Soft Comput (2016) 20:4055-4067
DOI 10.1007/s00500-015-1741-2

@ CrossMark

METHODOLOGIES AND APPLICATION

Optimal design of fractional-order PID controller for five bar
linkage robot using a new particle swarm optimization algorithm

Mohammad Pourmahmood Aghababa!

Published online: 17 June 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract This paper introduces a new version of the particle
swarm optimization (PSO) method. Two basic modifica-
tions for the conventional PSO algorithm are proposed to
improve the performance of the algorithm. The first modifica-
tion inserts adaptive accelerator parameters into the original
velocity update formula of the PSO which speeds up the con-
vergence rate of the algorithm. The ability of the algorithm
in escaping from local optima is improved using the sec-
ond modification. In this case, some particles of the swarm,
which are named the superseding particles, are selected to be
mutated with some probability. The proposed modified PSO
(MPSO) is simple to be implemented, fast and reliable. To
validate the efficiency and applicability of the MPSO, it is
applied for designing optimal fractional-order PID (FOPID)
controllers for some benchmark transfer functions. Then, the
introduced MPSO is applied for tuning the parameters of
FOPID controllers for a five bar linkage robot. Sensitivity
analysis over the fractional order of the PID controller is
also provided. Numerical simulations reveal that the MPSO
can optimally tune the parameters of FOPID controllers.

Keywords Particle swarm optimization - Fractional-order
PID - Robot - Controller - Sensitivity analysis
1 Introduction

The main goal of an optimization algorithm is to seek val-
ues for a set of parameters that maximize/minimize objective

Communicated by V. Loia.

B<XI Mohammad Pourmahmood Aghababa
m.p.aghababa@ee.uut.ac.ir; m.pour13@gmail.com

Faculty of Electrical and Computer Engineering,
Urmia University of Technology, Urmia, Iran

functions subject to some constraints. Some of the optimiza-
tion algorithms are traditional optimization techniques which
use exact methods to find the best solution. If an optimization
problem is solvable, then the traditional optimization algo-
rithms can discover the global best solution. However, as the
search space increases the computation and implementation
costs of the exact algorithms are increased. Therefore, when
the search space complexity increases, the exact algorithms
are slow to find the global optimum. Linear and nonlinear
programming, brute force or exhaustive search and divide
and conquer methods are some of the exact-based optimiza-
tion methods.

Calculus provides the tools for finding the optimum
of many objective functions. Calculus-based methods can
quickly find a single optimum but require a search scheme to
find the global optimum. Continuous functions with analyti-
cal derivatives are necessary. If there are too many variables,
then it is difficult to find all the optimum points. In such
algorithms, the gradient of the objective function serves
as the compass heading pointing to the steepest downhill
path. It works well when the optimum is nearby, but cannot
deal with cliffs or boundaries, where the gradient cannot be
calculated.

Other optimization algorithms are heuristic algorithms,
such as genetic algorithm (GA), particle swarm optimization
(PSO), ant colony optimization (ACO), simulated annealing
(SA), harmony search (HS), etc. Heuristic algorithms have
several advantages compared to the other algorithms as fol-
lows (Wang et al. 2005):

1. Heuristic algorithms can be easily implemented.

2. They can be used efficiently in a multiprocessor environ-
ment.

3. They are able to deal with both continuous and discrete
optimization problems.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-015-1741-2&domain=pdf

4056

M. P. Aghababa

One of the applied and well-known heuristic optimiza-
tion methods is the particle swarm optimization. The PSO
is a population-based searching technique proposed in 1995
(Kennedy and Eberhart 1995) as an alternative to the genetic
algorithm. Its development is based on the observations
of social behavior of animals such as bird flocking and
fish schooling. Compared to GA, PSO has some attrac-
tive characteristics. First, PSO has memory which utilizes
the knowledge of good solutions retained by all particles,
whereas in GA, previous knowledge of the problem is
destroyed once the population is updated. Second, PSO has
constructive cooperation between particles and particles in
the swarm share their information (Hung et al. 2008).

However, trapping in local optima and slow convergence
rate are two main weaknesses of the original heuristic PSO.
In order to improve the performance of the PSO and to over-
come the above-mentioned weaknesses of the PSO, many
studies have been performed in the literature. In Eberhart and
Shi (2001), arandom inertia weight PSO method (RPSO) has
been proposed for tracking dynamic systems. Another new
version of the PSO which modifies the velocity update for-
mula of the original PSO, is the constriction factor approach
PSO (CPSO) (Clerc and Kennedy 2002). In Ratnaweera et al.
(2004), a simple PSO with time-varying acceleration coef-
ficients has been proposed. The idea in Ratnaweera et al.
(2004) is to have a high diversity for early iterations and a
high convergence for late iterations. Meissner et al. (Van den
Bergh and Engelbrecht 2002) have introduced a guaranteed
convergence PSO which addresses the problem of stagnation
and increases local convergence by using the global best par-
ticle to randomly search in an adaptively changing radius at
every iteration. In Chen et al. (2010), a PSO-based intelli-
gent decision algorithm has been constructed for VLSI floor
planning problem. Forecasting of financial time series using
a support vector machine optimized by PSO has been carried
out in Zhiqiang et al. (2013). Tassopoulos and Beligiannis
(2012) have proposed a PSO based parametric optimization
method to solve effectively the school timetabling prob-
lem. However, since most of the above-mentioned works
have been proposed some hybrid models for the improve-
ment of the original PSO, they are either so complex to be
implemented in real world situations or they are with high
computational complexity.

Proportional-Integral-Derivative (PID) control is one of
the earliest control strategies. It has been widely used in
the industrial control field. Its widespread acceptability can
be recognized by the familiarity with which it is perceived
amongst researchers and practitioners within the control
community, simple structure and effectiveness of algorithm,
relative ease and high speed of adjustment with minimal
down-time and wide range of applications where its reli-
ability and robustness produce good control performances
(Gaing 2004).

@ Springer

Fractional calculus, with more than 300 years old history,
is a classical mathematical idea which allows to arbitrary
(non-integer) order differentiation and integration. Although
it has a long history, its applications to physics and engineer-
ing are only arecent subject of interest. It has been recognized
that many systems in interdisciplinary fields can be ele-
gantly described with the help of fractional-order differential
equations. On the other hand, fractional order controllers
may be employed to achieve feedback control objectives for
such systems. Modeling and control topics using the con-
cept of fractional order systems have recently attracted more
attentions because of the introduction of useful applications
(Podlubny 1999; Aghababa 2014a,b,c, 2015a,b,c,d).

Recently, fractional calculus has been used for designing
fractional-order PID (FOPID) controllers. Various studies
have demonstrated that the FOPID controllers improve the
performance and robustness of the traditional PID controllers
(Lee and Chang 2010). However, successful applications
of FOPID controllers require the satisfactory tuning of five
parameters: the proportional gain, the integrating gain, the
derivative gain, the integrating order and the derivative order.
Traditionally, these parameters have been determined by a
trial and error approach. Manual tuning of FOPID controller
is very tedious, time consuming and laborious to imple-
ment, especially where the performance of the controller
mainly depends on the experiences of design engineers. Of
late, some parameter tuning methods have been proposed to
reduce the time consumption for determining the five con-
troller parameters. The most well-known tuning method is the
Ziegler—Nichols tuning formula (Valerio and Costa 2006),
which determines suitable parameters by observing a gain
and a frequency on which the plant becomes oscillatory.

More recently, artificial intelligence techniques such as
electromagnetism-like algorithm (Lee and Chang 2010),
fuzzy logic (Das et al. 2012), PSO and GA approaches (Bin-
gul and Karahan 2012) and artificial bee colony (Rajasekhar
et al. 2011) have been applied to improve the perfor-
mance of the FOPID controllers. A set of tuning rules for
standard (integer-order) PID and fractional-order PID con-
trollers has been proposed in Padula and Visioli (2011). In
the above-mentioned studies, it has been shown that the
intelligent-based approaches provide good solutions in tun-
ing the parameters of the FOPID controllers. However, there
are several causes for developing improved techniques to
design FOPID controllers. One of them is the important
impact it may give because of the general use of the con-
trollers. The other one is the enhancing operation of FOPID
controllers that can be result from improved design tech-
niques. Finally, an optimal tuned FOPID controller is more
interested in real-world applications.

This paper proposes a modified new version of the
standard PSO algorithm as an alternative numerical opti-
mization algorithm. Two main modifications are proposed

Optimal design of fractional-order PID controller...

4057

for improving the performance of the traditional PSO. The
first modification inserts adaptive accelerator parameters into
the original velocity update formula of the PSO to speed up
the convergence rate of the algorithm. The second modifi-
cation improves the ability of the original PSO algorithm
in escaping from local optima trap. The idea is to introduce
some mutated particles, which are named superseding par-
ticles, to the swarm to enhance the diversification property
of the algorithm. The proposed modified PSO (MPSO) is
applied for determining the optimal parameters’ values of
the FOPID controllers. The problem of designing FOPID
controller is first formulated as an optimization problem.
Then, the objective function is defined as minimization of
four performance indexes, namely the maximum overshoot,
the settling time, the rise time and the integral absolute error
of step response. Subsequently, an optimal FOPID controller
is designed for a five bar linkage manipulator robot using the
developed MPSO. The advantages of this methodology are
its simplicity in theory and practice as well as its less compu-
tation burden, high-quality solution and speedy convergence.

The rest of this paper is organized as follows: In Sect.
2, preliminaries of the fractional derivatives are given. Sec-
tion 3 deals with the introduction of the proposed modified
PSO algorithm. The design procedure of the fractional PID
controller for some typical benchmark transfer functions is
presented in Sect. 4. In Sect. 5, the modified PSO method is
applied for designing a fractional PID controller for a five-
bar-linkage manipulator robot. At last, this paper ends with
some concluding remarks in Sect. 6.

2 Preliminaries
In what follows, first some basic definitions of fractional

calculus are given. Subsequently, the integer-order approxi-
mation of the fractional derivatives is presented.

2.1 Fractional calculus

The basic definitions of the fractional calculus are as follows
(Podlubny 1999):

Definition 1 The ath-order fractional integration of function
f(¢) is defined as below.

f(@
M.,/ -7l
1o

DY f@) = dr, ey

where I'(.) is the Gamma function.

Definition 2 The Riemann—Liouville fractional derivative
of order « of function f(¢) is defined as follows:

d* f(@) 1
d® ~ T'(m—a) dtm (t—

f @

-L-)a m+1

oD (@) =

’

()
wherem — 1 <a <mandm € N.

Definition 3 The Caputo fractional derivative of order « of
a function f(¢) is given by

f(m)(_[) B
tOD;xf(t) == F(m o) f (t—1)% m+1df, m l<aoa<m
(?zm f(t)a o =m,

3

where m is the smallest integer number larger than «.
The Laplace transform of the Caputo fractional derivative
becomes as follows (Podlubny 1999):

m—1

2R, @)

k=1

L{yDf f(1)} = s“F(p) —

where p is the Laplace operator.

Equation (4) means that, if zero initial conditions are
assumed, systems with a dynamic behavior described by dif-
ferential equations involving fractional derivatives give rise
to transfer functions with fractional powers of s.

2.2 Integer-order approximation of fractional derivative

In both simulations and hardware implementations, the most
common way of making use of transfer functions involving
fractional powers of s is to approximate them with integer-
order transfer functions with a similar behavior. So as to
completely imitate a fractional transfer function, an integer
transfer function would have to contain an infinite number
of poles and zeroes. However, it is possible to obtain practi-
cal approximations with a finite number of zeroes and poles.
One of the well-known approximations has been proposed in
Oustaloup et al. (2000) and makes use of a recursive distribu-
tion of poles and zeroes. The approximating transfer function
is given by

N
14+ (s/w;n)
sV~ k _ 0, 5
' E[l1+(s/wp,n) ' ©)

where k is a gain and adjusted so that both sides of (5) shall
have unit gain at 1 rad/s, and N is the number of poles and
Zeroes.

Remark 1 Approximation (5) is valid in the frequency range
[wiwn].

@ Springer

4058

M. P. Aghababa

Remark 2 The N is chosen beforehand, and the good perfor-
mance of the approximation strongly depends thereon: low
values not only result in simpler approximations, but also
cause the appearance of aripple in both gain and phase behav-
iors; such a ripple may be practically eliminated increasing
N, but the approximation will be computationally heavier.
Frequencies of poles and zeroes in (5) are given by

w;1 = w17,

Wp.n = Wz,nV,

Wz n+1 = Wp.nl,
N
a = (wp/an)",

n = (wp /o))" (©6)

The case v < 0 may be dealt with inverting (5). Butif |v| > 1
approximations become unsatisfactory; for that reason, it is
usual to split fractional powers of s like this:

v n.é

s'=s"5°, v=n+68, neZ, §e]l0,1] (7)

In this manner, only the latter term has to be approximated.

3 Proposed optimization method
3.1 Standard PSO algorithm

The PSO is a population-based stochastic optimization algo-
rithm modeled based on the simulation of the social behavior
of bird flocks. The PSO is a population-based search process
where individuals initialized with a swarm of random solu-
tions, referred to as particles. Each particle in the swarm
represents a potential solution to the optimization problem,
and if the solution is made up of a set of variables, the corre-
sponding particle is a vector of variables. In a PSO system,
each particle is flown through the multidimensional search
space, adjusting its position in the search space according to
its own experience and that of neighboring particles. The par-
ticle, therefore, makes use of the best position encountered by
itself and that of its neighbors to place itself toward an opti-
mal solution. The performance of each particle is evaluated
using a predefined fitness function which encapsulates the
characteristics of the optimization problem (Shi and Eber-
hart 1998).

The core operation of the PSO is the updating formulae
of the particles, i.e. the equation of velocity updating and the
equation of position updating. The global optimizing model
proposed by Shi and Eberhart (1998) is as follows:

vi(t+1) =w x v;(t) + RAND X Cy X (Ppest(t) — x;i (1))
+rand X C2 X (Gpest (1) — xi (1)) ®)

@ Springer

xi(t+1) = x (1) +vit + 1), ©))

where w is the inertia weight factor, v; (¢) is the velocity of
particlei atiteration z, x; (¢) is the particle position at iteration
t, C1 and C, are two positive constant parameters called
acceleration coefficients, RAND and rand are the random
functions in the range [0, 1], Ppesi () is the best position of
the ith particle and Gpeg (¢) is the best position among all
particles in the swarm up to iteration ¢.

3.2 Modified PSO algorithm

In general, trapping in local optima and the slow conver-
gence rate are two main weaknesses of the original PSO. In
this paper, two modifications are proposed to overcome the
aforementioned weaknesses of the original PSO.

The slow convergence rate of the standard PSO, which
occurs before providing a precise solution, is closely related
to the lack of any adaptive time varying accelerators in the
velocity updating formula. In Eq. (8), the constants C; and
C3 determine the step size of the particle movements through
the Ppest and Gpest, respectively. Thus, in the original PSO,
the algorithm step sizes are about constant and same for all
the particles in the swarm. However, when optimizing com-
plex multimodal functions, these constants are not able to
meet the algorithm convergence requirements. Therefore, a
mechanism which provides more precise acceleration to the
algorithm movements is necessary. One mechanism is the
use of time varying step sizes which introduces more sensi-
tive and faster movements. To make this, the values of the
cost functions in the iterations can be adopted, where in each
iteration the value of the cost function can be interpreted as
a criterion that gives the relative improvement of the present
movement with respect to the previous movement. Moreover,
when a new personal best position is found, it means that a
better path (solution) in the search space is explored by a
particle. Thus, an accelerated movement in the new found
direction can quickly get the particle in the good path. Also,
the introduction of a new global best position means that
the swarm discoveries a better path (solution) in the whole
search space. Therefore, more accelerated movements should
be done in the new direction. So, the difference between the
values of the cost function in the different iterations can be
chosen as accelerators of the PSO. Accordingly, the inser-
tion of two time varying multipliers to the original step sizes
in Eq. (8) is proposed here. In this case, the time varying
accelerators can provide more sensitive and adaptive move-
ments. In this paper, the original velocity updating formulae
is modified as follows:

vi(t+1) =w x v;(t) + RAND x C;
» (f (Poest (1)) — f (xi (1))
f(Pbest(t))

X (Ppest (1) —x; (1)) + rand x C

Optimal design of fractional-order PID controller...

4059

» (f (Gest (1)) — f (xi (1))
f(Gbest(t))

where f(Ppest(2)) is the best fitness function found by ith
particle at iteration ¢ and f(Ghpesc(?)) is the best objective
function found by the swarm up to iteration ¢. It is assumed
that if f(Ppest(#)) and/or f(Gpest(2)) is equal to zero, then it
is replaced by a small positive constant ¢.

(f (Poest ()= f (xi (1))

X (Gpest (1) —xi (1)), (10)

Remark 3 The

. : T (Poest (D)
U (Gb}ségiil(-’;)()x") are named normalized local and global

adaptive coefficients, respectively. In each iteration, the for-
mer term defines a normalized movement step size in the
direction of best position which is found by ith particle and
the latter term defines a normalized movement step size in the
direction of the best optimum point which have been found
by the swarm, yet. In other words, the time varying accel-
erators decrease or increase the movement step size relative
to being close or far from the optimum point, respectively.
By means of this method, velocity can be updated adaptively
instead of being fixed or changed linearly.

terms and

The other weakness of the standard PSO occurs when
strongly multi-modal problems are being optimized. In such
cases, the PSO algorithm usually suffers from the premature
suboptimal convergence (simply premature convergence or
stagnation). Sticking in local optima happens when some
poor particles attract the swarm prevent further exploration
of the search space. According to Angeline (1998), although
PSO finds good solutions faster than other evolutionary algo-
rithms, it usually cannot improve the quality of the solutions
as the number of iterations is increased. The rationale behind
this problem is that the particles converge to a single point,
which is on the line between the global best and personal
best positions. This point is not guaranteed to be even a local
optimum. Proofs can be found in Bergh and Engelbrecht
(2002). Another reason for this problem is the fast rate of
information flow between particles, resulting in the creation
of similar particles (with a loss in diversity) which increases
the possibility of being trapped in local minima (Riget and
Vesterstrom 2002). This feature prevents the standard PSO
from being really of practical interest for a lot of applications.
Therefore, an alternative should increase the diversity prop-
erty of the algorithm to prevent premature convergence and
trapping local optimums. To do this, in this paper, the use of
anew mutation procedure is proposed as follows: When new
positions are determined for the particles of the swarm using
Egs. (9) and (10), y % of the particles are randomly selected
and are replaced by some other particles namely supersed-
ing particles with a probability. The superseding particles
are generated using a random change in the current parti-
cle. If the new particle (i.e. the superseding particle) has a
better cost function compared to the current particle’s cost
function, it is accepted. Otherwise, the superseding particle

A)
is accepted with a probability of e /©Cbest® | where Af (¢) is

the difference of the cost functions of the superseding and
current particles at iteration ¢. If the superseding particle is
rejected, no replacement is done. This process is repeated in
each iteration, for all particles.

Remark 4 To save the best solutions, the best particle in the
swarm is exempted from the mutation.

Remark 5 In this paper, two main modifications are sug-
gested for the original PSO. The first modification is to add
some new accelerator coefficients to the terms into the avail-
able velocity formula. From a computational cost point of
view and based on the proposed new velocity updating for-
mula (10), it is clear that no extra computational cost is added
to the algorithm via this modification (where the values of
the accelerator coefficients are already computed in the orig-
inal PSO, too). The second modification is to introduce the
so-called superseding particles into the swarm. In this case,
since the number of the superseding particles is small com-
pared to the number of all the particles in the swarm (y %
of all particles maybe selected for mutation where y has a
small value), this modification does not impose a great deal
computational cost of to the MPSO algorithm compared to
the original PSO.

The pseudo-code of the proposed MPSO algorithm is
given in “Appendix”.

4 FOPID controller design
4.1 Objective function definition

The FOPID controller is used to improve the dynamic
response and to reduce the steady-state error. The transfer
function of a FOPID controller is described as

G(s) = Kp + K1/s* + Kps", (11)

where Kp, K1 and Kp are the proportional gain, integral
and derivative time constants, respectively, and A and p are
fractional powers. For designing an optimal FOPID con-
troller, a suitable objective function that represents system
requirements should be defined based on some desired spec-
ifications. Some typical output specifications in the time
domain are the overshoot (Mp), rise time (7;), settling time
(Tys) and steady-state error (Egg). In general, three kinds of
the performance criteria, including the integrated absolute
error (IAE), the integral of squared-error (ISE) and the inte-
grated of time-weighted-squared-error (ITSE), are usually
considered in the control design under step testing input. It
is worth noticing that using different performance indices
makes different solutions for the optimal FOPID controllers.

@ Springer

4060

M. P. Aghababa

The above-mentioned three integral performance criteria
have some advantages and disadvantages. For example, a
disadvantage of the IAE and ISE criteria is that their min-
imization can result in a response with relatively small
overshoot but a long settling time. Although the ITSE per-
formance criterion can overcome the disadvantage of the ISE
criterion, the derivation processes of the analytical formula
are complex and time-consuming (Gaing 2004). The IAE,
ISE and ITSE performance criteria formulas are defined as
follows:

IAE:/|r(t)—y(t)|dt:/|e(t)|dt (12)
0 0
ISE = / e (r)dt (13)
0
ITSE = / e (1)dt (14)
0

In this paper, another time domain performance criterion is
defined by

(T + T+ —— (My + Eg), (15)

Jo(K) = e

1+4+e@

where K is [Kp, K1, Kp, A,] is the parameter vector and
o € [—5,5] is the weighting factor. The optimum selection
of o depends on the designer’s requirements and the char-
acteristics of the plant under control. One can set « to be
smaller than O to reduce the overshoot and steady-state error.
On the other hand, if « is to be set larger than O the rise time
and settling time are reduced. On the other hand, if « is set
to 0, then all the performance criteria (i.e. the overshoot, rise
time, settling time and steady-state error) will have the same
worth.

4.2 MPSO-based FOPID controller

For designing an optimal FOPID controller, determination of
the vector K = [Kp, K1, Kp, A,] with regard to the min-
imization of the performance index is the main issue. Here,
the minimization process is performed using the proposed
MPSO algorithm. For this purpose, step response of the plant
is used for computing four performance criteria, including
the overshoot (M,), steady-state error (Efss), rise time (7;)
and setting time (7). At first, the lower and upper bounds of
the controller parameters are specified. Then, a swarm of the
initial particles is randomly initialized in the specified range.
Each particle represents a solution (i.e. controller parameters
K) and the corresponding performance index of each particle
is evaluated using the step response of the system. After-

@ Springer

ward, the main procedure of the proposed heuristic MPSO
algorithm starts to work as follows: First, all the parameters
of Eq. (10) are determined. Subsequently, new positions of
each particle are obtained using Eq. (9). Then, the super-
seding particles are created. The aforementioned process is
repeated until a stopping criterion is satisfied. In this stage,
the particle corresponding to the Geg (¢) is designated as the
optimal vector K. The flowchart of the design procedure of
the MPSO-based FOPID controller is shown in Fig. 1.

4.3 Optimal FOPID controller for typical transfer
functions

In order to verify the performance of the proposed MPSO-
based FOPID controller, comparative experiments are car-
ried out for the following three typical control plants:

Gi(s) Ga(s) s242s
§)= ——, s)= ,
! §34+6524+7s 2 442534552 4+54+0.1
—0.1s
G = = 16
3(s) 212 (16)

It is assumed that the suitable ranges of the control para-
meters are as follows: Kp € [0, 25], K1 € [0, 10], Kp €
[0, 10], A+ € [0, 1] and u € [0, 1]. A population of 20 par-
ticles is found to be suitable for providing good solutions.
The maximum number of the iterations for all experiments
is considered to be 100. Also, @ in Eq. (15) is set to 0 (in
this case, all the performance criteria have a same merit in
the objective function). In order to design the optimal FOPID
controller, the MPSO is run 10 times. The other parameters
are selected as follows: y = 15and C; = C; = 2.

The performance of the proposed MPSO is compared to
the standard PSO (SPSO) (Kennedy and Eberhart 1995),
the constriction factor approach PSO (CPSO) (Clerc and
Kennedy 2002) and random inertia weight PSO method
(RPSO) (Eberhart and Shi 2001). The comparative results
for the plants G1(s), G2(s) and G3(s) are summarized in
Tables 1, 2 and 3, respectively. It is seen that the proposed
MPSO-based FOPID controllers outperform those of the
SPSO, RPSO and CPSO obtained controllers. In all tables,
one can see that the proposed MPSO gives lesser overshoot
compared to the three other methods. On the other hand,
although the rise time of the proposed MPSO-based con-
troller is somewhat greater than the rise time of the other
methods, both the settling time and steady-state error criteria
of the suggested controller are better than those of the other
techniques. Nevertheless, one can set the parameter « to a
larger value than O to result in a short rise time. Moreover,
the last column in the three tables shows the computational
effort (CE) of the different algorithms consumed to reach the
final solution. The CE criterion is defined as the total number
of function evaluation done by a method until reaching the

Optimal design of fractional-order PID controller...

4061

Fig. 1 The design procedure of
the MPSO-based FOPID
controller

Set initial conditions and parameters

Generate a random population of particles and their
corresponding velocity vector

A

For each particle, calculate the step response of plant

A

Calculate Mp, Ess, Tr and Ts of plant’s step response

A

Calculate the objective function of particles using Eq. (15)

Run the proposed MPSO algorithm, as described in the pseudocode

No

Table 1 Comparative results of the designed different FOPID controllers for the plant G (s)

Stop condition satisfied

Method Kp Kp K A © Mp T, T, Eq Jo CE
MPSO 11.18 0.56 6.8 0.95 0.98 0.8237 0.2684 0.5913 0.0000 1.6834 158
SPSO 15.45 5.34 5.62 0.79 0.68 20.7754 0.1240 0.8308 0.0005 21.7307 346
CPSO 13.09 4.89 6.61 0.88 0.82 7.272 0.1541 0.8972 0.0004 8.3237 401
RPSO 11.13 6.18 6.26 0.92 0.84 1.1777 0.1725 1.0500 0.0005 2.4007 377

optimal solution. This criterion is an indication of computa-
tional time and convergence speed of the algorithm. In this
case, it can be seen that the number of function evaluation in
the proposed MPSO method is lesser than those in the other

methods. This means that the MPSO algorithm outperforms
the SPSO, CPSO and RPSO methods from the computational
effort point of view. The unit step responses of the case stud-
ies G1(s), Ga2(s) and G3(s) are depicted in Figs. 2, 3 and 4,

@ Springer

4062

M. P. Aghababa

Table 2 Comparative results of the designed different FOPID controllers for the plant G (s)

Method Kp Kp K A “w Mp T; Ty Eg Jo CE
MPSO 8.5 7.11 7.94 0.99 0.93 9.4054 0.0865 0.6880 0.0013 10.1812 169
SPSO 18.23 7.65 8.90 0.97 0.71 17.1797 0.0778 0.6104 0.0016 17.8695 356
CPSO 19.02 9.28 1.30 0.95 0.85 27.2715 0.0813 0.8855 0.0016 28.2399 422
RPSO 17.81 7.39 5.44 0.93 0.88 19.2398 0.0820 0.8347 0.0016 20.1581 399
Table 3 Comparative results of the designed different FOPID controllers for the plant G3(s)
Method Kp Kp K1 x u Mp T; T Egs Jo CE
MPSO 6.02 1.33 1.87 0.97 0.94 0.3372 0.1228 0.5525 0.0000 1.0125 183
SPSO 5.93 4.51 3.95 0.95 0.82 20.5750 0.0669 1.1430 0.0018 21.7867 395
CPSO 4.24 0.44 5.51 0.64 0.99 15.1305 0.0886 1.1870 0.0010 16.4071 422
RPSO 7.26 0.19 6.97 0.95 0.83 15.8441 0.0641 0.9109 0.0020 16.8211 388

1.4 14 T

1.2 A 1.2 %

1 1 “\\-\F/-}-m

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0 0
0 5 10 15 20 0 5 10 15 20
t(s) t(s)

Fig. 2 Step response of G1(s) with FOPID controller designed by
MPSO, SPSO, CPSO and RPSO

respectively. From the simulation results, it can be found that
MPSO-based FOPID controllers produce the smooth curve
for the output in conjunction with little fluctuation and small
overshoot.

5 Design of MPSO-based FOPID controller
for five-bar-linkage manipulator robot

5.1 Dynamics of five-bar-linkage manipulator robot

Inrecent years, there has been a growing interest in the design
and control of lightweight robots. Several researchers have

@ Springer

Fig. 3 Step response of G2(s) with FOPID controller designed by
MPSO, SPSO, CPSO and RPSO

studied the modeling and control of a single link flexible
beam. Figure 5 shows a typical five-bar-linkage manipula-
tor, where Fig. 6 depicts the five-bar-linkage manipulator
schematic where the links form a parallelogram. Let g;, T;
and I}i be the joint variable, torque and hub inertia of the ith
motor, respectively. Also, let ;, [;, I, and m; be the inertia
matrix, length, distance to the center of gravity and mass of
the ith link, respectively.

The dynamic equations of the manipulator are as follows:
(Spong and Vidyasagar 2006).

M, .
43

.. . 0
T = (Mu + 1;1)611 + Mi2q2 +
g2

+ g (mide, + m3ley + maly) cos g

Optimal design of fractional-order PID controller... 4063

1.4
1.2 i
1
0.8
0.6
0.4
0.2
Fig. 6 Planar presentation of the manipulator robot (Badamchizadeh
0 et al. 2010)
0 5 10 15 20
t(s) . .
Table 4 Five bar linkage robot parameters
Fig. 4 Step response of G3(s) with FOPID controller designed by Link Mass (kg) Length (m)
MPSO, SPSO, CPSO and RPSO
1 0.288 0.33
2 0.0324 0.12
3 0.3702 0.33
4 0.2981 0.45

From the above-mentioned equations it is revealed that
(Badamchizadeh et al. 2010)

m3leyly = male,ly (18)

Thus, one has M, = M5 = 0, that is, the matrix of inertia
is diagonal and constant. Hence the dynamic equations of
this manipulator become

Ti = My +)i + ¢ (mile, + m3le; + maly) cos q)
T = (M + I2)ip + g (mile, +msly +male,) cosqy (19)

Notice that 77 depends only on g; but not on g>. On the other
hand 7> depends only on g3, but not on g;. This discussion
helps to explain the popularity of the parallelogram config-
uration in industrial robots. If the condition (18) is satisfied,
then we can adjust the two rotations independently, without
Fig. 5 A typical five-bar-linkage manipulator worrying about interactions between them.

Moy 5.2 MPSO-based FOPID controller for robot
)
q1

= (Mzz + I;%) G2 + Ma1gi + 88
a Here, the main goal is to design an optimal MPSO-based
+g (miley + m3ly + male,) cos ga, (17) " FOPID controller for each of the motors of the robot to con-

trol their rotations with good performance. In what follows

where g is the gravitational constant and M1 = I, + I{; + the results are given for one motor, where the same results
myd2 4+ mslZ, + malf, My = I} + I}, + mal2 + m3l3 + are also valid for the second motor. Using Eq. (19), the five-
m;;lcz4 and M1 = My = (m3ley — male,ly) cos(qr — g2). bar-linkage manipulator robot is implemented in Matlab and

@ Springer

4064

M. P. Aghababa

FOPID Controller

MPSO Program

y(t)

Robot Model

Fig. 7 Simulink diagram of the MPSO-based FOPID controller for robot

1.8

Fig. 8 Response of the robot motor without FOPID controller

Simulink environment. The manipulator specifications are
given in Table 4.

The following process is done to determine the opti-
mal values of the parameters of the proposed MPSO-based
FOPID controller (i.e. the vector K). First, the MPSO
algorithm is initialized, randomly. Each solution K =
[Kp, K1, Kp, A, 1] is sent to the Simulink block and the
values of four performance criteria in the time domain, i.e.
My, Eg, T; and Ty, are calculated. Afterwards, the objective
function (15) is evaluated for each solution according to the
obtained performance criteria. Then, the main procedure of

the proposed MPSO algorithm is performed and new solu-
tions are computed. At the end of any iteration, the program
checks the stop criterion. When one termination condition is
satisfied, the program stops and the latest global best solution
is returned as the best solution of K. The Simulink diagram
of the proposed procedure is illustrated in Fig. 7.

The parameter setting for the MPSO is as follows: The
maximum iteration number is considered equal to 200. The
parameter « is set to 0. The swarm is initialized with 30
particles. The other parameters are also selected as follows:
Kp € [0,30], K7 € [0,5],Kp € [0,5],» € [0,1], u €
[0,1],y =10and C; = C, = 2.

Figure 8 illustrates the state of the system with no control
which is not a stable response. In other words, the system
output is oscillatory and requires a suitable control. For com-
parison, the results of the PSO-based FOPID (Bingul and
Karahan 2012), GA-based FOPID (Meng and Xue 2009)
and ABC-based FOPID (Rajasekhar et al. 2011) controllers
for the robot control are also obtained. The comparative
results are summarized in Table 5. It is seen that the pro-
posed MPSO-based FOPID controller outperforms those of
the PSO-based FOPID, GA-based FOPID and ABC-based
FOPID controllers. It is noted that the last column of Table 5
compares the controllers based on the control signal energy
(CSE) where it is computed using fooo |u(¢)|dz. One can see
that the MPSO-based FOPID controller needs less control
energy compared to the other controllers, except the ABC
method. However, the results of the ABC-based FOPID con-
troller for the other criteria, such as the overshoot, the settling

Table 5 Summary of the simulation results of five-bar-linkage robot motor using different methods

Method Kp Ky Kp A " Mp T: Ts Eg Jo CE CSE
MPSO 29.19 3.01 4.59 0.98 0.08 2.4161 0.0819 0.2399 0.0039 2.7418 512 238.668
PSO 25.92 4.65 3.70 0.69 0.56 19.0576 0.0610 0.3392 0.0048 19.4626 844 292.31
GA 26.81 2.65 4.11 0.85 0.92 4.3768 0.0767 0.5650 0.0048 5.0233 798 352.117
ABC 29.09 1.91 2.99 0.91 0.31 19.2400 0.0734 0.4092 0.0043 19.7269 926 225.020

@ Springer

Optimal design of fractional-order PID controller...

4065

14 '
——MPSO-FOPID
------- PSO-FOPID
- GA-FOPID
1.2 ----- ABC-FOPID
1
0.8
0.6
0.4
0.2 J
i
0
0 05 1 15 2

t(s)
Fig. 9 Step response of the robot motor rotation using MPSO method

time, the steady-state error and the computational effort, are
weaker than the corresponding results of the MPSO-based
FOPID controller. This means that the controller obtained
by the MPSO method is not only with a suitable transient
and steady response, but also it is a cheap energy control
scheme leading to a more practicable controller in real world
applications. Figure 9 reveals the step response of the motor
rotation for different FOPID controllers. It is obvious that the
proposed MPSO-based FOPID controller produces a smooth
and fast output compared to the other methods.

Finally, sensitivity analysis is performed with different
values for the parameter « in (15) to effects of the parameter
« on the optimal results of the proposed MPSO-based FOPID
controller for the robot. To do this, the parameter « is changed
from —5 to 5 with a step size of 1. The obtained results
are given in Table 6. It can be seen that when o < 0, the
overshoot and steady-state error are reduced and the rise time
and settling time are increased. In contrast, the case « > 0

1.4
-
e =3
——0=0
I e T S e eSSttt [T, I o=3
‘‘‘‘‘‘‘‘ 0=5
1 o S—
08
0.6
0.4 /
0.2 _,-""?
0
0 0.2 0.4 0.6 0.8 1

t(s)
Fig. 10 The step responses of the robot with five typical values of «

results in small rise time and settling time and enlarges the
overshoot and steady-state error. On the other hand, in the
case of @ = 0 all the performance criteria (i.e. the overshoot,
rise time, settling time and steady-state error) are of the same
worth. Moreover, the step responses of the robot with five
typical values of « are shown in Fig. 10. Table 6 and Fig. 10
reveal that the value of the parameter « has little impact on the
optimum value of the performance criterion J, (K) in (15).

6 Conclusions

In this paper, a novel simple modified particle swarm opti-
mization (MPSO) algorithm is proposed to overcome two
main shortages of the traditional PSO method, namely slow
convergence rate and trapping in local optima. Inserting
accelerator parameters into the velocity updating formula

Table 6 Results of sensitivity

analysis for the parameter o in « K K Ko * K M I T Ess Jo

as) -5 21.02 3.18 4.94 0.92 0.18 2.3268 0.08261 0.3342 0.0038 2.7474
—4 26.15 3.11 3.99 0.96 0.21 2.3455 0.0823 0.3128 0.0038 2.7444
-3 25.84 3.31 4.10 0.95 0.16 2.3659 0.0822 0.2958 0.0038 2.7477
-2 18.63 3.31 2.27 0.88 0.28 2.3003 0.0824 0.3589 0.0039 2.7455
—1 25.23 2.69 3.56 0.99 0.56 2.3595 0.0851 0.3000 0.0039 2.7485
0 29.19 3.01 4.59 0.98 0.08 2.4161 0.0819 0.2399 0.0039 2.7418
1 30 3.97 5.00 0.92 0.01 2.4325 0.0719 0.2339 0.0040 2.7423
2 23.8 3.20 4.93 0.93 0.12 2.4240 0.0806 0.2353 0.0041 2.7440
3 20.71 3.03 4.28 0.91 0.15 2.4277 0.0803 0.2355 0.0045 2.7480
4 25.72 3.84 4.04 0.89 0.09 2.4315 0.0728 0.2334 0.0045 2.7422
5 26.66 4.19 4.45 0.87 0.05 2.4426 0.0696 0.2315 0.0042 2.7479

@ Springer

4066

M. P. Aghababa

and adding a new mutation process to the original PSO
are the main proposed modifications. The introduced MPSO
is applied for tuning the parameters of the fractional-order
PID controllers for some typical transfer functions. More-
over, the proposed optimization method is implemented to
design an optimal FOPID controller for a five-bar-linkage
robot manipulator. Comparative simulation results reveal that
the proposed MPSO can effectively tune the parameters of
the FOPID controllers. From an application point of view, the
introduced MPOS technique is simple and fast, has a suitable
control energy and it can be easily implemented in real-world
applications via a microcontroller chip.

Appendix: Pseudocode for MPSO algorithm

Begin;

1. Set initial values such as swarm size, random particles,
random velocity vector, maximum number of iterations,
etc;

2. For each particle calculate the objective value;

3. Update the global and local best particles and their cor-
responding objective values;

4. Find the new positions of each particle using Egs. (9) and
(10);

5. Replace up to y % of the particles by superseding parti-
cles;

6. Check if termination condition is true then stop; other-
wise, go to step 2;

End.

References

Aghababa MP (2014a) Fractional modeling and control of a com-
plex nonlinear energy supply demand system. Complexity. doi:10.
1002/cplx.21533

Aghababa MP (2014b) Chaotic behavior in fractional-order horizontal
platform systems and its suppression using a fractional finite-time
control strategy. J Mech Sci Tech 28:1875-1880

Aghababa MP (2014c¢) A Lyapunov based control scheme for robust sta-
bilization of fractional chaotic systems. Nonlinear Dyn 78:2129—
2140

Aghababa MP (2015a) A fractional sliding mode for finite-time con-
trol scheme with application to stabilization of electrostatic and
electromechanical transducers. Appl Math Model. doi:10.1016/j.
apm.2015.01.053

Aghababa MP (2015b) Adaptive control of nonlinear complex Holling
II predator—prey system with unknown parameters. Complexity.
doi:10.1002/cplx.21685

Aghababa MP (2015c) Control of non-integer-order dynamical systems
using sliding mode scheme. Complexity. doi:10.1002/cplx.21682

Aghababa MP (2015d) Design of hierarchical terminal sliding mode
control scheme for fractional-order systems. IET Sci Meas Technol
9:122-133

@ Springer

Angeline P (1998) Using selection to improve particle swarm optimiza-
tion. In: Optimization conference on evolutionary computation,
Piscataway, pp 84-89

Badamchizadeh MA, Hassanzadeh I, Fallah MA (2010) Extended and
unscented kalman filtering applied to a flexible-joint robot with
jerk estimation. Discrete Dyn Nat Soc 2010 (article ID 482972)

Bergh FV, Engelbrecht AP (2002) A new locally convergent parti-
cle swarm optimiser. In: Proceedings of the IEEE conference on
systems, man, and cybernetics, Hammamet. doi:10.1109/ICSMC.
2002.1176018

Bingul Z, Karahan O (2012) Fractional PID controllers tuned by evolu-
tionary algorithms for robot trajectory control. Turk J Electr Eng
Comput Sci 20:1123-1136

Chen G, Guo W, Chen Y (2010) A PSO-based intelligent decision algo-
rithm for VLSI floor planning. Soft Comput 12:1329-1337

Clerc M, Kennedy J (2002) The particle swarm: explosion, stability, and
convergence in a multidimensional complex space. IEEE Trans
Evolut Comput 6:58-73

Das S, Pan I, Das S, Gupta A (2012) A novel fractional order fuzzy PID
controller and its optimal time domain tuning based on integral
performance indices. Eng Appl Artif Intell 25:430-442

Eberhart RC, Shi Y (2001) Tracking and optimizing dynamic systems
with particle swarms. In: Proceedings of IEEE congress on evolu-
tionary computation, Seoul, pp 94-97

Gaing Z-L (2004) A particle swarm optimization approach for opti-
mum design of PID controller in AVR system. IEEE Trans Energy
Convers 19:384-391

Hung H-L, Huang Y-F, Yeh C-M, Tan T-H (2008) Performance of parti-
cle swarm optimization techniques on PAPR reduction for OFDM
systems. In: IEEE international conference on systems, man and
cybernetics, Singapore, pp 2390-2395

Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE
Int Conf Neural Netw (Perth) 4:1942-1948

Lee CH, Chang FK (2010) Fractional-order PID controller optimization
via improved electromagnetism-like algorithm. Expert Syst Appl
37:8871-8878

Meng L, Xue D (2009) Design of an optimal fractional-order PID con-
troller using multi-objective GA optimization. Chinese control and
decision conference (CCDC). Guilin 2009:3849-3853

Oustaloup A, Levron F, Mathieu B, Nanot F (2000) Frequency-band
complex noninteger differentiator: characterization and synthesis.
IEEE Trans Circuits Syst 47:25-39

Padula F, Visioli A (2011) Tuning rules for optimal PID and fractional-
order PID controllers. J Process Control 21:69-81

Podlubny I (1999) Fractional differential equations. Academic Press,
San Diego

Rajasekhar A, Abraham A, Pant M (2011) Design of fractional order
PID controller using sobol mutated artificial bee colony algorithm.
In: 11th international conference on hybrid intelligent systems
(HIS), Melacca, pp 151-156

Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hier-
archical particle swarm optimizer with time-varying acceleration
coefficients. IEEE Trans Evolut Comput 8:240-255

Riget J, Vesterstrom J (2002) A diversity-guided particle swarm opti-
mizer. In: EVALife technical report no. 2002-2

Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In:
Proceedings of the IEEE international conference on evolutionary
computation. IEEE Press, Piscataway, pp 69-73

Spong MW, Vidyasagar M (2006) Robot dynamics and control. Wiley,
New York

Tassopoulos IX, Beligiannis GN (2012) Using particle swarm opti-
mization to solve effectively the school timetabling problem. Soft
Comput 16:1229-1252

Valerio D, Costa JS (2006) Tuning of fractional PID controllers with
Ziegler—Nichols-type rules. Signal Process 86:2771-2784

http://dx.doi.org/10.1002/cplx.21533
http://dx.doi.org/10.1002/cplx.21533
http://dx.doi.org/10.1016/j.apm.2015.01.053
http://dx.doi.org/10.1016/j.apm.2015.01.053
http://dx.doi.org/10.1002/cplx.21685
http://dx.doi.org/10.1002/cplx.21682
http://dx.doi.org/10.1109/ICSMC.2002.1176018
http://dx.doi.org/10.1109/ICSMC.2002.1176018

Optimal design of fractional-order PID controller... 4067

Van den Bergh F, Engelbrecht AP (2002) A new locally convergent Zhigiang G, Huaiqing W, Quan L (2013) Financial time series fore-
particle swarm optimizer. Proc IEEE Int Conf Syst Man Cybern casting using LPP and SVM optimized by PSO. Soft Comput
3:94-99 17:805-818

Wang L, Chen K, Ong YS (eds) (2005) Advances in natural computa-
tion. Springer, Berlin

@ Springer

	Optimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithm
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Fractional calculus
	2.2 Integer-order approximation of fractional derivative

	3 Proposed optimization method
	3.1 Standard PSO algorithm
	3.2 Modified PSO algorithm

	4 FOPID controller design
	4.1 Objective function definition
	4.2 MPSO-based FOPID controller
	4.3 Optimal FOPID controller for typical transfer functions

	5 Design of MPSO-based FOPID controller for five-bar-linkage manipulator robot
	5.1 Dynamics of five-bar-linkage manipulator robot
	5.2 MPSO-based FOPID controller for robot

	6 Conclusions
	Appendix: Pseudocode for MPSO algorithm
	References

