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Abstract Fuzzy clustering especially fuzzy C-means
(FCM) is considered as a useful tool in the processes of pat-
tern recognition and knowledge discovery from a database;
thus being applied to various crucial, socioeconomic applica-
tions. Nevertheless, the clustering quality of FCM is not high
since this algorithm is deployed on the basis of the traditional
fuzzy sets, which have some limitations in the membership
representation, the determination of hesitancy and the vague-
ness of prototype parameters. Various improvement versions
of FCM on some extensions of the traditional fuzzy sets
have been proposed to tackle with those limitations. In this
paper, we consider another improvement of FCM on the pic-
ture fuzzy sets, which is a generalization of the traditional
fuzzy sets and the intuitionistic fuzzy sets, and present a
novel picture fuzzy clustering algorithm, the so-called FC-
PFS. A numerical example on the IRIS dataset is conducted
to illustrate the activities of the proposed algorithm. The
experimental results on various benchmark datasets of UCI
Machine Learning Repository under different scenarios of
parameters of the algorithm reveal that FC-PFS has better
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clustering quality than some relevant clustering algorithms
such as FCM, IFCM, KFCM and KIFCM.
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Intuitionistic fuzzy sets · Picture fuzzy clustering ·
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1 Introduction

Fuzzy clustering is considered as auseful tool in theprocesses
of pattern recognition and knowledge discovery from a data-
base; thus being applied to various crucial, socioeconomic
applications.Fuzzy C-means (FCM) algorithm (Bezdek et al.
1984) is a well-known method for fuzzy clustering. It is also
considered as a strong aid of rule extraction and data mining
from a set of data, in which fuzzy factors are really com-
mon and rise up various trends to work on (De Oliveira and
Pedrycz 2007; Zimmermann 2001). The growing demands
for the exploitation of intelligent and highly autonomous sys-
tems put FCM in a great challenge to be applied to various
applications such as data analysis, pattern recognition, image
segmentation, group-positioning analysis, satellite images
and financial analysis like what can be seen nowadays.
Nonetheless, the clustering quality of FCM is not high since
this algorithm is deployed on the basis of the traditional fuzzy
sets, which have some limitations in the membership repre-
sentation, the determination of hesitancy and the vagueness
of prototype parameters. The motivation of this paper is to
design a novel fuzzy clustering method that could obtain bet-
ter clustering quality than FCM.

Scanning the literature, we recognize that one of the most
popular methods to handle with those limitations is design-
ing improvement versions of FCM on some extensions of the
traditional fuzzy sets. Numerous fuzzy clustering algorithms
based on the type-2 fuzzy sets (T2FS) (Mendel and John
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2002) were proposed such as in Hwang and Rhee (2007),
Linda and Manic (2012), Zarandi et al. (2012) and Ji et al.
(2013). Thosemethods focused on the uncertainty associated
with fuzzifier that controls the amount of fuzziness of FCM.
Even though their clustering qualities are better than that of
FCM, the computational time is quite large so that researchers
prefer extending FCM on the intuitionistic fuzzy sets (IFS)
(Atanassov 1986). Some early researches developing FCM
on IFS were conducted by Hung et al. (2004), Iakovidis
et al. (2008) and Xu and Wu (2010). Chaira (2011) and
Chaira and Panwar (2013) presented another intuitionistic
FCM (Chaira’s IFCM) method considering a new objective
function for clustering the CT scan brain images to detect
abnormalities. Some works proposed by Butkiewicz (2012)
and Zhao et al. (2013) developed fuzzy features and distance
measures to assess the clustering quality. Son et al. (2012a, b,
2013, 2014) and Son (2014a, b, c, 2015) proposed intu-
itionistic fuzzy clustering algorithms for geodemographic
analysis based on recent results regarding IFS and the pos-
sibilistic FCM. Kernel-based fuzzy clustering (KFCM) was
applied to enhance the clustering quality of FCM such as
in Graves and Pedrycz (2010), Kaur et al. (2012) and Lin
(2014). Summaries of the recent intuitionistic fuzzy cluster-
ing are referenced in (Xu 2012).

Recently, Cuong (2014) have presented picture fuzzy sets
(PFS), which is a generalization of the traditional fuzzy sets
and the intuitionistic fuzzy sets. PFS-based models can be
applied to situations that require human opinions involving
more answers of types: yes, abstain, no and refusal so that
they could give more accurate results for clustering algo-
rithms deployed on PFS. The contribution in this paper is a
novel picture fuzzy clustering algorithmonPFS, the so-called
FC-PFS. Experimental results conducted on the benchmark
datasets of UCIMachine Learning Repository are performed
to validate the clustering quality of the proposed algorithm
in comparison with those of relevant clustering algorithms.
The proposed FC-PFS both ameliorates the clustering quality
of FCM and enriches the knowledge of developing cluster-
ing algorithms on the PFS sets for practical applications. In
other words, the findings are significant in both theoretical
and practical sides. The detailed contributions and the rest
of the paper are organized as follows. Section 2 presents the
constitution of FC-PFS including,

• Taxonomies of fuzzy clustering algorithms available in
the literature that help us understand the developing flow
and the reasonswhyPFS should be used for the clustering
introduced in Sect. 2.1. Some basic picture fuzzy opera-
tions, picture distance metrics and picture fuzzy relations
are also mentioned in this subsection;

• the proposed picture fuzzy model for clustering and its
solutions are presented in Sect. 2.2;

• in Sect. 2.3, the proposed algorithm FC-PFS is described.

Section 3 validates the proposed approach through a set of
experiments involving benchmark UCI Machine Learning
Repository data. Finally, Sect. 4 draws the conclusions and
delineates the future research directions.

2 Methodology

2.1 Taxonomies of fuzzy clustering

Bezdek et al. (1984) proposed the fuzzy clustering problem
where the membership degree of a data point Xk to cluster
j th denoted by the term ukj was appended to the objective
function in Eq. (1). This clearly differentiates with hard clus-
tering and shows that a data point could belong to other
clusters depending on the membership degree. Notice that
in Eq. (1), N , C , m and Vj are the number of data points, the
number of clusters, the fuzzifier and the center of cluster j th
( j = 1, . . . ,C), respectively.

J =
N∑

k=1

C∑

j=1

umkj
∥∥Xk − Vj

∥∥2 → min. (1)

The constraints for (1) are,

⎧
⎪⎨

⎪⎩

ukj ∈ [0, 1]
C∑
j=1

ukj = 1
. (2)

Using the Lagrangian method, Bezdek et al. showed an itera-
tion scheme to calculate the membership degrees and centers
of the problem (1, 2) as follows.

Vj =

N∑
k=1

umkj Xk

N∑
k=1

umkj

; j = 1, . . . ,C, (3)

ukj = 1
C∑
i=1

(‖Xk−Vj‖
‖Xk−Vi‖

) 2
m−1

; k =1, . . . , N , j = 1, . . . ,C.

(4)

FCM was proven to converge to (local) minimal or the sad-
dle points of the objective function in Eq. (1). Nonetheless,
even though FCM is a good clustering algorithm, how to opt
suitable number of clusters, fuzzifier, good distance measure
and initialization is worth considering since bad selection
can yield undesirable clustering results for pattern sets that
include noise. For example, in case of pattern sets that con-
tain clusters of different volume or density, it is possible that
patterns staying on the left side of a cluster may contribute
more for the other than this one.Misleading selection of para-
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meters and measures would make FCM fall into local optima
and sensitive to noises and outliers.

Graves and Pedrycz (2010) presented a kernel version of
the FCM algorithm namely KFCM in which the membership
degrees and centers in Eqs. (3, 4) are replaced with those in
Eqs. (5, 6) taking into account the kernel distance measure
instead of the traditional Euclidean metric. By doing so, the
new algorithm is able to discover the clusters having arbitrary
shapes such as ring and ‘X ’ form. The kernel function used
in (5, 6) is the Gaussian expressed in Eq. (7).

Vj =

N∑
k=1

umkj K (Xk, Vj )Xk

N∑
k=1

umkj K (Xk, Vj )

; j = 1, . . . ,C, (5)

ukj = 1
C∑
i=1

(
1−K (Xk ,Vj )

1−K (Xk ,Vi )

) 1
m−1

; k=1, . . . , N ,

j =1, . . . ,C (6)

K (x, y) = exp(−‖x − y‖2 /σ 2), σ > 0. (7)

However,modifying FCM itself with newmetricmeasures or
newobjective functionswith penalized terms or new fuzzifier
is somehow not sufficient and deploying fuzzy clustering on
some extensions of FS such as T2FS and IFS would be a
good choice. Hwang and Rhee (2007) suggested deploying
FCM on (interval) T2FS sets to handle the limitations of
uncertainties and proposed an IT2FCM focusing on fuzzifier
controlling the amount of fuzziness in FCM. A T2FS set was
defined as follows.

Definition 1 A type-2 fuzzy set (T2FS) (Mendel and John
2002) in a non-empty set X is,

Ã = {
(x, u, μ Ã(x, u))| ∀x ∈ A,∀u ⊆ JX ∈ [0, 1]

}
. (8)

where JX is the subset of X , μ Ã(x, u) is the fuzziness of the
membership degree u(x), ∀x ∈ X . When μ Ã(x, u) = 1, Ã
is called the interval T2FS. Similarly, when μ Ã(x, u) = 0,
Ã returns to the FS set. The interval type-2 FCM method
aimed to minimize both functions belowwith [m1,m2] is the
interval fuzzifier instead of the crisp fuzzifierm in Eqs. (1, 2).

J1 =
N∑

k=1

C∑

j=1

um1
k j

∥∥Xk − Vj
∥∥2 → min, (9)

J2 =
N∑

k=1

C∑

j=1

um2
k j

∥∥Xk − Vj
∥∥2 → min . (10)

The constraints in (2) are kept intact. By similar techniques to
solve the newoptimization problem, the intervalmembership

U = [
U ,U

]
and the crisp centers are calculated in Eqs.

(11–13) accordingly. Within these values, after iterations,
the objective functions J1 and J2 will achieve the minimum.

ukj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
C∑
i=1

(‖Xk−V j‖
‖Xk−Vi‖

) 2
m1−1

if 1
C∑
i=1

(‖Xk−V j‖
‖Xk−Vi‖

) < 1
C

1
C∑
i=1

(‖Xk−V j‖
‖Xk−Vi‖

) 2
m2−1

otherwise
, (11)

ukj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
C∑
i=1

(‖Xk−V j‖
‖Xk−Vi‖

) 2
m1−1

if 1
C∑
i=1

(‖Xk−V j‖
‖Xk−Vi‖

) ≥ 1
C

1
C∑
i=1

(‖Xk−V j‖
‖Xk−Vi‖

) 2
m2−1

otherwise
, (12)

Vj =

N∑
k=1

umkj Xk

N∑
k=1

umkj

; j = 1, . . . ,C, (13)

Wherem is a ubiquitous value betweenm1 andm2. Nonethe-
less, the limitation of the class of algorithms that deploy FCM
on T2FS is heavy computation so that developing FCM on
IFS is preferred than FCM on T2FS. IFS (Atanassov 1986),
which comprised elements characterized by both member-
ship and non-membership values, is useful mean to describe
and deal with vague and uncertain data.

Definition 2 An intuitionistic fuzzy set (IFS) (Atanassov
1986) in a non-empty set X is,

Â = {〈
x, μ Ã(x), γ Ã(x)

〉 |x ∈ X
}
, (14)

where μ Â(x) is the membership degree of each element x ∈
X and γ Â(x) is the non-membership degree satisfying the
constraints,

μ Â(x), γ Â(x) ∈ [0, 1] , ∀x ∈ X, (15)

0 ≤ μ Â(x) + γ Â(x) ≤ 1, ∀x ∈ X. (16)

The intuitionistic fuzzy index of an element (also known
as the hesitation degree) showing the non-determinacy is
denoted as,

π Â(x) = 1 − μ Â(x) − γ Â(x), ∀x ∈ X. (17)

When π Â(x) = 0, IFS returns to the FS set. The hesitation
degree can be evaluated through the membership function by
Yager generating operator (Burillo and Bustince 1996), that
is,

π Â(x) = 1 − μ Â(x) − (1 − μ Â(x)α)1/α, (18)

where α > 0 is an exponent coefficient. This operator is used
to adaptwith the entropy element in the objective function for
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intuitionistic fuzzy clustering in Eq. (19) according to Chaira
(2011). Most intuitionistic FCM methods, for instance, the
IFCM algorithms in Chaira (2011) and Chaira and Panwar
(2013) integrated the intuitionistic fuzzy entropy with the
objective function of FCM to form the new objective func-
tion as in Eq. (19).

J =
N∑

k=1

C∑

j=1

umkj
∥∥Xk − Vj

∥∥2 +
C∑

j=1

π∗
j e

1−π∗
j → min, (19)

where,

π∗
j = 1

N

N∑

k=1

πk j . (20)

Notice that when π Â(x) = 0, the function (19) returns to
that of FCM in (1). The constraints for (19–20) are similar
to those of FCM so that the authors, for simplicity, separated
the objective function in (19) into two parts and used the
Lagrangian method to solve the first one and got the solu-
tions as in (3–4). Then, the hesitation degree is calculated
through Eq. (18) and used to update the membership degree
as follows.

ukj = ukj + πk j . (21)

The new membership degree is used to calculate the cen-
ters as in Eq. (3). The algorithm stops when the difference
between two consecutive membership degrees is not larger
than a pre-defined threshold.

A kernel-based version of IFCM, the so-called KIFCM,
has been introduced by Lin (2014). The KIFCM algorithm
used Eqs. (5–7) to calculate the membership degrees and the
centers under the Gaussian kernel measure. Updating with
the hesitation degree is similar to that in IFCM through equa-
tion (21). The main activities of KIFCM are analogous to
those of IFCM except the kernel function was used instead
of the Euclidean distance.

Recently, Cuong (2014) have presented PFS, which is a
generalization of FS and IFS. The definition of PFS is stated
below.

Definition 3 A picture fuzzy set (PFS) (Cuong 2014) in a
non-empty set X is,

Ȧ = {〈
x, μ Ȧ(x), η Ȧ(x), γ Ȧ(x)

〉 |x ∈ X
}
, (22)

where μ Ȧ(x) is the positive degree of each element x ∈ X ,
η Ȧ(x) is the neutral degree and γ Ȧ(x) is the negative degree
satisfying the constraints,

μ Ȧ(x), η Ȧ(x), γ Ȧ(x) ∈ [0, 1] , ∀x ∈ X, (23)

0 ≤ μ Ȧ(x) + η Ȧ(x) + γ Ȧ(x) ≤ 1, ∀x ∈ X. (24)

Fig. 1 Picture fuzzy sets

The refusal degree of an element is calculated as ξ Ȧ(x) =
1− (μ Ȧ(x) + η Ȧ(x) + γ Ȧ(x)), ∀x ∈ X . In cases ξ Ȧ(x) = 0
PFS returns to the traditional IFS set. Obviously, it is recog-
nized that PFS is an extension of IFSwhere the refusal degree
is appended to the definition. Yet whywe should use PFS and
does this set have significant meaning in real-world applica-
tions? Let us consider some examples below.

Example 1 In a democratic election station, the council
issues 500 voting papers for a candidate. The voting results
are divided into four groups accompanied with the number of
papers that are “vote for” (300), “abstain” (64), “vote against”
(115) and “refusal of voting” (21). Group “abstain” means
that the voting paper is a white paper rejecting both “agree”
and “disagree” for the candidate but still takes the vote.Group
“refusal of voting” is either invalid voting papers or did not
take the vote. This example was happened in reality and IFS
could not handle it since the refusal degree (group “refusal
of voting”) does not exist.

Example 2 A patient was given the first emergency aid and
diagnosed by four states after examining possible symp-
toms that are “heart attack”, “uncertain”, “not heart attack”,
“appendicitis”. In this case, we also have a PFS set.

FromFigs. 1, 2 and 3, we illustrate the PFS, IFS and FS for
5 election stations in Example 1, respectively. We clearly see
that PFS is the generalization of IFS and FS so that cluster-
ing algorithms deployed on PFS may have better clustering
quality than those on IFS and FS. Some properties of PFS
operations, the convex combination of PFS, etc., accompa-
nied with proofs are referenced in the article (Cuong 2014).

2.2 The proposed model and solutions

In this section, a picture fuzzy model for clustering problem
is given. Supposing that there is a dataset X consisting of N
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Fig. 2 Intuitionistic fuzzy sets

Fig. 3 Fuzzy sets

data points in d dimensions. Let us divide the dataset into C
groups satisfying the objective function below.

J =
N∑

k=1

C∑

j=1

(ukj (2 − ξk j ))
m

∥∥Xk − Vj
∥∥2

+
N∑

k=1

C∑

j=1

ηk j (log ηk j + ξk j ) → min, (25)

Some constraints are defined as follows:

ukj + ηk j + ξk j ≤ 1, (26)
C∑

j=1

(ukj (2 − ξk j )) = 1, (27)

C∑

j=1

(
ηk j + ξk j

C

)
= 1, (28)

k = 1, . . . , N , j = 1, . . . ,C.

The proposed model in Eqs. (25–28) relies on the principles
of the PFS set. Now, let us summarize the major points of
this model as follows.

• The proposedmodel is the generalization of the intuition-
istic fuzzy clusteringmodel in Eqs. (2, 19, 20) sincewhen
ξk j = 0 and the condition (28) does not exist, the pro-
posed model returns to the intuitionistic fuzzy clustering
model;

• When ηk j = 0 and the conditions above are met, the
proposed model returns to the fuzzy clustering model in
Eqs. (1, 2);

• Equation (27) implies that the “true” membership of a
data point Xk to the center Vj , denoted by ukj (2 − ξk j )

still satisfies the sum-row constraint of memberships in
the traditional fuzzy clustering model.

• Equation (28) guarantees the working on the PFS sets
since at least one of two uncertain factors namely the
neutral and refusal degrees always exist in the model.

• Another constraint (26) reflects the definition of the PFS
sets (Definition 3).

Now, Lagrangian method is used to determine the optimal
solutions of model (25–28).

Theorem 1 The optimal solutions of the systems (25–28)
are:

ξk j = 1 − (ukj + ηk j ) − (1 − (ukj + ηk j )
α)

1
α ,

(k = 1, . . . , N , j = 1, . . . ,C), (29)

ukj = 1
C∑
i=1

(2 − ξki )
(‖Xk−Vj‖

‖Xk−Vi‖
) 2

m−1

,

(k = 1, . . . , N , j = 1, . . . ,C), (30)

ηk j = e−ξk j

C∑
i=1

e−ξki

(
1 − 1

C

C∑

i=1

ξki

)
, (k = 1, . . . , N ,

j = 1, . . . ,C), (31)

Vj =

N∑
k=1

(ukj (2 − ξk j ))
mXk

N∑
k=1

(ukj (2 − ξk j ))m

, ( j = 1, . . . ,C). (32)

Proof Taking the derivative of J by v j , we have:

∂ J

∂Vj
=

N∑

k=1

(ukj (2 − ξk j ))
m(−2Xk + 2Vj ),

(k = 1, . . . , N , j = 1, . . . ,C) (33)
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Since ∂ J
∂Vj

= 0, we have:

N∑

k=1

(ukj (2 − ξk j ))
m(−2Xk + 2Vj ) = 0,

(k = 1, . . . , N , j = 1, . . . ,C) (34)

⇔
N∑

k=1

(ukj (2 − ξk j ))
mXk =

N∑

k=1

(ukj (2 − ξk j ))
mVj ,

(k = 1, . . . , N , j = 1, . . . ,C) (35)

⇔ Vj =

N∑
k=1

(ukj (2 − ξk j ))
mXk

N∑
k=1

(ukj (2 − ξk j ))m

, ( j = 1, . . . ,C). (36)

The Lagrangian function with respect to U is,

L(u) =
N∑

k=1

C∑

j=1

(ukj (2 − ξk j ))
m

∥∥Xk − Vj
∥∥2

+
N∑

k=1

C∑

j=1

ηk j (log ηk j + ξk j )

−λk

⎛

⎝
C∑

j=1

(ukj (2 − ξk j )) − 1

⎞

⎠ (37)

Since ∂L(u)
∂uk j

= 0, we have:

∂L(u)

∂ukj
= mum−1

k j (2 − ξk j )
m

∥∥Xk − Vj
∥∥2

−λk(2 − ξk j ) = 0, (k = 1, . . . , N , j = 1, . . . ,C) (38)

⇔ ukj = 1

2 − ξk j

(
λk

m
∥∥Xk − Vj

∥∥2

) 1
m−1

,

(k = 1, . . . , N , j = 1, . . . ,C) (39)

From Eqs. (37, 49), the solutions of Uare set as follows:

C∑

j=1

(
λk

m
∥∥Xk − Vj

∥∥2

) 1
m−1

= 1,

(k = 1, . . . , N , j = 1, . . . ,C) (40)

⇔ λk =

⎛

⎜⎜⎜⎝
1

C∑
j=1

(
m

∥∥Xk − Vj
∥∥2

) 1
1−m

⎞

⎟⎟⎟⎠

m−1

,

(k = 1, . . . , N , j = 1, . . . ,C) (41)

Plugging (41) into (39), we have:

ukj = 1

C∑
i=1

(2 − ξk j )
(‖Xk−Vj‖

‖Xk−Vi‖
) 2

m−1

,

(k = 1, . . . , N , j = 1, . . . ,C) (42)

Similarly, the Lagrangian function with respect to η is,

L(η) =
N∑

k=1

C∑

j=1

(ukj (2 − ξk j ))
m

∥∥Xk − Vj
∥∥2

+
N∑

k=1

C∑

j=1

ηk j (log ηk j + ξk j )

−λk

⎛

⎝
C∑

j=1

(
ηk j + ξk j

C

)
− 1

⎞

⎠ . (43)

∂L(η)

∂ηk j
= log ηk j + 1 − λk + ξk j = 0,

(k = 1, . . . , N , j = 1, . . . ,C) (44)

⇔ ηk j = exp
{
λk − 1 − ξk j

}
,

(k = 1, . . . , N , j = 1, . . . ,C) (45)

From Eqs. (38, 55), we have:

C∑

j=1

eλk−1−ξk j + 1

C

C∑

j=1

ξk j = 1,

(k = 1, . . . , N , j = 1, . . . ,C) (46)

⇔ eλk−1
C∑

j=1

e−ξk j = 1 − 1

C

C∑

j=1

ξk j ,

(k = 1, . . . , N , j = 1, . . . ,C) (47)

⇔ eλk−1=
1 − 1

C

C∑
j=1

ξk j

C∑
j=1

e−ξk j

, (k= 1, . . . , N , j =1, . . . ,C)

(48)

Combining (48) with (45), we have:

ηk j =
(
1 − 1

C

C∑

i=1

ξki

)
e−ξk j

C∑
i=1

e−ξki

,

(k = 1, . . . , N , j = 1, . . . ,C) (49)

Finally, using similar techniques of Yager generating opera-
tor (Burillo and Bustince 1996), we modify the Eq. (18) by
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replacingμ Â(x) by (ukj + ηk j ) to get the value of the refusal
degree of an element as follows:

ξk j = 1 − (ukj + ηk j ) − (1 − (ukj + ηk j )
α)

1
α , (50)

where α ∈ (0, 1] is an exponent coefficient used to control
the refusal degree in PFS sets. The proof is complete. ��

2.3 The FC-PFS algorithm

In this section, the FC-PFS algorithm is presented in details.

3 Findings and discussions

3.1 Experimental design

In this part, the experimental environments will be described
such as,

• Experimental tools the proposed algorithm—FC-PFShas
been implemented in addition to FCM (Bezdek et al.
1984), IFCM (Chaira 2011), KFCM (Graves and Pedrycz
2010) and KIFCM (Lin 2014) in C programming lan-
guage and executed them on a Linux Cluster 1350 with
eight computing nodes of 51.2GFlops. Each node con-
tains two Intel Xeon dual core 3.2 GHz, 2 GB Ram. The
experimental results are taken as the average values after
50
runs.

• Experimental dataset the benchmark datasets of UCI
Machine Learning Repository such as IRIS, WINE,
WDBC (Wisconsin Diagnostic Breast Cancer), GLASS,
IONOSPHERE,HABERMAN,HEARTandCMC(Con-
traceptive Method Choice) (University of California
2007). Table 1 gives an overview of those datasets.
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Table 1 The descriptions of
experimental datasets

Dataset No. of elements No. of attributes No. of classes Elements in each classes

IRIS 150 4 3 (50, 50, 50)

WINE 178 13 3 (59, 71, 48)

WDBC 569 30 2 (212, 357)

GLASS 214 9 6 (70, 76, 17, 13, 9, 29)

IONOSPHERE 351 34 2 (126, 225)

HABERMAN 306 3 2 (225, 81)

HEART 270 13 2 (150, 120)

CMC 1473 9 3 (415, 227, 831)

• Cluster validity measurement Mean accuracy (MA), the
Davies–Bouldin (DB) index (1979) and the Rand index
(Vendramin et al. 2010) are used to evaluate the qualities
of solutions for clustering algorithms. The DB index is
shown as below.

DB = 1

C

C∑

i=1

(
max
j : j =i

{
Si + S j

Mi j

})
, (51)

Si =

√√√√√ 1

Ti

Ti∑

j=1

∣∣X j − Vi
∣∣2, (i = 1, . . . ,C), (52)

Mi j = ∥∥Vi − Vj
∥∥ , (i, j = 1, . . . ,C, i = j), (53)

where Ti is the size of cluster i th. Si is a measure of scatter
within the cluster, andMi j is ameasure of separation between
cluster i th and j th. The minimum value indicates the better
performance for DB index. The Rand index is defined as,

RI = a + d

a + b + c + d
, (54)

where a(b) is the number of pairs of data points belonging
to the same class in R and to the same (different) cluster in
Q with R and Q being two ubiquitous clusters. c(d) is the
number of pairs of data points belonging to the different class
in R and to the same (different) cluster. The larger the Rand
index is, the better the algorithm is.

• Parameters setting Some values of parameters such as
fuzzifier m = 2, ε = 10−3, α ∈ (0, 1), σ and
max Steps = 1000 are set up for all algorithms as in
Bezdek et al. (1984), Chaira (2011), Graves and Pedrycz
(2010) and Lin (2014).

• Objectives

– to illustrate the activities of FC-PFS on a given
dataset;

– to evaluate the clustering qualities of algorithms
through validity indices. Some experiments on the
computational timeof algorithms are also considered;

– to validate the performance of algorithms by various
cases of parameters.

3.2 An illustration of FC-PFS

First, the activities of the proposed algorithm FC-PFSwill be
illustrated to classify the IRIS dataset. In this case, N = 150,
r = 4, C = 3. The initial positive, the neutral and the refusal
matrices, whose sizes are 150× 3, are initialized as follows:

μ(0) =

⎛

⎜⎜⎝

0.174279 0.164418 0.198673
0.140933 0.169170 0.198045

. . . . . .

0.225422 0.161006 0.125153

⎞

⎟⎟⎠ , (55)

η(0) =

⎛

⎜⎜⎝

0.215510 0.321242 0.320637
0.324118 0.312415 0.330315

. . . . . .

0.306056 0.329532 0.326154

⎞

⎟⎟⎠ , (56)

ξ (0) =

⎛

⎜⎜⎝

0.469084 0.422466 0.402644
0.433791 0.424756 0.397048

. . . . . .

0.395095 0.419692 0.440974

⎞

⎟⎟⎠ . (57)

The distribution of data points according to these initializa-
tions is illustrated in Fig. 4. From Step 5 of FC-PFS, the
cluster centroids are expressed in Eq. (58).

V =
⎛

⎝
5.833701 3.027605 3.845183 1.248464
5.784128 3.041955 3.650875 1.148453
5.677982 3.079381 3.456761 1.073087

⎞

⎠ .

(58)

The new positive, neutral and refusal matrices are calculated
in the equations below.

μ(1) =

⎛

⎜⎜⎝

0.118427 0.169661 0.344978
0.117641 0.171776 0.340098

. . . . . .

0.400281 0.159727 0.067458

⎞

⎟⎟⎠ , (59)
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Fig. 4 Clusters in the
initialization step

Fig. 5 Clusters after the first
iteration step

η(1) =

⎛

⎜⎜⎝

0.182454 0.191161 0.194988
0.190864 0.192596 0.198008

. . . . . .

0.198376 0.193556 0.189481

⎞

⎟⎟⎠ , (60)

ξ (1) =

⎛

⎜⎜⎝

0.495291 0.479725 0.389716
0.493854 0.478521 0.390903

. . . . . .

0.350145 0.482186 0.499905

⎞

⎟⎟⎠ . (61)

From these matrices, the value of
∥∥u(t) − u(t−1)

∥∥ + ∥∥η(t)

−η(t−1)
∥∥ + ∥∥ξ (t) − ξ (t−1)

∥∥ is calculated as 0.102, which is
larger than ε so other iteration steps will be made. The distri-
bution of data points after the first iteration step is illustrated
in Fig. 5.

By the similar process, the centers and the positive, neutral
and refusal matrices will be continued to be calculated until

the stopping conditions hold. The final positive, neutral and
refusal matrices are shown below.

μ∗ =

⎛

⎜⎜⎝

0.000769 0.001656 0.551091
0.004785 0.010665 0.543119

. . . . . .

0.261915 0.350356 0.017994

⎞

⎟⎟⎠ , (62)

η∗ =

⎛

⎜⎜⎝

0.182155 0.182103 0.245264
0.181528 0.181223 0.242352

. . . . . .

0.186777 0.195800 0.176763

⎞

⎟⎟⎠ , (63)

ξ∗ =

⎛

⎜⎜⎝

0.489544 0.489825 0.192064
0.490654 0.492324 0.201595

. . . . . .

0.442305 0.385736 0.493112

⎞

⎟⎟⎠ . (64)
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Fig. 6 Final clusters

The final cluster centroids are expressed in Eq. (65). Final
clusters and centers are illustrated in Fig. 6. The total number
of iteration steps is 11.

V ∗ =
⎛

⎝
6.762615 3.048669 5.631044 2.047229
5.879107 2.757631 4.349495 1.389834
5.003538 3.403553 1.484141 0.251154

⎞

⎠ .

(65)

3.3 The comparison of clustering quality

Second, the clustering qualities and the computational time
of all algorithms are validated. The experimental results with
the exponent α = 0.6 are shown in Table 2.

It is obvious that FC-PFS obtains better clustering quality
than other algorithms in many cases. For example, the Mean
Accuracy of FC-PFS for theWINE dataset is 87.1%which is
larger than those ofFCM, IFCM,KFCMandKIFCMwith the
numbers being85.9, 82.6, 86.2 and86.6%, respectively. Sim-
ilarly, the mean accuracies of FC-PFS, FCM, IFCM, KFCM
and KIFCM for the GLASS dataset are 74.5, 71.2, 73.4, 73.5
and 64 %, respectively. When the Rand index of FC-PFS is
taken into account, it will be easily recognized that the Rand
index of FC-PFS for the CMC dataset is 55.6 % while the
values of FCM, IFCM, KFCM and KIFCM are 55.4, 55.1,
50.8 and 48.3 %, respectively. Analogously, the DB value of
FC-PFS is better than those of other algorithms. The exper-
imental results on the HEART dataset point out that the DB
value of FC-PFS is 2.03, which is smaller and better than
those of FCM, IFCM, KFCM and KIFCM with the num-
bers being 2.05, 2.29, 4.67 and 4.82, respectively. The DB
value of FC-PFS on the CMC dataset is equal to that of FCM

and is smaller than those of IFCM, KFCM and KIFCM with
the numbers being 2.59, 2.59, 2.85, 4.01 and 3.81, respec-
tively. Taking the average MA value of FC-PFS would give
the result 79.85 %, which is the average classification per-
formance of the algorithm. This number is higher than those
of FCM (77.3 %), IFCM (77.9 %), KFCM (75.84 %) and
KIFCM (70.32 %). Figure 7 clearly depicts this fact.

Nonetheless, the experimental results within a validity
index are quite different. For example, the MA values of all
algorithms for the IRIS dataset are quite high with the range
being (73.3–96.7 %). However, in case of noisy data such as
theWDBC dataset, theMA values of all algorithms are small
with the range being (56.5–76.2 %). Similar results are con-
ducted for the Rand index where the standard dataset such as
IRISwould result in high Rand index range, i.e., (76–95.7%)
and complex, noisy data such as WDBC, IONOSPHERE
and HABERMANwould reduce the Rand index ranges, i.e.,
(51.7–62.5 %), (49.9–52.17 %) and (49.84–49.9 %), respec-
tively. In cases ofDB index, the complex data such asGLASS
would make high DB values of algorithm than other kinds
of datasets. Even though the ranges of validity indices of
algorithms are diversified, all algorithms especially FC-PFS
would result in high clustering quality with the classification
ranges of algorithms being recorded in Table 3.

In Fig. 8, the computational time of all algorithms is
depicted. It is clear that the proposed algorithm—FC-PFS
is little slower than FCM and IFCM and is faster than KFCM
andKIFCM. For example, the computational time of FC-PFS
to classify the IRIS dataset is 0.033 seconds (s) in 11 itera-
tion steps. The computational time of FCM, IFCM, KFCM
and KIFCM on this dataset is 0.011, 0.01, 0.282 and 0.481 s,
respectively. The maximal difference in term of computa-
tional time between FC-PFS and other algorithms is occurred
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Table 2 The comparison of
algorithms (α = 0.6)

Data FC-PFS FCM IFCM KFCM KIFCM

Mean accuracy (MA) (%)

IRIS 96.1 96.7a 95.3 84.50 73.3

WINE 87.1a 85.9 82.6 86.20 86.6

WDBC 67.2 62.5 56.5 76.20a 70.6

GLASS 74.5a 71.2 73.4 73.50 64

IONOSPHERE 72.9 71.5 78.6a 60.12 57.6

HABERMAN 76.9 72.2 78.4a 76.70 76.9

HEART 87 85.9 87.7 88.10a 74.9

CMC 77.1a 72.8 70.4 61.40 58.7

Rand index (%)

IRIS 92.4 95.7a 88.6 84.2 76

WINE 71.3 72.8 73.4 84.2a 68.4

WDBC 56.9 60.2 62.5a 54.1 51.7

GLASS 71.4 70.5 71.9a 67.9 64.7

IONOSPHERE 49.9 50.1 50.2 52.17a 52.1

HABERMAN 49.84 49.87 49.86 49.9a 49.8

HEART 53.9 60.7a 60.7a 50.7 50.8

CMC 55.6a 55.4 55.1 50.8 48.3

DB

IRIS 3.05 2.91a 3.15 4.21 4.9

WINE 2.77a 2.93 2.88 3.75 3.76

WDBC 1.76a 1.87 1.97 5.03 10.6

GLASS 8.13 5.13a 9.68 13.94 5.9

IONOSPHERE 2.9 2.53a 4.15 2.68 3.9

HABERMAN 2.28 2.21a 2.58 4.92 4.81

HEART 2.03a 2.05 2.29 4.67 4.82

CMC 2.59a 2.59a 2.85 4.01 3.81

Computational time (s)

IRIS 0.033 0.011 0.01a 0.282 0.481

WINE 0.112a 0.242 0.15 2.56 1.28

WDBC 0.241a 0.323 0.254 3.54 5.007

GLASS 0.534 0.182a 0.277 3.55 4.7

IONOSPHERE 0.177 0.103a 0.194 4.42 4.84

HABERMAN 0.029 0.02a 0.02a 0.126 0.381

HEART 0.071 0.048a 0.07 0.905 0.903

CMC 0.534 0.433 0.422a 6.28 8.15

a Best results

on theCMCdatasetwith the standarddeviationbeing approx-
imately 7.6 s. In some cases of datasets, FC-PFS runs faster
than other algorithms, e.g., in the WINE dataset the compu-
tational time of FC-PFS, FCM, IFCM, KFCM and KIFCM
is 0.112, 0.242, 0.15, 2.56 and 1.28 s, respectively.

Some remarks are the following:

• FC-PFS obtains better clustering quality than other algo-
rithms in many cases;

• The average MA, Rand index and DB values of FC-PFS
in this experiment are 79.85, 62.7 and 3.19 %, respec-
tively;

• FC-PFS takes small computational time (approx. 0.22 s)
to classify a dataset.

3.4 The validation of algorithms by various parameters

Third, we validate whether or not the change of exponent α

has great impact to the performance of algorithms. To under-
stand the influence of this matter, statistics of the numbers of
times that all algorithms obtain best results have been made
in Table 4.
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Fig. 7 The average accuracies of algorithms

Table 3 The classification ranges of algorithms

Algorithms MA (%) Rand index (%) DB

FC-PFS 67.2–96.1 49.84 –92.4 1.76–8.13

FCM 62.5–96.7 49.87–95.7 1.87–5.13

IFCM 56.5–95.3 49.86–88.6 1.97–9.68

KFCM 60.12–88.1 49.9–84.2 2.68–13.94

KIFCM 57.6–86.6 48.3–76 3.76–10.6

This table states that when the value of the exponent is
small, the number of times that FC-PFS obtains best Mean
Accuracy (MA) values among all algorithms is small, e.g., 2
times with α = 0.2. In this case, FC-PFS is not as effective
as FCM since this algorithm achieves 3 times “Best results”.
However, when the value of the exponent increases, the clus-
tering quality of FC-PFS is also getting better. The numbers

of times that FC-PFS obtains bestMAvalues among all when
α = 0.4, α = 0.6 and α = 0.8 are 2, 3 and 3, respectively.
Thus, large value of exponent should be chosen to achieve
high clustering quality of FC-PFS.

In Fig. 9, the average mean accuracies of algorithms will
be computed for a given exponent and list those average
MA values in the chart. It has been revealed that FC-PFS
is quite stable with the clustering quality expressed through
the MA value being approximately 80.6 %, while those of
FCM, IFCM, KFCM and KIFCM being 77.3, 72.5, 75.8 and
67.4 %, respectively. The clustering quality of FC-PFS was
proven to be better than those of other algorithms through
various cases of exponents. In Fig. 10, the average compu-
tational time of algorithms will be depicted by exponents. It
has been shown that the computational time of FC-PFS is
larger than those of FCM and IFCM but smaller than those
of KFCM and KIFCM. The average computational time of
FC-PFS to cluster a given dataset is around 0.22 s.

Some remarks are the following:

• The value of exponent should be large to obtain the best
clustering quality in FC-PFS;

• the clustering quality of FC-PFS is stable through various
cases of exponents (approx.MA∼ 80.6%). Furthermore,
it is better than those of FCM, IFCM,KFCMandKIFCM.

4 Conclusions

In this paper, we aimed to enhance the clustering quality of
fuzzy C-means (FCM) and proposed a novel picture fuzzy
clustering algorithm on picture fuzzy sets, which are gener-

Fig. 8 The computational time
of algorithms
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Table 4 The statistics of best results

Algorithms MA Rand index DB

α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 0.2 α = 0.4 α = 0.6 α = 0.8

FC-PFS 2 2 3 3 2 2 1 1 4 4 4 2

FCM 1 2 1 0 4 4 2 3 3 4 5 4

IFCM 1 2 2 1 2 1 3 5 0 0 0 2

KFCM 3 1 2 1 1 2 3 2 0 0 0 0

KIFCM 1 1 0 3 0 1 0 1 1 0 0 1

Fig. 9 The mean accuracies of
algorithms by exponents

Fig. 10 The computational
time of algorithms by exponents
(s)

alized from the traditional fuzzy sets and intuitionistic fuzzy
sets. A detailed description of the previous works regarding
the fuzzy clustering on the fuzzy sets and intuitionistic fuzzy

sets was presented to facilitate the motivation and the mech-
anism of the new algorithm. By incorporating components of
the PFS set into the clusteringmodel, the proposed algorithm
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produced better clustering quality than other relevant algo-
rithms such as fuzzy C-means (FCM), intuitionistic FCM
(IFCM), kernel FCM (KFCM) and kernel IFCM (KIFCM).
Experimental results conducted on the benchmark datasets
of UCIMachine Learning Repository have re-confirmed this
fact even in the case of the values of exponents changed and
showed the effectiveness of the proposed algorithm. Further
works of this theme aim to modify this algorithm in distrib-
uted environments and apply it to some forecast applications
such as stock prediction and weather nowcasting.
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