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Abstract Many deficiencies with grammatical evolution
(GE) such as inconvenience in solution derivations, modular-
ity analysis, and semantic computing can partly be explained
from the angle of genotypic representations. In this paper, we
deepen some of our previous work in visualizing concept
relationships, individual structures and total evolutionary
process, contributing new ideas, perspectives, and methods
in these aspects; reveal the principle hidden in early work
so that to develop a practical methodology; provide formal
proofs for issues of concern which will be helpful for under-
standing of mathematical essence of issues, establishing of
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an unified formal framework as well as practical implemen-
tation; exploit genotypic modularity like modular discovery
systematically which for the lack of supporting mechanism,
if not impossible, is done poorly in many existing systems,
and finally demonstrate the possible gains through seman-
tic analysis and modular reuse. As shown in this work, the
search space and the number of nodes in the parser tree are
reduced using concepts from building blocks, and concepts
such as the codon-to-grammar mapping and the integer mod-
ulo arithmetic used in most existing GE can be abnegated.

Keywords Genetic programming · Grammatical
evolution · Finite state automaton · Model

1 Introduction

Types (Pierce 2002) and recursion (Boolos et al. 2002) have
long been two important concepts in programming theories.
Many successful solutions to problems in the areas of lan-
guage design and programming techniques are more or less
a matter of them. Therefore, it would seem to be valuable to
apply these broad ideas to improve algorithm development
and analysis in newer areas of programming research, such as
genetic programming (GP), which is the application of evo-
lutionary computing techniques to the induction of program
code.

For theworkdescribed in this paper, three important devel-
opments in genetic programming form the basis. The first
of these is the work of Koza (1992), who carried out the
first substantial studies of GP across many problem areas
and created the canonical tree-based form of GP that is
the foundation for many variants of and applications of GP
(Montana 1995; O’Neill and Ryan 2001; Ferreira 2001; He
et al. 2011a, b; Du et al. 2014; Alfonseca and Gil 2013; Bur-
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bidge andWilson2014; Fernandez-Blanco et al. 2013;Oltean
et al. 2009; Howard et al. 2011; Harman et al. 2012; Lang-
don and Harman 2015; Mckay et al. 2010) even today. The
notion of types was introduced into GP by Montana (1995)
in the Strongly TypedGenetic Programming (STGP) system.
Finally, the development of grammatical evolution (GE) by
O’Neill and Ryan (2001) provided a way to create typed pro-
grams in a GP-style process in an arbitrary language defined
by a grammar. With canonical GP, Koza (1992) deals with
compositions of functions, variables and constants with lit-
tle attention to type constraints, thus proposing the closure
problem as necessary condition for GP to work. To overcome
these issues and allow the use of a system of types in GP,
Montana (1995) allowed the typing terminals and operator
arguments in the second phase of the development process
of GP, presenting the so-called STGP approach; however,
no basic change was made to the program representations
when compared to the approach ofKoza. Finally, thework by
O’Neill andRyan (2001) onGEaroused awide rangeof inter-
est among GP researchers and practitioners (Burbidge and
Wilson 2014;Hugosson et al. 2010;Oltean et al. 2009;Risco-
Martin et al. 2014;Wilson and Kaur 2009). In fact, compared
to other twokinds ofGPmethods discussed, grammar-related
approaches can be best suited to type descriptions and recur-
sive program generations.

Up to now, GE has been applied successfully in many
areas, which include financial prediction, pattern recogni-
tion, symbolic regression, robot control, etc. (Oltean et al.
2009; O’Neill and Ryan 2001). For instance, Gavrilis et al.
(2008) proposed a GE-based method for improving classi-
fication accuracy. This evolutionary method is among the
most recent methods of constructing new features from the
original set of primitive features. Dempsey et al. (2006)
employ GE to evolve best rules in a dynamic environment
for trading, thereby forming an adaptive trading system. This
sets their work apart from traditional ones which often use
rules statically over test data. Hugosson et al. (2010) have
deeply explored genotype representations of GE and com-
pared the performance advantage between binary and integer
forms of GE. However, when taking into consideration all
GE-related works, there are the following drawbacks raised
among them. The questions are that convergence comes at a
price of efficiency and readability and that the building block,
a frequently used redundancy-related concept, is hard to use
in GE.

Of course, these problems have been initially studied in
our previouswork (He et al. 2011b) based onmodel approach
(He et al. 2008, 2011a). In the present paper, we will deepen
them by contributing new ideas, perspectives, and methods
in the following aspects: reveal the principle hidden in early
work so that to develop a practical methodology; provide for-
mal proofs for issues of concern which, to our knowledge,
will be helpful for understanding of mathematical essence of

issues, establishing of an unified formal framework aswell as
practical implementation; exploit genotypic modularity like
modular discovery systematically; and demonstrate the pos-
sible gains through semantic analysis and modular reuse. We
solve them by modeling the syntactically usable information
ofGEas an automaton (Aho et al. 2007;Hopcroft et al. 2008).
The rest of this paper is organized as follows: In Sect. 2, we
introduce GE as well as its related problems. Sects. 3, 4, 5
and 6 deal withmodeling problems, experiments, modularity
and discussions, respectively. Finally in Sect. 7, we conclude
our work and sketch out future directions for this work.

2 Preliminaries

Grammatical evolution resembles canonical GP (Koza 1992)
in the use of an evolutionary process to automatically gen-
erate computer programs, but differs in the use of linear
genotypic binary strings that are transformed into functional
phenotypic programs in light of a grammar. Since GE out-
performs GP in many aspects, such as easy for delineation
of both type and domain knowledge, it has been widely
taken up both by researchers and practitioners. Before deeply
investigating into GE from modeling perspective, we will
summarize its characteristics and define necessary concepts
as follows.

2.1 Grammar and programming language

Definition 1 (Context-free Grammar; Aho et al. 2007) A
context-free grammar G = (VN, VT, B, P) consists of four
components: (a) a set VN of non-terminal symbols or syn-
tactical variables; (b) a set VT of terminal symbols; (c) a
designation of one of the non-terminals in VN as the start
symbol B; (d) a set P of productions applied for generation
of programs. Each production is of the form A → α. When
A has many alternatives, we shall treat them differently in
the following discussion. Note that context-free grammar is
also shortened to grammar in the later sections.

Definition 2 (Derivations) Let G = (VN, VT, B, P) be a
grammar with A → γ ∈ P , and αAβ ∈ (VN ∪ VT)∗. A
direct derivation of αγβ from αAβ, denoted αAβ ⇒ αγβ,
is a substitution of γ for some A in αAβ. Particularly, we call

αAβ ⇒ αγβ the leftmost derivation, denoted αAβ
A→γ���⇒
lm

αγβ, if A does not appear in α. By the way, α1 ⇒ α2 ⇒
· · · ⇒ αn and α1 ��⇒

lm
α2 ��⇒

lm
· · · ��⇒

lm
αn are abbreviated to

α1
∗��⇒ αn and α1

∗��⇒
lm

αn , respectively. Derivations with no

production involved are referred to as zero derivations.

Definition 3 (δγ

A ) Let G = (VN, VT, B, P) be a grammar
with A → γ ∈ P , and δ ∈ (VN ∪ VT)∗. δ

γ

A is a substitu-
tion of γ for the leftmost occurrence of A in δ. Particularly,
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we define δ
γ

A = δ for A /∈ δ and regard δ
γ

A = δ as a zero
derivation (i.e. δ = δ).

Definition 4 (Sentential forms) Given a grammar G =
(VN, VT, B, P) and a string α ∈ (VN ∪ VT)∗, α is a sen-
tential form of G, if B

∗��⇒ α (α is also called a sentence
if B

∗��⇒ α ∈ V ∗
T ). α is a LM sentential form, provided all

direct derivations involved in B
∗��⇒ α are leftmost ones.

Definition 5 (Language) Let G = (VN, VT, B, P) be a
grammar. The language commonly used in compiler con-
structions is LM(G)={α ∈ V ∗

T | α is a LM sentential form
of G}.

As for LM(G), one can refer to standard texts (Aho et al.
2007; Hopcroft et al. 2008) for the details.

2.2 Classical grammatical evolution

Classical grammatical evolution (CGE or GE for short in the
following discussion) is a combination of genetic algorithm
and context-free grammar. In principle, it uses a genotype-to-
phenotypemapping to interpret a string of codons (integers in
[0, 255], usually represented as 8 bits) as certain sentential
forms given the context-free grammar. The important rule
almost all existing GE obeyed in choosing production for
the leftmost derivation is the use of natural transaction (i.e.
natural binary encoding) and modulo translation (O’Neill
and Ryan 2001), i.e. production applied is determined by
this formula: (codon integer value) mod (number of rules of
X), where X stands for some nonterminal. Once sentences
are successfully evolved in this way, so are the functional
phenotypic programs. Theoretically, this mapping mecha-
nism works for evolving programs in any language. For the
details of algorithmic structure of GE, one can refer to these
papers (O’Neill and Ryan 2001; Wilson and Kaur 2009) or
Sect. 3.4. In the following sections, we will address such GE
issues as modeling issues, space reduction, semantic com-
puting and effective evaluation, etc. Some of them have long
been neglected in GE researches.

3 Modeling grammatical evolution

3.1 Principle

The ambition to establish a visualized formal GP can be
traced back to our previous work (He et al. 2008, 2011a, b).
As revealed in the published literature, most of existing
GP methods employed in software engineering are mainly
developed on the basis of software testing, thus providing
few means to address such important programming issues
as semantics, correctness, etc. GE, to some extent, can
help with some conveniences by the aid of its embedded

grammar system, but still it is not as easy as one might imag-
ine. Occasionally, these approaches may get stuck in some
predicaments like aiming to evaluate infinite cycles. In view
of this, the original model approach (He et al. 2008, 2011a)
was proposed to combine Hoare-logic-style assertion-based
specifications and model checking within a GP framework
(Harman et al. 2012). In fact, semantic-related genetic pro-
gramming has received great interests in recent years, and
gradually emerging into a popular research issue (Krawiec
2014; Vanneschi et al. 2014).

Model-based GP framework concerns the use of visual-
ized techniques like finite state transition diagram to chart
evolution processes. The modeling ideas are summarized
from the following aspects. They offer many features most
existing counterparts do not cover, such as easiness in
genotype analysis, modular representation, functional reuse,
visualized structure study, and effective implementation:

• Define search space as a set of generalized Hoare for-
mulae [in the case of HGP (He et al. 2011a)] or a set of
grammatical derivations [in the case of MGE (He et al.
2011b)];

• Model search space in the context of relations of subsets
and transition diagram;

• Search under the concernedmodel for the desired gene or
solution through using awell defined heuristic algorithm.
For the case of HGP, gene is a program represented by
certain path of the diagram; for the case of MGE, gene
represented also by path is a sequence of productions
from which the expected program can be grammatically
derived.

3.2 Model and existence theory

Definition 6 (Justification) Let G = (VN, VT, B, P) be
a grammar, and α, β ∈ (VN ∪ VT)∗. A sequence s =
p1 p2 . . . pn of productions justifies the derivations α

∗��⇒ β,

if s, α, β can establish the series of derivationsα
p1��⇒
lm

α1
p2��⇒
lm

· · · pn−1���⇒
lm

αn−1
pn��⇒
lm

β or α
s��⇒
lm

β.

Definition 7 (ε-Equivalent) Let G = (VN, VT, B, P) be a
grammar, and α ∈ (VN ∪ VT)∗. Two justifications j1, j2 of
α are ε-equivalent, if they are exactly the same except for
usage of ε (empty word).

Definition 8 (Left most grammar model) Let G = (VN, VT,

B, P) be a grammar. A finite state transition graph Gph =
〈V, E〉with edges in E labeled either by productions (or pro-
duction names) or empty (or ε) words is a left most grammar
model ofG, denoted LMGM(G), if for α ∈ (VN∪VT)∗, α is
a leftmost sentential form of G ⇔ there exists a path starting
at the initial state in LMGM(G) such that the sequence s con-
catenated from edge labels along it justifies α, i.e.B

s��⇒
lm

α.
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Theorem 1 (Existence theorem) Given a grammar G =
(VN, VT, B, P), there exists a leftmost grammar model
LMGM(G) constructed by Algorithm 1.

Algorithm 1 (Construction of LMGM(G))

Input: a grammar G = (VN, VT, B, P).
Output: LMGM(G). Here SB, ε stand for the initial ver-

tex and zero derivation, respectively.

(1) Draw two vertices SN and Sα
N for each production N →

α ∈ P . When N has many alternatives, we should treat
them separately as different production.

(2) Draw an ε arrow from V to V for each vertex V of step
1;

(3) Draw an arrow from SN to Sα
N for vertices of step 1 if

N → α ∈ P; naming the arrow either with the produc-
tion or the production name.

(4) Calculate Follow(X) for all X in VN as follows:

A. Y ∈ Follow(X), if there exists a production A →
· · · XαY · · · ∈ P with α ∈ V ∗

T , and X,Y ∈ VN;
B. Follow(A) ⊆ Follow(X) , if A → · · · Xα ∈ P .

Where A, X ∈ VN, α ∈ V ∗
T .

(5) Calculate LMC(Sα
M ) for all states of the form Sα

M as
follows:

A. LMC(Sα
M ) = {A} , if α /∈ V ∗

T and A is the leftmost
non-terminal symbol of α;

B. LMC(Sα
M ) = Follow(M), if α ∈ V ∗

T .

(6) Draw an ε arrow from Sα
M to SN , for every state SN with

subscript N ∈ LMC(Sα
M ).

Proof The proof is divided into three parts:
Part 1: proving that Follow(X) = {Y ∈ VN|B ∗��⇒

· · · XαY . . . , α ∈ V ∗
T }, which means step 4 of Algorithm

1 finds out all possible nonterminals appearing on the right
side of X in some sentential form of G with no nonterminal
lying between them. By the meaning of Follow(X), we have,
for X in VN, that

Z ∈ Follow(X) ⇔ Z ∈ {Y ∈ VN | B∗��⇒ · · · XαY · · · , α ∈ V ∗
T }

⇔ (a) ∃A → · · · XαZ · · · in P with α ∈ V ∗
T or (b) ∃A →

· · · Xα ∈ P withα ∈ V ∗
T such that Z appears on the right side

of A in some sentential form of G with no nonterminal lying
between them, i.e. Z in Follow(A) (recalling the meaning of
Follow(A)).

Part 2: proving that LMC(Sα
M ) = {X ∈ VN | ∃γ, δ ∈

V ∗
T ,such that B

∗��⇒
lm

γ M · · · M→α����⇒
lm

δX · · · hold}, which

means step 5 of Algorithm 1 finds out all possible nontermi-
nals whose derivation, as far as the leftmost direct derivation
is concerned, follows immediately the using of M → α.

By the meaning of LMC(Sα
M ), and for M in VN we have

that Z in LMC(Sα
M ) ⇔ Z ∈ {X ∈ VN | ∃γ, δ ∈ V ∗

T such

that B
∗��⇒
lm

γ M · · · M→α����⇒
lm

δX · · · hold}⇔ (a) Z appears in

α as the leftmost nonterminal, when α /∈ V ∗
T , or (b) ∃γ, δ ∈

V ∗
T such that B

∗��⇒
lm

γ MδZ . . ., when α ∈ V ∗
T ,i.e. Z ∈

Follow(M) (recalling the meaning of Follow(M)).
By the proofs of part 1 and part 2, it follows that

Follow(X), LMC(Sα
M ) of Algorithm 1 define all the vertex

pairs possibly to be connected.
Part 3: Let L(LMGM(G)) be the language accepted by

LMGM(G), and J = { j | j is a sequence of productions
justifying some sentential form α ∈ (VN ∪ VT)∗ in G}. To
prove that Jk ∈ J ⇔ there exists an ε-equivalent J

′
k with

J
′
k in L(LMGM(G)). The proof goes by induction on the

structures of derivations. By the way, treat all vertices as final
states when in need, and SB as the start state.

(i) Induction base: for zero derivation, and each production
p ∈ {B → α | B → α ∈ P}, the proof is trivial.

(ii) Induction step: let Jk p ∈ J . Then p is either an ε or
some production, say X → δ in P . By induction hypoth-
esis, we have Jk ∈ J ⇔ there exits its ε-equivalent
J

′
k ∈ L(LMGM(G)). This means there exists a path

in LMGM(G) starting at the initial state, and ending
at some of its states, say Q, to justify what Jk justi-
fies. According to Algorithm 1, we can easily prove that
J

′
kε ∈ L(LMGM(G)) for the case of p = ε. For the

case of p = X → δ ∈ P , again by Algorithm 1, there

must exist a path in LMGM(G) of the form SX
p��⇒ Sδ

X .
Since Jk p ∈ J ⇔ (a) Q is of the form SY with SY = SX ;
or (b) Q is of the form Sα

M with X ∈ LMC(Sα
M ). Obvi-

ously, the path constructed in LMGM(G) from each of
these two cases is actually Jk p , i.e. ε-equivalent to Jk p.

Note that some vertices like Sα
M , Sβ

M in LMGM(G) can

be combined via the connection function into {Sα
M , Sβ

M }, if
LMC(Sα

M ) = LMC(Sβ
M ). This is reflected in Sect. 4. ��

3.3 Complete mapping principle and automaton

A noteworthy problem raised in GE is the so-called incom-
plete mapping (see O’Neill and Ryan 2001 or Sect. 4.1).
Although O’Neill and Ryan (2001) use the wrapping tech-
nique to overcome this problem, their method cannot guar-
antee that a (complete) sentence comprised of only terminals
of some grammar can always be obtained.

In this subsection, the complete mapping principle is pre-
sented,which uses some default transformation or predefined
rules to translate non-terminals of incomplete sentence into
some syntactically valid strings of terminals of the concerned
grammar directly. This thought can also be systematically
stated in terms of automaton. It is reflected in Theorem 2.
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Let G = (VN, VT, B, P) be some context-free grammar
whereVN = {B, N1, N2, . . . , Nm}, LMGM(G) be one of its
leftmost grammarmodels. Again let I be a function or a inter-
pretation VN → V ∗

T mapping non-terminal of VN to some
element of V ∗

T that can be deduced from that non-terminal in
G. Then the combination can be formed using the following
procedure:

(i) Draw two vertices SN∪T and ST to represent the set of all
sentential forms of G and the language LM(G), respec-
tively;

(ii) Draw the arrow I from vertex SN∪T to vertex ST, imply-
ing that I can recursively be used to transform any
sentential form of (VN ∪ VT)∗ into some sentence of
V ∗
T ;

(iii) Draw ε arrows from SN∪T to SN∪T and ST to ST for
vertices SN∪T and ST of step (i);

(iv) Draw arrows from each vertex of LMGM(G) to vertex
SN∪T, obtaining a finite state automaton FSA(G) with
SB (a special vertex of LMGM(G), refer to Sect. 4) as
its start state and vertex ST its final state.

Theorem 2 Let G = (VN, VT, B, P) be a context-free
grammar, LMGM(G) and FSA(G) be its grammar model
and corresponding finite state automaton obtained above.
Then α ∈ LM(G) ⇔ there exists a path β I in FSA(G)

from SB to ST with: (a) β is a path starting from SB in
LMGM(G); (b) conducting derivations from start symbol
B of G based on β production by production followed by the
application of the defaultmapping principle to non-terminals
of the obtained result will lead to α.

3.4 Model based grammatical evolution

Unlike CGE which regards genotypes as sequences of
codons, Model-based grammatical evolution, (MGE), gener-
ates computer programs directly from genotypes comprised
of production names,say 1a1d4a2c1c3b. In principle, MGE
generates computer programs in any language as follows (He
et al. 2011b):

(1) Constructing the grammar model, say LMGM(G), as
described above for some given grammar G;

(2) Initializing both the developing program (a sentential
form ofG) and genotypes as, respectively, the start sym-
bol B, and sequences of productions consistent with the
concerned grammar model;

(3) Evolving genotype and executing the following steps for
evolved genotype (a sequence of productions) repeat-
edly unless the developing program becomes a string
comprised of only terminal symbols in the concerned
grammar or some terminal condition is satisfied:

(a) Reading a production or a rule name from the geno-
type;

(b) Making the leftmost derivation for the developing
program using the rule obtained in (a);

(c) Back to (a) or executing (d) for some condition, say,
whether the end of the concerned genotype has been
arrived at by the rule interpretation procedure;

(d) Applying the complete mapping procedure which
replaces all non-terminal symbols in the developing
programwith predefined strings of terminal symbols.

Here, codon and modulo arithmetic calculations which
play critical roles in CGE are omitted. MGE is practically
implemented in Sect. 4 in building blocks, called Building
block based GE (BGE).

4 Experiments

We first provide some of our previous experiment results
(He et al. 2011b) and then make deep analysis in light of
modularity. The questions examined are the symbolic regres-
sion problems given in the work of O’Neill and Ryan (2001)
and that of Oltean and Grosan (2003). To make sure that
this method is a competitive approach to grammatical evo-
lution, an analytical comparison with CGE, IGE (Hugosson
et al. 2010), and PIGE (Fagan et al. 2010) is also conducted
for effectiveness. The particular functions examined with 20
input values−1,−0.9,−0.8,−0.76,−0.72,−0.68,−0.64,
−0.4,−0.2, 0, 0.2, 0.4, 0.63, 0.72, 0.81, 0.90, 0.93, 0.96,
0.99, 1 in the range [−1..1] are

f (y) = y4 + y3 + y2 + y (1)

g(y) = sin(y4 + y2) (2)

h(y) = sin(exp(sin(exp(sin(y))))) (3)

The grammar used in this problem isG = (VN, VT, B, P).
Where VN = {expr, var, op, pre_op}, VT = {sin, cos, exp,
log, +,−, *, /, y, 1.0, (, )}, B = 〈expr〉, and P can be repre-
sented as

(1) 〈expr〉 ::= 〈expr〉〈op〉〈expr〉 (1a)

| (〈expr〉〈op〉〈expr〉) (1b)

| 〈pre_op〉(〈expr〉) (1c)

| 〈var〉 (1d)

(2) 〈op〉 ::= + (2a)

| − (2b)

| ∗ (2c)

| / (2d)
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3542 P. He et al.

Fig. 1 The leftmost grammar model LMGM(G) of G =
(VN, VT, B, P) .Wherearrowswithout labels stand for ε arrows. Labels
represented by logic disjunctions can also be expressed as sets of rule

names. For example, we can denote the rules 1a or 1b by {1a, 1b}.
Node V1 is the start state of the automaton; the final state is technically
omitted here (He et al. 2011b)

(3) 〈pre_op〉 ::= sin (3a)

| cos (3b)

| exp (3c)

| log (3d)

(4) 〈var〉 ::= y (4a)

| 1.0 (4b)

4.1 Overview of the method

Themethod solving the above-mentionedproblems is divided
into four steps:

(a) Model construction: according to the existence theorem,
we obtain a leftmost grammar model as shown in Fig.
1 (He et al. 2011b). It can be clearly seen that of the
edges of this model two have at most four choices. So
for any n, the search space for a genotype of length n
has the upper bound O(4

n
m ). Where m(≥ 1) is some

number such that the value of n
m represents the total of

genotypic components or productions which may have
multiple alternatives in the concerned genotype.

(b) System implementation: since this system is imple-
mented in building blocks, it can essentially be referred
to as BGE, meaning building block based grammatical
evolution. To facilitate the comparison with CGE, IGE,
and PIGE, certain corresponding GE systems are imple-
mented for this service too. The involved pre-defined
complete mapping function I : VN → V ∗

T is:

I (X) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y X is 〈expr〉
y X is 〈var〉
+ X is 〈op〉
sin X is 〈pre_op〉

(c) Parameter settings: The major parameters employed are
as follows: The parameter Runs (=100) defines the num-
ber of runs that will be conducted for each experiment on
a particular problem.Generation size100; Probability of
crossover 0.9; Crossover model two-point; Population
size 50; Probability of mutation 0.15; Mutation mode
block mutation; Selection strategy tournament; Runs
100; Fitness evaluation the least square error.
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(d) Solving the problem: by running all the involved four
GEs with the above parameters on the given sample
dataset, we get the results shown in Figs. 2, 3, 4, 5, 6
and 7 (He et al. 2011b).

Fig. 2 Average fitness of 100 runs of the four GEs in Eq. (1)

Fig. 3 Average fitness of 100 runs of the four GEs in Eq. (2)

Fig. 4 Average fitness of 100 runs of the four GEs in Eq. (3)

Fig. 5 Time used of 100 individual runs of the four GEs in Eq. (1)

Fig. 6 Time used of 100 individual runs of the four GEs in Eq. (2)

Fig. 7 Time used of 100 individual runs of the four GEs in Eq. (3)

4.2 Experimental results

As what the parameter Runs of step c indicates, we have
made experiments on each particular problem for 100 runs.
Figures 2, 3, and 4 illustrate the average fitness of 100 runs
of BGE, CGE, IGE, and PIGE in the experiments. Figures
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5, 6, and 7 compare these four methods with respect to time
complexity. These figures, on the one hand, demonstrate that
BGE has almost the same ability (refer to the shape of fitness
profiles and the ultimate approximate solutions) as the other
three GEs to generate the desired result, and the advantage in
efficiency on the other. We will present further analysis and
explanations in the following subsections.

4.3 Explanation

Building blocks (Swafford et al. 2011) are of great concern in
the analysis of genetic programming. To guarantee the con-
vergence of solutions, many approaches choose to prevent
damage to building blocks of the chromosome as far as possi-
ble. In this subsection and Sect. 5, we not only define building
blocks for our experiments, but also employ them to acceler-
ate BGE, and explore why BGE is more effective than CGE.
But what is also worth noticing is that the analysis result with
CGE applies, due to the similarity of CGE, IGE, and PIGE in
their mapping structures, to all of the involved GE variants.

4.3.1 Characteristics of method

To better understand BGE, the following topics to be further
discussed in Sect. 4.3.2 should be clearly introduced.

Building blocks: By building blocks, we mean repeated
genotypic patterns from which sub-expressions can be
explicitly decoded. BGE is implemented in building blocks.
Because there are three kinds of cycles starting and ending at
vertex S〈expr〉 in Fig. 1, we naturally regard them as building
blocks, named e, v, p, respectively. Here e, v, p are named
after the first English letters of [( ] 〈expr〉〈op〉〈expr〉[ )], 〈var〉
and 〈pre − op〉(〈expr〉), thus semantically telling these cycles
apart. For simplicity, we will identify each vertex of Fig. 1
with a name, say Vi (0 < i < 11), and interpret these deno-
tations as follows.

e: the cycle V1V2V1; v: the cycle V1V3V4V5V6V7V1; p:
the cycle V1V8V9V10V1.

Since Fig. 1 delineates the relationships among produc-
tions of the grammar, these cycles stipulate which production
can be followed by which other one and answer for our
case whether a sequence of productions forms a justifica-
tion (see Definition 6) of some derivation 〈expr〉 ∗��⇒

lm
α(α ∈

LM(G)). For example, any derivation involved in a cycle
p cannot be used in either e or v. However, elements of
{e, v, p}∗ are allowed, summarizing all valid justifications
of derivations.

Genotypic representation: One of the major differences
between CGE and BGE is the representation. In view of the
above fact, the genotypic representation is very simple in the
case of BGE. In fact, elements of {e, v, p}∗ are all we need.
So there is no necessity for validity checking.

Genetic operations: Two commonly used genetic opera-
tions such as crossover and mutation in BGE were imple-
mented. Since there is no extra expense in validity checking
in this case, their implementations are actually quite sim-
ple.Now, let us algorithmically depict the regular expression-
based genetic operations. Note that all components, say
fi and hi , involved in the following individuals are from
{e, v, p}.

Crossover:

(1) Let P1 = f1 f2 . . . fm , P2 = h1h2 . . . hn be two individ-
uals to cross over.

(2) Randomly choose two blocks, say P1[i.. j] and P2[u..v],
from P1 and P2 for swapping.

(3) Conduct two-point crossover on P1, P2 through con-
structing such individuals as f1 f2 . . . fi−1hu . . . hv f j+1

. . . fm and h1h2 . . . hu−1 fi fi+1 . . . f j hv+1hv+2 . . . hn
for further use (the principle of single-point crossover
is similar).

Mutation:

(1) Let p = f1 f2 . . . fm be an individual to be mutated.
(2) Choose a block, say p[i.. j], from the sequence p for

mutation.
(3) Replace fk of p with some randomly chosen element,

say x , in {e, v, p} with fk �= x for i ≤ k ≤ j .

4.3.2 Explanation of results

Why is BGE superior to CGE in these experiments, partic-
ularly with respect to time complexity? As is well known,
CGE solves problems using the following steps: generat-
ing sequences of bits; executing some conversion algorithm
to translate bits to codons; and deriving program in micro-
steps within which numerous integer modulo operations are
exploited to search through the search space (see Sect. 2).
So if both the micro-step deducing sentential form from
one single production and the search space can faithfully
be expressed in building blocks and reduced, respectively,
the search performance will naturally be improved.

Considering the leftmost grammar model LMGM(G) of
Fig. 1, it follows no matter what sequence of productions are
employed in CGE for the program derivation, the sequence
consists of three kinds of cycles in Fig. 1: e, v, p. These are
the building blocks that are explored by BGE. As such, the
genotype of each randomly generated individual of BGE dif-
fers from that of CGE, consisting of an element of {e, v, p}∗.
As far as the phenotypic meaning of some q in {e, v, p}∗
is concerned, we will solve it through consultation of a dic-
tionary for the semantics of a building block b of {e, v, p}.
For instance, whenever p of some individual in {e, v, p}∗ is
employed as a translation rule, 〈expr〉 can directly be inter-
preted as sin(〈exp〉). However, CGE solves the same problem
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by successively applying derivations on such non-terminals
as 〈expr〉 and 〈pre_op〉. So BGE, unlike CGE which takes
into consideration all micro-inference steps in sentential
form generations, works only on building blocks, simpli-
fying parser tree constructions. Moreover, because genetic
operations in BGE can represent those of CGE, they have
no significant negative effect on the ultimate solution preci-
sion. Theorem 3 reflects this property. Then, when trying to
solve the same problem, i.e. deriving the same sentence of
some grammar, many calculations once necessary for CGE
become unnecessary for the case of BGE. Finally, a more
efficient evaluation algorithm can further be obtained from
what is discussed in Sect. 5.

Theorem 3 Given the grammar of Sect. 4 and a sentence S,
there is a sequence c of productions for deriving S in CGE⇔
there exists a sequence b of building blocks with | b |≤| c |
for deriving S in BGE, where the symbol | x | stands for the
length of the sequence x.

5 Case study on modularity of BGE

In this section,wewill discuss somemodularity issues related
to efficient fitness evaluation. As we know, fitness evalua-
tion is a costly part of real-world applications of GP and
GE, typically making up the majority of total computational
resources. Since the concept codon (a string of bits) of CGE
has no meaning out of context, the same strings of codons
often represent different kinds of semantic objects. So it is
difficult to effectively realize fitness evaluation through just
consulting codons and avoiding duplicated computations.
However, BGE improves this.

As is known, each program (or phenotype or expression)
can either be represented by a parse tree (or concrete syntax
tree) or an abstract syntax tree. Themajor difference between
these data structures is as follows: in the syntax tree, inte-
rior nodes represent programming constructs, while in the
parse tree the interior nodes represent non-terminals. Thus
to solve (sin(cos(y))+exp(y))+ log(sin(cos(y))+exp(y)),
an effective approach to the evaluation of this expression is
to avoid resolving the subexpression sin(cos(y)) + exp(y)
or evaluating the same subtree repeatedly. So it is critical
to find an effective approach for grouping similar operators
to reduce the number of cases and subclasses of nodes in
an evaluation of programs or expressions. This is our way
forward. Because both kinds of trees can structurally be con-
structed from sequence of building blocks, we use Algorithm
2 (Fig. 8) to gather all the functional sequences of building
blocks. Based on these sequences, the effective evaluation
algorithm (Algorithm 3) can be obtained. Genotypes of CGE
certainly do not offer such convenience. Figure 10 compares
number of nodes of using or not using the node reduction
technique in Eq. (1).

Fig. 8 Algorithm finding out generation rules of all subexpressions of
some given expression

Before introducing the algorithms, some convention
should be adopted for simplifying our description. Because
a string from {e, v, p}∗ can be used as a generation rule for
a program or expression, each component of the string must
have a well-definedmeaning. So, for simplicity, we represent
the two cycles of e by e1 and e2; the eight cycles of v by v1,
v2, . . ., v8; and the four cycles of p by p1, p2, p3, and p4.

Algorithm 2 Let s be a string (genotype) of {e1, e2, v1, v2,
. . . , v8, p1, p2, p3, p4}∗. Solving all its substrings (or valid
generation rules) for subexpression constructions as shown
in Fig. 8.

Algorithm 3 Let s, say e1e2p1p2v1p3v1p4e1p1p2
v1p3v1, be a string (genotype) of {e1, e2, v1, v2, . . . ,
v8, p1, p2, p3, p4}∗ for generating some expression, say
(sin(cos(y))+ exp(y))+ log(sin(cos(y))+ exp(y)). Grouping
all its substrings for effectively evaluation of that expression
as shown in Fig. 9.

The algorithmic thought includes the following three
steps:

(1) ApplyAlgorithm2 to s; we can get generation rules of all
subexpressions. For the case of e1e2p1p2v1p3v1p4e1
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Fig. 9 Substrings obtained
from Algorithm 2

p1p2v1p3v1, we have a list of generation rules of
subexpressions: [v1, p2v1, p1p2v1, v1, p3v1, e2p1
p2v1p3v1, v1, p2v1, p1p2v1, v1, p3v1, e1p1p2v1
p3v1, p4e1p1p2v1p3v1, e1e2p1p2v1p3v1p4e1p1
p2v1p3v1].

(2) Repeatedly delete rules from the list of step 1 until none
of the rules appears more than once in the list. This can
concretely be illustrated in Fig. 9 through the use of our
example.

(3) Effectively evaluate the concerned expression based on
the result, precisely the list, of step 2. For our case,
only eight generation rules of the list must be evaluated
and shared in the evaluation of (sin(cos(y)) + exp(y)) +
log(sin(cos(y)) + exp(y)).

Step 2 ofAlgorithm3 is designed in terms of only one indi-
vidual. When applying similar principles to all individuals
involved in the history of evolution, we will get a signifi-
cant performance improvement in fitness evaluations. This
is measured in our experiment in Fig. 10. This comparison
indicates that for each run of BGE in Eq. (1), there are only
a few nodes or subexpressions that are truly worth tediously
processing from scratch.

6 Discussion

Amodeling approach has been extensively used by software
engineering community to solve the different problems of
software development including system representation, per-
formance analysis, and solution description, etc. It benefits us
in many ways, for example, presenting a human understand-
able description of some aspect of a system or presentation
in a form that can be mechanically analyzed. Owing to that
BGE is a software development approach and that it is not
for purpose of the direct improvement on classical GE, but

an extension to the earlier result, we will compare BGE and
CGE in terms of model properties such as readability, trans-
formation, and so on. Of course, similar comparisons can be
conducted on IGE and PIGE, but they are not the essence of
the issues. So, for brevity, the discussions center around the
most important question, being developed only on BGE and
CGE.

• Readability
As we know, both BGE and CGE describe individuals
in light of genotype and phenotype. Their major dif-
ferences come from genotypic formation and genotypic
decoding. Regarding formations, CGE relies on codons
of 8 bits, and BGE (see Fig. 1) on building blocks or
building block names such as the aforementioned e, v, p.
Regarding decodingmethods, CGE ismore complex than
BGE, using the integer modulo based mapping (codon
integer value ) mod (number of rules of X) (O’Neill and
Ryan 2001) to search the vast phenotypic space, deter-
mine which production to employ at which time. This
means a codon can convey nothing to us provided that
the concerned leftmost non-terminal X is unknown at this
moment. However, for any genotype of BGE, say eepvvv
(refer to Sect. 4.3), we can read such meanings into it
as using double e, one p and triple v blocks to derive a
meaningful explanation. So as far as genotype is con-
cerned, BGE has an advantage over CGE in readability.
The benefits of this can be seen in analyses such as those
shown in Sect. 5.

• Mechanical transformation
Abstract representation and semantic transformation are
key problems encountered in model approaches to soft-
ware development. Readability gives BGE an advantage
over CGE, and it is also the first step towards mechan-
ical understanding or analysis. How can we effectively
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Fig. 10 Comparison of BGE
with CGE with respect to node
complexity

transform abstract representations to concrete implemen-
tation? When engaging in software reengineering and
reconstruction, the Object Management Group (OMG)
has once coined the unique conceptModel-DrivenArchi-
tecture (MDA) (France and Rumpe 2007) to depict the
particular role of visual modeling tools for this activity.
Another advantage ofBGE lies in providing visualmeans
for effective understanding ofwhatmessage the grammar
system conveys. For example, from Fig. 1, not only is
it feasible to use such abstract representation as regular
expression to express genotype, but also to technically
implement efficient transformers for quickly obtaining
phenotypic objects. Take the translation of 〈expr〉, when
the cycle p is applied for this task, BGE looks the
item (p, 〈expr〉) up in a semantic dictionary, return-
ing the concerned result (an element of {sin(〈expr〉),
cos(〈expr〉), log(〈expr〉), exp(〈expr〉)}) directly. Instead,
CGE achieves this through two grammatical derivation
steps. Furthermore, the use of semantic dictionary inBGE
opens out room for both application and imagination. For
instance, either manually obtained semantics (or concise,
simplified result) or some derivation-oriented bias infor-
mation could be employed in dictionaries.

In short, BGE helps reach a new stage of understanding
of GE. It has not only the potential to introduce new kinds of
human–computer interactions into traditional CGE, but also
the power to reveal the relationship between building block
and CGEs micro-derivation step, to delineate the relations of
the grammar both visually and logically. As shown in Fig. 1
of Sect. 4, it can also be seen that the hardness of problems
depends precisely on two factors, i.e. themodel and the prob-
lem itself. If problems can be depicted by the same model,

their difficulties rely on themselves; otherwise, their mod-
els should also be taken into consideration. Nonetheless, we
believe that this work will lead to more than just an exten-
sion of GE. It serves as a case study of how other concepts
from software engineering and compiler construction can be
brought into GE and GP. We will make further experiments
with other extensive optimization problems such as security-
related problems and some other real world problems like
scheduling, services computing,cluster analysis in ambient
network, etc. (Li et al. 2010, 2014; D’Apiec et al. 2014;
Mokryani et al. 2013; Castiglione et al. 2015; Esposito et al.
2013; Habib and Marimuthu 2011) to certify the feasibility
of this approach.

7 Conclusion

Grammatical evolution is an important automatic program-
ming systemconsistingof aGAandagenotype-to-phenotype
mapping. In this paper, we model GE by incorporating syn-
tactical information into an automaton, focusing only on
possibly valid compositions of productions. As such search
space can be reduced, and parse tree construction and fitness
evaluation can be simplified significantly in the case of the
present approach, but functionality and expressiveness are
still the same as before. Our future works will center on real-
world applications, automatic detection and use of patterns or
cycles,further comparisons of this approach with other GEs,
and unifications of various GP variants.
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