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Abstract Face recognition is one of the most important
biometrics pattern recognitions, which has been widely
applied in a variety of enterprise, civilian and law enforce-
ment. The privacy of biometrics data raises important con-
cerns, in particular if computations over biometric data is
performed at untrusted servers. In previous work of privacy-
preserving face recognition, in order to protect individuals’
privacy, face recognition is performed over encrypted face
images. However, these results increase the computation
cost of the client and the face database owners, which
may enable face recognition not to be executed. Conse-
quently, it would be desirable to reduce computation cost
over sensitive biometric data in such environments. Cur-
rently, no secure techniques for outsourcing face biometric
recognition are readily available. In this paper, we propose a
privacy-preserving face recognitionprotocolwith outsourced
computation for the first time, which efficiently protects indi-
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viduals’ privacy. Our protocol substantially improves the
previous works in terms of the online computation cost by
outsourcing large computation task to a cloud server who
has large computing power. In particular, the overall online
computation cost of the client and the database owner in our
protocol is at most 1/2 of the corresponding protocol in the
state-of-the-art algorithms. In addition, the client requires
the decryption operations with only O(1) independent of M ,
where M is the size of the face database. Furthermore, the
client can verify the correctness of the recognition result.

Keywords Face recognition · Outsourced computation ·
Privacy-preserving

1 Introduction

Biometric techniques have advanced over the past years
to a reliable means of authentication, which have been
deployed in various application domains.Many governments
have already rolled out electronic passports and identities
(Naumann and Hogben 2008) that contain biometric infor-
mation (e.g., face images, fingerprints, and iris scan) of their
legitimate holders.Unlike other types of data used for authen-
tication purposes (passwords, key material, secure tokens,
etc.), the biometric data cannot be revoked and replaced with
a newvalue, hence it calls for strict protection of such biomet-
ric data. In particular, face recognition systems have become
more popular due to its unobtrusiveness and ease of use.
Thus, face recognition systems have been widely applied in
a variety of enterprise, civilian and law enforcement, such
as surveillance of public places, access and border control at
airports, Facebook in social networking platforms, etc.

The widespread use of face recognition systems, however,
can lead to privacy risks as biometric information could be
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collected and misused without the permission of the owner.
These issues raise the desire to construct privacy-preserving
face recognition systems. In recent years, many methods for
protecting biometric data were proposed, such as methods
on fuzzy vault (Juels and Sudan 2006; Chang and Li 2006),
secure sketches and fuzzy feature extractors (Dodis et al.
2004; Boyen 2004; Li et al. 2010; Dodis et al. 2008; Bhat-
tacharjee et al. 2010; Liu and Ye 2014), shielding functions
(Linnartz and Tuyls 2003; Tuyls et al. 2005), cancelable or
revocable biometrics (Ratha et al. 2001), and so on. These
methods stored a function of each biometric rather than the
biometrics data themselves, but it did not lead to compro-
mise of the biometric data in the case of server compromise.
For face recognition systems, in order to protect individuals’
privacy, face recognition was performed over encrypted face
images in previous works (Erkin et al. 2009; Sadeghi et al.
2010). However, these results increased the computation cost
of clients and database owners of the face images, which
may enable face recognition not to be executed. Currently,
no existing tools or techniques are readily available to carry
out the huge computation task of the database owner. Thus,
the problemof secure biometric face identification (ormatch-
ing) with the aid of untrusted cloud servers is the focus of
thiswork. In the cloud environment,many schemeswere pro-
posed, e.g. (Wang et al. 2014; Castiglione et al. 2015; Espos-
ito et al. 2013, 2015; Li et al. 2014, 2013; Chen et al. 2014).

In this paper, we concentrate on efficient privacy-preserv-
ing face recognition systems with the aid of untrusted cloud
servers. The typical scenario here is a application which con-
sists of three parties, i.e., a client, a database owner of face
images and a cloud server. Both the client and database owner
have limited (or weak) computing power, but the cloud server
has the ability to process magnanimity data and perform par-
allel computation. The client provides a specific face image
and needs to know whether the image is contained in the
database of face images. In addition, the face recognition
systems satisfies the following requirements: (1) the client
believes the database owner correctly performs the matching
algorithm for the face recognition but without revealing any
useful information to the database owner about the requested
image as well as about the outcome of the matching algo-
rithm; (2) the database owner requires privacy of its database
beyond the matching results to the client; (3) the database
owner needs help from the cloud server which cannot reveal
any useful information about real face images and can greatly
reduce the database owner’s computation cost using the abil-
ity of processing intelligent data and performing parallel
computation.

1.1 Related work

Some authors have proposed different complementary tech-
niques for making surveillance cameras more privacy frien-

dly, e.g. (Dufaux and Ebrahimi 2006; Yu et al. 2008; Li et al.
2014a). However, they do not consider face recognition. For
privacy-preserving face recognition, Erkin et al. (2009) pro-
posed for the first time a strongly privacy-enhanced face
recognition system. They used the standard and popular
Eigenface recognition algorithm (Turk and Pentland 1991).
The system performs operations on encrypted images by
means of homomorphic encryption schemes, more con-
cretely, (Paillier 1999; Damgard and Jurik 2001) as well as a
cryptographic protocol for comparing two Paillier encrypted
values based onDGK (Damgard,Geisler andKroigard) cryp-
tosystem (Damgard et al. 2007, 2008). They demonstrate
that privacy-preserving face recognition is possible in prin-
ciple and give required choices of parameter sizes to achieve
a good classification rate. However, the proposed protocol
requires O(logM) rounds of online communication as well
as computationally expensive operations on homomorphi-
cally encrypted data to recognize a face in the database of M
faces. Due to these restrictions, the proposed protocol can-
not be deployed in practical large-scale applications. After
that, Sadeghi et al. (2010) given two privacy-preserving face
recognition protocolswhich substantially improved over pre-
viouswork (Erkin et al. 2009). One is based on homomorphic
encryption (see, e.g., Paillier 1999; Damgard and Jurik 2001)
and Yao et al.’s Garbled Circuit (GC) (Yao 1986; Lindell
and Pinkas 2004), the other is based on GC only. Although
the protocols allowed to shift most of the computation and
communication into a pre-computation phase, the computa-
tion cost of the client and database owner was not reduced.
This means that efficiently implementing privacy-preserving
face recognition is difficult for the client and the database
owner with weak computing power. We improve Sadeghi et
al. ’s protocol based on homomorphic encryption and Gar-
bled Circuit in this paper. In the rest of the paper, the protocol
in Sadeghi et al. (2010) is based on homomorphic encryption
and Garbled Circuit unless stated otherwise.

The related problem of privacy-preserving face detection
(Avidan and Butman 2006) allows a client to detect faces on
his image using a private classifier held by servers without
revealing the face or the classifier to the other party. In order to
preserve privacy, faces can be de-identified so that face recog-
nition software cannot reliably recognize de-identified faces,
even though many facial details are preserved as described
in Newton et al. (2005).

Besides privacy-preserving face recognition, there were
a few attempts to make other biometric modalities privacy
preserving, such as fingerprints and iris codes (Ratha et al.
2006; Kevenaar 2007). However, these works consider a dif-
ferent setting, where the biometric measurement is matched
against a hashed template stored on a server. The server that
performs the matching gets to know both the biometric and
the detection result (the aim is only to secure storage of tem-
plates). In Blanton and Aliasgari (2012), a secure outsourced
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computation scheme of iris matching was proposed. To the
best of our knowledge, there is no prior solution to carry
out the huge computation task of the database owner in the
secure privacy-preserving face recognition system. In order
to reduce the computation cost, we present a new protocol
for privacy-preserving face recognition which can outsource
lager computation task to a third party (e.g., cloud servers)
who has a huge computing power.

1.2 Contribution

We propose an efficient and secure privacy-preserving face
recognition protocol with outsourced computation. Our pro-
tocol is based on the Eigenfaces recognition algorithm (Turk
and Pentland 1991) and a hybrid Encryption based on fully
homomorphic encryption (FHE) in Li and Lai (2012). We do
not useGarbledCircuits.Our protocol substantially improves
over previous works (Erkin et al. 2009; Sadeghi et al. 2010)
as it has only one round (two moves) between the client and
the database owner. Furthermore, the protocol can efficiently
outsource most of the computation to an untrusted cloud
server. The remaining computation cost of the client and the
database owner is small. Beyond the encryption operations,
the online computation cost of the client and the database
owner in our protocol is at most 1/2 of the corresponding
protocol in the state-of-the-art algorithms, this is especially
important for the client and the database owner with weak
computing power.

1.3 Organization

The rest of the paper is organized as follows. We summa-
rize our model and security requirements, parameters setting
and cryptographic tools used in our constructions in Sect. 2.
A summary of the face recognition algorithm using Eigen-
faces is reviewed in Sect. 3. Section 4 details our secure
privacy-preserving face recognitionprotocolwith outsourced
computation. Security and efficiency analysis of our protocol
are given in Sect. 5. And Sect. 6 concludes the paper.

2 Preliminaries

In this section, we give the model and the security require-
ments of our scheme and summarize cryptographic tools used
in our constructions.

2.1 Model and security requirements

In this paper, we give a simplifiedmodel depicted in Fig. 1.
Three parties are involved in our model, that is, a client (C), a
database owner (DB) of face images and an untrusted cloud
server (CS). Both the client and database owner have lim-

Fig. 1 The model

Table 1 Summary of notations and parameters

Parameter Description

M Number of faces in database

N Size of a face in pixels

K Number of Eigenfaces

Γ Face

Ψ Average face

u1, . . . , uK Eigenfaces

Ω̄ Projected face for Γ

Ω1, . . . , ΩM Projected faces in database

D1, . . . , DM Squared distances between projected images

l ′ The bit length of values D1, . . . , DM

τ Threshold value

ited (or weak) computing power, but the cloud server has
the ability to process magnanimity data and perform paral-
lel computation. The client provides a specific face image
and needs to know whether the image is contained in the
database of face images held by the database owner. Since
the computational cost is to high for the DB, the DB may
not have the capacity to complete the computation task by
itself. Thus, the database owner DB requires assistance from
a third party (e.g., cloud servers). Based on the above analy-
sis, we use outsourced computation which can enable the
database owner to outsource all or partly computation to the
cloud serverwhohasmore computational power in this paper.
Meanwhile, the cloud server returns the recognition results
to the client and the client can verify the correctness of the
recognition results. In addition, the scheme should satisfy
three requirements which are described in the Sect. 1.

We work in the semi-honest model where the client and
the database owner are assumed to be honest-but-curious but
the cloud server is untrusted.

Similar to Erkin et al. (2009) and Sadeghi et al. (2010),
we summarize the notations and the parameters used in this
paper in Table 1.
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2.2 Cryptographic tools

Hybrid encryption based on FHE We use a semantically
secure hybrid encryption (HS) based on FHE scheme in
Li and Lai (2012), which is a combination of an ordi-
nary (non-FHE) encryption scheme and a FHE scheme.
In Li and Lai (2012), the authors give a detailed hybrid
encryption scheme using a symmetric encryption scheme
and a FHE scheme. A public-key encryption schemes (e.g.,
RSA, Paillier) can as well be used as an ordinary encryp-
tion scheme. In this paper, we use a semantically secure
hybrid encryption (HS) which is a combination of a public-
key encryption scheme and a FHE scheme. Let M be a
plaintext space, FHE=(FHE.KeyGen, FHE.Enc, FHE.Dec,
FHE.Eval) be a FHE scheme, and PE=(PE.KeyGen, PE.Enc,
PE.Dec) be a public-key encryption scheme (PE). A hybrid
encryption scheme HS=(HS.KeyGen, HS.Enc1, HS.Enc2,
HS.Dec, HS.Eval) consists of five PPT algorithms (PPT
is shorthand for probabilistic polynomial time), which are
described as follows.

– HS.KeyGen(λ) → (pk, dk, pk′, sk, κ). Takes as input
a security parameter λ, runs FHE.KeyGen to obtain a
public encryption key pk and a secret decryption key dk,
runs PE.KeyGen to obtain public encryption key pk′ and
a secret decryption key sk. Then, encrypts sk under the
public key pk to obtain κ ← FHE.Enc(pk, sk), outputs
(pk, dk, pk′, sk, κ).

– HS.Enc1(pk′, x) → c. Runs PE.Enc to encrypt message
x ∈ M under the public key pk′, outputs ciphertext c.

– HS.Enc2(pk, κ, c) → cx . On input (pk, κ, c), outputs a
new ciphertext cx which is equal to FHE.Enc(pk, x).

– HS.Dec(dk, cx ) → x . Same as FHE.Dec. Takes as input
dk and cx , and decrypts the ciphertext cx to a plaintext
x ∈ M under the secret key dk.

– HS.Eval(pk,C, c1, c2, . . . , cn) → cy . Same as the FHE.
Eval. Given the public key pk, a circuit C and a set of n
ciphertexts c1, c2, . . . , cn deterministically compute and
outputs a new ciphertext cy .

Similar to FHE, a HS scheme should also satisfy four
properties, which is encryption correctness, evaluation cor-
rectness, succinctness and semantic security.

As instantiation we use the Paillier public-key encryption
scheme (Paillier 1999; Damgard and Jurik 2001) which has
plaintext space ZN and ciphertext space ZN2 , where N is
a T -bit RSA modulus, while we use the FHE scheme over
the integers (Dijk et al. 2010). In Erkin et al. (2009), the
privacy-preserving face recognition protocol uses the homo-
morphic cryptosystem of Damgard, Geisler and Kroigard
(DGK) other than the Paillier public-key encryption scheme.
The DGK homomorphic encryption scheme can reduce the
ciphertext space to Z∗

N . In Sadeghi et al. (2010), the privacy-

preserving face recognition protocol additionally uses Yao’s
Garbled Circuit other than the Paillier public-key encryption
scheme. Both protocols in Erkin et al. (2009) and Sadeghi
et al. (2010) do not use FHE.

In this paper, in an additively homomorphic Paillier
encryption scheme, given encryptions [a]PE and [b]PE, an
encryption [a + b]PE can be computed by [a + b]PE =
[a]PE · [b]PE, where all operations are performed in the alge-
bra of themessage or ciphertext space. Furthermore, in a FHE
scheme, given encryptions [a]FHE and [b]FHE, an encryption
[a+b]FHE can be computed by [a+b]FHE = [a]FHE+[b]FHE
and [ab]FHE can be computed by [ab]FHE = [a]FHE[b]FHE.

3 Face recognition algorithm using Eigenfaces

In the following we briefly summarize the recognition
process of the Eigenfaces algorithmm (Turk and Pentland
1991; Erkin et al. 2009; Sadeghi et al. 2010). The algorithm
obtains as input the query face imageΓ represented as a pixel
image with N pixels. Additionally, the algorithm obtains the
parameters determined in the enrollment phase as inputs: the
average face Ψ which is the mean of all training images, the
Eigenfaces u1, . . ., uK which span the K -dimensional face
space, the projected facesΩ1, . . . ,ΩM being the projections
of the M faces in the database into the face space, and the
threshold value τ . The output r of the recognition algorithm
is the index of that face in the database which is closest to
the query face Γ or the special symbol ⊥ if no match was
found, i.e., all faces have a larger distance than the threshold
τ . Specifically, the recognition algorithm consists of three
phases, which are described as follows.

1. ProjectionThe average faceΨ is subtracted from the face
Γ and the result is projected into the K -dimensional face
space using the Eigenfaces u1, . . ., uK . The result is the
projected K -dimensional face Ω̄ .

2. Distance The square of the Euclidean distance Di

between the projected K -dimensional face Ω̄ and all
projected K -dimensional faces in the database Ωi (i =
1, 2, . . . , M) is computed.

3. Minimum The minimum distance Dmin is selected. If
Dmin is smaller than the threshold τ , the index of themin-
imum value, i.e., the identifier imin of the match found, is
returned to the client and as a result r = imin. Otherwise,
the image was not found and the special symbol r =⊥ is
returned.

4 Privacy-preserving face recognition with
outsourced computation

In this section, we present a privacy-preserving face recog-
nition protocol with outsourced computation. The protocol
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Fig. 2 Outline of our protocol

operates on encrypted images. Three parties are involved in
our schemes, that is, a client C , a database owner DB of face
images and an untrusted cloud server CS. We work in the
semi-honest attackermodel. Informally, this assumes that the
client C and the database owner DB follow the protocol but
try to learn additional information from them. In addition,
any outsourcer can verify the correctness of the untrusted
cloud server output. It is also assumed that the parties com-
municate over an authenticated channel (this can be achieved
by standard mechanisms and is thus outside the scope of
this paper). We assume that a database owner has already
set up the face recognition system by running the enroll-
ment process (in the clear) on all available training images
{θ1, . . . , θM } to obtain the basis u1, . . . , uK of the face space
and feature vectors Ωi (i = 1, 2, . . . , M) of faces to be
recognized.

Furthermore, we assume that all coordinates of the eigen-
faces and feature vectors are represented as integers. Each
feature vector in the database is further accompanied by a
string idi that contains the identity of the person the feature
vector belongs to; we assume that the identity is encoded
as a non-zero element of the message space of the chosen
encryption scheme.

Figure 2 shows an outline of our protocol, which is
described as follows.

Projection The input image Γ has to be projected onto
the low-dimensional face space spanned by the eigen-

faces u1, . . . , uK . the client C runs HS.Gen to obtain
(pk, dk, pk′, sk, κ), where (pk, dk) is the public/secret
key pair of the FHE and (pk′, sk) is the public/secret
key pair of the Paillier homomorphic encryption scheme.
In addition, κ is the encryption of sk under FHE. Let
κ be [sk]FHE . The client C encrypts the face Γ as
[Γ ]PE = ([Γ1]PE, · · · , [ΓN ]PE). Meanwhile, the client ran-
domly chooses three elements a,b and c, and encrypts them
as [a]PE, [b]PE and [c]PE.

The client sends {[Γ ]PE, [a]E , [b]PE, [c]PE, [sk]FHE}
along with (pk, pk′) to the database owner DB. Using
the homomorphic properties and outsourced computation,
DB projects the encrypted face into the low-dimensional
face space and obtains the encryption of the projected face
[Ω̄]PE = ([ω̄1]PE, · · · , [ω̄K ]PE) as follows.

1. For i = 1, . . . , K , the database owner DB computes
pi = −∑N

j=1 ui, jΨ j , where Ψ j is the component of the

vector Ψ = 1
M

∑M
i=1 θi . This step can be completed in

the pre-computation phase (offline phase).
2. The database owner DB encrypts pi under the public key

pk′ to obtain [pi ]PE = [−∑N
j=1 ui, jΨ j ]PE. This step is

completed in the online phase.
3. DB computes qi = ∏N

j=1[Γ j ]ui, jPE using outsourcing
exponentiation algorithm (such as (Wang et al. 2014))
which can reduce the database owner DB ’s computation
cost.
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4. For i = 1, . . . , K , the database owner computes
[ω̄i ]PE = [pi ]PE · qi .

Distance After projection, the database owner DB needs
to compute the Paillier encryption of the Euclidean dis-
tances between the projected face Ω̄ and all projected faces
Ω1, . . . ,ΩM in the database held by the database owner in
Erkin et al. (2009) and Sadeghi et al. (2010). In addition,
DB also needs interaction with the client. In our protocol,
DB does not need interaction with the client. Because the
computation cost is very large for DB, who may no capacity
to complete the computation task by himself. Thus, the data-
base owner DB requires assistance from a third party (e.g.,
cloud server). In this paper, we use outsourced computation
which can enable the database owner to outsource all or partly
computation to the cloud server who has lager computing
powering. For i = 1, 2, . . . , M , the encryption of the square
Euclidean distances [Di ]PE = [‖Ωi − Ω̄‖2]PE = [S1,i +
S2,i + S3]PE = [S1,i ]PE · [S2,i ]PE · [S3]PE, where [S1,i ]PE =
[∑K

j=1 ω2
i, j ]PE, [S2,i ]PE = [∑K

j=1(−2ωi, j ω̄ j )]PE = ∏K
j=1

[ω̄ j ]−2ωi, j
PE and [S3]PE = [∑K

j=1 ω̄ j
2]PE. We notice that S3

is a fixed value once the input mage Γ and the face data-
base are fixed. Hence, DB only needs to compute [D′

i ]PE =
[S1,i + S2,i ]PE = [S1,i ]PE · [S2,i ]PE. These cannot effect the
next step (See. Match finding). Specifically, [D′

i ]PE can be
computed as follows.

1. To obtain [S1,i ]PE, the database owner DB needs to com-
plete two steps below.

– DB computes
∑K

j=1 ω2
i, j which can be pre-computed

in the offline stage.
– DB encrypts

∑K
j=1 ω2

i, j under the public key pk′ to
obtain [S1,i ]PE = [∑K

j=1 ω2
i, j ]PE. This step is com-

pleted by the database owner DB in the online phase.

2. For computing [S2,i ]PE, the database owner DB firstly

outsources exponentiation [ω̄ j ]−2ωi, j
PE to the cloud server

CS by outsourcing exponentiation algorithm, and then
multiply those exponentiation together to obtain [S2,i ]PE.

3. For i = 1, 2, . . . , M , DB computes [D′
i ]PE = [S1,i ]PE ·

[S2,i ]PE

Thus, DB can finish this phase without interacting with the
client.

Minimum (Match finding) In the last step of the recognition
algorithm, the goal is to find the minimum value D from
{Di }Mi=1 and its index I dmin. If the minimum value D is
smaller than the threshold value τ known by the database
owner, then a match is reported and an encryption of the
identity I dmin which corresponds to the best matching fea-
ture vector is returned to the client. Because S3 is a fixed

value, we only need to find the minimum value D′ from
{D′

i }Mi=1 and its index I dmin. If the minimum value D′ is
smaller than the value τ ′ = τ − S3, then a match is reported
and an encryption of the identity I dmin which corresponds
to the best matching feature vector is returned to the client.

As we need to return the identity of the best matching
feature vector, we also have to keep track of the IDs dur-
ing the minimum computation. This is done by working
with pairs ([D′

i ]PE, [I di ]PE) of distances and their corre-
sponding identities. To check if the minimum distance is
smaller than τ ′, we can treat the value τ ′ as one additional
distance that has the special identity 0. Together with the
distances D′

1. . . . , D
′
M , the client, the database owner, and

the cloud server jointly carry out the protocol with ver-
ifiable outsourced computation to find minimum distance
and the corresponding identity ([D′]FHE, [I d]FHE), where
D′ ∈ {τ ′, D′

1, . . . , D
′
M } and I d ∈ {0, I d1, . . . , I dM }. Thus,

if a face image could be recognized the value Id contains the
corresponding identity. If nomatch could be found Id is equal
to 0. Some encrypted values are finally sent to the client as
the result of the private face recognition protocol. Then, the
client can obtain the recognition result I d by some computa-
tions and can verify the correctness of the result. To achieve
this, the client C , the database owner DB, and the cloud
server CS jointly run the following match finding protocol
(MFP) with verifiable outsourced computation (VOC).

1. The database owner DB constructs a circuit Ccircuit with
multi-input, which is shown in Fig. 3. This can be com-
pleted by the database owner in the offline stage.

2. DB sends the circuit Ccircuit, [sk]FHE and σ = {[τ ]PE,

[ω̄1]PE, . . . , [ω̄K ]PE, [D′
1]PE, . . . , [D′

M ]PE, [a]PE, [b]PE,

[c]PE} to the cloud server CS.
3. For each element in the set σ , CS runs the algorithm

HS.Enc2 to get σ ′ = {[τ ]FHE, [ω̄1]FHE, · · · , [ω̄K ]FHE,

[D′
1]FHE, . . . , [D′

M ]FHE, [a]FHE, [b]FHE, [c]FHE}.
4. CS computes FHE.Eval(pk,Ccircuit, σ

′) to obtain
[Δ1]FHE and [Δ2]FHE, then sends them to the client.

5. The client decrypts [Δ1]FHE and [Δ2]FHE under the secret
key dk to obtain Δ1 and Δ2. If Δ1 − a = c(Δ2 − b),
then the client accepts the match result Id = Δ2 − b,
otherwise rejects. If Id = 0, it shows that no match could
be found in the database held by the database owner.

In our minimum (Match) finding protocol, the online
computation and round complexity have been substantially
improved for the client C and the database owner DB, we
have given the comparison of three minimum protocols from
two aspects, i.e., the online round complexity and the asymp-
totic computation complexity (ACC1), which is shown as in
Table 2 with parameter m ≈ l ′M

T−κ ′ , where T is the asymmet-
tric security parameter and κ ′ is the statistical correctness
parameter in Sadeghi et al. (2010).
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Fig. 3 Circuit Ccircuit for match
finding with VOC

Table 2 Comparison of three
minimum protocols

Protocol Erkin et al. (2009) Sadeghi et al. (2010) Ours

Round complexity [moves] 6
logM� + 1 3 2

ACC1 (C online) 2MDecPE + l ′MDecDGK mDecPE + 3l ′M Hash 2 DecFHE
ACC1 (DO online) 2MExpPE + l ′MExpDGK mExpPE 1 EncPE

5 Security and efficiency analysis

The security of our protocol is based on the security of four
schemes, i.e. the privacy-preserving face recognition scheme
in Sadeghi et al. (2010), HS scheme in Li and Lai (2012) and
the verifiable outsourced computation schemes for simulta-
neous exponentiations in Wang et al. (2014) and arbitrary
functions in Tang and Chen (2014). This four schemes are
secure which have been proved Sadeghi et al. (2010); Wang
et al. (2014); Li and Lai (2012); Tang and Chen (2014). Thus,
our protocol is secure.

In order to illustrative the efficiency of our protocol, we
will give detailed analysis from three respects, i.e., the round,
the communication and computation complexity.

5.1 Round complexity

The round complexity of our protocol is very low. Firstly,
sending the encrypted face image takes one move. Secondly,
for outsourced computation, it needs 5 moves between the
database owner and the cloud server. In the last step of
FMP, sending the result of FMP takes one move between
the client and the cloud server. Hence the overall round cost
is 7 moves. In addition, we note that it has only 3 moves
if the database owner completes exponentiations by himself

rather than the cloud server in both projection and calcula-
tion distance phases. Therefore, the round complexity of our
protocol is O(1). Furthermore, our protocol does not require
the database owner interaction with the client for calculation
distance, but the database owner needs interactions with the
cloud server if partly computation task is outsourced to the
cloud server, in which it can reduce the computation cost of
the database owner.

5.2 Online communication complexity

For communication complexity, the communication com-
plexity highly depends on the size of Paillier encryption,
FHE, and outsourcing algorithm. In the offline phase, the cir-
cuit Ccircuit with VOC can be transmitted to the cloud server.
In the following, we only analyze the online communication
complexity.

– C → DB. In the projection stage, the client requires
transmission of 1 FHE encrypted value [sk]FHE, (N +
3)Paillier encrypted values {[Γ1]PE, · · · , [ΓN ]PE, [a]PE,
[b]PE, [c]PE}.

– DB � CS. In the distance calculation phase, for i =
1, . . . , K , to obtain [ω̄i ]PE = [pi ]PE · qi , the database
owner outsources the computation qi = ∏N

j=1[Γ j ]ui, jPE to
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Table 3 Comparison of round and asymptotic communication complexity (ACC)

Protocol Erkin et al. (2009) Sadeghi et al. (2010) Ours

Round complexity O(logM) O(1) O(1)

Moves 6
log(M + 1)� + 4 6 3 (or 7)

ACC (online, [bits]) 2T (l ′M + K + N + 1 + 8M) 2T (l ′M + k + m + N + 1) 6K · 
N/2� · (logp′ +8T + logp)+
2T (K + N + M + 7) + 4γ

Table 4 Comparison of
asymptotic computation
complexity (online)

Protocol Erkin et al. (2009) Sadeghi et al. (2010) Ours

C (N + 1)EncPE + (K +
2M)DecPE +
(l ′M)DecDGK + (K )MM

(N + 1)EncPE + (k +
m)DecPE +
(3l ′M)Hash + (K )MM

(N + 3)EncPE +
1EncFHE + 2DecFHE

DO (K + M)EncPE + ((l ′ +
K + 2)M + (N +
1)K )Exp + ((N + M +
2)K + 1 − M)MM

(K + M)EncPE + (K N +
KM + k + 1 + m)Exp +
(K N + M(K − 1) + 1 +

K/k�)MM

(M + K + 1)EncPE +
(K 
N/2� +
M
K/2�)SexpVOC +
(K 
N/2�+M
K/2�)MM

Sum (K + M + N + 1)EncPE +
(K + 2M)DecPE +
(l ′M)DecDGK + ((l ′ +
K + 2)M + (N +
1)K )Exp + ((N + M +
3)K + 1 − M)MM

(K+M+N+1)EncPE+(k+
m)DecPE + (3l ′M)Hash+
(K N + KM + k + 1 +
m)Exp + (K (N + 1 +
M)−M+1+
K/k�)MM

(K + M + N + 4)EncPE +
1EncFHE + 2DecFHE +
(K 
N/2� +
M
K/2�)SexpVOC +
(K 
N/2�+M
K/2�)MM

CS using outsourced computation algorithm for simul-
taneous exponentiation (Sexp) in Wang et al. (2014)
in the projection stage. Therefore, it needs K · 
N/2�
operations of Sexp, which means that the communica-
tion overhead is K · 
N/2� · (6logp + 12Len[Γ j ]PE),
where p is the bit length of ui, j and Len[Γ j ]PE is the
bit length of [Γ j ]PE. In the distance computation stage,
it needs K · 
N/2� operations of Sexp for computing
[S2,i ]PE, which means that the communication overhead
is K · 
N/2� · (6logp′ + 12Len[ω̄ j ]PE) bits, where p′ is
the bit length of −2ωi, j and Len[ω̄ j ]PE is the bit length of
[ω̄ j ]PE.

– DB → CS. In the minimum (match) finding stage, the
circuit Ccircuit can be transmitted in the offline stage. It
requires transmission of 1 FHE encrypted value and (K+
2M +4) PE encrypted values in the online stage. Similar
to Erkin et al. (2009) and Sadeghi et al. (2010), we only
require transmission of (K +M+4) PE encrypted values
if we omit the statistic for the transmission of [id]PE.

– CS → C . In the minimum (Match) finding stage, it
requires transmission of 2 FHE encrypted value [Δ1]FHE
and [Δ2]FHE.

Similar to Erkin et al. (2009) and Sadeghi et al. (2010), we
omit the statistic for the transmission of [idi ]PE. Let k be the
number of the packed ciphertexts in (Sadeghi et al. 2010).
Suppose that the size of FHE-ciphertexts is γ bits. We now
compare our protocol with the previous works (Erkin et al.
2009; Sadeghi et al. 2010) as shown inTable 3.Unfortunately,
the online communication cost of our protocol is larger than

the precious works because we use outsourced computation
algorithms which means that the outsourcer requires some
interactions with the cloud server.

5.3 Online computation complexity

The overall online computation complexity of our protocol
is substantially lower. We denote by EncPE an invocation of
the Paillier homomorphic encryption algorithm, by DecPE
an invocation of the Paillier homomorphic decryption algo-
rithm, by EncFHE an invocation of the FHE algorithm, by
DecFHE an invocation of the fully homomorphic decryp-
tion algorithm, by MM a modular multiplication, by MInv
a modular inverse, by Exp a modular exponentiation, by
SexpVOC an invocation of the verifiable outsourced compu-
tation algorithm for simultaneous exponentiation. We omit
other operations such as modular additions. More precisely,
the online computation cost of the client and the database
owner is given as follows.

– In the projection phase, the client needs (N+3) EncPE
and 1 EncFHE, and the database owner requires K EncPE,
K · 
N/2� SexpVOC and (K 
N/2�) MM.

– In the distance computation phase, the database owner
needs M EncPE, (M · 
K/2�)SexpVOC and (M · 
K/2�)
MM.

– In the minimum distance (or match) finding phase, the
client needs 2DecFHE. Because the database owner needs
to encrypt {τ, id0, id1, . . . , idM } under PE, the database
owner needs (M + 2)EncPE in the online phase.
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Compared with the previous algorithms in Erkin et al.
(2009), Sadeghi et al. (2010), our protocol is superior in effi-
ciency due to the reduction of the computation cost of the
client and the database owner. Similar to Erkin et al. (2009),
Sadeghi et al. (2010), we omit the statistic for the computa-
tion cost of the encryption {idi }Mi=0 under PE.Table 4 presents
the comparison of the online computation cost of the client
and the database owner in the three algorithms. In particular,
beyond the encryption operations, we note that the overall
computation cost of the client and the database owner in our
protocol is at most 1/2 of the corresponding protocol in the
state-of-the-art algorithms (Erkin et al. 2009; Sadeghi et al.
2010).

6 Conclusion

In this paper, we present a privacy-preserving face recogni-
tion scheme with outsourced computation, which allows to
match an encrypted image showing a face against a database
of facial templates in such a way that the biometric itself and
the detection result is hidden from the server that performs
the matching. In particular, our protocol allows the database
owner to securely outsource some computation task to an
untrusted cloud server, and the database owner can detect
the dishonest behavior of the untrusted cloud server. Further-
more, the client can verify the correctness of the recognition
result. Compared with the state-of-the-art algorithms (Erkin
et al. 2009; Sadeghi et al. 2010), beyond the same operations
for encryption, the overall online computation cost of the
database owner and the client is greatly reduced. However,
the online communication cost cannot reduce due to using
outsourced computation. Thus, the key problem of our pro-
tocol is that how to further reduce the online communication
cost and the client’s computation cost on the future work.
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