, j = 1, 2, . . . , 8, i = 1, 2, . . . , 10.
Then the projection is calculated by −−→

ptmji · PROMATik =−−−→
ptmjik , i = 1, 2, . . . , 10, k = 1, 2, . . . , 10, i �= k, m =
1, 2, . . . 50, j = 1, 2, . . . , 8. For each i, m, j, k and each vec-

tor, if
∣
∣
∣
−−→
ptmji − −−−→

ptmjik

∣
∣
∣ < ERR_BAND, the values of FR are

added by one.
Figure 5a–c are CRs with different ERR_BAND and

dim. These graphs show that a high value of CR lies in
the dim interval [20,40]. That is to say, it is possible to
obtain a high CR under this situation. Moreover, CR would
increase with the growth of EER_BAND when dim lies in
the approximate interval [20,40]. Figure 5d–f are FRs with
different ERR_BAND and dim. Although FR increases as
ERR_BAND increases, it is still less than 0.2%. Comparing
CRs with FRs, a compromise can be reached between FR
and CR with ERR_BAND from 11 to 16.
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4.4 Analysis of HDSP fingerprint cryptosystem

Actually, the base feature vectors extracted in the enrollment
phase cannot be obtained in the recall phase. Thus, it needs
to determine whether a feature vector is close to some vec-
tor using dynamic range. In addition, every element in the
feature vector has different dynamic ranges and using only
one parametermay lack flexibility. In this section, parameters
D, ROM, X_Y, DIR, O, and DIS are designed to get a better
GAR and a lower FAR.D denotes the quantitation parameter,
ROM denotes the error boundary when generating random
feature vectors, X_Ydenotes the error boundary of x and y of
feature vector, which is similar to the ERR_BAND, DIR, and
O denoting dir and o of feature vector, respectively, and DIS
are the thresholds of four distances in a raw feature vector
{x, y, dir, o, d1, d2, d3, d4}. D, ROM, XY, DIR, O, and DIS
are all distances, and measure the different parameter space,
respectively. With the increase of distance, the probability of
mapping the two points to one value is increased. It means
the GAR will increase. But, meanwhile, the FAR will also
increase. The best balance between GAR and FAR need to
be obtained by experiment.

Figure 6 shows the distribution of GAR and FAR of SF
with different parameters of D, ROM,X_Y,DIR, O, andDIS.
From Fig. 6a–c, we can find that the method of high dimen-
sion space projection works well. A better performance can
be achieved by adjusting the dimension range in [10,40].
Also, the performances of two databases are different in
GAR, referring to Figs. 6a–c and 7a–c, although the para-
meters are roughly the same. The main reason is that SF
has a relatively better image quality than that in the DB1.
Thus, the fingerprint images can be aligned better and there
are more matched features. From the genius alignment rate
of DB1 and SF in Sect. 4.2 and the distribution of GAR in
Fig. 5, we can infer that the GAR will perform better if the
core points of these fingerprint images can be extracted more
accurately and stably. The FAR of Fig. 7d–f are obviously
higher than the FAR of Fig. 6. This is mainly due to the dif-
ference of image quality of two databases. We preprocess
the images using the general method of fingerprint image
preprocessing, and there are some “bubbles” in the results
of DB1, which will bring many excrescent minutias. Too
many minutias would seriously affect the FAR recognition
of fingerprint. By adjusting the parameters we can obtain
different recognition rates, but the rate of change is different
in the two databases. DB1 changes more dramatically than
SF does, which shows that the parameters of DB1 reach its
critical case.

In addition, the key size in our algorithm is 16 · (n + 1).
And this is superior to the key size of the present Fuzzy
Commitment and dynamic key generation scheme.

5 Security analysis

In this section, brute force attack, cross-match of different
databases from the same finger and the security of projection
matrix will be discussed.

5.1 The security of projection matrix

Equation (2) shows that t can work as a noisy feature vector.
It follows:

−→v · PROMATi = −→v (7)

That is, if a feature vector v satisfies:

−→v · (
PROMATi − E

) = −→
0 , (8)

where E is an identity matrix with the same dimension of
PRO_MATi , it will be a possible vector to recover the very
key. However, if PROMATi − E is nonsingular and Eq. (8)
would have only one solution with v = 0. Thus, searching
the feature vectors according to Eq. (8) would fail. There-
fore, if the projection matrix is perturbation sensitive and
nonsingular, the projection matrix is strong enough to resist
attack.

5.2 Brute force attack

We assume an attacker try to recover the biometric key by
brute force attack and he can obtain the parameters n, D,
GF(p), and P (Tc) in the database V. Firstly, the attacker
calculates the numbers of possible quantified results in the
interval [0,255] and P (Tc). They are denote as ξ (the num-
bers under each parameter D can be calculated by Eq. (2))
and s, respectively. The analysis is shown in Table. 1. As the
finger features must be quantified, the attacker may regard all
the possible quantified results in the interval [0,255] as valid
user’s features. That is, ξ2 features are stored equivalently
in the database V after the attacker combining the ordinates.
Then, the attacker picks out n + 1 features and P (ti ) to
recover the key. For an order n polynomial, P (T ) and all the
possible quantified results, its combinations can be as much

as

(
ξ2

n + 1

)
·
(

s
n + 1

)
· (n + 1)!. But only

(
s

n + 1

)
com-

binations can recover the very biometric key. The probability
to recover it by trying one combination is

(
s

n + 1

)

(
ξ2

n + 1

)
·
(

s
n + 1

)
· (n + 1)!

= 1
(

ξ2

n + 1

)
· (n + 1)!
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Fig. 6 Distribution of GAR and FAR of SF with the certain parameters D, X-Y, ROM, DIR, O, and DIS
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Fig. 7 Distribution of GAR and FAR of FVC2002.DB1 with the certain parameters D, X-Y, ROM, DIR, O, and DIS
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Table 1 Average time (year) to recover the very key under each ξ when s = 20, according to Nandakumar et al. (2007)

n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

ξ = 23 1.1 × 108 5.8 × 1010 3.0 × 1013 1.6 × 1016 8.2 × 1018 4.3 × 1021 2.2 × 1024

ξ = 28 1.2 × 109 9.2 × 1011 7.2 × 1014 5.6 × 1017 4.3 × 1020 3.3 × 1023 2.6 × 1026

ξ = 36 2.4 × 1010 3.1 × 1013 4.0 × 1016 5.2 × 1019 6.7 × 1022 8.6 × 1025 1.1 × 1029

ξ = 37 3.4 × 1010 4.6 × 1013 6.3 × 1016 8.6 × 1019 1.2 × 1023 1.6 × 1026 2.1 × 1029

And the average times to recover it is

(
ξ2

n + 1

)
· (n + 1)!.

Based on the fact that an attacker will take 13 years when
trying 2.5× 109 times using a 3.4GHz processor (Nandaku-
mar et al. 2007), the average time is shown in Table. 1. when
s = 20. Apparentlywe can find that if ξ increases, its average
attempts will increase, and it will be more difficult to recover
the very key. Table. 1. shows that it is very difficult that the
attacker recovers the biometric key by brute force attack.

5.3 Cross-match attack

With the random strings generated in enrollment phase and
non-storage of any templates, cross-match of different data-
bases from a same finger is impossible. That is, the sub keys
(or say the coefficient) extracted from the same feature are
different because of the random string. This leads to differ-
ent polynomials. We assume two databases V1 and V2 are
from the same finger, and their corresponding polynomials
are P1 (x) and P2 (x), respectively. Because of the random
strings, the order n polynomials related to V1 and V2 will
be different with the probability of 1 − 1

(216)
n+1 , where n

is the quantity of the coefficients. The probability shows
that the two polynomials are hardly equivalent. Therefore,
P1(Tc)∩P2(Tc) = ∅ or P1(Tc)∩P2(Tc) �= ∅ will be possible
when the same feature set T is given. Conversely, the same
value in P1(Tc) and P2(Tc) may be mapped by the different
features. Therefore, P (Tc) stored in the database V is a bunch
of meaningless numbers for cross-match attackers. In other
words, the proposed scheme can achieve a higher security
performance.

6 Conclusions

Fuzzy Vault-based biometric encryption has the risk of infor-
mation leakage for the stored biometric templates and is not
suitable for the on-line case. Fuzzy Commitment-based bio-
metric encryption needs to store an “encrypted” template,
and it has a short and unstable key and may be unavailable
on-line either. Although some dynamic biometric key gen-
eration schemes need to store neither templates nor secrets,
they suffer from a low number of effective bits. The proposed

biometric cryptosystem does not need to store templates, and
its biometric key is relatively long. If the projection matrix
is strong enough to resist attack, it will be available to work
on-line since its database does not leak information about
biometric templates. But it suffers from a not so satisfied
GAR, high time complexity and a coarse quantitation. For
these deficiencies, our future work will focus on more accu-
rate quantitation scheme and a stronger projection matrix
design.

Acknowledgments This research was supported by Zhejiang
Province Science and Technology Innovation Program under Grant
Number (2013TD03) and the National Science Foundation of China
(No. 61272045), (No. 61201301), (No. 61472091). And the Guangzhou
Zhujiang Science and Technology Future Fellow Fund (Grant No.
2012J2200094), Distinguished Young Scholars Fund of Department
of Education.(No. Yq2013126), Guangdong Province. We gratefully
acknowledge funding support from the Major Program of National
Social Science Foundation of China (No.11&ZD088).

References

Atah JA, Howells G (2009) Key generation in a voice based template
free biometric security system. In: Biometric ID management and
multimodal communication, Springer, pp 170–177

Bodo A (1994) Method for producing a digital signature with aid of a
biometric feature. German Patent DE 42(43):908

Bringer J, Chabanne H, Cohen G, Kindarji B, Zémor G (2008) Theo-
retical and practical boundaries of binary secure sketches. IEEE
Trans Inf Forensics Secur 3(4):673–683

Castiglione A, Pizzolante R, De Santis A, Carpentieri B, Castiglione A,
Palmieri F (2015) Cloud-based adaptive compression and secure
management services for 3d healthcare data. Futur Gener Comput
Syst 43:120–134

Cavoukian A, Stoianov A (2007) Biometric encryption: a positive-sum
technology that achieves strong authentication. Secur Priv, p 15

Choi K, Toh KA, Uh Y, Byun H (2012) Service-oriented architecture
based on biometric using random features and incremental neural
networks. Soft Comput 16(9):1539–1553

Clancy TC, Kiyavash N, Lin DJ (2003) Secure smartcardbased finger-
print authentication. In: Proceedings of the 2003 ACM SIGMM
workshop on biometrics methods and applications, ACM, pp 45–
52

Esposito C, Ficco M, Palmieri F, Castiglione A (2013) Interconnecting
federated clouds by using publish-subscribe service. Clust Comput
16(4):887–903

Esposito C, FiccoM, Palmieri F, CastiglioneA (2015) Smart cloud stor-
age service selection based on fuzzy logic. IEEE Trans Comput.
doi:10.1109/TC.2015.2389952

123

http://dx.doi.org/10.1109/TC.2015.2389952


4918 Z. Wu et al.

GaddamSV,LalM (2010)Efficient cancelable biometric key generation
scheme for cryptography. IJ Netw Secur 11(2):61–69

Hoque S, Fairhurst M, Howells G, Deravi F (2005) Feasibility of gen-
erating biometric encryption keys. Electron Lett 41(6):309–311

Kelkboom EJ, Breebaart J, Kevenaar TA, Buhan I, Veldhuis RN (2011)
Preventing the decodability attack based cross-matching in a fuzzy
commitment scheme. IEEE Trans Inf Forensics Secur 6(1):107–
121

Khan SH, AkbarMA, Shahzad F, FarooqM, Khan Z (2015) Secure bio-
metric template generation for multi-factor authentication. Pattern
Recognit 48(2):458–472

Kikuchi H, Nagai K, Ogata W, Nishigaki M (2010) Privacy-preserving
similarity evaluation and application to remote biometrics authen-
tication. Soft Comput 14(5):529–536

Li J, Kim K (2010) Hidden attribute-based signatures without
anonymity revocation. Inf Sci 180(9):1681–1689

Li J, Wang Q, Wang C, Cao N, Ren K, Lou W (2010a) Fuzzy keyword
search over encrypted data in cloud computing. In: INFOCOM,
2010 Proceedings IEEE, IEEE, pp 1–5

Li J,WangQ,WangC, RenK (2011) Enhancing attribute-based encryp-
tion with attribute hierarchy. Mob Netw Appl 16(5):553–561

Li J, Huang X, Li J, Chen X, Xiang Y (2014) Securely outsourcing
attribute-based encryption with checkability. IEEE Trans Parallel
Distrib Syst 25(8):2201–2210

Li P, Yang X, Cao K, Tao X, Wang R, Tian J (2010b) An alignment-
free fingerprint cryptosystem based on fuzzy vault scheme. J Netw
Comput Appl 33(3):207–220

Li P,YangX,QiaoH,CaoK, Liu E, Tian J (2012)An effective biometric
cryptosystem combining fingerprints with error correction codes.
Expert Syst Appl 39(7):6562–6574

Lim MH, Teoh ABJ, Toh KA (2012) An efficient dynamic reliability-
dependent bit allocation for biometric discretization. Pattern
Recognit 45(5):1960–1971

NagarA,RaneS,VetroA (2010)Alignment and bit extraction for secure
fingerprint biometrics. In: IS&T/SPIE electronic imaging, interna-
tional society for optics and photonics, pp 75,410N–75,410N

Nandakumar K, Jain AK, Pankanti S (2007) Fingerprint-based fuzzy
vault: implementation and performance. IEEE Trans Inf Forensics
Secur 2(4):744–757

Rathgeb C, Uhl A (2011) A survey on biometric cryptosystems and
cancelable biometrics. EURASIP J Inf Secur 1:1–25

Rathgeb C, Uhl A, Wild P (2013) Iris-biometric fuzzy commitment
schemes under image compression. In: Progress in pattern recogni-
tion, image analysis, computer vision, and applications, Springer,
pp 374–381

Scheirer WJ, Boult TE (2007) Cracking fuzzy vaults and biometric
encryption. In: Biometrics symposium, 2007, IEEE, pp 1–6

Sheng W, Howells G, Fairhurst M, Deravi F (2008) Template-free
biometric-key generation by means of fuzzy genetic clustering.
IEEE Trans Inf Forensics Secur 3(2):183–191

Sutcu Y, Rane S, Yedidia JS, Draper SC, Vetro A (2008) Feature trans-
formation of biometric templates for secure biometric systems
based on error correcting codes. In: Computer vision and pat-
tern recognitionworkshops, 2008. CVPRW’08. IEEE on computer
society conference, IEEE, pp 1–6

Tistarelli M, Schouten B (2011) Biometrics in ambient intelligence. J
Ambient Intell Humaniz Comput 2(2):113–126

Uludag U, Pankanti S, Jain AK (2005) Fuzzy vault for fingerprints. In:
Audio-and video-based biometric person authentication, Springer,
pp 310–319

Wang XA, Ma J, Yang X (2015) A new proxy re-encryption scheme for
protecting critical information systems. J Ambient Intell Humaniz
Comput pp 1–13. doi:10.1007/s12652-015-0261-3

ZhangR, Liu E, ZhaoH, PangL (2011) Improved cancelable fingerprint
fuzzy vault system. J Xidian Univ 38(4):173–180

Zhou X, Kuijper A, Busch C (2012) Retrieving secrets from iris fuzzy
commitment. In: 2012 5th IAPR international conference on bio-
metrics (ICB), IEEE, pp 238–244

123

http://dx.doi.org/10.1007/s12652-015-0261-3

	High-dimension space projection-based biometric encryption  for fingerprint with fuzzy minutia
	Abstract
	1 Introduction
	2 Models
	2.1 Encryption fingerprint with minutia
	2.2 Threshold (t, n)
	2.3 Fingerprint image alignment
	2.4 Feature high-dimension space projection
	2.5 Fingerprint feature quantitation

	3 High-dimension space projection-based fingerprint cryptosystem implementation
	3.1 Enrollment phase
	3.2 Recall phase

	4 Experimental results and analysis
	4.1 Databases and evaluation indicators
	4.2 Analysis of fingerprint image alignment
	4.3 Analysis of HDSP performance
	4.4 Analysis of HDSP fingerprint cryptosystem

	5 Security analysis
	5.1 The security of projection matrix
	5.2 Brute force attack
	5.3 Cross-match attack

	6 Conclusions
	Acknowledgments
	References




