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Abstract Preference information (such as the reference
point) of the decisionmaker (DM) is oftenused inmultiobjec-
tive optimization; however, the location of the specified refer-
ence point has a detrimental effect on the performanceofmul-
tiobjective evolutionary algorithms (MOEAs). Inspired by
multiobjective evolutionary algorithm-based decomposition
(MOEA/D), this paper proposes an MOEA to decompose
the preference information of the reference point specified
by the DM into a number of scalar optimization subproblems
and deals with them simultaneously (calledMOEA/D-PRE).
This paper presents an approach of iterative weight to map
the desired region of the DM, which makes the algorithm
easily obtain the desired region. Experimental results have
demonstrated that the proposed algorithm outperforms two
popular preference-based approaches, g-dominance and r -
dominance, on continuous multiobjective optimization prob-
lems (MOPs), especially on many-objective optimization
problems. Moreover, this study develops distinct models to
satisfy different needs of the DM, thus providing a new way
to deal with preference-based multiobjective optimization.
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Additionally, in terms of the shortcoming of MOEA/D-PRE,
an improvedMOEA/D-PRE that dynamically adjusts the size
of the preferred region is proposed and has better perfor-
mance on some problems.
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1 Introduction

In real life, most complex problems are optimization prob-
lems. Because of this, may state-of-the-art optimization
algorithms (Bastos-Filho et al. 2011; Precup et al. 2011; Ser-
dio et al. 2014; El-Hefnawy 2014) have been developed to
solve these problems. However, there are still a number of
problems that are hard to solve, most of which are multi-
objective optimization problems (MOPs). A multiobjective
optimization problem can be defined mathematically as fol-
lows:

minimize: F(x) = ( f1(x), . . . , fm(x))T subject to: x ∈ �,

(1)

where � is the decision (variable) space, F : � → Rm

consists ofm real-valued objective functions and Rm denotes
the objective space. The attainable objective set is defined as
the set {F(x) | x ∈ �}.

If x ∈ Rm , all the objectives are continuous, and � is
described by � = {x ∈ Rm | h j (x) ≤ 0, j = 1, . . . ,m},
where h j (x) is the j th continuous function. Therefore,
Eq. (1) is defined as a continuous MOP.

Let x, y ∈ Rm ; x is said to dominate y if and only if
xi ≤ yi for∀i ∈ {1, . . . ,m} and ∃ j ∈ {1, . . . ,m} st x j < y j .
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A non-dominated set is a set of solutionswhere all of itsmem-
bers are not dominated by each other. The non-dominated set
mapping in the objective space is commonly referred to as
Pareto-optimal front (PF).

Evolutionarymultiobjective optimization (EMO)method-
ologies (Deb 2008; Coello and Lamont 2004) have been
devoted to finding a representative set of the Pareto-optimal
solutions over the past decades. EMO techniques have been
successfully applied to real-world applications like optimal
control (Scruggs et al. 2012), data mining (Corne et al.
2012), robot path planning (Ahmed et al. 2013), job schedul-
ing (Fard et al. 2012), etc. These techniques often pursue a
balance between convergence and diversity of the obtained
solutions (Deb et al. 2002a, b; Li et al. 2013, 2014a, b; Zitzler
et al. 2002).

Recently, much research has been done on the design of
fitness assignment (Li et al. 2012; Metaxiotis and Liagk-
ouras 2012), and diversity maintenance (Davarynejad et al.
2012; Sindhya et al. 2011) of the algorithms. However, the
performance of the evolutionary multiobjective approaches
degrades rapidly as the number of objectives increases
(Ishibuchi et al. 2008). Moreover, in real-world application,
theDM is interested in one or several specific solutions rather
than the overall PF. Lately, an increasing emphasis on adding
the decision-making task to the searching process has been
promoted, so that the user-preference-based multiobjective
evolutionary algorithms (MOEAs) have become a hot issue
(Deb et al. 2006). For instance, the reference point-based
MOEAs can satisfy the DM more effectively than the tradi-
tional MOEAs, for the reason that they only need to search
the desired region.

Therefore, many classical algorithms combine prefer-
ence information with MOEAs to solve MOPs. Fonseca
and Fleming (1995) have defined the relational operator
called preferability; Cvetkovic and Parmee (1999, 2002)
have used a fuzzy matrix to change the preference infor-
mation into weights of the objectives quantitatively and
established Pareto relation based on the weights. Molina
et al. (2009) have proposed a relaxed relationship called g-
dominance, which performs well in MOEAs based on the
reference point. Ben Said et al. (2010) have come up with
a strict partial order relationship called r -dominance, which
can obtain good performance on many-objective problems.

However, there are still some underlying disadvantages in
preference-based MOEAs.

First, the performance of some classical algorithms are
unstable when the reference point is close to the PF or in the
feasible objective region. The entire population will be mis-
led by the reference point and trapped in the local optimum,
and fluctuate between the reference point and the PF. Exper-
imental results show that when the reference point is located
on the PF, g-dominance has bad convergence, so does r -
dominance when the reference point is in the feasible region.

Second, some algorithms cannot satisfy the DM to get
different sizes of the desired region, and the size of the
obtained region is extremely unstable when the reference
point is located in different positions in the objective space.
Experiments have shown that the size of the desired region
of r -dominance is not stable.

Third, on dealing with the many-objective optimization
problems, the performance of the algorithms deteriorates
significantly with the increase of the number of objec-
tives (Wagner et al. 2007; Ishibuchi et al. 2008). So when
working on many-objective problems, how to achieve good
performance is the key challenge of the MOEAs based on
preference information.

In this paper, inspired by the multiobjective evolutionary
algorithm based on decomposition (MOEA/D) (Zhang and
Li 2007), we decompose the preference information (the ref-
erence point) into a number of scalar optimization problems
and optimize them simultaneously for both multi- and many-
objective problems. In particular, the proposed algorithm has
the following major advantages:

– The framework of the algorithm is easy to implement, and
the idea is also simple.

– The performance of the algorithm is stable wherever the
reference point is.

– The algorithmhas good convergence to the Pareto-optimal
front.

– The size of the desired region can be controlled by the
DM.

– The algorithm provides a flexible framework of MOEA/D
for preference-based evolutionary multiobjective opti-
mization.

The organization of the rest of this paper is as follows. In
Sect. 2,we introduce themodel of the preference relation, and
give a brief description of the g-dominance and r-dominance
relations. Section 3 contains the related works on MOEA/D.
The proposed algorithm is described in Sect. 4. The experi-
mental results are presented and analyzed in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Background

2.1 Preference relation model

In this section, we firstly illustrate the objective space. All the
objectives are minimized. Apparently, the feasible objective
region is above the PF, and the unfeasible objective region is
below the PF, as shown in Fig. 1.

Considering the perspective of the decision makers, they
have different interests in different objectives. Thus, there is
no need to sort all of the Pareto solutions, but only a desired
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Fig. 1 Illustration of the objective space

Fig. 2 Illustration of the preference relation model

region of the Pareto-optimal region based on theDM’s prefer-
ence. In terms of the need of DM, Jaszkiewicz and Slowinski
(1999) gave a general overview of the light beam search
(LBS) methodology and application. In this model, the DM
should give the aspiration point, reservation point, indiffer-
ence threshold, preference threshold and veto threshold.

This paper adopts the simplification model (Deb and
Kumar 2007) shown in Fig. 2. This model allows the DMs
to specify their desired region through a reference point.
What’s more, a multitude of computational resources can be
saved as the reference point possesses a wealth of informa-
tion on evolution direction as well as allows for much more
focused searching. These inherent advantages motivate the
researchers to apply preference-based approaches to the field
of evolution multiobjective optimization (Deb 2008; Coello
and Lamont 2004).

Flag=0

Flag=0 Flag=1

Flag=1

Flag=0

Flag=1

Flag=1

Flag=0
g g

Fig. 3 Illustration of the g-dominance relation when the reference
point is located in the infeasible region and feasible region

2.2 The g-dominance relation

Molina et al. (2009) proposed the reference point-based dom-
inance relation (g-dominance relation) for multiobjective
metaheuristic algorithm. The g-dominance relation relaxes
Pareto dominance relation via the reference point, which is
easy to display the preference information and acquire the
desired region.

Given two points A, B ∈ Rm , A g-dominance B if:

1. Flagg(A) > Flagg(B)

2. Being Flagg(A)=Flagg(B), Ai ≤ Bi , ∀i =1, 2, . . . ,m

with at least one j such that A j < Bj . Where

Flagg(w) =
⎧
⎨

⎩

1 wi ≤ gi ,∀i = 1, 2, . . . ,m
1 gi ≤ wi ,∀i = 1, 2, . . . ,m
0 otherwise

(2)

g is the reference point, and m is the number of objectives.
From Fig. 3, there are four regions divided by the dotted

lines in the objective space. The figure illustrates how to
relax the Pareto dominance relation according to expression
(2), and the regions with Flag = 1 dominates the regions
with Flag = 0. Considering the definition, the g-dominance
relation based g-NSGA-II has good convergence when the
reference point is in the unfeasible objective region or in the
feasible objective region.

However, the g-NSGA-II does not perform well when the
reference point is on the PF or close to the PF, and displays
poorly on a problem with many objectives. Under this cir-
cumstance, the entire population will easily fall into local
optimal region, especially, on the problems in which it is
difficult to gain the PF.

2.3 The r-dominance relation

A new dominance relation (r -dominance relation) (Ben Said
et al. 2010) has been proposed for interactive evolution-
ary multicriteria decision-making. The relation is capable
of obtaining a strict partial order among Pareto-equivalent
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Fig. 4 Illustration of the relationship between weight vector and the gradient vector of Weighted Sum approach, Tchebycheff approach, PBI
approach

individuals and increasing the pressure of selection. These
inherent factorsmake such a relation guide the search process
to the desired region of the Pareto-optimal region based on
the DM’s preferences.

Given two points A, B ∈ Rm , A r -dominance B, if one
of the following statements holds:

1. A dominates B in the Pareto sense, A ≺ B
2. A and B are Pareto-equivalent and D(A, B, g) < −δ,

where δ ∈ [0, 1] and

D(A, B, g) = Dist(A, g) − Dist(B, g)

Distmax − Distmin
(3)

Distmax = Maxx∈PDist(x, P) (4)

Distmin = minx∈PDist(x, P) (5)

where δ is termed the non-r -dominance threshold, and g is
the reference point. The distance formula uses the weighted
Euclidean distance (Deb et al. 2006):

Dist(y, g) =
√
√
√
√

m∑

i=1

wi

(
fi (y) − fi (g)

f max
i − f min

i

)2

(6)

where wi ∈ [0, 1], ∑m
i=1 wi = 1.

Considering the definition of r -dominance relation, the
relation is said to be Pareto dominance compliant. Moreover,
the relation not only expresses the DM’preferences (the ref-
erence point) exactly but also preserves the Pareto dominance
appropriately. Therefore, the r -dominance relation based r -
NSGA-II has good convergence when the reference point is
in the unfeasible objective region or on the PF.

However, r -dominance’s performance will deteriorate
when the reference point is in the feasible objective region.
Equations (3) and (6) show that the desired region obtained
by r -NSGA-II depends on the location of the reference point.
The entire population will be guided by the reference point to

approximate the region close to the reference point as much
as possible.

3 Related works

3.1 A decomposition-based multiobjective evolutionary
algorithm (MOEA/D)

The idea of MOEA/D (Zhang and Li 2007) originates
from the traditional methods of the mathematical opti-
mization. The MOEA/D depends on a decomposition strat-
egy to decompose a multiobjective optimization problem
into a number of scalar optimization subproblems and to
optimize them simultaneously. MOEA/D needs a uniform
spread of N weight vectors λ1, λ2, . . . , λN , and each λ j =
(λ

j
1, λ

j
2, . . . , λ

j
m) satisfies

∑m
k=1 λik = 1 and ∀λ

j
k ≥ 0, where

m is the number of objectives. In addition, several approaches
have been proposed to convert the problem into a number of
scalar optimization problems.

3.1.1 Weighted sum approach (Miettinen 1999)

The weighted sum approach is a well-known strategy to con-
vert a MOP into a set of single-objective problems. The
objective function of the j th minimization subproblem is:

minimize gws(
−→x | λ) = ∑m

i=1 λi fi (
−→x )

subject to x ∈ �
(7)

where i ∈ {1, . . . ,m}, and m is the number of objectives.
However, a drawback of this approach is that it is only

suitable to the MOPs whose PFs’ shape is convex because
the entire population will be dominated by the terminal ver-
texes as Fig. 4a shows. In Fig. 4a, the red arc (PF) is above
the contour line AB, which indicates the whole PF domi-
nated by the terminal vertexes (A and B). This figure and
the expression (7) show that the weighted vector

−→
λ and the

evolutionary direction vector −→v are collinear.
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3.1.2 Tchebycheff approach (Miettinen 1999)

The scalar optimization problem in this approach adopts the
following equation:

minimize gtche(−→x | λ, z∗i ) = max
1≤i≤m

λi | fi (
−→x ) − z∗i |

subject to x ∈ �
(8)

where i ∈ {1, . . . ,m}, z∗ = (z∗1, . . . , z∗m)T is the ideal point,
i.e., z∗i = min{ fi (x) | x ∈ �}, and m is the number of
objectives.

The major advantage of the Tchebycheff approach is that
it can deal with the problems with any shape of the PF. How-
ever, the weight vector

−→
λ and the gradient vector −→v are not

collinear. As shown In Fig. 4b, the best individual A will be
obtained in the evolution direction −→v instead of the desired
individual B by adopting the weight vector

−→
λ .

3.1.3 Penalty-based boundary intersection (PBI)
(Zhang and Li 2007)

In this approach, the scalar optimization problem of PBI is

minimize gpbi(−→x | λ, z∗i ) = d1 + θd2
subject to x ∈ �

(9)

where

d1 = ‖(z∗ − F(
−→x ))T λ‖

‖−→λ ‖
d2 = ‖F(

−→x ) − (z∗ − d1
−→
λ )‖,

and θ > 0 is a preset penalty parameter.
In Fig. 4c, the PBI method can be used to deal with the

MOPswith different shapes of PF aswell as obtain uniformly
distributed optimal solutions. Moreover, Fig. 4c shows that
the weight vector

−→
λ and the evolution direction vector −→v

are collinear. But, these benefits come with a price that it has
to set the value of the penalty factor to θ .

3.2 The frame of MOEA/D

MOEA/D (Zhang and Li 2007) decomposes a multiobjective
optimization problem into a number of scalar optimization
subproblems and optimizes them simultaneously. Each sub-
problem is optimized by only using the information from
its neighboring subproblems. The procedure of MOEA/D is
presented as follows:

Input:

– MOP: the multiobjective optimization problem;
– z(z1, z2, . . . , zm) : zi is the best value found so far for fi ;

– N : the size of population;
– A uniform spread of N weight vectors: λ1, . . . , λN ;
– T : the size of the neighborhood of each weight vector.

Output EP: the elite population.

Step (1) Initialization.
Step (1.1) Set EP = ∅.
Step (1.2) Calculate the T closest weight vectors of each
weight vector, For each i = 1, 2, . . . , N , set NSi =
{i1, . . . , iT }, whereλi1 , . . . , λiT are T closestweight vec-
tors to λi .
Step (1.3) Generate an initial population x1, . . . , xN by
specific method, then calculate the fitness of each indi-
vidual like f i tness(xi ).
Step (1.3) Initialize the z(z1, z2, . . . , zm).

Step (2) Update.
For i=1 to N do

Step (2.1) Gene recombination (in neighbor set, ran-
domly choose two individuals which will generate a new
individual x by using genetic operators)
Step (2.2) Apply a problem-specific repair heuristic on x
to produce x ′.
Step (2.3) Update Neighboring Solutions
For each index j ∈ NSi , If gte(x

′ | λ j , z) ≤ gte(y j |
λ j , z)
then set y j = x

′

end For
Step (2.4) Update EP.
end For

Step (3) Stopping Criteria.
If Terminal condition is satisfied then output EP
else go to Step 2
end If

where in the frame, gte(x
′ | λ j , z) is one kind of decom-

position method like Weighted Sum Approach, Tchebycheff
Approach, or PBI, like gPBI(x

′ | λ j , z).
In terms of the frame of MOEA/D, the algorithm decom-

poses the MOP into a number of single-objective optimiza-
tion problems (SOPs), then optimizes each subproblem and
obtains the optimal solutions of each subproblem by means
of the information from its neighboring subproblems genera-
tion by generation. Thus, the convergence can be maintained
by this strategy. Moreover, the spread of weight vectors can
ensure the diversity of the obtained solutions.

4 Proposed approach

According to the preference relation model (Deb and Kumar
2007), the preference-based searching algorithms are to
obtain a region on or approximating to the PF. Inspired by
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Fig. 5 Illustration of the idea of MOEA/D-PRE

the Light Beam Search (LBS) methodology and applications
(Jaszkiewicz and Slowinski 1999) andMOEA/D (Zhang and
Li 2007), in this section, we construct a user-preference-
based model to decompose the MOP into a number of
single optimization problems. How to construct the model
combining the user-preference and the frame of MOEA/D
is crucial, moreover, how to obtain the weight vectors in
MOEA/D is a key challenge. Therefore, this paper proposes
a preference information-based MOEA/D (MOEA/D-PRE)
to realize them.

In terms of MOEA/D-PRE, we illustrate the idea as Fig. 5
shows: we construct a set of light beams (from the original
point to the mapping region, in which the reference point is
enclosed, so that the intersection between these light beams
and the Pareto front is the desired region. Specifically, the
size of the desired region is controlled by the boundary of
the mapping region, and the key issue of this model is how to
decompose the preference information of the reference point.

In this section, we give the model of obtaining weighted
vectors. Then, we illustrate the model of alterable size of the
desired region. Finally, we present the frame of MOEA/D-
PRE and the improved version in detail.

4.1 The model for obtaining weighted vectors

Step 1: We seek the mapping point of the reference point.
Given the reference point A∗ = ( f ∗

1 , . . . , f ∗
m), the

correspondingmapping point A
′
( f

′
1, . . . , f

′
m) can be

obtained by the Eq. (10):

⎧
⎨

⎩

f ∗
1

f
′
1

= f ∗
2

f
′
2

= · · · = f ∗
m

f ′
m

f
′
1 + f

′
2 + · · · + f

′
m = 1

(10)

f
′
i = f ∗

i∑m
i=1 f ∗

i
, i = (1, 2, . . . ,m)

where ∀i, f
′
i > 0, andm is the number of objectives.

Step 2: We determine the boundary of the mapping region.
Firstly, we obtain the intersection points between the
surface: f1+· · ·+ fm = 1 and the number axes. Then,
we acquire the boundary points to determine the
boundaryof themapping regionby adjustingparame-
ter ε. In Figs. 6, 7a, the boundary points (B

′
,C

′
, D

′
)

can be calculated by the following equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−−→
A

′
B

′ = ε1 ·
−−→
A

′
B−−→

A
′
C

′ = ε2 ·
−−→
A

′
C−−→

A
′
D

′ = ε3 ·
−−→
A

′
D,

(11)

where ε = (ε1, ε2, ε3) is to limit the magnitude of
the vectors.

Step 3: We obtain weight vectors from the original point to
the mapping region.
Referring to the Normal Boundary Intersection (Das
and Dennis 1998) to obtain weight vectors, we
propose the iterative weight approach via the three-
dimensional models like Fig. 7a.

1. Obtain the mapping point A′ by the Eq. (10).
2. Obtain the boundary points (the intersection points

between S : f1 + f2 + f3 = 1 and the number axis)
such as B(1, 0, 0), C(0, 1, 0) and D(0, 0, 1).

3. Obtain the boundary points of the mapping region
like B ′,C ′, D′ by Eqs. (10) and (11).

4. Add the mapping boundary points and the map-
ping point A′ to the set Q, so the point set Q =
{A′, B ′,C ′, D′}. Then, obtain the midpoint set P
through computing the intermediate points of any two
points in the set Q, like the points 1–6 in Fig. 7a, so
the obtained point set P = {1, 2, 3, 4, 5, 6}.

5. Obtain midpoint set P ′ through computing all of the
intermediate points between every point in set P and
everyone in the set Q.

6. Q = Q∪ P , use the same way to obtain the midpoint
set P from P ′ and Q.

7. Iterate the steps 5, 6 till | Q |= population si ze.

The point set Q is the weighted vector set, and each
λ j = (λ

j
1, λ

j
2, . . . , λ

j
m) satisfies

∑m
k=1 λik = 1 and

∀λ
j
k ≥ 0. Figure 8 gives the two-dimensional and

three-dimensional examples obtained by using the
iterative weight approach.

4.2 The model of alterable size of the desired region

The DM has special requirements regarding the size of
the desired region. With the location of the reference point
varying, the size of the desired region obtained by some algo-
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Fig. 6 Illustration of the two-
and three-dimensional models

(a) (b)

Fig. 7 Illustration of the three-dimensional iterative weight approach
in a, and the alterable size of the desired region in b

Fig. 8 The weight vectors obtained by the iterative weight approach
in two-dimensional and three-dimensional spaces. The reference point
is set to (0.5, 0.5) in the left plot and (0.2, 0.2, 0.25) in the right plot

rithms is occasionally not stable. Thus, how to get a stable
and controllable size of the desired region is an essential and
necessary area of research. This paper gives a model that the
size of desired region can be altered depending on the DM’s
preference.

Determining the boundary of themapping region is essen-
tial because the desired regionwill be limited by themapping
region as Fig. 5 shows. In order to illustrate the alterable size
model, according to Eq. (11), one of the boundary points B ′
in Fig. 7b is obtained as follows:

−−→
OB

′ =
−−→
OA

′ +
−−→
A

′
B

′ =
−−→
OA

′ + ε
′

|
−−→
A

′
B |

·
−−→
A

′
B (12)

Given a mapping relation: ε ∼ ε
′

−−→
A

′
B
, Eq. (12) will be

changed into Eq. (13) as follows:

−−→
OB

′ =
−−→
OA

′ +
−−→
A

′
B

′ =
−−→
OA

′ + ε ·
−−→
A

′
B

where ε ∈ [0, 1] (13)

By using this model, the DM can obtain different sizes
of the desired region by setting the parameter ε, as shown
in Fig. 10. Provided that all of the elements in ε =
(ε1, ε2, . . . , εm) are set the same like ε = (0.1, 0.1, . . . , 0.1),
the DMwill just adjust one parameter ε to take control of the
size of the desired region like ε = 0.1, which is applied in
this paper. The bigger the value of ε is, the larger the size of
the obtained desired region.

4.3 The frame of MOEA/D-PRE

MOEA/D-PRE decomposes the preference information (the
reference point) into a number of scalar optimization sub-
problems and optimizes them simultaneously to obtain the
desired region. The algorithm proposed in this paper needs a
set of uniform weight vectors from the original point to the
mapping region, and any deterministic weight approach can
be added to the framework. The procedure ofMOEA/D-PRE
is presented as follows:

Input:

– MOP: the multiobjective optimization problem;
– A( f1, f2, . . . , fm): the reference point;
– ε′: the size of the desired region;
– N : the size of population;
– T : the size of the neighborhood of each weight vector.
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Fig. 9 Effect of varying locations of reference points with ε = (0.2, 0.1, 0.3), and the corresponding reference points are: (0.9, 0.1, 0.2), (0.1, 0.9,
0.2), (0.1, 0.2, 0.9)

Output: EP: the elite population.

Step (1) Initialization.
Step (1.1) Set EP = ∅ and get the mapping point A

′
.

Step (1.2)Obtain a number of theweight vectors {λ1, . . . ,
λN } by using the iterative weight approach then com-
pute the neighborhood index set (NS) (it is to compute
the Euclidean distances between any two weight vectors;
next we calculate the T closest weight vectors of each
weight vector, then add the indexes of the T weight vec-
tors into set NS)

Step (2) Update.
For i = 1 to N do
ε = ε,

Step (2.1) Gene recombination (in neighbor set, ran-
domly choose two individuals which will generate a new
individual x by using genetic operators)
Step (2.2) Apply a problem-specific repair heuristic on x
to produce x

′
.

Step (2.3) Update Neighboring Solutions
For each index j ∈ NSi , If gpbi (x

′ | λ j , A) ≤ gpbi (y j |
λ j , A)

then set y j = x
′

end For
Step (2.4) Update EP.
end For

Step (3) Stopping Criteria.
If Terminal condition is satisfied then output EP
else go to Step 2
end If

In the frame, NSi is the j th index inNS of the i th subprob-
lem, and the reference point A is given by DM. The ε is the
size of the preferred region. Especially, the reason why we
adopt the PBI approach to be the scalar optimization prob-
lem instead of the Weighted Sum approach and Tchebycheff
approach is because the evolution direction of PBI and the
weight vector are collinear. Referring to the Weighted Sum
approach, the approach cannot deal with the MOP when the

shape of its PF is convex. Moreover, as for the Tchebycheff
approach, the evolution direction and the weight vector are
not collinear. Thus, the PBI approach is the most appropriate
for the model of MOEA/D-PRE.

In terms of the frame, MOEA/D-PRE has fixed search
directions and may trap in local optimum in dealing with
difficult problems. Thus, we propose an improved version of
MOEA/D-PRE (IMOEA/D-PRE). If necessary, the DM can
adjust the weight vectors and the ε to dynamically control the
preferred region, as in step 2, update ε = 1− (1− ε,)

gen
Maxgen

and weight vectors, where gen is the present generation and
Maxgen is the maximum number of generation.

5 Experimental study

This section demonstrates simulation results on multiobjec-
tive test problems using the MOEA/D-PRE algorithm. First,
we demonstrate experimentally the positive effect of man-
aging reference points with various locations and regions
with various sizes. Second, the MOEA/D-PRE is com-
pared to two other recently proposed preference-based EMO
approaches: (1) the g-dominance (Molina et al. 2009), (2)
the r -dominance (Ben Said et al. 2010).

5.1 Result of varying the location of the reference points
and the size of the desired region

First, we apply the 3-objective 12-variable DTLZ2 (Deb
et al. 2002b) test problem with a concave Pareto-optimal
front. Figure 9 shows the effect of different locations of ref-
erence points on the distribution of the obtained solutions
after performing 500 generations (i.e., 10,0000 evaluations
since MOEA/D-PRE evaluates 200 individuals per genera-
tion). We choose three reference points: (0.9, 0.1, 0.2), (0.1,
0.9, 0.2), (0.1, 0.2, 0.9) which are designated by a star. The
ε = (0.2, 0.1, 0.3) is to control the size of the desired region.
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Fig. 10 Different sizes of the desired regions obtained by MOEA/D-PRE by setting different parameters ε (ε = 1.0, 0.5, 0.1, 0.0)

In Fig. 9, solutions (red points) with different locations of
reference points are shown on the Pareto-optimal front. The
reference points are close to the edge of the Pareto-optimal
front. It is obvious that the desired regions can be obtained by
MOEA/D-PRE. Thus, we conclude that if the DMwould like
to attain different desired regions, different reference points
can be chosen.

Second, we investigate the effect of changing different
values of ε. We consider the 2-objective 30-variable ZDT1
(Zitzler et al. 2000) and the 3-objective 12-variable DTLZ2
(Deb et al. 2002b) test problems. Figure 10 shows the effect
of different sizes of desired regions obtained by MOEA/D-
PRE by setting different values of ε after 500 generations
(i.e., 5,0000 evaluations for ZDT1 with 100 individuals and
10,0000 for DTLZ2 with 200 individuals). For the purpose
of comparison, the elements of each ε are set the same with
1.0, 0.5, 0.1, 0.0. For example, (1.0, 1.0) is for the first plot
of ZDT1 on the first row. We use the reference points (0.3,
0.45) and (0.4, 0.8, 0.45) for ZDT1 andDTLZ2, respectively.

In Fig. 10, for ε = (1.0, 1.0), all population individuals
have converged to the closest real PF. Solutions with other ε

values are shown in Fig. 10. It is obvious that the range of
the obtained desired regions decreases with the decrease of
the values of ε. Thus, if the DM would like to obtain a large
neighborhood of solutions near the desired region, a large
value of ε should be chosen. We conclude that the DM could
control the spread of the desired regions by means of ε.

5.2 Comparative experiments

To investigate the performance of the MOEA/D-PRE and
IMOEA/D-PRE, first of all, we give the corresponding para-

meter settings and test instances. Then, we describe the
performance metrics used in the experiments. Finally, we
confront MOEA/D-PRE, IMOEA/D-PRE with the other
two preference-based EMO algorithms: g-NSGA-II (Molina
et al. 2009) and r -NSGA-II (Ben Said et al. 2010) on 2-, 3-
and many-objective problems.

5.2.1 Parameter setting

As a basis of comparison, the sets of ZDT (Deb et al. 2002b)
and DTLZ (Zitzler et al. 2000) are considered. The ZDT1,
ZDT2, ZDT3, ZDT4, and ZDT6 are chosen to be the 2-
objective test instances. DTLZ1, DTLZ2, DTLZ3, DTLZ4,
DTLZ5 and DTLZ6 are chosen to be the 3-objective test
instances, and the 5-objective, 8-objective, 10-objective and
15-objective of DTLZ2 are chosen to be the many-objective
test problems.

In all simulations, we use the simulated binary crossover
operatorwith a distribution index of 10 and polynomialmuta-
tionwith a distribution index of 20. The crossover probability
and mutation probability are set to Pc = 0.99 and Pm = 0.1,
respectively. The maximum number of the generation is 500
on2-objective and3-objective instances. Especially, themax-
imumnumber of the generation is 1500 onZDT4 and 1200 on
ZDT6 (ZDT4 and ZDT6 are designed to be hard to approx-
imate their real PFs). The number of the population is 100
on 2-objective problems and 200 on 3-objectives problems.
The setting of the reference point is in the Table 1. About
MOEA/D-PRE and IMOEA/D-PRE, T is 10, and the preset
penalty parameter θ in PBI approach is set to be 5. Consid-
ering the r -dominance relation, δ is set to be 0.2.
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Table 1 Reference points
setting in the infeasible region,
on true PF, and in the feasible
region on the 2-objective and
3-objective instances

Instances In infeasible region On true PF In feasible region

ZDT1 (0.1, 0.2) (0.3, 0.45) (0.4, 0.55)

ZDT2 (0.1, 0.2) (0.6, 0.64) (0.7, 0.8)

ZDT3 (0.1, 0.2) (0.24, 0.28) (0.4, 0.4)

ZDT4 (0.1, 0.2) (0.3, 0.45) (0.5, 0.5)

ZDT6 (0.1, 0.2) (0.6, 0.64) (0.7, 0.8)

DTLZ1 (0.1, 0.2, 0.1) (0.1, 0.2, 0.2) (0.25, 0.25, 0.25)

DTLZ2 (0.1, 0.2, 0.1) (0.4, 0.8, 0.45) (0.8, 0.8, 0.8)

DTLZ3 (0.1, 0.2, 0.1) (0.4, 0.8, 0.45) (0.8, 0.8, 0.8)

DTLZ4 (0.1, 0.2, 0.1) (0.5, 0.5, 0.7) (0.6, 0.6, 0.8)

DTLZ5 (0.1, 0.2, 0.1) (0.4, 0.4, 0.82) (0.7, 0.7, 0.9)

DTLZ6 (0.1, 0.2, 0.1) (0.3, 0.3, 0.9) (0.7, 0.6, 0.6)

Table 2 Parameter setting of the many-objective DTLZ2 and the correlated variables

Number of objectives 5 8 10 15

Number of variables 14 17 19 24

Population size 200 200 200 400

Maximum generations 500 500 500 500

Reference point (0.1,0.3, 0.2,0.4, 0.2) (0.3, 0.3, 0.3, 0.1, 0.3,
0.55, 0.35, 0.35)

(0.3, 0.3, 0.3, 0.1, 0.3,
0.55, 0.35, 0.35, 0.25,
0.45)

(0.3, 0.3, 0.3, 0.1, 0.3,
0.55, 0.35, 0.35, 0.25,
0.45, 0.1, 0.4, 0.2, 0.3,
0.1)

∑m
i=1 f 2i 0.34 0.8175 1.3275 1.45

On many-objective instances, the setting of reference
points and the correlative factors are presented in Table 2
in detail. Especially, the termination criterion is referred to
as the result which is calculated by multiplying the max-
imum number of the generation by the population-size.
About MOEA/D-PRE and IMOEA/D-PRE, T is 10, and
the sizes of the desired region are set to be 0.1 on 2-
objective and 3-objective problems, namely, ε = (0.1, 0.1)
and ε = (0.1, 0.1, 0.1) respectively. By this analogy, the
sizes of desired region are set to be 0.05 for 5-, 8-, and 10-
objective DTLZ2, and 0.01 for 15-objective DTLZ2.

Concerning Table 2, it should be stated that the value
of

∑m
i=1 f 2i of the reference point indicates the closeness

between the reference point and the true PF (since the Pareto-
optimal solutions of DTLZ2 satisfy

∑m
i=1 f 2i = 1). In other

words, under the condition of expression of (1), if the value is
smaller than 1.0, the reference point will be in the infeasible
region and below the true PF. Otherwise, the reference point
will be in the feasible region and above the true PF.

5.2.2 Evaluation indicators

Due to the nature of theMOPs, a host of performance indexes
should be applied for evaluating the performances of differ-
ent algorithms (Zitzler et al. 2003). In our experiments, the

following performance indexes are adopted to measure the
closeness of a solution front (PFsol ) to the Pareto-optimal
front (PFtrue).

– Generational distance (GD) (VanVeldhuizen andLamont
1998):
The GD is defined as:

GD =
√∑n

i=1 d
2
i

n
, (14)

where n is the size of |PFsol|, and di is the Euclidean
distance (measured in the objective space) between each
solution in PFsol and the nearest member in PFtrue. The
smaller the value of GD is, the better the convergence of
an algorithm.

– Another GD:
The equation is:

Findicator =
m∑

i=1

f 2i (15)

Equation (15) is used to evaluate the solutions obtained
by algorithms on the test instances DTLZ2 because the
Pareto-optimal solutions of DTLZ2 satisfy

∑m
i=1 f 2i =
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Table 3 The GD values of the solutions obtained by g-NSGA-II, r -NSGA-II, IMOEA/D-PRE and MOEA/D-PRE on the set of ZDT

Instances g-NSGA-II r -NSGA-II IMOEA/D-PRE MOEA/D-PRE

Mean Variance Mean Variance Mean Variance Mean Variance

The reference point in the infeasible region

ZDT1 2.23E−04 5.54E−09 5.70E−05 4.47E−09 5.75E−05 3.38E−11 4.34E−06 9.99E−14

ZDT2 3.85E−04 3.31E−08 1.37E−04 1.04E−08 9.79E−05 4.52E−11 3.86E−06 1.71E−13

ZDT3 7.81E−04 2.65E−07 1.88E−04 9.86E−08 2.17E−02 2.28E−13 1.60E−05 8.67E−13

ZDT4 2.85E−01 1.14E−01 2.37E−01 1.54E−02 5.72E−05 2.25E−11 5.12E−04 5.65E−08

ZDT6 8.06E−03 1.41E−04 9.46E−04 7.51E−06 1.02E−04 3.02E−11 1.78E−05 1.39E−10

The reference point close to the true PF

ZDT1 8.05E−05 1.97E−08 3.01E−04 9.61E−08 5.43E−05 3.18E−11 4.00E−06 1.34E−13

ZDT2 5.10E−04 1.88E−07 1.73E−03 1.77E−06 9.87E−05 7.05E−11 4.61E−06 1.72E−13

ZDT3 3.08E−05 6.65E−10 9.25E−03 3.24E−05 2.22E−02 2.39E−13 7.86E−06 5.25E−13

ZDT4 4.46E−01 2.88E−02 2.75E−01 2.79E−02 5.86E−05 1.32E−11 4.49E−03 3.04E−06

ZDT6 1.87E−02 3.31E−04 8.33E−05 1.18E−10 8.84E−05 1.55E−11 4.81E−03 1.32E−06

The reference point in the feasible region

ZDT1 6.04E−05 2.41E−10 3.90E−05 1.46E−09 5.75E−05 2.81E−11 3.96E−06 6.76E−14

ZDT2 7.72E−05 5.73E−10 3.45E−05 2.11E−09 9.99E−05 7.61E−11 4.58E−06 1.49E−13

ZDT3 2.30E−05 1.12E−11 2.37E−05 1.60E−10 2.22E−02 2.51E−13 7.23E−06 8.05E−12

ZDT4 5.15E−01 1.00E−01 2.05E−01 2.50E−02 6.21E−05 1.25E−11 4.44E−03 4.12E−06

ZDT6 8.34E−03 1.71E−04 8.18E−05 7.51E−11 8.84E−05 1.98E−11 5.78E−03 3.49E−09

1. Thus, the Findicator of the solutions obtained by an
algorithm is closer to 1.0, and the convergence of the
algorithm will be better.

5.2.3 Experiments analysis

The algorithms have been independently run 30 times at
each instance on an identical-computer (Core(TM) i3-3220
3.30 GHz, 4GB). jMetal (Durillo and Nebro 2011) has been
employed to develop the MOEA/D-PRE and IMOEA/D-
PRE.

In this subsection, two sets of comparative experiments
are discussed. In the first set, we confront the MOEA/D-
PRE to IMOEA/D-PRE g-NSGA-II (Molina et al. 2009)
and r -NSGA-II (Ben Said et al. 2010) on 2-objective and
3-objective problems, and set different locations of the ref-
erence point on different test instances to investigate the
stability and the searching ability of the algorithms. In the
second set, we confront the three algorithms to test the scala-
bility of dealingwithmany-objective optimization problems.

5.2.4 Performance comparison on 2-objective problems

Experiments were conducted with the set of ZDT on three
scenarios with the reference point in the infeasible region,
very close to the true PF, and in the feasible region. The
setting of the reference points is listed in Table 1.

Table 3 shows the GD values of the obtained solutions
over 30 runs by the four algorithms on ZDT1, ZDT2,
ZDT3, ZDT4, and ZDT6, where the best mean and vari-
ance are shown in bold type. As can be seen in Table 3, the
average GD values obtained by MOEA/D-PRE are smaller
than that of IMOEA/D-PRE, g-NSGA-II and r -NSGA-II
on ZDT1, ZDT2, ZDT3 on three scenarios where the ref-
erence points are in the infeasible region, on true PF and
in the feasible region. Moreover, the solutions obtained by
MOEA/D-PRE converged into the true PF on all of the test
problems because all of the average values of GD are smaller
than 0.01.

About ZDT4 and ZDT6 designed to be hard to search
their true PFs, g-NSGA-II and r -NSGA-II failed to converge
into the true PF on ZDT4 as shown in Table 3 and Fig. 11.
However, IMOEA/D-PRE performs better than all the others
except for ZDT6 with the reference point in the infeasible
region as shown in Table 3 and Fig. 11. In this respect,
IMOEA/D-PRE can obtain desired regions with better con-
vergence because IMOEA/D-PRE can adjust the weight
vectors to avoid the traps of the problems. Furthermore, it
indicates that adjusting the weight vectors can contribute to
the promotion of searching ability and dealing with some
difficult problems.

Specifically, about ZDT6 in Table 3, we can see that
MOEA/D-PRE does not perform better than r -NSGA-II
when the reference points are on the true PF and in the fea-
sible region. The main reason is that the beforehand fixed
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Fig. 11 Comparative experiments on ZDT4 and ZDT6 on three scenarios with the reference point in the infeasible region, close to the true PF,
and in the feasible region

weight vectors may decrease the pressure of convergence.
In other words, if we make sure that all the solutions are in
the preferred directions, MOEA/D-PRE will be better. Thus,
the solutions obtained by IMOEA/D-PRE will be better than
r -NSGA-II.

In summary, MOEA/D-PRE has better convergence and
stability on ZDT1, ZDT2 and ZDT3, and IMOEA/D-PRE
performs better on ZDT4 and ZDT6.

5.2.5 Performance comparison on 3-objective problems

To investigate the stability and convergence of the algorithms
on 3-objective problems, the set of DTLZ is applied to three
scenarios with the reference point in the infeasible region,
very close to the true PF and in the feasible region as shown in
Table 1. Table 4 shows the average GD values of the obtained
solutions over 30 runs by the four algorithms on DTLZ1,
DTLZ2, DTLZ3, DTLZ4, DTLZ5, and DTLZ6, in which
the best mean and variance are in bold type.

Table 4 shows that in terms of GD, the final solutions
obtained by MOEA/D-PRE are better than those gotten by
g-NSGA-II and r -NSGA-II on most of the test instances of
the set of DTLZ on three scenarios, which indicates that the
MOEA/D-PRE has better stability and convergence.

For DTLZ1 and DTLZ3, both of which are difficult to
search their true PFs, Table 4 shows that the solutions
obtained by g-NSGA-II do not converge into the true PF
in the three scenarios. Moreover, Fig. 12 shows that the g-
NSGA-II does not obtain the desired region on DTLZ3 and
DTLZ6 as well. As to r -NSGA-II, although r -NSGA-II has
converged on DLTZ3 when the reference points are in these
three scenarios, the obtained solutions of r -NSGA-II cannot
satisfy the DM on account of the obtained solutions cov-
ering the whole optimal PF. Furthermore, in Fig. 12, the
obtained solutions r -NSGA-II do not converge into the true
PF on the DTLZ6 test problem. Therefore, the performance
of g-NSGA-II and r -NSGA-II are not stable, especially on
DTLZ1, DTLZ3 and DTLZ6 which creates some obstacles
for algorithms to converge into the PF (Deb et al. 2008).

Referring to the instances with the reference point in
the infeasible region, IMOEA/D-PRE performs better than
the other three algorithms on DTLZ1, DTLZ3, DTLZ5
and DTLZ6. Moreover, it has balanced performances in
other instances. Thus, the performance of IMOEA/D-PRE
surpasses MOEA/D-PRE to some extent. In this respect,
MOEA/D-PRE still needs improvement and investigation.

From the variance value of GD in Table 4, MOEA/D-
PRE can obtain a relatively stable solution set compared with
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Table 4 The GD values of the solutions obtained by g-NSGA-II, r -NSGA-II, IMOEA/D-PRE and MOEA/D-PRE on the set of DTLZ

Instances g-NSGA-II r -NSGA-II IMOEA/D-PRE MOEA/D-PRE

Mean Variance Mean Variance Mean Variance Mean Variance

The reference point in the infeasible region

DTLZ1 6.67E−00 2.70E−00 9.51E−03 3.69E−04 1.72E−04 3.25E−11 9.12E−04 1.58E−05

DTLZ2 1.06E−03 5.78E−09 5.52E−04 9.23E−09 6.63E−04 2.09E−10 4.50E−04 1.72E−11

DTLZ3 1.51E+01 2.69E+01 1.74E−02 1.98E−03 4.30E−03 2.00E−04 4.34E−03 4.39E−04

DTLZ4 8.82E−04 7.51E−08 5.51E−04 6.86E−09 6.62E−04 1.92E−10 4.51E−04 1.76E−09

DTLZ5 3.61E−04 5.05E−10 3.62E−04 2.44E−10 1.49E−04 2.83E−11 3.32E−04 6.86E−14

DTLZ6 6.04E−02 7.52E−04 4.93E−02 5.30E−04 4.26E−04 4.97E−11 1.56E−03 4.47E−13

The reference point close to the true PF

DTLZ1 5.33E−00 9.65E−01 5.06E−03 6.71E−05 1.62E−04 1.22E−10 1.53E−05 4.68E−10

DTLZ2 1.82E−06 2.022E−13 8.66E−03 1.46E−06 6.31E−04 1.53E−10 6.69E−07 1.46E−14

DTLZ3 1.82E+01 1.65E+01 1.28E−02 3.97E−03 6.46E−04 5.20E−09 1.13E−04 4.65E−08

DTLZ4 7.58E−05 2.68E−08 3.81E−04 5.55E−09 6.11E−04 2.17E−10 1.25E−06 4.11E−13

DTLZ5 6.48E−06 1.34E−10 5.68E−03 9.96E−07 1.10E−04 4.20E−11 3.33E−09 7.83E−19

DTLZ6 5.72E−03 1.27E−06 3.98E−03 3.28E−06 2.10E−04 7.86E−11 3.36E−18 2.28E−37

The reference point in the feasible region

DTLZ1 4.93E−00 1.71E−04 1.73E−03 2.75E−05 1.77E−04 4.93E−11 2.07E−03 7.96E−05

DTLZ2 7.81E−04 2.52E−09 7.57E−05 2.51E−10 6.69E−04 2.14E−10 6.71E−07 9.70E−15

DTLZ3 1.82E+01 1.65E+01 1.28E−02 3.97E−03 8.76E−04 1.29E−06 1.13E−04 4.65E−08

DTLZ4 3.12E−04 7.70E−09 2.53E−04 2.99E−09 6.16E−04 2.83E−10 1.41E−06 1.64E−12

DTLZ5 1.12E−04 2.71E−10 6.20E−06 4.16E−11 1.31E−04 3.35E−11 3.82E−09 1.43E−18

DTLZ6 5.72E−03 1.27E−06 3.98E−03 3.28E−06 4.57E−04 5.39E−11 3.36E−18 2.28E−37

the other three algorithms. Moreover, as shown in Fig. 12,
MOEA/D-PREhas converged into the true PF onDTLZ3 and
DTLZ6. Moreover, the obtained region for the DM varies lit-
tle in these three scenarios. Therefore, the solutions obtained
by MOEA/D-PRE are more stable. It is noteworthy that
MOEA/D-PRE can not only obtain the desired region with
good convergence, but can also adjust the size of the desired
region as the DM desires.

5.2.6 Performance comparison on the many-objective
problem

To investigate the scalability needed to deal with many-
objective optimization problems, we use the typical continu-
ous instance DTLZ2 with 5, 8, 10, and 15 objectives, which
are always used to test the algorithms’ ability to tackle many-
objective problems.

Tables 5 and 6 present the average Findicator values of the
solutions obtained by g-NSGA-II, r -NSGA-II, IMOEA/D-
PRE and MOEA/D-PRE over 30 runs over 5-, 8-, 10- and
15-objective DTLZ2, and the best values are in bold type.

In these two tables, it is obvious that Findicator values of
the solutions obtainedbyMOEA/D-PREare smaller than that

of other algorithms. The Findicator values of MOEA/D-PRE
are the closest to 1.0, which indicates that MOEA/D-PRE
performsbetter than g-NSGA-II, r -NSGA-II and IMOEA/D-
PRE.

According to Eq. 15, a smaller value of Findicator to 1.0
means a better convergence.On5-objectiveDTLZ2, all of the
algorithms have converged into the true PF. Nevertheless, on
8-, 10- and 15-objective DTLZ2, the average Findicator values
of g-NSGA-II are over 7.0, and the ability of g-NSGA-II to
deal with many-objective optimization problem deteriorates
rapidly with the increase of the number of objectives. Con-
sistent with these two tables, Figs. 13 and 14 indicate that the
solutions obtained by g-NSGA-II have not converged.

In Table 5, the r -NSGA-II has good performance on 5-
and 8-objective DTLZ2. However,in Table 6, on 10- and 15-
objective DTLZ2, the average values of Findicator obtained
by r -NSGA-II are bigger than 1.12, which means that some
solutions do not converge, as shown in Figs. 13 and 14. The
reference points on 10- and 15-objective DTLZ2 are located
in the feasible region. Nevertheless, about r -NSGA-II, some
red lines (individuals) in Figs. 13 and 14 are quite close to the
blue line (reference point), which means that the individuals
are crowded to the reference point. In other words, some
solutions do not converge to the true PF.

123



4018 G. Yu et al.

Fig. 12 Comparative experiments on DTLZ1, DTLZ3 and DTLZ6 on three scenarios with the reference point in the infeasible region, very close
to the true PF, and in the feasible region

Table 5 The Findicator values of the solutions obtained by the g-NSGA-
II, r -NSGA-II, IMOEA/D-PRE andMOEA/D-PRE on 5-Objective and
8-Objective DTLZ2

DTLZ2 5-Objectives 8-Objectives

Findicator Mean Variance Mean Variance

g-NSGA-II 1.07986 1.07E−04 8.45629 1.95E−01

r -NSGA-II 1.00751 2.27E−06 1.01216 4.16E−06

IMOEA/D-PRE 1.00023 1.49E−09 1.00065 8.50E−09

MOEA/D-PRE 1.00005 2.44E−11 1.00013 3.25E−10

Table 6 The Findicator values of the solutions obtained by the g-NSGA-
II, r -NSGA-II, IMOEA/D-PREandMOEA/D-PREon10-objective and
15-objective DTLZ2

DTLZ2 10-Objectives 15-Objectives

Findicator Mean Variance Mean Variance

g-NSGA-II 10.28818 8.68E−02 10.35251 5.00E−02

r -NSGA-II 1.12893 3.62E−05 1.46613 6.32E−05

IMOEA/D-PRE 1.00077 2.42E−08 1.00029 5.88E−09

MOEA/D-PRE 1.00016 2.25E−10 1.00001 1.11E−10
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Fig. 13 Plot of the experiments of g-NSGA-II, r -NSGA-II, IMOEA/D-PRE and MOEA/D-PRE on 5-objective, 8-objective, and 10-objective
DTLZ2, respectively

In comparison with r -NSGA-II and g-NSGA-II, the
average Findicator values on many-objective instances by
MOEA/D-PRE and IMOEA/D-PRE are smaller than 1.002
as shown in Tables 5 and 6. Moreover, as shown in Figs. 13
and 14, MOEA/D-PRE and IMOEA/D-PRE performs good
on 5-, 8-, 10- and 15-objective DTLZ2. Specifically, on 5-,8-
objective DTLZ2, Figs. 13 and14 show that the distributions
of the solutions obtained by MOEA/D-PRE and IMOEA/D-
PRE are better than r -NSGA-II. As for 15-objective DTLZ2,
it is notable that solutions (red lines) obtained by both
MOEA/D-PRE and IMOEA/D-PRE are beneath the blue line
(the reference point), which means that solutions obtained
by MOEA/D-PRE and IMOEA/D-PRE have better conver-
gence.

6 Conclusion

The key issue of the preference-based MOEAs is to accu-
rately express the DM’s preference information and obtain
the optimal solutions in the desired region. This paper has
focused on the above issue and has demonstrated:

– Inspired by MOEA/D, this study has decomposed the
DM’s preference information (the reference point) into
a number of scalar optimization subproblems.

– MOEA/D-PRE has adopted iterative weight approach to
the search process, making the algorithm avoid falling to
the local optimum as well as having good diversity.
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Fig. 14 Plot of the experiments of g-NSGA-II, r -NSGA-II, IMOEA/D-PRE and MOEA/D-PRE on 15-objective DTLZ2, respectively

– This paper has given a model based on the varying size of
the desired region, which is easy to obtain and satisfy the
demands of the DM.

– Combined with MOEA/D, MOEA/D-PRE can escape
from the influence of the reference point’s location, which
results in good convergence.

– The algorithm has been shown to have good scalability in
high-dimensional objective space.

Especially, it is worth mentioning that the framework of
MOEA/D-PRE is flexible. Any approaches for obtaining
weight can be added to the framework which provides a new
way to solve multiobjective optimization problems. In addi-
tion, if the DM has requirements for the size or shape of
the desired region, it can be easily satisfied by adjusting the
weights in the framework.

One line of futurework is to extend the proposed algorithm
to adapt more than one reference point provided, although
it will surely increase the difficulty of assigning the weight
vectors for the algorithm.Moreover, investigatingMOEA/D-
PRE on more MOPs, such as a problem with complicated
Pareto set shape, is needed to further verify the algorithm’s
performance.
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