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Abstract A common generalization of orthomodular lat-
tices and residuated lattices is provided corresponding to
bounded lattices with an involution and sectionally exten-
sive mappings. It turns out that such a generalization can be
based on integral right-residuated l-groupoids. This general
framework is applied to MV-algebras, orthomodular lattices,
Nelson algebras, basic algebras and Heyting algebras.
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1 Introduction

Residuated lattices were introduced in Dilworth and Ward
(1939), and they are used in several branches of mathemat-
ics, including areas of ideal lattices of rings, lattice-ordered
groups, formal languages and multi-valued logic. Right-
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residuated l-groupoids constitute a natural generalization of
residuated lattices [see, e.g. Blyth and Janowitz (1972)], and
their applications cover even a wider field. We will show that
they provide a useful framework for propositional calculus
in constructive logic and certain logics related to quantum
mechanics, and some computations in universal algebra.

For instance, let A = (A, F) be an algebra from a con-
gruence modular variety, and [ϕ, θ ] the commutator of two
congruences ϕ, θ . Denote by 0A and 1A the least and the
greatest element of the congruence lattice (ConA,∨,∧),
respectively. In Czelakowski (2008), a binary operation →
on ConA was defined as by the following formula:

α → β :=
∨

{θ ∈ ConA | [α, θ ] ≤ β}.

If the identity [1A, θ ] = θ holds in ConA then, in view
of Czelakowski (2008), (ConA,∨,∧, [, ], →, 0A, 1A) is an
integral commutative right-residuated l-groupoid.

Although we will not study the consequences of the pre-
vious example in the theory of residuated structures, we can
see that integral commutative right-residuated l-groupoids
are not exceptional structures in algebra, and hence we will
investigate the connections between these structures and lat-
tices having an antitone involution and so-called sectionally
extensive antitone mappings.

In our paper we study some particular classes of right-
residuted l-groupoids. We aim to show the relevance of these
classes of algebras in several research fields. The paper is
structured as follows: In Sect. 2 some general notions and
facts concerning right-residuated l-groupoids are presented.
In Sect. 3 we prove that there is a one-to-one correspondence
between involution lattices with sectionally extensive anti-
tone mappings and involutive right-residuated l-groupoids
satisfying a certain identity. The casewhen these residuated l-
groupoids form residuated lattices is characterized. In Sect. 4
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some examples of right-residuated l-groupoids belonging to
the mentioned class are provided. For instance, we show that
residuated lattices corresponding to Nelson algebras belong
to this class. We prove that sectionally pseudocomplemented
lattices admitting an antitone involution can be characterized
as right-residuated l-groupoids satisfying certain identities.A
special attention is paid to those right-residuated l-groupoids
which are defined by lattices with sectionally antitone invo-
lutions. In Sect. 5 is proved that these algebras are term
equivalent to the so-called basic algebras which can be
viewed as a common generalization of MV-algebras and
orthomodular lattices. The fact that these algebras can be
reconstructed from their implication reduct is shown in Sect.
6. Finally, in Sect. 7, some congruence properties of right-
residuated l-groupoids are investigated.

2 Preliminaries

Definition 1 By a right-residuated l-groupoid is meant an
algebra

G = (L ,∨,∧,�,→, 0, 1) of type (2,2,2,2,0,0) such that

1. (L ,∨,∧) is a lattice with least element 0 and greatest
element 1,

2. (L ,�) is a groupoid, and 1 � x = x , for all x ∈ L .
3. G satisfies the right-adjointness property, that is x � y ≤

z if and only if x ≤ y → z, for all x, y, z ∈ L [see, e.g.
Bĕlohlávek (2002)].

In general, right-adjointness does not imply left-adjoint-
ness [see Botur et al. (2010)], except the case when G is
commutative, that is, x � y = y � x , for all x, y ∈ L .

For our sake, we modify the concept of an integral residu-
ated structure as follows: The algebraGwill be called integral
if 1�x = x �1 = x holds for all x ∈ L . Clearly,G is integral
whenever it is commutative. Let �x := x → 0. The algebra
G is called involutive whenever the mapping x 	→�x , x ∈ L
is an antitone involution on L , i.e. if x ≤ y implies �y ≤�x
and

�(�x) = x, (∗)

for all x, y ∈ L . The identity (∗) is called the double negation
law. Of course, every involutive algebraG satisfies the double
negation law, but not conversely.However, ifG is a residuated
lattice, that is, � is associative and commutative, then G is
involutive if and only if it satisfies the double negation law.
This is because then G satisfies the implication

x ≤ y implies y → z ≤ x → z,

for any x, y, z ∈ L , thus also �y = y → 0 ≤ x → 0 =�x ,
for all x, y ∈ L , x ≤ y. Further, we say that G satisfies
divisibility if

(x → y) � x = x ∧ y,

for every x, y ∈ L . Finally, G satisfies condition (C) if

z ≤ x � y if and only if y →�x ≤�z,

for all x, y, z ∈ L . The basic properties of right-residuated
l-groupoids are collected in the following lemma:

Lemma 1 Let G = (L ,∨,∧,�,→, 0, 1) be a right-
residuated l-groupoid. Then

(i) �0 = 1;
(ii) a ≤ b if and only if a → b = 1;
(iii) a � 0 = 0 � a = 0, for all a ∈ L;
(iv) y ≤ z implies y � x ≤ z � x and x → y ≤ x → z, for

all x, y, z ∈ L;
(v) x � y ≤ y and y → z = y → (y ∧ z), for all x, y, z ∈

L;
(vi) if G satisfies the double negation law then �1 = 0.

Proof 1. Since 1 � 0 = 0, we have 1 ≤ 0 → 0, and hence
1 = 0 → 0 =�0.

2. If a ≤ b then 1 � a = a ≤ b, thus 1 ≤ a → b giving
a → b = 1. If a → b = 1, then (a → b) � a ≤ b
implies a = 1 � a ≤ b.

3. a ≤ 1 = 0 → 0 yields a � 0 = 0, and 0 ≤ a → 0 gives
0 � a = 0.

4. Assume y ≤ z. Since for all a, b ∈ L , a � b = a � b
yields

a ≤ b → (a � b),

we get y ≤ z ≤ x → (z � x), whence y � x ≤ z � x .
Further, x → y ≤ x → y yields (x → y) � x ≤ y ≤ z,
whence we deduce x → y ≤ x → z, for all x, y, z ∈ L .

5. Since x ≤ 1 = y → y, we obtain x � y ≤ y, for all
x, y ∈ L . Thus x � y ≤ z if and only if x � y ≤ y ∧ z,
whence we get x ≤ y → z if and only if x ≤ y →
(y ∧ z). This implies y → z = y → (y ∧ z).

6. The double negation law and (i) imply: �1 =�(�0) = 0.
��

An interrelation between condition (C) and the involutive
property is stated in the following:

Proposition 1 Let G = (L ,∨,∧,�,→, 0, 1) be a right-
residuated l-groupoid. Then G satisfies the double negation
law and condition (C) if and only ifG is involutive and x�y =
�(y →�x) holds for all x, y, z ∈ L.
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Proof The double negation law yields � (�x) = (x → 0) →
0 = x . If x ≤ y then x ≤ 1 � y, and so by (C) we get
�y = y → 0 = y →�1 ≤�x . Hence G is involutive, and
(C) implies x � y ≥ z if and only if y →�x ≤�z if and only
if �(y →�x) ≥� (�z) = z. Then �(y →�x) ≥ x � y, and
x � y ≥�(y →�x), whence x � y =�(y →�x).

Conversely, suppose that G is involutive, and x � y =
�(y →�x) holds. Then clearly,G satisfies the double negation
law, and �(y →�x) ≥ z if and only if y →�x ≤�z. This
means that z ≤ x � y if and only if y →�x ≤�z, i.e. (C)
holds. ��
Remark 1 Observe that in a right-residuated l-groupoid the
operations � and → determine completely each other,
in other words, if G1 = (L ,∨,∧,�,→, 0, 1) and G2 =
(L ,∨,∧,⊗,�, 0, 1) are right-residuated l-groupoids hav-
ing the same underlying lattice (L ,∨,∧), then the operations
� and⊗ coincide if and only if→ and� coincide. The proof
is the same as that for residuated lattices and hence it is omit-
ted.

Let G = (L ,∨,∧,�,→, 0, 1) be a right-residuated l-
groupoid and define a binary operation ⇒ on L as follows:

x ⇒ y :=�y →�x, for all x, y ∈ L .

Then ⇒ will be called the derived implication of G.
Lemma 2 Let G = (L ,∨,∧,�,→, 0, 1) be an involutive
right-residuated l-groupoid. Then the operation ⇒ for all
x, y, z ∈ L satisfies the following conditions:

(I0) (x ∨ y) ⇒ y = x ⇒ y, x ⇒ x = 1, 1 ⇒ x = x;
(I1) (x ⇒ y) ∧ y = y;
(I2) x ≤ y implies y ⇒ z ≤ x ⇒ z;

Moreover, we have x ≤ y if and only if x ⇒ y = 1.

Proof Since G is involutive, we have �1 = 0, and hence

1 ⇒ x =�(�x), for all x ∈ L . (1)

By definition x ⇒ x =�x →�x = 1, and (x ∨ y) ⇒ y =
�y →�(x ∨ y), for all x, y ∈ L . Since x 	→�x , x ∈ L is
an antitone involution on L , we have �(x ∨ y) =�x∧�y, and
hence (x ∨ y) ⇒ y =�y → (�y∧�x) =�y →�x = x ⇒ y,
by (v) of Lemma 1. Since G is involutive, it satisfies the
double negation law, and because (1) holds true, (I0) is clear.
By Lemma 1(iv) for any x, y ∈ L we get y =� (�y) =�y →
0 ≤�y →�x = x ⇒ y, which proves (I1).

(I2). Since G is involutive, we have x ≤ y if and only if
�y ≤�x . By Lemma 1(iv) �y ≤�x implies �z →�y ≤�z →
�x . Hence x ≤ y implies y ⇒ z ≤ x ⇒ z.

Finally, x ≤ y if and only if �y ≤�x , and Lemma 1(ii)
yields �y ≤�x if and only if �y →�x = 1. However, �y →
�x = 1 means that x ⇒ y = 1. ��

3 Lattices with sectionally antitone mappings

An algebraic axiomatization of Łukasiewicz many-valued
logic can be provided by means of MV-algebras, and anal-
ogously, orthomodular lattices constitute an important alge-
braic framework for logical computations related to quantum
mechanics. As will be shown in Sect. 4, both of these classes
of algebras can be recognized as bounded lattices with sec-
tionally antitone involutions.However, not in all the algebraic
structures used for the formalization of non-classical logics
the corresponding sectional mappings (derived by the logical
connective implication) must be involutions. For example, in
the case of Heyting algebras or BCK-algebras these map-
pings are antitone, but not necessarily they are involutions.
Hence we introduce formally the concept of a lattice with
sectionally antitone mappings which will be used here.

Let (L ,∨,∧, 0, 1) be a bounded lattice. For an a ∈ L the
interval [a, 1] = {x ∈ L | a ≤ x ≤ 1} is called a section.
The algebra L = (L ,∨,∧, {a | a ∈ L}, 0, 1) is called a
lattice with sectionally antitone extensive mappings if for
each a ∈ L there exists a mapping x 	→ xa of [a, 1] into
itself, such that

x ≤ y implies xa ≥ ya, for all x, y ∈ [a, 1], and

(i.e. x 	→ xa is antitone)

xaa ≥ x, for all x ∈ [a, 1].(i.e. x 	→ xa is extensive)

In this case 1a = a implies aa = 1. Indeed, 1aa = 1
yields aa = (1a)a = 1.

In particular, if each mapping x 	→ xa , x ∈ [a, 1] is an
involution, i.e. xaa = x , for all x ∈ [a, 1], then L is called a
lattice with sectionally antitone involutions [see, e.g. Chajda
et al. (2005)].

Let us note that in our example (ConA,∨,∧, [, ], →,

0A, 1A) from the introduction, for any α, θ ∈ ConA, with
α ≤ θ we can define

θα := θ → α =
∨

{ϕ ∈ ConA | [θ, ϕ] ≤ α}.

Since [θ, ϕ] ≤ θ ∧ ϕ holds in any congruence modular
variety, we get [θ, α] ≤ α, and hence θα ≥ α. Since for
any θ1, θ2, ϕ ∈ ConA θ1 ≤ θ2 implies [θ1, ϕ] ≤ [θ2, ϕ],
we get θα

1 ≥ θα
2 whenever α ≤ θ1 ≤ θ2. Finally, [θα, θ ] =

[θ → α, θ ] ≤ α implies θαα ≥ θ . Thus for any α ∈ ConA
the mapping θ 	→ θα , θ ∈ [α, 1A] is a sectionally antitone
extensive mapping.

Proposition 2 Let (L ,∨,∧, 0, 1) be a bounded lattice and
⇒ a binary operation on L, and define xa := x ⇒ a, for
any a, x ∈ L, with x ≥ a. Then the following are equivalent:
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(i) The binary operation ⇒ satisfies (I0), (I1), (I2) and

[(x ⇒ y) ⇒ y]∧(x ∨ y) = (x ∨ y), for all x, y ∈ L .

(I3)

(ii) For each a ∈ L the mapping x 	→ xa, x ∈ [a, 1], is an
antitone extensive mapping on [a, 1] such that 1a = a
and x ⇒ y = (x ∨ y)y , for all x, y ∈ L.

Proof (i)⇒(ii). Take a, x ∈ L arbitrary with x ≥ a. Then in
view of (I1) we get a ≤ x ⇒ a = xa , and this means that
the assignment x 	→ xa , x ∈ [a, 1] is a mapping of [a, 1]
into itself. Let a ≤ x ≤ y. Then (I2) yields ya = y ⇒
a ≤ x ⇒ a = xa ; hence x 	→ xa , x ∈ [a, 1] is antitone.
By using (I3), for every x ∈ [a, 1] we obtain xaa = (x ⇒
a) ⇒ a ≥ x ∨ a = x , i.e. the mapping x 	→ xa , x ∈ [a, 1]
is extensive. Finally, (I0) implies 1a = 1 ⇒ a = a , and
x ⇒ y = (x ∨ y) ⇒ y = (x ∨ y)y , for all x, y ∈ L .

(ii)⇒(i). Let L = (L ,∨,∧, {a | a ∈ L}, 0, 1) be a lattice
with sectionally extensive antitone mappings x 	→ xa , x ∈
[a, 1] such that 1a = a, for all a ∈ L , and suppose that, for
all x, y ∈ L the operation ⇒ satisfies

x ⇒ y = (x ∨ y)y .

Then (x ∨ y) ⇒ y = x ⇒ y. Since 1a = a implies
aa = 1, we get x ⇒ x = xx = 1 and x ⇒ 1 = 1 ⇒ 1 = 1,
and also 1 ⇒ x = 1x = x , for all x ∈ L . Thus (I0) is
satisfied. As by definition x ⇒ y = (x ∨ y)y ≥ y, we get
(x ⇒ y) ∧ y = y, for all x, y ∈ L , i.e. (I1) holds. Now
assume x ≤ y. Then x ∨ z ≤ y ∨ z, for all z ∈ L , and
hence y ⇒ z = (y ∨ z)z ≤ (x ∨ z)z = x ⇒ z, for all
x, y, z ∈ L because the map x 	→ xz , x ∈ [z, 1] is antitone.
Thus (I2) holds for ⇒. To prove (I3), let us observe that
(x ⇒ y) ⇒ y = ((x ∨ y) ⇒ y) ⇒ y = (x ∨ y)yy , for all
x, y ∈ L . Since by extensive property (x ∨ y)yy ≥ x ∨ y, we
obtain [(x ⇒ y) ⇒ y]∧(x∨y) = (x∨y)yy∧(x∨y) = x∨y,
for all x, y ∈ L . ��

The mutual interrelation between involutive right-resi-
duated l-groupoids satisfying condition (I3) and bounded
lattices with an antitone involution and sectionally exten-
sive antitone mappings is established in the next theorem.
This gives us an alternative approach to involutive right-
residuated l-groupoids which is more suitable to algebras
used for axiomatization of several non-classical logics.

Theorem 1 (a) Let L = (L ,∨,∧, {a | a ∈ L}, ∼, 0, 1) be
a bounded lattice with an antitone involution ∼ and sec-
tionally antitone extensive mappings x 	→ xa, x ∈ [a, 1]
such that 1a = a, for all a ∈ L. If we define

x → y := (∼ x∨ ∼ y)∼x (2)

x � y := ∼ (y →∼ x) =∼ [(x∨ ∼ y)∼y], (3)

for all x, y ∈ L, then G(L) = (L ,∨,∧,�,→, 0, 1) is
an involutive right-residuated l-groupoid such that �x =
∼ x holds, and its derived implication x ⇒ y :=�y →�x
satisfies condition (I3).

(b) Let G = (L ,∨,∧,�,→, 0, 1) be an involutive right-
residuated l-groupoid having the property that its derived
implication ⇒ satisfies condition (I3). Let ∼ z := z →
0, for all z ∈ L, and define

xa := x ⇒ a =�a →�x, (4)

for all a, x ∈ L with x ≥ a. Then L(G) = (L ,∨,∧, {a |
a ∈ L}, ∼, 0, 1) is a bounded lattice with an antitone
involution ∼ and sectionally antitone extensive map-
pings x 	→ xa, x ∈ [a, 1] such that 1a = a.

(c) The correspondence between bounded lattices with an
involution ∼ and sectionally antitone extensive map-
pings satisfying 1a = a, and involutive right-residuated
l-groupoids satisfying condition (I3) is one-to-one, i.e.
G(L(G)) = G and L(G(L)) = L.

Before the proof, let us note that the mappings x 	→ ∼ x ,
x ∈ L and x 	→ x0, x ∈ L need not coincide. The second
map need not be an involution contrary to the case x 	→ ∼
x , x ∈ L .

Proof (a) By definition we have

1 � x =∼ [(1∨ ∼ x)∼x ] =∼ (1∼x ) (*)

=∼ (∼ x) = x, for all x ∈ L .

Let x � y ≤ z for some x, y, z ∈ L . Then ∼ [(x∨ ∼

y)∼y] ≤ z implies that ∼ z ≤ (x∨ ∼ y)∼y . Since ∼ y ≤
(x∨ ∼ y)∼y , together we obtain

∼ z∨ ∼ y ≤ (x∨ ∼ y)∼y .

This implies x ≤ x∨ ∼ y ≤ (x∨ ∼ y)∼y∼y ≤
(∼ z∨ ∼ y)∼y = y → z, according to the definition and
to the antitony of the mapping x 	→ x∼y , x ∈ [∼ y, 1].

Conversely, x ≤ y → z implies x∨ ∼ y ≤
(∼ z∨ ∼ y)∼y , whence we get (∼ z∨ ∼ y)∼y∼y ≤ (x∨ ∼

y)∼y ; thus ∼ [(x∨ ∼ y)∼y] ≤ ∼ [(∼ z∨ ∼ y)∼y∼y].
Because the map x 	→ x∼y , x ∈ [∼ y, 1] is exten-
sive (∼ z∨ ∼ y)∼y∼y ≥ ∼ z, whence we deduce ∼

[(∼ z∨ ∼ y)∼y∼y] ≤∼ (∼ z) = z. Thus we obtain

x � y =∼ [(x∨ ∼ y)∼y] ≤ z.

SinceG(L) satisfies the right-adjointness property and (∗),
it is a right-residuated l-groupoid. Observe also that �x :=
x → 0 = (∼ x∨ ∼ 0)∼x = 1∼x =∼ x . Thus the map
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x 	→�x , x ∈ L is an antitone involution on L , and we can
write

x → y = (�x∨�y)�x , x � y =�(y →�x) =�(x∨�y)�y,

and

x ⇒ y =�y →�x = (x ∨ y)y .

Hence for any a ∈ L and x ∈ [a, 1] we get xa =
(x ∨ a)a = x ⇒ a. Then ⇒ satisfies (I3), according to
Proposition 2.

(b) Since G = (L ,∨,∧,�,→, 0, 1) is involutive, the
map ∼ x := x → 0 =�x , x ∈ L is an antitone involution,
and by using Lemma 2 we get that x ⇒ y =�y →�x satis-
fies (I0), (I1) and (I2). Since (I3) is also satisfied by ⇒, by
defining xa := x ⇒ a, for all a ∈ L and x ∈ [a, 1], and
using Proposition 2, we obtain that L(G) = (L ,∨,∧, {a |
a ∈ L}, 0, 1) is a lattice with sectionally antitone extensive
mappings x 	→ xa, x ∈ [a, 1] satisfying 1a = a.

(c) First, we prove that G(L(G)) = G.
Indeed, in L(G) we have ∼ x = x → 0 =�x , for all

x ∈ L where �x := x → 0 is defined in G. Then by (a), �x
has the same meaning as in G(L(G)). In view of (2), for all
x, y ∈ L the operation → in G(L(G)) is defined as

x → y := (∼ x∨ ∼ y)∼x = (�x∨�y)�x = (�x∨�y) ⇒
�x , where⇒ is the derived implication of G. Since (I0) holds
in G, we get (�x∨�y) ⇒�x =�y ⇒�x . Thus we obtain
x → y =�y ⇒�x . Since in view of (b), �y ⇒�x also equals
to x → y in G, the operation → in the right-residuated
l-groupoid G(L(G)) coincides with the operation → in G.
Therefore, in view of Remark 1,� represents the same oper-
ation in G and G(L(G)). Because these algebras are defined
on the same bounded lattice (L ,∨,∧, 0, 1), they coincide,
i.e. G(L(G)) = G.

To prove L(G(L)) = L, first observe that for any x ∈ L ,
∼ x in L(G(L)) is defined as x → 0 =�x in G(L), and this
is the same as ∼ x in L, according to (a). Hence the alge-
bras L and L(G(L)) are defined on the same bounded lattice
(L ,∨,∧, ∼,0, 1) with an antitone involution. Therefore, it
is enough to prove that the mappings x 	→ xa, x ∈ [a, 1]
are the same in L(G(L)) and L. Observe that xa in L(G(L))

by definition is the same as �a →�x in the right-residuated
l-groupoid G(L). By the definition of G(L) in (a) we get

�a →�x = ∼ a →∼ x = (a ∨ x)a = xa,

where xa is defined in L for all a, x ∈ with x ≥ a. Hence
xa in L(G(L)) is the same as xa in L, and this completes the
proof. ��
Corollary 1 LetG = (L ,∨,∧,�,→, 0, 1) be an involutive
right-residuated l-groupoid. Then the following assertions
are equivalent:

(i) The derived implication ⇒ satisfies identity (I3).
(ii) x � y =�(y →�x) holds for all x, y ∈ L.
(iii) G satisfies condition (C).

Proof Since G satisfies the double negation law, in view of
Proposition 1, (ii) and (iii) are equivalent.

(i)⇒(ii). If (i) holds then ⇒ satisfies all the conditions
(I0),…,(I3), according to Lemma 2. Now (ii) follows by
applying Proposition 2 and Theorem 1.

(ii)⇒(i). Since G is involutive, in view of Lemma 2, ⇒
satisfies (I1). This implies y ≤ (x ⇒ y) ⇒ y, for any
x, y ∈ L . Observe that in order to prove (I3) it is enough to
show that x ≤ (x ⇒ y) ⇒ y. We have

(x ⇒ y) ⇒ y =�y →�(x ⇒ y) =�y →�(�y →
�x) =�y → (x��y). Now, x��y ≤ x��y gives x ≤�y →
(x��y) = (x ⇒ y) ⇒ y, completing the proof. ��

Observe that residuated lattices can be characterized as
integral residuated l-groupoidswhere the operation� is asso-
ciative and commutative. Hence it is important in our case to
know under what conditions the above properties hold.

Theorem 2 Let G = (L ,∨,∧,�,→, 0, 1) be an involutive
right-residuated l-groupoid satisfying x � y =�(y →�x)

for all x, y ∈ L and ⇒ its derived implication. Then the
following hold true:

(i) G is integral if and only if x ⇒ 0 = x → 0, for all
x ∈ L.

(ii) G is commutative if and only if ⇒ and → coincide.
(iii) � is associative if and only if

(x � y) ⇒ z = x ⇒ (y ⇒ z), f or all x, y ∈ L . (D)

Proof (i) If 1 � x = x � 1 = x holds for all x ∈ L , then
x ≤ 1 → x , and 1 → x = (1 → x) � 1 ≤ x , hence
x = 1 → x . Then x → 0 =�x = 1 →�x =�(�x) ⇒
�1 = x ⇒ 0, because G satisfies the double negation
law.
Conversely, suppose that x ⇒ 0 = x → 0, for all x ∈ L .
Then x � 1 =�(1 →�x) =�(�(�x) ⇒�1) =�(x ⇒ 0) =
�(x → 0) =�(�x) = x .

(ii) By our assumption, x��y =�(�y →�x) =�(x ⇒ y).
Hence, x ⇒ y =�(x��y), for all x, y ∈ L . If � is
commutative, then x ⇒ y =�(x��y) =�(�y � x) =
�(�(x →�(�y)) = x → y, for all x, y ∈ L .
Conversely, x ⇒ y = x → y implies x ⇒�y =
x →�y. This means that �(�y) →�x = x →�y, i.e.
y →�x = x →�y. Then for all x, y ∈ L we have
x � y =�(y →�x) =�(x →�y) = y � x ; hence G is
commutative.

(iii) We have (x � y) � z =�(z →�(x � y)) =�(z → (y →
�x)), for all x, y, z ∈ L . Observe that (x � y) ⇒�z =
� (�z) →�(x � y) = z → (y →�x) . Hence (x � y) �
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z =�((x � y) ⇒�z). Similarly, we get x � (y � z) =
�((y � z) →�x) =�(�(z →�y) →�x) =�(x ⇒ (z →
�y)) =�(x ⇒ (y ⇒�z)).

First, suppose that � is associative. Then (x � y) � z =
x � (y � z) implies

(x � y) ⇒�z = x ⇒ (y ⇒�z),

and (x � y) ⇒ z = (x � y) ⇒�(�z) = x ⇒ (y ⇒�(�z)) =
x ⇒ (y ⇒ z), for all x, y, z ∈ L , which is (D).

Conversely, suppose that (D) holds. Then �((x � y) ⇒
�z) =�(x ⇒ (y ⇒�z)) is also satisfied, for all x, y, z ∈ L .
In view of the above formulas, this means that (x � y)� z =
x � (y � z), for all x, y, z ∈ L . Thus � is associative. ��
Corollary 2 LetG = (L ,∨,∧,�,→, 0, 1) be an involutive
right-residuated l-groupoid such that ⇒ satisfies condition
(I3). Then G is an integral commutative residuated lattice if
and only if � is associative.

Proof Since the only if part is clear, and G is integral when-
ever it is commutative, we have to show only that � is
commutative, whenever it is associative.

Suppose that � is associative. Since we have x � y =
�(y →�x) by Corollary 1, Theorem 2 yields (x � y) ⇒ z =
x ⇒ (y ⇒ z). Then Lemma 2 implies

x � y ≤ z ⇔ (x � y) ⇒ z = 1

⇔ x ⇒ (y ⇒ z) = 1 ⇔ x ≤ y ⇒ z.

Thus we get x ≤ y → z if and only if x � y ≤ z if
and only if x ≤ y ⇒ z, and this implies y → z ≤ y ⇒ z
and y ⇒ z ≤ y → z. Hence y → z = y ⇒ z, for all
y, z ∈ L , and now by using Theorem 2(ii) we obtain that �
is commutative. ��

It is known that any integral commutative residuated lat-
tice L satisfying the double negation is involutive [see, e.g.
Kondo (2011)]. Moreover, x � y =�(y →�x) holds in L,
according to [2; Theorem 2.40]. Hence, by Theorem 3(ii) ⇒
and→ coincide inL, and in viewofCorollary 1 andTheorem
1(b) we obtain the following:

Corollary 3 Let L=(L; ∨,∧,�,→, 0, 1) be a (commuta-
tive, integral) residuated lattice satisfying the double nega-
tion law. Then ⇒ and → coincide, and for each a ∈ L,
xa := x → a, x ∈ [a, 1] is an antitone extensive mapping.

4 Examples and applications

4.1 Sectionally pseudocomplemented lattices
with an added involution

In this section we show how useful can be lattices with an
antitone involution and sectionally extensive mappings. This

will be shown by examples of algebras used frequently in
mathematics as well as in applications.

A bounded lattice L is called pseudocomplemented if for
any x ∈ L there exists an element x∗ ∈ L such that

y ∧ x = 0 if and only if y ≤ x∗.

It is evident that x∗∗ ≥ x , and x ≤ y implies y∗ ≤ x∗,
for any x, y ∈ L . If for any a ∈ L the section [a, 1] is
a pseudocomplemented lattice, then L is called sectionally
pseudocomplemented.

It is worth mentioning that sectionally pseudocomple-
mented lattices capture the relativity of the pseudocomple-
ment slightly better than the so-called relatively pseudocom-
plemented lattices. Namely in a relatively pseudocomple-
mented lattice L , the relative pseudocomplement x → y of
an element x ∈ L with respect to y ∈ L need not belong to
the interval [y, 1]: however, it is known that any relatively
pseudocomplemented bounded lattice is also sectionally
pseudocomplemented [see Chajda (2003)]. Moreover, as
it is shown in Chajda (2003), sectionally pseudocomple-
mented lattices enable us to extend the concept of relative
pseudocomplementation also for nondistributive lattices. For
instance, in Chajda and Radeleczki (2003) is proved that any
algebraic ∧-semidistributive lattice is sectionally pseudo-
complemented; in particular, finite sublattices of free lattices
are sectionally pseudocomplemented lattices which are not
distributive, in general.

Let L be a bounded sectionally pseudocomplemented lat-
tice. For any a ∈ L denote by xa the pseudocomplement of
an element x ∈ [a, 1] in the sublattice ([a, 1],≤), and define
x ⇒ y := (x ∨ y)y , for all x, y ∈ L . Observe that x 	→ xa ,
x ∈ [a, 1] is an antitone extensive mapping of [a, 1] into
itself for each a ∈ L .

Indeed, xa ∈ [a, 1] by definition, and for any a ≤ x ≤ y
we have ya ≤ xa , and xaa ≥ x . Then by Proposition 2, ⇒
satisfies the conditions (I0),…, (I3).

Now let ∼ be an antitone involution on L . If we define

x → y := (∼ x∨ ∼ y)∼x and

x � y :=∼ [(x∨ ∼ y)∼y] =∼ (x ⇒∼ y),

for all x, y ∈ L , then byTheorem1(a)weobtain an involutive
right-residuated l-groupoid G = (L ,∨,∧,�,→, 0, 1) such
that �x = x → 0 =∼ x , for all x ∈ L , and its derived
implication coincides with ⇒.

A well-known example for a sectionally pseudocom-
plemented lattice admitting an antitone involution is the
five-element nondistributive lattice N5. In view of
Chajda (2003) and Chajda and Radeleczki (2003) sectionally
pseudocomplemented bounded lattices are characterized by
the following identities:
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(P1) x ⇒ x = 1, 1 ⇒ x = x , for all x ∈ L;
(P2) (x ∨ y) ⇒ y = x ⇒ y, y ∧ (x ⇒ y) = y, for all

x, y ∈ L;
(P3) [(x ⇒ y) ⇒ y]∧ (x ∨ y) = (x ∨ y), for all x, y ∈ L;
(P4) ([(x ∨ z) ∧ (y ∨ z)] ⇒ z) ∧ ([(x ∨ z) ∧ (y ⇒ z)] ⇒

z) = x ∧ z, for all x, y, z ∈ L .

Let us observe that the conjunction of (P1), (P2) and (P3)
is equivalent to the conjunction of (I0), (I1), (I2) and (I3).
By the above characterization ⇒ in G also satisfies (P4).
Moreover, using this characterization and Theorem 1, we
deduce the following:

Proposition 3 Let G = (L ,∨,∧,�,→, 0, 1) be an involu-
tive right-residuated l-groupoid. Then its derived implication
⇒ satisfies condition (P3) and (P4) if and only if (L ,∨,∧)

is a sectionally pseudocomplemented lattice with an antitone
involution such that for any x, y ∈ L with x ≥ y, x ⇒ y is
equal to the pseudocomplement of x in [y, 1].

We note that G is neither integral nor associative, in
general. Clearly, if � is associative, then G is integral by
Corollary 2. If G is integral, then we have x∗ = x ⇒ 0 =
x → 0 =∼ x , according to Theorem 2. It is known that the
map x 	→ x∗, x ∈ L is an involution on L if and only if
(L ,∨,∧) is a Boolean lattice. Hence G is integral if and only
if (L ,∨,∧) is a Boolean lattice.

4.2 Residuated lattices corresponding to Nelson algebras

Let (L ,∨,∧, 0, 1) be a bounded distributive lattice with an
antitone involution ∼. If for all x, y ∈ L the inequality

x∧ ∼ x ≤ y∨ ∼ y

holds; then K = (L ,∨,∧,∼ 0, 1) is called a Kleene alge-
bra. If for a, b ∈ L there exists a greatest element x ∈ L
such that a ∧ x ≤ b, then this x is called the relative pseudo-
complement of a with respect to b, and it is denoted by
a � b. A quasi-Nelson algebra is a Kleene algebra K such
that a � (∼ a ∨ b) exists for all a,b ∈ L . [see, e.g. Cignoli
(1986)]. a � (∼ a ∨ b) is denoted simply by a → b . A Nel-
son algebra is an algebraN = (A,∨,∧,→,∼ 0, 1) of type
(2,2,2,1,0,0), such that (A,∨,∧,∼ 0, 1) is a quasi-Nelson
algebra with →, and → satisfies

(x ∧ y) → z = x → (y → z), for all x, y, z ∈ A, (N),

i.e. the so-called Nelson-identity.
Nelson algebras are the algebraic counterparts of the

constructive logic with strong negation [see Järvinen et al.
(2013); Jarvinen and Radeleczki (2014)]. Spinks and Veroff
(2010) proved that to any Nelson algebra N = (A,∨,∧,

→,∼ 0, 1) corresponds an integral commutative residuated

lattice L(N ) = (A,∨,∧, ∗,⇒, 0, 1). For any x, y ∈ A the
operations ⇒ and ∗ are defined as follows:

x ⇒ y := (x → y) ∧ (∼ y → ∼ x),

x ∗ y := ∼ (x → ∼ y)∨ ∼ (y → ∼ x)

In view of Spinks and Veroff (2010) we have �x := x ⇒
0 = ∼ x , for all x ∈ A, which is an antitone involution.
Thus � (�x) = x , and applying Theorem 2.40 in Bĕlohlávek
(2002), we obtain

x ∗ y = �(y ⇒�x),

for all x, y ∈ A, and hence ⇒ and the derived implication
of L(N ) coincide. Clearly, the residuated lattice L(N ) sat-
isfies the condition (C) and (I3) (see, e.g. Corollary 1). Let
xa := x ⇒ a, for all x, y ∈ A. Then for each a ∈ L the
assignment x 	→ xa , x ∈ [a, 1] is an antitone extensive map-
ping, according to Corollary 3. An other important property
of L(N ) is 3-potency [see Spinks and Veroff (2010)], which
means that it satisfies the identity:

x ⇒ (x ⇒ (x ⇒ y)) = x ⇒ (x ⇒ y), for all x, y ∈ A.

Nelson algebras are also fundamental structures in Rough
set theory [see Pagliani and Chakraborty (2008) or Jarvi-
nen and Radeleczki (2014)]. During the last decade new
approaches have been developed that combine tools of Fuzzy
set theory with that one of Rough set theory, like the investi-
gations of intuitionistic fuzzy sets, and fuzzy rough sets [see,
e.g. Cornelis et al. (2007)]. Our expectation is that the alge-
braic structures behind these constructions can be reduced to
involutive right-residuated l-groupoids.

4.3 Bounded lattices with sectionally antitone
involutions

In this paragraph we are going to show that bounded lattices
with sectionally antitone involutions are common structures
equivalent to involutive right-residuated l-grupoids having
the property that their induced implication⇒ satisfies a con-
dition which will be denoted by (I3∗). This will be applied
in the next Sect. 5.

Let L = (L ,∨,∧, {a | a ∈ L}, 0, 1) be a lattice with
sectionally antitone mappings x 	→ xa , x ∈ [a, 1] and define
the operation x ⇒ y := (x ∨ y)y , for all x, y ∈ L .

Remark 2 Since (x ∨ y)y ≥ y, we have (x ⇒ y) ⇒ y =
(x∨y)yy . Hence the identity (x ⇒ y) ⇒ y = x∨y, x, y ∈ L
holds if and only if (x ∨ y)yy = x ∨ y, for all x, y ∈ L . Of
course, this is equivalent to the condition that xaa = x , for

123



126 I. Chajda, S. Radeleczki

all a ∈ L and x ∈ [a, 1]. Therefore, operation ⇒ satisfies
the identity

(x ⇒ y) ⇒ y = x ∨ y, for all x, y ∈ L (I3*)

if and only if L is a lattice with sectionally antitone invo-
lutions. In that case, define ∼ x := x0, for all x ∈ L . Then
x 	→∼ x , x ∈ L is an antitone involution on the lattice L;
moreover, x ⇒ 0 = x0 =∼ x , for all x ∈ L .

Since (I3*) implies condition (I3), we can apply
Theorem 1 to get

Theorem 3 (a) Let L = (L ,∨,∧, {a | a ∈ L}, 0, 1) be
a bounded lattice with sectionally antitone involutions
x 	→ xa, x ∈ [a, 1]. If we define ∼ x := x0, x → y :=
(∼ x∨ ∼ y)∼x and x � y :=∼ (y →∼ x) =∼ [(x∨ ∼

y)∼y], for all x, y ∈ L,
thenG(L) = (L ,∨,∧,�,→, 0, 1) is an involutive inte-
gral right-residuated l-groupoid with �x = ∼ x, and its
derived implication ⇒ satisfies (I3∗).

(b) Let G = (L ,∨,∧,�,→, 0, 1) be an involutive integral
right-residuated l-groupoid such that its derived impli-
cation⇒ satisfies condition (I3∗), and define xa := x ⇒
a, for all a, x ∈ L with x ≥ a.
Then L(G) = (L ,∨,∧, {a | a ∈ L}, 0, 1) is bounded
lattice with sectionally antitone involutions x 	→ xa,

x ∈ [a, 1], and x0 = x → 0.
(c) The correspondence between bounded lattices with sec-

tionally antitone involutions and involutive integral
right-residuated l-groupoids satisfying (I3∗) is one-to-
one, i.e. G(L(G)) = G and L(G(L)) = L.

Proof (a) We have to show only that G(L) = (L ,∨,∧,�,

→, 0, 1) is integral. Since x ⇒ 0 = x0 =∼ x and
x → 0 = 1∼x = ∼ x for all x ∈ L by definition, we
get x ⇒ 0 = x → 0. Hence G(L) is integral, according
to Theorem 2(i).

(b) In view of Theorem 1(b), now it suffices to prove x0 =
x → 0. Since G is integral, using the definition of ⇒
and Theorem 2(i) we obtain x0 = x ⇒ 0 = x → 0, for
all x ∈ L . (c) is clear.

��

Proposition 4 Let G = (L ,∨,∧,�,→, 0, 1) be a right-
residuated l-groupoid. Then the following assertions are
equivalent:

(i) (x ⇒ y) ⇒ y = (y ⇒ x) ⇒ x, for all x, y ∈ L, and
G is involutive.

(ii) ⇒ satisfies (I3*), and G is involutive.
(iii) G satisfies the double negation law, divisibility, and con-

dition (C).

Proof (i)⇒(ii). Let x, y, z ∈ L arbitrary. Since G is invo-
lutive, by Lemma 2 we have (x ∨ y) ⇒ y = x ⇒ y,
1 ⇒ x = x , and y ≤ z implies y ⇒ z = 1. Now, using
(i) we deduce (I3*). Indeed, (x ⇒ y) ⇒ y = ((x ∨ y) ⇒
y) ⇒ y = (y ⇒ (x∨y)) ⇒ (x∨y) = 1 ⇒ (x∨y) = x∨y,
for all x, y ∈ L .

(ii)⇒(iii). Since G is involutive, it satisfies the double
negation law. Because (I3*) implies (I3), by Corollary 1 we
deduce that G satisfies (C) and for any x, y ∈ L we have
x � y =�(y →�x). By using this formula and (I3*) we
obtain

(x → y) � x =�(x →�(x → y)) =�(x →�(�y ⇒�x)) =
=�((�y ⇒�x) ⇒�x) =�(�y∨�x) = x ∧ y, for all x, y ∈ L ,

which proves divisibility.
(iii)⇒(i). Since G satisfies (C) and the double negation

law, in view of Proposition 1 it is involutive and satisfies
x � y =�(y →�x), for all x, y ∈ L . Hence repeating the
previous proof we get (x → y) � x =�((�y ⇒�x) ⇒�x).
Now, substituting x by �x and y by �y, for any x, y ∈ L we
get

� ((y ⇒ x) ⇒ x) = (�x →�y) � (�x) ,

and then interchanging x and y we obtain

� ((x ⇒ y) ⇒ y) = (�y →�x) � (�y) .

Since (�x →�y)� (�x) =�x∧�y = (�y →�x)� (�y) by
divisibility, we deduce (y ⇒ x) ⇒ x = (x ⇒ y) ⇒ y, for
all x, y ∈ L . ��

We note that the identity from Proposition 4(i) is called
Łukasiewicz identity. Hence we can introduce the following
concept:

Definition 2 If an integral involutive right-residuated l-
groupoid G satisfies Łukasiewicz identity, then we say that
G has Łukasiewicz type.

If G has Łukasiewicz type, then in view of the proof of
(ii)⇒(iii) from Proposition 4, G also satisfies x � y =�(y →
�x), for all x, y ∈ L and (I3).

5 Łukasiewicz type right-residuated l-groupoids
and basic algebras

Basic algebras were introduced in Chajda (2011) and Chajda
et al. (2009) as a common generalization ofMV-algebras and
othomodular lattices. The details of this generalization will
bementioned later. It isworth noticing thatMV-algebras form
an algebraic counterpart of Łukasiewicz many-valued logic,

123



Involutive right-residuated l-groupoids 127

and othomodular lattices represent an algebraic framework
for certain logical computations motivated by foundational
issues of quantum theory.

Definition 3 By a basic algebra is meant an algebra A =
(A,⊕, �, 0) of type (2, 1, 0) satisfying the following axioms:

(BA1) x ⊕ 0 = x , for all x ∈ A
(BA2) ��x = x , for all x ∈ A
(BA3) �(�x ⊕ y) ⊕ y =�(�y ⊕ x) ⊕ x , for all x, y ∈ A
(BA4) �(�(�(x ⊕ y)⊕ y)⊕z)⊕(x ⊕z) = 1, for all x, y, z ∈

A, where 1 :=�0.

Recall from Chajda (2011), Chajda et al. (2005) and
Chajda et al. (2009) that every basic algebra is a bounded
lattice where x ∨ y =�(�x ⊕ y) ⊕ y, x ∧ y =�(�x∨�y), for
all x, y ∈ A and the induced order ≤ is given by

x ≤ y if and only if �x ⊕ y = 1.

Of course, 0 ≤ x ≤ 1, for all x ∈ A. In every basic
algebraA = (A,⊕, �, 0) for all x, y ∈ L we define the term
operations �, → and ⇒ as follows:

x � y =�(�x⊕�y), x → y = y⊕�x and

x ⇒ y =�x ⊕ y.

One can observe that x ⇒ 0 =�x , and x ⇒ y =�y →�x ,
for all x, y ∈ L . The following theorem was established in
Chajda et al. (2009):

Theorem 4 (i) Let L = (L ,∨,∧, {a | a ∈ L}, 0, 1) be a
bounded lattice with sectionally antitone involutions. If
we define

x ⊕ y := (x0 ∨ y)y and �x := x0, f or all x, y ∈ L ,

then A(L) = (L ,⊕, �, 0) is a basic algebra. We have
x ∨ y =�(�x ⊕ y)⊕ y, x ∧ y =�(�x∨�y), for all x, y ∈ L
and xa =�x ⊕ a , for x ∈ [a, 1].

(ii) Let A = (A,⊕, �, 0) be a basic algebra and set

x ∨ y :=�(�x ⊕ y) ⊕ y, x ∧ y :=�(�x∨�y), f or all x, y ∈ A.

Define xa :=�x ⊕ a, for all a, x ∈ A with a ≤ x, and
1 :=�0. Then L(A) = (A,∨,∧, {a | a ∈ A}, 0, 1) is
a bounded lattice with sectionally antitone involutions
x 	→ xa, x ∈ [a, 1], where the lattice order is given
by x ≤ y iff �x ⊕ y = 1 , and we have �x = x0,
x ⊕ y := (x0 ∨ y)y .

(iii) The correspondence between bounded lattices with sec-
tionally antitone involutions and basic algebras thus
established is one-to-one, i.e. A(L(A)) = A and
L(A(L)) = L.

Now, let A = (A,⊕, �, 0) be a basic algebra and
(A,∨,∧, 0, 1) the bounded lattice determined byA, accord-
ing to Theorem 4(ii). Then 1 :=�0, and in view of Theorem
4(ii) this is a lattice with sectionally antitone involutions
x 	→ xa , x ∈ [a, 1], where xa :=�x ⊕ a, for all a, x ∈ A. In
particular, x0 =�x , x ∈ A determines an involution on the
whole lattice. Further, define

x → y = (�x∨�y)�x and

x � y =�[(x∨�y)�y], for all x, y ∈ A.

Then applying Theorem 3(a) with ∼ x = x0 =�x we
obtain that G(A) = (A,∨,∧,�,→, 0, 1) is an involutive
integral right-residuated l-groupoid such that⇒ satisfies con-
dition (I3∗). By Proposition 4, the identity

(x ⇒ y) ⇒ y = (y ⇒ x) ⇒ x, for all x, y ∈ A

holds; thus G(A) is of a Łukasiewicz type. By Theorem 4(ii),
then we obtain x ⊕ y := (x0 ∨ y)y = (�x ∨ y)y . Thus we get
�(�x⊕�y) =�[(x∨�y)�y] = x � y, x → y = (�x∨�y)�x =
y⊕�x and x ⇒ y =�y →�x =�x ⊕ y, for all x, y ∈ A.

Conversely, let G = (L ,∨,∧,�,→, 0, 1) be an involu-
tive right-residuated l-groupoid of Łukasiewicz type and ⇒
its derived implication. Then (x ∨ y) ⇒ x = y ⇒ x , and
x � y =�(y →�x), for all x, y ∈ L , in view of Lemma
2 and Remark 3. For any a, x ∈ L with x ≥ a define
xa := x ⇒ a. Since G is integral, and by Proposition 4
⇒ satisfies (I3*), we can apply Theorem 3(b) and we get
that L(G) = (L ,∨,∧, {a | a ∈ L}, 0, 1) is a bounded lattice
with sectionally antitone involutions x 	→ xa, x ∈ [a, 1],
such that x0 = x → 0. Now, if we define

�x := x → 0 and

x ⊕ y := (x0 ∨ y)y = (�x ∨ y)y, for all x, y ∈ L ,

by Theorem 4(i) we obtain a basic algebra A(G) =
(L ,⊕, �, 0), where x ∨ y =�(�x ⊕ y)⊕ y, x ∧ y =�(�x∨�y)

and xa =�x ⊕ a, for x ∈ [a, 1]. We get also

� (�x��y) =�(�(�y →�(�x))) =�y →�(�x) =�x ⇒ y =
= (�x ∨ y) ⇒ y = (�x ∨ y)y = x ⊕ y, and

y⊕�x =(�y∨�x)�x = (�y∨�x) ⇒�x =�y ⇒�x = x → y,

for all x, y ∈ L . Now, using the above computations we can
formulate the following:

Theorem 5 (a) Let A = (A,⊕, �, 0) be a basic algebra.
For all x, y ∈ A define

x � y :=�(�x⊕�y), and x → y := y⊕�x .
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Set x ∨ y :=�(�x ⊕ y) ⊕ y, x ∧ y :=�(�x∨�y), and
1 :=�0. Then G(A) = (A,∨,∧,�,→, 0, 1) is a right-
residuated l-groupoid of Łukasiewicz type.

(b) Let G = (A,∨,∧,�,→, 0, 1) be a right-residuated l-
groupoid of Łukasiewicz type. Define �x := x → 0 and
x ⊕ y :=� (�x��y), for all x, y ∈ A. Then A(G) =
(A,⊕, �, 0) is a basic algebra.

(c) The correspondence between basic algebras and right-
residuated l-groupoids of Łukasiewicz type thus estab-
lished is one-to-one, i.e. A(G(A)) = A and G(A(G)) =
G.

Proof Since (a) and (b) follow from the previous compu-
tations, we have to check (c) only. If A = (A,⊕, �, 0) is
a basic algebra, then in G(A) we have x � y =�(�x⊕�y),
for all x, y ∈ A, and 1 =�0. Then x = 1 � x =�(x →
�1) =�(x →��0) =�(x → 0). Thus we get �x =��(x →
0) = x → 0, by using (BA2). This means that � is the same
operation in A and A(G(A)). Since in G(A) we have also
� (�x��y) =��(��x⊕��y) = x ⊕ y, in view of the definition
in Theorem 5(b) the operations ⊕ in A and A(G(A)) coin-
cide. Hence A and A(G(A) are the same algebras. The fact
that G(A(G)) = G can be proved similarly. ��

The following Corollary is immediate:

Corollary 4 Any right-residuated l-groupoid of Łukasiewicz
type is term equivalent to a basic algebra. Right-residuated
l-groupoids of Łukasiewicz type form a variety.

Remark 4 Let A = (A,⊕, �, 0) be a basic algebra, and
x � y =�(�x⊕�y), for all x, y ∈ A. Let us observe that
� is associative if and only if ⊕ is associative, and � is
commutative if and only if ⊕ is commutative. Indeed,

(x � y) � z =�[�(x � y)⊕�z] =�[(�x⊕�y)⊕�z], and
x � (y � z) =�[�x⊕�(y � z)] =�[�x ⊕ (�y⊕�z)]. Hence
(x � y)� z = x �(y � z) if and only if (�x⊕�y)⊕�z =�x ⊕
(�y⊕�z), and this is equivalent to (x ⊕ y)⊕ z = x ⊕ (y ⊕ z).

The proof of the second statement is straightforward.

Examples
1. MV-algebras form an important particular case of basic

algebras. They can be defined as associative basic algebras
(see, e.g. Chajda (2011)). Since to any basic algebra corre-
sponds a right-residuated l-groupoid of Łukasiewicz type, in
view of Remark 4 and Corollary 2, this means that to any
MV-algebra corresponds an integral commutative residuated
lattice of Łukasiewicz type. We note also that these lattices
are always distributive.

2. Orthomodular lattices are usually defined as bounded
orthocomplemented lattices L =(L ,∨,∧, ∼, 0, 1) satisfy-
ing the orthomodular law

x ≤ y implies x ∨ (∼ x ∧ y) = y. (OML)

Here ∼ denotes the orthocomplementation operation on
L , i.e. ∼ is an antitone involution such that x∧ ∼ x = 0,
for all x ∈ L .

Define xa :=∼ x ∨ a, for all x, y ∈ L . It is known (see
Chajda and Radeleczki (2014) or Botur et al. (2010)) that for
each a ∈ L the mapping x 	→ xa , x ∈ [a, 1] is an antitone
involution on the section [a, 1], moreover 1a = a. Hence, in
view of Theorem 4 (and Proposition 4), by defining for all
x, y ∈ L the operations

x → y := (∼ x∨ ∼ y)∼x

= ∼ (∼ x∨ ∼ y)∨ ∼ x = (x ∧ y)∨ ∼ x and

x � y : = ∼ [(x∨ ∼ y)∼y]
= ∼ [∼ (x∨ ∼ y)∨ ∼ y] = (x∨ ∼ y) ∧ y,

weobtain a right-residuated l-groupoidG (L) = (L ,∨,∧,

�,→, 0, 1) of Łukasiewicz type, where �x = ∼ x . It is easy
to check that � is not commutative in general. Therefore, in
view of Corollary 2, � cannot be even associative.

In Chajda (2011) was shown that by defining x ⊕ y :=
(x∧ ∼ y)∨ y for all x, y ∈ L , we obtain a basic algebraA =
(L ,⊕, �, 0). It was also proved that basic algebras arising
from orthomodular lattices form a subvariety characterized
by the identity

y = y ⊕ (x ∧ y), for all x, y ∈ L . (OMI)

which implies also x ⊕ x = x , for all x ∈ L . Observe that
G (L) is just the right-residuated l-groupoid corresponding
to the basic algebra A, according to Theorem 5. Now, an
easy computation shows that (OMI) is equivalent to �y →
(x ∧ y) = y, for all x, y ∈ L . Using the derived implication
⇒ of G (L), this can be reformulated as

y = (�x∨�y) ⇒ y, for all x, y ∈ L . (OMI*)

Hence residuated l-groupoids corresponding to orthomod-
ular lattices are exactly the right-residuated l-groupoids of
Łukasiewicz type satisfying (OMI*).

6 Implication reducts of basic algebras

Since the logical connective implication is the most produc-
tive one, because it enables to set up some derivation rules
as, e.g. Modus Ponens, we are focused now in a description
of implication reducts.

LetA = (A,⊕, �, 0) be a basic algebra. For every x, y ∈
A define

x ⇒ y :=�x ⊕ y,
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the so-called implication in A, and 1 := 0 ⇒ 0. One can
easily check that ⇒ satisfies the following identities (see
Chajda and Kühr (2013)):

(I0∗) x ⇒ x = 1, x ⇒ 1 = 1, 1 ⇒ x = x , for all x ∈ A;
(I1∗) y ⇒ (x ⇒ y) = 1, for all x, y ∈ A;
(Ł) (x ⇒ y) ⇒ y = (y ⇒ x) ⇒ x , for all x, y ∈ A;
(I4) ((x ⇒ y) ⇒ y) ⇒ z) ⇒ (x ⇒ z) = 1, for all

x, y ∈ A.

Now, consider the right-residuated l-groupoid G(A) =
(A,∨,∧,�,→, 0, 1) which corresponds to the basic alge-
bra A by Theorem 5(a). Since x → y = y⊕�x , it is easy
to see that ⇒ coincides with the so-called derived implica-
tion in G(A). Since G(A) is of Łukasiewicz type, in view of
Lemma 2 and Proposition 4, for all x, y ∈ A the following
assertions also hold true:

x ≤ y ⇔ x ⇒ y = 1; (x ⇒ y) ⇒ y = (x ∨ y);
(x ∨ y) ⇒ y = x ⇒ y.

Hence the partial order ≤ is also determined by ⇒. The
fact that 0 is the least element in (A,∨,∧) can be expressed
by the law:

(I5) 0 ⇒ x = 1, for all x ∈ A.

Observe that the previous identities can be inferred from
(I0∗), (I1∗), (Ł), (I4) and (I5) only, even more, we have the
following:

Proposition 5 Let (A;⇒, 1) be an algebra of type (2, 0)
satisfying the identities:

(i) x ⇒ x = 1, x ⇒ 1 = 1, 1 ⇒ x = x, for all x ∈ A ;
(ii) y ⇒ (x ⇒ y) = 1, for all x, y ∈ A;
(iii) (x ⇒ y) ⇒ y = (y ⇒ x) ⇒ x, for all x, y ∈ A;
(iv) ((x ⇒ y) ⇒ y) ⇒ z) ⇒ (x ⇒ z) = 1 for all x, y, z ∈

A.

Define a binary relation ≤ on A as follows:

x ≤ y i f and only i f x ⇒ y = 1.

Then ≤ is a partial order on A, and (A,≤) is a join-
semilattice with greatest element 1, where

x ∨ y = (x ⇒ y) ⇒ y, for all x, y ∈ A.

Moreover, x ≤ y implies y ⇒ z ≤ x ⇒ z and ⇒ satisfies

((x ⇒ y) ⇒ y) ⇒ y = x ⇒ y for all x, y ∈ A.

Proof By (i) the defined relation ≤ is reflexive and x ≤ 1,
for all x ∈ A. Assume x ≤ y and y ≤ x . Then x ⇒ y = 1
and y ⇒ x = 1. By (i) and (iii) we conclude y = 1 ⇒ y =
(x ⇒ y) ⇒ y = (y ⇒ x) ⇒ x = 1 ⇒ x = x .

Let x ≤ y and y ≤ z. Then x ⇒ y = 1 and y ⇒ z = 1,
and by (iv) we get

1 = (((x ⇒ y) ⇒ y) ⇒ z) ⇒ (x ⇒ z) = ((1 ⇒ y) ⇒ z)

⇒ (x ⇒ z) = (y ⇒ z) ⇒ (x ⇒ z)

= 1 ⇒ (x ⇒ z) = x ⇒ z;

thus x ≤ z. Hence ≤ is a partial order on A with the greatest
element 1.

By (ii) we get y ≤ x ⇒ y; thus also y ≤ (x ⇒ y) ⇒ y
and x ≤ (y ⇒ x) ⇒ x = (x ⇒ y) ⇒ y, i.e. (x ⇒ y) ⇒ y
is a common upper bound for x and y.

Next we prove that a ≤ b implies b ⇒ c ≤ a ⇒ c.
Indeed, a ≤ b yields a ⇒ b = 1, and hence (b ⇒ c) ⇒
(a ⇒ c) = ((1 ⇒ b) ⇒ c) ⇒ (a ⇒ c) = (((a ⇒ b) ⇒
b) ⇒ c) ⇒ (a ⇒ c) = 1, by (iv). Hence b ⇒ c ≤ a ⇒ c.

Now, if x, y ≤ z, then x ⇒ y ≥ z ⇒ y and we get also

(x ⇒ y) ⇒ y ≤(z ⇒ y) ⇒ y =(y ⇒ z) ⇒ z =1 ⇒ z = z,

proving that (x ⇒ y) ⇒ y is the least common upper bound
of x, y, i.e.

(x ⇒ y) ⇒ y = x ∨ y, for all x, y ∈ A. Thus (A,≤) is
a join-semilattice with 1.

Finally, using (iii), (ii) and (i), for any x, y, z ∈ A we infer

((x ⇒ y) ⇒ y) ⇒ y = (y ⇒ (x ⇒ y))

⇒ (x ⇒ y) = 1 ⇒ (x ⇒ y) = x ⇒ y.

��
In what follows, we will consider the algebra A0

= (A,⇒, 0) of type (2,0) which is called an implication
reduct of the basic algebra A. We are going to show that
the basic algebra (A,⊕, �, 0) can be reconstructed from this
implication reduct; moreover, the following is true:

Theorem 6 Let A0 = (A,⇒, 0) be an algebra of type
(2, 0), 1 := 0 ⇒ 0, such that ⇒ satisfies the identities
(i),(ii),(iii),(iv) and (I5). Then by defining

�x := x ⇒ 0 and x ⊕ y :=�x ⇒ y, f or all x, y ∈ A (×)

we obtain a basic algebraB(A0) = (A,⊕, �, 0) such that
the implication in B(A0) coincides with ⇒.

Proof In view of Proposition 5, the definition

x ≤ y if and only if x ⇒ y = 1,
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yields a join-semilattice with greatest element 1 on the set A
, where x ∨ y = (x ⇒ y) ⇒ y, for all x, y ∈ A. In view of
(I5), 0 is the least element of (A,≤). By using Proposition
5, we obtain also � (�x) = (x ⇒ 0) ⇒ 0 = x ∨ 0 = x , for
all x ∈ A, and we get that for any x, y ∈ A,

x ≤ y implies �y = y ⇒ 0 ≤ x ⇒ 0 =�x .

This means that the mapping x 	→�x , x ∈ A is an antitone
involution on (A,≤), and hence (A,≤) is a lattice where
x ∧ y =�(�x∨�y), for all x, y ∈ A. Since (i),(ii),(iii),(iv)
and (I5) together imply the laws (I0),(I1) and (I2) and (x ⇒
y) ⇒ y = x ∨ y, by defining xa := x ⇒ a for all a, x ∈ A,
in view of Remark 2, we deduce that the mappings x 	→ xa ,
x ∈ [a, 1] are antitone involutions on each section [a, 1] of
the bounded lattice (A,∨,∧). In view of Chajda et al. (2009)
(see Theorem 4), for the operations

x ⊕ y := (x0 ∨ y)y and �x := x0

we obtain a basic algebra (A,⊕, �, 0) on the set A. Since
x0 = x ⇒ 0, � satisfies (×), and x ⊕ y = (�x ∨ y)y =
(�x ∨ y) ⇒ y =�x ⇒ y, because (i), (ii), (iii), (iv) and
(I5) imply also (x ∨ y) ⇒ y = x ⇒ y, for all x, y ∈
A, as we pointed out previously. Finally, the implication in
(A,⊕, �, 0) is given by the term�x ⊕ y, and x ⊕ y =�x ⇒ y
clearly implies �x ⊕ y = x ⇒ y, for all x, y ∈ A. ��

We note that Theorem 6 has also a direct proof which does
not use Theorem 4. Observe also that the conditions (i), (ii),
(iii) and (iv) are in fact the conditions (I0∗), (I1∗), (Ł) and
(I4).

7 Congruence properties

When varieties of algebras are studied, we are usually inter-
ested in their congruence properties to reveal their structure.

An algebraA = (A, F) is said to be congruence distribu-
tive whenever its congruence lattice ConA is distributive. A
is called congruence permutable, if ϕ ◦ θ = θ ◦ ϕ holds for
all θ, ϕ ∈ ConA. A variety V of algebras is arithmetical if
every algebraA ∈ V of it is both congruence distributive and
congruence permutable. An algebraA = (A, F) is said to be
congruence regular if every congruence θ ofA is determined
by an arbitrary congruence class θ [a] (for a ∈ A ) of it. Let
c be a constant of the algebra A. A is c-regular if θ [c] =
ϕ[c] implies θ = ϕ, for every θ, ϕ ∈ ConA, and A is called
c-locally regular if for each θ, ϕ ∈ ConA and any a ∈ A
we have that θ [a] = ϕ[a] implies θ [c] = ϕ[c]. It is known
that an algebra A is congruence regular if and only if it is
c-regular and c-locally regular simultaneously [see Chajda
(1998)]. It was proved by Csákány (1970), that a variety V

of algebras are congruence c-regular if and only if there exist
binary terms b1, . . . , bn such that V satisfies the following
condition:

[ b1(x, y) = c, . . . , bn(x, y) = c ] if and only if x = y.

It has been proved in Chajda (1998) that V is c-locally
regular if and only if there exist binary terms p1, . . . , pm

such that V satisfies the following condition:

[ p1(x, y) = x, . . . , pm(x, y) = x ] if and only if y = c.

It is known that any right-residuated l-groupoid G is con-
gruence 1-regular with the term b(x, y) = (x → y) ∧ (y →
x)which satisfies b(x, y) = 1 if and only if x = y. Clearly,G
is also congruence distributive, because its reduct to the sig-
nature {∨,∧} is a lattice. It is also known that basic algebras
form an arithmetical and congruence regular variety (see, e.g.
Chajda (2011)). Since, in viewofTheorem3, right-residuated
l-groupoids of Łukasiewicz type are term equivalent to basic
algebras, it follows that they also form an arithmetical and
congruence regular variety. Our last result which is based
on some ideas of Bĕlohlávek (2003) shows that some con-
gruence properties of residuated lattices remain valid in the
case of right-residuated l-groupoids also, although in their
case the operation � is neither associative nor integral, in
general.

Proposition 6 Any right-residuated l-groupoid G = (L ,∨,

∧,�,→, 0, 1) is congruence permutable and 1-regular, and
the following hold:

(a) If G satisfies the double negation law, then it is 0-regular.
(b) If G satisfies divisibility and the double negation law,

then it is congruence regular.

Proof It is well known that an algebra A = (A, F) is con-
gruence permutable whenever it has a Mal’cev term, i.e. a
term p(x, y, z) satisfying

p(x, y, y) = x and p(x, x, y) = y, for all x, y ∈ A . We
can choose the term p(x, y, z) = [((y → z) ∧ (z → y)) � x]
∨ [((x → y) ∧ (y → x)) � z], from Bĕlohlávek (2003).
Then p(x, y, y) = x ∨ [((x → y) ∧ (y → x)) � y]. Since
by Lemma 1(iv) we have ((x → y) ∧ (y → x))�y ≤ (y →
x)� y ≤ x , we obtain p(x, y, y) = x , for all x, y ∈ L . Sim-
ilarly we prove p(x, x, y) = y, for all x, y ∈ L .

(a)Let us consider the term t (x, y) = ((x → y)∧(y → x))

→ 0. Clearly, t (x, x) = 1 → 0 =�1 = 0, according
to Lemma 1(vi). Conversely, if t (x, y) = 0, then (x →
y)∧(y → x) = (((x → y) ∧ (y → x)) → 0) → 0 = 0 →
0 = 1, by the double negation law. Thus we get x → y = 1
and y → x = 1, whence x ≤ y and y ≤ x , and this implies
x = y, proving that G is 0-regular.
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(b) Now, in view of (a) and Chajda (1998), it suffices
to prove that G is locally 0-regular. Let p1(x, y) = (x →
y) → 0, and p2(x, y) = x ∨ y. Then obviously p2(x, 0) =
x , and p1(x, 0) = (x → 0) → 0 = x , for all x ∈ L .
Conversely, p2(x, y) = x implies y ≤ x and p1(x, y) = x
yields (x → y) → 0 = x , whence by double negation we
get x → y = x → 0. Therefore, using divisibility we obtain
y = x ∧ y = (x → y) � x = (x → 0) � x = x ∧ 0 = 0.
This proves that G is locally 0-regular. ��
Corollary 6 LetV be a variety consisting of right-residuated
l-groupoids satisfying the double negation law and divisibil-
ity. Then V is arithmetical and congruence regular.
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