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Abstract One of the problems in the field of data mining
with evolutionary algorithms is the variance of accuracy in
multiple runs. Decreasing the variance of accuracy without
any accuracy reduction is very difficult since there is a trade-
off between these conflicting objectives. In this paper we
follow two abstract objectives: accuracy and interpretability.
The interpretability is measured by three criteria: number of
the rules, sum of the rules lengths and the standard deviation
of the accuracy (Acc.SD). The proposed method consists of
two stages, and in both, an innovative binary version of the
krill herd algorithm has been introduced. In this study, choos-
ing the best krill in population and indicating the local best
of the krills in each generation are performed according to
a new multi-objective function. In the first stage, candidate
rules are generated intelligently using Pittsburgh and itera-
tive rule learning approaches that guarantee the diversity of
the extracted rules. The Sifter approach, that is presented
here, uses a clustering concept and is incorporated in stage
two for robust rule set selection from the candidate rules.
Multiple executions of Sifter give roughly the same results.
Also in this study, we offer the rule set distance measure that
is calculated in two modes: Morphologically and Semanti-
cally. Experimental results show that we have successfully
improved the two objectives that are naturally in conflict.
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1 Introduction

Because of the importance of extracting the high accurate
and high interpretable rules in data mining, many studies
have been done in this area (Castro et al. 2007; Liu et al.
2013; De Falco 2013; Nguyen et al. 2013; Zhang et al.
2014). Further studies on rule extraction context use evo-
lutionary algorithms (Nguyen et al. 2013; Kromer et al.
2013; Khalili-Damghani et al. 2013; Hoffmann 2004; Del
Jesus et al. 2004; Sánchez et al. 2009; Cordón and Herrera
2001). Some of the evolutionary algorithms follow multi-
ple objectives in rule mining process (Wang et al. 2005;
Ishibuchi and Yamamoto 2004; Alcalá et al. 2007; Gacto
et al. 2013; Ishibuchi et al. 1997; Ishibuchi and Nojima
2007; Alcalá et al. 2009), they are called Multi-objective
evolutionary algorithms (MOEA) and they also can generate
fuzzy rule-based systems (FRBSs) to improve interpretabil-
ity. Many fuzzy algorithms are proposed in order to enhance
the interpretability of the results. These algorithms have been
employed for various types of applications (Vasilakos et al.
1998; Zikidis and Vasilakos 1996; Pedryez and Vasilakos
1999).

In Ishibuchi et al. (1994) a two-stage algorithm is used,
first candidate rules are generated and then the best rule set is
selected using a genetic algorithm. In Ishibuchi et al. (1994),
two objectives are considered: maximizing the accuracy and
minimizing the NR.

In the Ishibuchi et al. (2001), twogenetic-based approaches
are suggested for generating non-dominated rule sets with
respect to three objectives:maximizing the accuracy andmin-
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imizing the NR and SRL. The main task in Ishibuchi et al.
(2001) is to design interpretable fuzzy rule-based systems
with high accuracy.

In Ishibuchi and Yamamoto (2004), the candidate fuzzy
rules are generated and prescreened by two rule evaluation
measures: confidence and support. So a small number of
fuzzy rules are selected from the prescreened rules with a
multi-objective evolutionary algorithm. In the rule selection
stage, three objectives are considered: maximization of the
accuracy, minimization of the NR, and minimization of the
SRL.

A genetics-based machine learning (GBML) algorithm is
used in Ishibuchi andNojima (2007) so that theMichigan and
Pittsburgh approaches are used in combination. Suggested
method in this study pursues three objectives as mentioned
in Ishibuchi and Yamamoto (2004).

As it can be seen, most of works that have been done
in the fuzzy rule discovery area used the minimizing NR
and SRL as interpretability, and according to our knowl-
edge, none of them have not considered the variance of
the accuracy in consecutive runs as an interpretability
measure.

It seems that if a GBML algorithm achieves high accu-
racy with high variance, its output would not be trustable;
therefore, in this study the main goal is the extraction of high
quality and also robust fuzzy rule set. Here, the term robust
means that the final rule learning algorithm should be capa-
ble to extracting same fuzzy rules in in various execution
times.

In this paper, our approach is divided into two stages. In
stage one, the candidate rules are generated intelligently. A
combination of the two approaches, the iterative rule mining
and the Pittsburgh approach, is used to generate the candi-
date rules. In the second stage, wewill search for the best rule
set from the candidate rules that follows our two objectives
using an imitation-based evolutionary algorithm. To choose
the best rule set that satisfies our objectives we have used
clustering concept in the second stage. In stage 2, Sifter
approach identifies rules granules and attempts to choose the
best rules from these granules in which our objectives are
satisfied. The Sifter approach works like granular computing
methods (Yao et al. 2013). Our objectives aremaximizing the
number of patterns correctly classified (accuracy), improv-
ing the interpretability that is measured with the number of
rules (NR), sum of the rules lengths (SRL) and standard
deviation of accuracy in consecutive runs (Acc.SD). Calcu-
lating the standard deviation measure will be described in the
Sect. 4.

The paper is structured as follows: the next section
includes a preliminary to fuzzy reasoning method. Section 3
describes the paper proposed method. In the Sect. 4, the
experimental results are shown and in the last section, the
conclusion of the paper is discussed.

2 Preliminary: fuzzy reasoning method

For n-dimensional pattern classification problems, the fol-
lowing fuzzy if–then rules are applied in the design of our
robust algorithm:

R j : if X1 = A j1 and X2 = A j2 and . . . and Xn = A jn

then class is C j with CF j , j = 1, 2, . . . , N

where R j is rule index, Xi denotes a linguistic variable, A ji

is a linguistic fuzzy term, c is number of classes and C j =
1, 2, h demonstrate consequent class and CF j is a certainty
grade of this rule in the unit interval [0, 1], and N is a number
of rules. All attributes of datasets are converted to numeric
attributes, so are normalized between [0, 1].

To improve interpretability of fuzzy rules we used lin-
guistic variables in this study. Variable Xi has a linguistic
set U = {V L , L , M, H, V H}; each value of Xi uniformly
shows 1/5 of domain [0, 1]. We also used don’t care value
as all of those values. The total number of if–then rules
with n features is 6n and we aim to construct a rule set by
selecting a subset of these rules. This rule set construction
process is very computationally expensive since, we should
simultaneously dominate two interrelated problems. First
learning a pool of high quality fuzzy if–then rules and sec-
ond selecting a set of cooperative rules as the final fuzzy rule
set.

Our work is a c-class problem in the n-dimensional space
with numeric attributes. Also we have m real instances
X p = (X p1, X p2, . . . , X pn), p = 1, 2, 3, . . .m are given
as training patterns. In this classification system, the result
C j and certainty grade of rule CF j will be calculated by the
following: first we calculate the compatibility of each train-
ing pattern with the fuzzy if–then rule R j by the following
formula then we calculate the whole compatibility grades for
each class:

βclass h(R j ) =
∑

xpεclass h

i=n∏

i=1

μA ji (xp),

p = 1, 2, . . .m, h = 1, 2, . . . , c (1)

where μR j is the membership function of A ji . In next step
find the consequent classC j that hasmaximum βclass h(R j ):

βclassC j
= max

{
βclass 1(R j ), βclass 2(R j ),

. . . , βclass h(R j )
}

(2)

If there is more than one class with maximum value for
βclass h(R j ), we do not assign any consequent class for R j .
Then we can calculate certainty grade of R j and for an input
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Fig. 1 General structure of the proposed method

pattern X p = (X p1, X p2, . . . , X pn) the winner rule R j will
be calculated by following (3):

μ j∗(xp) · CF j

= max

⎧
⎨

⎩μ j∗(xp) ·
βclassC j

−
(∑

h �=c j βclass h(R j )/c−1
)

∑c
h=1 βclass h(R j )

:

j = 0, 1, . . . , N

⎫
⎬

⎭ (3)

Thus, we can identify the consequent class of input pattern
with the aforementioned formula.

3 Proposed method

General structure of the proposed method is shown in the
Fig. 1. This method consists of two stages. In the stage one,
the candidate rules are generated intelligently and in the stage
two, using the Sifter approach, the best rule set from the
candidate rules is selected in a robust way. In fact, each run
of the Sifter approach will yield the same output.

In the first stage, Pittsburgh-based binary KH is executed
several times in a parallel way and output rule sets of them
are accumulated in themain pool. SowithGA-based iterative
rule learning approach, a large number of the rules are gen-
erated iteratively and incrementally. Generation of the rules
will continue as long as no more record that is not covered

with rules remains. The output rules of iterative rule learning
are sent to the ACO-Local Search process. The ACO-Local
Search process tries to establish a high level relationship
between iteratively generated rules. Rules are changed in
a way that the relationship between rules increases, leading
to a better accuracy for the rule set. Here, the relationship
between the rules in a rule set means cooperation among
them. Rules in a rule set should cooperate with one another
in order to increase the total accuracy of the rule set. In other
words, ACO-based local search might weaken a fuzzy rule to
strengthen the extracted fuzzy rule set of Genetic-Based Iter-
ativeRuleLearning stage. The output rules of theACO-Local
Search are accumulated in themain pool too. It is important to
note that in stage one of the proposed method, two fuzzy rule
learning algorithms are employed with different and comple-
ment nature to fill themain pool. The first algorithm, which is
called binary KH, provides general fuzzy if–then rules with
high number of Dont Cares in antecedent part of each rule.
These rules are easy to interpret but suffer from lowprecision.
The algorithm which is called EFS-ACO (this algorithm will
be explained in detail in Sect. 3.1) consists of two stages.
The first stage of this algorithm learns accurate rules with
low number of the Dont Cares in antecedent part of the each
rule. Although these rules are hard to interpret, they have
high accuracy. In fact, the binary KH has high exploration
and the EFS-ACO has high exploitation capability. The com-
bination of the learned rules from the two learning algorithms
increases the diversity of the if–then rules in the main pool.
This high diversity enables the sifter in stage two of proposed
method to learn more robust fuzzy rule set, since the sifter
has access to nearly every possible high accuracy and high
interpretable fuzzy rules.

In the stage two of the paper proposed method, a best
rule set is selected from the main pool with using binary KH
that is implemented on the Sifter approach. This selection is
done in such a way that gives the same answer every time. In
this section, the proposedmethod is described in four subsec-
tions. In the first subsection, GA-based iterative rule learning
algorithm is explained. In the second subsection, the ACO-
Local Searchmethod is described. In the third subsection, the
binary-KH algorithm is explained and in the last subsection,
our Sifter approach is described.

3.1 GA-based iterative rule learning

The first stage of EFS-ACO is an evolutionary fuzzy system
that generates fuzzy if–then rules in an incremental way; this
evolutionary algorithm optimizes one of the fuzzy rules at a
time. The learning mechanism decreases the weight of train-
ing instances that are correctly classified by the optimized
rule. Then, the next rule learning cycle focuses on fuzzy rules
that are uncovered or misclassified instances currently. In the
each iteration, the fuzzy rule that can classify the current dis-
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Fig. 2 Pseudocode of genetic-based iterative rule learning

tribution of training instances better than other rules of the
population is selected to be included in the final fuzzy rule
base. Each step of GA-Iterative algorithm is described in
Fig. 2.

Initialization The number of fuzzy if–then rules in the
population is denoted by Npop. To produce an initial popu-
lation, Npop fuzzy if–then rules are generated according to
a random instance in the train dataset. The proposed evolu-
tionary fuzzy system is considered for each of the classes
of the problem separately. Therefore, the mentioned ran-
dom pattern is selected according to the instances of the
training dataset, the consequent class of which is the same
as the class that the algorithm works on. The probability
for each training instance to be chosen in this step is pro-
portional to its current weight. This means, the algorithm
considers a greater probability for those instances that have
not been learned in previous iterations. Next, for this ran-
dom instance, we specify the most compatible combination
of antecedent fuzzy sets using only the five linguistic values
U = {V L , L , M, H, V H}. After learning the fuzzy if–then
rules, the fitness value of each rule is evaluated by classifying
all the given training instances using the set of fuzzy if–then
rules in the population.

GA-generationFrom the current population a pair of fuzzy
if–then rules is selected to generate new fuzzy if–then rules
for the next population. This selection is performed using the
tournament selection strategy. The selection process is iter-
ated until a pre-specified number of pairs of fuzzy if–then
rules are selected. A crossover operation is then applied to a
selected random pair of fuzzy if–then rules with a crossover
probability (an input parameter). We have applied the uni-
form crossover. With mutation probability (is another input
parameter), each dimension of fuzzy if–then rules is ran-
domly replaced with a different antecedent fuzzy set. In this
paper, the probability of changing to don’t care value is more
than the other linguistic values. We call this probability PDC.

After selection process, crossover and mutation steps, the fit-
ness value of the generated individuals is evaluated according
to Eq. (4).

fitness = NCP2i
NMPi

(4)

where NCP is the number of patterns that correctly classified
andNMP represents the number of themisclassified patterns.
Supposewe have two krills. If both of them have equal values

for NCPi
NMPi

, the algorithm focuses on the krill with higherNCP
when we use Eq. (4). For example suppose we have a krill
withNCP = 8,NMP = 4 and a krill withNCP = 4,NMP =
2; both of the krills have 0.5 values for NCPi

NMPi
but when we

use Eq. (4), the fitness of the first krill is better than second
krill. Since we are looking up the rules with high NCPs, the
Eq. (4) gives better fitness values for the krills with higher
NCPs.

ReplacementA pre-specified number of rules in the popu-
lation are replaced with the newly generated rules. Then, Pr
percentages of the worst rules with the lowest fitness values
are eliminated from the current population and (100 − Pr )
percentages of the newly generated rules are added. After
the mentioned replacement procedure, the fitness value of
the individuals is evaluated according to Eq. (4).

InnerCycleTeminationTestAny stopping condition for ter-
minating the inner cycle of the Iterative-based fuzzy rule
learning can be used. In the computer implementation of this
paper, the total number of generations is used as a stopping
condition.

OuterCycleTeminationTest After termination of the inner
cycle of EFS-ACO, the algorithm adds the best fuzzy rule
of the evolved population to the final classification rules list
and checks if this added fuzzy rule is capable of improving
the classification rate of final classification system. If the
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Fig. 3 Pseudocode of ACO-based local search

classification rate is not improved, the algorithm removes
the added fuzzy rule from the final classification rules list
and terminates. Otherwise, it goes to the next step.

Weight adjustment In the each iteration of the main evolu-
tionary process, rule Rt with the best fitness value is inserted
into the primary fuzzy rule base. After each rule generating
process, the records that are misclassified will end up hav-
ing the same weight. The weight of those records that are
classified correctly will be became zero. After this step, the
algorithm jumps to Initialization.

3.2 ACO-local search process

In order to improve the accuracy of the resulted rule set
(Primaryrs) from the first stage of EFS-ACO, a secondary
stage is used. In the second stage, an ant colony optimization
algorithm is applied on the Primaryrs from the first stage of
EFS-ACO. This secondary stage of EFS-ACO is performed
as a local search process in which, the ACO improves one
rule from the Primaryrs at a time. The improvement is done by
modifying at most M antecedents of the candidate rule from
the Primaryrs · M specifies the maximum allowed possible
modifications.

The operation of ACO-LocalSearch process in Fig. 3
searches the neighborhood of the current rule and finds
a proper modification for it. That is as follows: The
PerformACO local searcher uses a population of ants to carry
out its local search process. This population will searches the
neighborhood of the candidate rule and improves it accord-
ing to the best discovered modification. We are using the
ACO as a local search procedure and the representation of
ants pheromone paths must be like to a form that can show
an instruction of how to change the rule to improve the total
accuracy of the Primaryrs. Hence, each path is a string of
characters that shows parts of the rule that should be modi-

fied. The above discussion implies that the evaluation of each
path is done according to the amount of improvement of the
Primaryrs accuracy. The detail of PerformACO procedure is
as follows: First, initiate the pheromone paths and parame-
ters (e.g. iteration = 0). The value for the initial pheromone
is considered according to (5):

τi j (t = 0) = 1∑a
i=1 bi

(5)

where a is the total number of attributes (e.g. a = 41) and
bi is the number of possible values that can be taken on by
attribute A j (i stands for the attribute index and j is the
membership function index). According to Sect. 2, the value
of bi is 6 for all of the attributes. Each ant in the ACO-based
local search process generates sequence of the modification
according to M. The desirability of each ant for changing the
i th antecedent of the candidate rule RC to A j is given by (6).

pa(RC , i, A j ) =
[
τ(RC , i, A j )

] [
η(RC , i, A j )

]
∑5

u=0 [τ(RC , i, Au)] [η(RC , i, Au)]
(6)

In the Eq. (6) τ is the pheromone and η is a heuristic prob-
ability, which is 0.5 for A j = DC and 0.1 for each of the
other linguistic values. This value setting for η enables the
ACO-based local searcher to increase the interpretability of
RC while improving the cooperative property of RC . There-
fore, the tendency of ants to generate “don’t care” is high
specifically in the first iterations of the local search process.
When ants in the colony generate a modification, the fitness
of eachmodification is calculated and if a better modification
is found, the best so found modification in the local search
process is updated. The fitness of the modifications is calcu-
lated according to the improvement of the classification rate
of the original rule set. If the accuracy of the original rule
set decreases then the fitness value would be negative. In this
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situation, the algorithm applies a zero value for the fitness.
Increasing the value of pheromone of used antecedent values
is according to (7).

τ(RC , i, A j )=τ(RC , i, A j )+τ(RC , i, A j ) · f (RC , i, A j )

(7)

where f (RC , i, A j ) denotes the fitness of modification that
changes i h antecedent part of RC to A j .

Then, decreasing the value of unused antecedent pherom-
ones to simulate pheromone evaporation in real ant colonies
occurs. In the ACO-based local search process, pheromone
evaporation is implemented in a somewhat indirect way. In
fact, the effect of pheromone evaporation for unused terms
is achieved by normalizing the value of each pheromone
τ(RC , i, A j ). This normalization is carried out by divid-
ing the value of each τ(RC , i, A j ) by the summation of all
τ(RC , i, A j ),∀i, j . If the maximum number of iterations is
reached then return the best modification and terminate the
local search procedure.

Themain point ofACO-based local search in the proposed
Sifter is to improve the quality of each learned fuzzy if–then
from the previous stage. Since extraction of fuzzy rules in
Genetic-Based Iterative Rule Learning stage performs with-
out considering cooperation among rules, the final fuzzy
rule set at the end of this stage suffers from low accuracy.
The ACO-based local search covers this issue by modifying
each rule in the extracted fuzzy rule set from the previous
stage. In this modification, the total accuracy of fuzzy rule
set is considered rather than improvement of a single fuzzy
rule.

3.3 Binary-KH rule mining algorithm

In this subsection Binary KH algorithm is explained and the
main four points of binaryKH in comparedwith the krill herd
optimization (KH) algorithm (Gandomi and Alavi 2012) and
other algorithm are expressed. The KH algorithm has a high
exploration and high exploitation ability. One of the advan-
tages of the KH is that we can easily define the sensitivity
of algorithm to more exploration or more exploitation with
parameters. The KH algorithm is highly efficient, but has a
large number of parameters which are considered to be dis-
advantageous. The KH algorithm has been previously used
in continuous optimization problems. Here, we offer a dis-
crete version of KH and also, will show how this algorithm
is applied to data mining problems. The core of Binary KH
is the same KH algorithm (Gandomi and Alavi 2012). One
of the four points is that Binary KH is a binary version of
the KH algorithm that has not been studied previously. The
second point is that fitness function of the Binary KH is a
heuristic function. The third point is that choosing the best
krill and local best of the krills in each generation are per-

formed according to a newmulti-objective function. The last
point is that we have added a new local search process in the
algorithm that helps to achieve our objectives. Other parts of
the algorithm are like the KH. Pseudocode of the Binary KH
is shown in Fig. 4.

The RandPoolFilling function in Fig. 4 is used to gen-
erating random rules to fill the randompool and the algorithm
tries to intelligently select best combination of random rules.
The RandPoolFilling function has two parameters; the
RandomPoolsize parameter is to determine the capacity of
the random pool and DC_Rate parameter is to determine the
rate of Dont_Care term in each dimension of rules. The krills
of Binary KH are binary and the dimension of each krill is
equal to the number of random rules. Each gene of krill indi-
cates the presence or absence of a rule in the random pool.
The Fig. 5 is illustrated to show this matter.

The EvaluatePopulation function has a duty to evaluate
the fitness of the krills. In this paper we define the fitness as
Eq. (4).

Then the RuleSet Analyzer function eliminates two types
of rules. The first type are those in which their NCP is
lower than MinNCP (which is a function parameter of
RuleSet Analyzer). ThisMinNCP is based on the validation
dataset, and the number of records in the validation dataset is
defined as Validationsize (another parameter of function).
The second type of rules comprises Del Percent (another
parameter of function) of the worst rules that must be elim-
inated. Del Percent represents the percentage of the worst
rules in each krill. With the RuleSet Analyzer function, test
accuracy of our algorithm in most of times is higher than
the train accuracy, but not always. The Binary KH gradu-
ally increases the number of rules in each krill to improve
the accuracy and the duty of the RuleSet Analyzer func-
tion is to decrease the number of rules while holding the
accuracy high. This process is illustrated in Fig. 6. The
upper line in Fig. 6 shows the NCP of the best krill in
population and the lower line shows the NR of the best
krill. The horizontal axis shows the generations. As you
can see the algorithm tries to improve NCP with increas-
ing the NR and then tries to decrease NR with holding high
NCP.

Recognition of the best krill in population and indication
of the local best of a krill are done as follows. Suppose we
have two krills. Both have the fitness values and NR. The
krill that has the best fitness will be selected and if the both
have same fitness then the krill with less NR will be selected
and if they have same NR values then the krill with lower
SRL will be selected.

The general policy of the KH is that krills are moving
toward food and spaces with more congestion. In their nat-
ural system, the fitness of each individual is supposed to be a
combination of the distance from the food and from the high-
est density of the krill swarm (Gandomi andAlavi 2012). The
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Fig. 4 Pseudocode Of binary KH

Fig. 5 Representation of krills

time-dependent position of an individual krill in 2D surface
is explained by the following three main actions (Hofmann
et al. 2004): for i th krill we have

dXi

dt
= Ni + Fi + Di (8)

where Ni is the motion induced by other krill individ-
uals that is calculated by UpdateN Intention() function
in Fig. 4; Fi is the foraging motion that is calculated by
UpdateF Intention() function in Fig. 4, and Di is the phys-
ical diffusion of the i th krill individual that is calculated by
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Fig. 6 Execution of binary KH on the heart dataset

RandomIntention() function in Fig. 4; these are explained
in Gandomi and Alavi (2012) but we summarize it here.

Movement induced by other krills (N ) The krill tries to
keep a high density and move due to their mutual effects
(Hofmann et al. 2004). The direction of motion induced is
estimated from the local effect of swarm density, a target
effect of the individual swarm density, and a repulsive effect
(Hofmann et al. 2004).

N new
i = Nmax · αi + ωn · N old

i (9)

αi = αlocal
i + α

target
i (10)

αlocal
i =

NN∑

j=1

K̂i j · X̂i j (11)

X̂i j = X j − Xi

‖X j − Xi‖ + ε
(12)

K̂i j = K j − Ki

Kworst − K best (13)

α
target
i = Cbest K̂i,best · X̂i,best (14)

Here, ωn is the inertia weight of the motion induced in the
range [0, 1], Nmax is the maximum induced speed, accord-
ing to the estimated values of the maximum induced speed
(Hofmann et al. 2004), it is taken like 0.01ms−1. N old

i is the
last motion induced, αlocal

i is the local effect by the neighbors

and α
target
i is the target direction effect by the best individual.

The effect of the krill neighbors can be supposed as an attrac-
tive tendency and repulsive tendency between the krills for a
search in local region. K best is the best and Kworst is theworst
fitness values of the individuals; Ki shows the fitness value
or the objective function value of the i th individual; K j is the
fitness value of j th ( j = 1, 2, . . . , NN ) krill neighbor; X is
used for the related krill positions; and NN is used for the
number of the krill neighbors. For shirking the singularities,
a small value ε is added to the denominator. Cbest is used for
the effective coefficient of the individual with the best fitness
to the i th individual.

Foraging activity shown with (F) First, we define a virtual
food (will be explained later) and then we calculate twomain
effective parameters as the foraging motion. First, the food
position is calculated and then the previous experience about
the food position will be calculated (Gandomi and Alavi
2012).

Fi = V f · βi + ω f · Fold
i (15)

βi = βfood
i + βbest

i (16)

where, V f is used for the foraging speed, ω f is used for the
inertia weight of the foraging motion in the range [0, 1], Fold

i
is used for the last foraging motion, βfood

i is used for the food
attraction and βbest

i is used for the effect of the best fitness
of the i th krill. According to the estimated Quantities for the
foraging speed (Price 1989), it is taken as 0.02ms−1.

X food =
∑N

i=1
1
Ki

· Xi
∑N

i=1
1
Ki

, for minimization (17)

βfood
i = C food · K̂i,food · X̂i,food (18)

βbest
i = K̂i,best · X̂i,best (19)

Here, C food is the food coefficient. First, the center of food
should be found using the Eq. (17) and in the second step,
try to formulate food attraction using the Eq. (16). It should
be noted that this attraction quantity not be accurately calcu-
lated; it is estimated.

Random diffusion shown with (D) krill physical diffusion
is considered a random process (Gandomi and Alavi 2012).
This motion can be express as a maximum diffusion speed
and a vector with random directions. It is calculated as
follows:

Di = Dmax ·
(
1 − I

Imax

)
· δ (20)

Here, Dmax ∈ [0.002, 0.01] (ms−1) and δ is used for the ran-
dom directional vector. Its array has random values between

123



Sifter: an approach for robust fuzzy rule. . . 3311

Fig. 7 Pseudocode of Sifter approach

−1 and 1, I is i th iteration of algorithm and Imax is used
to show maximum iteration for algorithm. The Lagrangian
model is generalized to an n-dimensional decision space in
krill herd algorithm.

Xi (t + 	t) = Xi (t) + 	t
d Xi

dt
(21)

	t = Ct

NV∑

j=1

UB j − LB j (22)

where NV is used for the total number of variables, and LB j

and UB j are lower and upper bounds of the j th variables
( j = 1, 2, . . . ,NV), respectively. Ct is a constant number
between [0, 2].

The major difference between binary KHwith continuous
version is that Xi (t + 	t) is normalized by sigmoid function,
then a random number between [0.5, 1] (that is experimen-
tally obtained) is generated; if sigmoid [Xi (t + 	t)] is higher
than random number, 1, and else 0 is applied. The output of
the binary-KH in the stage one is a rule set that has the high
accuracy, low NR and low SRL.

3.4 Sifter approach

Figure 7 represents pseudocode of Sifter approach. To under-
stand the operation of Sifter Approach, suppose we have a
sack of objects. Sifting process is used for a robust selec-
tion of the objects, so that in each sifting, the same objects
are selected. First, we fill the sieve with the objects of sack
and begin to sift. After sifting the objects that are unwanted,
according to the sieve type, the best objects remain in the
sieve so we save them elsewhere. Again, the sieve is filled
with the sack objects. The Sifter approach used here works
like the mentioned process. The rules are the objects that
should be refined by the sieve. Here, we use rule pool
(RP) as the sack. According to the sifter pseudocode, First
QualifiedPoolsize (which is an input parameter) number of
the serviceability rules are separated and are saved in the
Quali f ied Pool. This separation has many benefits. For
example, some of the main pool rules are not useful and
must be removed from the process. Another advantage of the
separation is selection of the rules in different levels.

In this paper, the rules are divided into two different lev-
els, backbone rules and sidebar rules. The backbone rules
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Fig. 8 Pseudocode of selecting the rules from a Pool

were stronger than others in stage one and had better fitness
values than others. The sidebar rules have a lower impact
but they are important anyway. The spaces that are cov-
ered by them are not covered by others and this makes them
important. Using above-mentioned separation method, best
backbone and sidebar rules are selected. In the early steps,
sifter approach selects the main and strong rules from the
backbone rules while it reaches a steady state. Then it tries
to achieve the objectives with using the sidebar rules. Divi-
sion of the rules is performed by Selection function in sifter
approach implicitly.

Shrinking the search space is another advantage of the
rules separation. The algorithm will perform better with
smaller search space and lower rules. In fact, with the rule
separation, wewill have comprehensive rules that come from
all of the search space which has become smaller with this
division. First six lines of the pseudocode correspond to the
separation process. After sorting the main pool by fitness,
One-fourth of the Quali f ied Pool is filled with top rules in
sorted main pool and three-quarters of QualifiedPool is filled
with the Selection function that is shown in next pseudocode.
After the separation and filling the Quali f ied Pool, the
sift process begins. In the seventh to twelfth lines, Sievesize
(another input parameter) number of the Quali f ied Pool
rules are picked and are saved in the Sieve. The do-while
section of the pseudocode, first runs the KHSifter process
on Sieve and again, fills the Sieve by Selection function
until the Quali f ied Pool rules are finished and this pool is
emptied. The KHSifter process is rather similar to binary-KH,
albeit with a little difference. The difference is that here there
is a different way to evaluate krills (rule set) and there is no
Random Pool. Instead of the random pool, ready candidate
rules (Sieve rules that generated in stage one) are sent to the

algorithm. The KHSifter function has a new input parameter
named FRBS. FRBS is a fuzzy rule set and is the result of
the previous run of the KHSifter function. At first, FRBS is
empty. The evaluation process of a krill (rule set) is as fol-
lows: every time a krill is being evaluated in the KHSifter

function, first FRBS is added to the krills rule set and then
will be evaluated. In fact, we use the result of the previous
step in the current step. It is possible to employ other meta-
heuristic search algorithms instead of the binary KH in the
structure of the Sifter approach. When the Quali f ied Pool
rules are finished, the last line of the pseudocode returns a
fuzzy rule set which is amassed in several steps of sifting.

RS1, RS2 and RS in the Fig. 8 are rule sets. The Selec-
tion function, with two input rule sets and SelectionT ype
parameters, tries to select NumberO f NeededRules rules
from RS1 by considering RS2 in three different ways: Geno,
Pheno and Both. To implement, three functions are needed.
The GenoSelection function that is considering RS2, tries
to pick the rules from RS1 that are morphologically dis-
similar to RS2. This dissimilarity is measured with rule set
distance (RSD). RSD is a new measure to calculate dis-
similarity content (this is explained in next paragraph). The
phenoSelection function, by considering RS2, tries to pick
the rules from RS1 that are dissimilar to RS2 semantically.
The BothSelection function by considering RS2, tries to
pick the rules from RS1 that are dissimilar to RS2 seman-
tically and morphologically. Finally, the Selection function
returns the selected rule set.

The GenoSelection function in Fig. 9 returns a rule set
from RS1 that have top morphologicallay dissimilar rules to
RS2. The RulesDistance function returns a matrix which
contains morphologically similarity values of RS1 in com-
parison with RS2 (rule by rule). Rows of the array represent
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Fig. 9 Pseudocode of GenoSelection

Fig. 10 Pseudocode of phenoSelection

the RS2 rules and columns represent the RS1 rules. The sim-
ilarity values (RSDs) are calculated in the following way: in
comparing two rules, if they have the same value (fuzzy term)
in featurei , similarity amount will be added with 1. Finally
similarity values are divided by length of the rules. After
obtaining this matrix, sum of the values in each column are
calculated. The columns (RS1 rules) are sorted based on the
sum of these values and so, top NumberO f NeededRules
rules from ranked rules are passed to Selection function.

The phenoSelection function in Fig. 10 returns a rule set
from RS1 that has the top semantically dissimilar rules to
RS2. Each of the RS1 rules is separately added to RS2 and
evaluated. Then the evaluated rule sets are sorted with rule
set fitness. After sorting, the top NumberO f NeededRules
rules from the ranked rules are passed to Selection
function.

4 Experimental results

In this section, characteristics of datasets and the parameters
used in the stage one (generating candidate rules) and stage
two (Sifting stage) will be shown. All of the parameter values
are calculated experimentally. The results of the runs will be

displayed, analyzed and compared with ten other evolution-
ary fuzzy rule learner algorithms.

4.1 Datasets

The datasets used in the paper are listed in the Table 1. Pres-
ence or absence of missing values and the way of the dealing
with missing value are also expressed.

4.2 Parameter setting

Some of parameters used in binary-KH and IRL are invari-
ant parameters in our work. These parameters are shown
in Table 2. The parameters that are not starred are just for
the binary-KH and Sifter but the starred parameters that are
for the binary-KH, IRL and Sifter. In Table 2, the first col-
umn shows the population size, the second column shows
the number of generations, Pcrossover shows the probability
of crossover operation and Pmutation shows the probability of
the mutation operation. Validationsize shows number of the
validation patterns. The Del Percent parameter is related
to RuleSet Analyzer step of binary KH. Other parameters
of binary-KH and IRL algorithms have been described in
Sect. 3.
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Table 1 Datasets description
Number of
patterns

Number of
features

Number of
classes

Missing values Elimination of
missing values

Breast (original) 699 9 2 Yes Average

Liver-disorders 345 6 2 No None

CMC 1473 9 3 No None

Heart (stat log) 270 13 2 No None

Iris 150 4 3 No None

PIMA (diabetes) 768 8 2 Yes Average

Table 2 Invariant parameter values of binary-KH and IRL

Populationsize∗ NumOfGeneration∗ ωn Nmax Dmax ω f 	t Pcrossover∗ Pmutation∗ Validationsize DelPercent

50 200 0.01 0.01 0.002 0.5 0.5 0.9 0.2 1/5 of train 0.08

* Basic GA parameters

Table 3 Variant parameter
values of binary-KH and IRL
with number of extracted rules

Parameters Breast CMC Heart Iris Liver PIMA

Binary KH RandomPoolsize 600 600 400 400 400 600

Binary KH number of runs 30 50 30 30 30 50

Binary KH MinNCP 5 5 7 5 6 6

Binary KH Don’t Care rate 0.7 0.85 0.8 0.9 0.85 0.85

Max number of rules parameter in IRL 150 600 300 150 300 300

Average main pool sizes in 5 folds 445.2 1129.4 384.4 190 349 603.2

Table 4 Variant parameter values of Sifter

QualifiedPoolsize Sievesize MinNCP

Breast 400 30 9

CMC 600 27 25

Heart 300 15 10

Iris 100 20 3

Liver 300 20 10

PIMA 450 40 9

Table 3 shows values of the stage one variant parameters.
The four first parameters in Table 3 are related to binary KH
that are described in Sect. 3. The sixth row of the Table 3
corresponds to IRL method in stage one of the proposed
method. The last row shows the number of extracted rules
after the completion of first stage. In fact, the last row shows
the average number of extracted rules in each fold.

The variant parameters of Sifter on all data sets are shown
in Table 4. The QualifiedPoolsize determines the size of
Quali f ied Pool and the Sievesize determines the size of
Sieve. The MinNCP specifies the value of MinNCP para-
meter in the Stifer. Invariant parameters of the Sifter are
taken from Table 1. The SelectionT ype value in this paper
is Both.

4.3 Calculating the measures

A 5 fold validation is implemented. The algorithm is per-
formed 15 times on each fold. Three measures are calculated
in each run on the folds: the accuracy, sum of the rule lengths
and the number of rules. Results of the 15 runs on Heart data
set are shown in Table 5.

The last two rows of Table 5 represent average and stan-
dard deviation of measures in 15 runs on the folds. After
completing the Table 5, our four measures are calculated.
To calculate these objectives, we must calculate average of
the averages and averages of the SDs on each of the 5 folds.
These four measures on Heart data set are listed in Table 6.

Results for all datasets, after executing our algorithm, are
shown in Table 7. Columns of Table 7 show the datasets and
the rows represent the accuracy, NR, SRL and the average of
the consumed time to execution of 15 runs. Time pattern is
“minute: second”. Each cell of table contains the average of
averages and the averages of standard deviations in 15 runs.

4.4 Analysis of results

In the paper, four measures are considered: improving the
accuracy, decreasing the variance of the accuracy, decreasing
NR and decreasing SRL.
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Table 6 The objectives on the heart data set

5 fold NR SRL Accuracy

Average of the averages 5.427 9.480 86.914

Average of SDs 0.394 0.493 0.478

Our multi-objective polices in the global best selection of
the population and indication of the local best of a krill are
as follows. Suppose we have two krills. Both have the fitness
values and NR. The krill that has the best fitness will be
selected and if the both have same fitness then the krill with
lessNRwill be selected and if they have sameNRvalues then
the krill with lower SRL will be selected. With this policy,
the accuracy, NR and SRL are considered by the algorithm
respectively and improve the accuracy and the interpretability
of results.

One of the reasons of improvement in accuracy is using the
Main Pool. In the second stage of the algorithm (Sifter), only
the backbone and sidebar rules compete for being selected.
Because only the good rules are in competition, reaching a
higher accuracy is very likely. Another reason for improving
the accuracy is the clustering logic within the Sifter algo-
rithm. In fact, each time the Sieveis is filled, it seems like
we separate a cluster of the rules pool. In the Sifter, every
time the Sieveis being filled, the rules are selected that have
less morphologically and semantically similarity to the rules
that have already been chosen by the sifter. So, high quality
rules are selected initially, and this causes the low quality
rules to be excluded from selecting. The RuleSet Analyzer
function does almost the same thing. With eliminating three
types of the rules in the krill, only the high quality rules will
be allowed to be elected.

The main reason to reduce the standard deviation of the
accuracy in consecutive runs is the clustering concept within
the sifter algorithm and the duplicated rules in the Main
Pool. Working with the clusters) (Sieves) makes the algo-
rithm search space smaller and selection will be easier in
a smaller space. At any step of the Sifter, when a cluster of
rules is selected, search space becomes smaller andKH-Sifter
returns rather similar results in different runs. Also, having
more duplicated rules increases the probability of choosing
the same rules in consecutive runs. Using the Main Pool

and the RuleSet Analyzer functions are the other reasons
in reducing the SD of the accuracy. Using the Main Pool and
RuleSetAnalyzer functions lead to selecting the best rules
with high qualities. If the rules of the pool are not changed,
and if always the best rules are selected then a robust algo-
rithm is reached that returns the same results in consecutive
runs.

Another objective is decreasing the number of rules.
The principle reason in reduction of NR is using the
RuleSet Analyzer function. The RuleSet Analyzer func-
tion prunes three types of rules; the first type are the rules
that their NCP is lower thanMinNCPwhile the krills are eval-
uated with validation patterns; the second type of rules are
Del Percent (an input parameter) percent of the worst rules
in each krill; the third type of the rules that must be removed
are the duplicated rules in each krill. When you increase the
values ofMinNCP and Del Percent , the NR and SDs (vari-
ance of the accuracy, NR and SRL) will be reduced. Also,
using the Main Pool has an effect on the reduction of NR. If
the high quality and gigantic rules are selected in the early
steps, selection of large number of low quality rules will
rarely occur.

The reduction in the NR is one of the main reasons of
decreasing SRL. Lower NR leads to lower SRL. Also, Don’t
Care rate parameter in generating candidate rules (stage one)
has a huge influence on reducing SRL of selected rules in the
Sifter. When the Don’t Care rate is high, the SRL of Sifter
outputs is low.

When we use the Main Pool, an interesting event occurs
in results. Despite the SDs of the NR and SRL being high,
the SD of accuracy is low. For example, on breast dataset the
SDs of the NR and SRL are 3.338 and 1.037 respectively,
but the SD of accuracy is 0.428. When the number of the
high quality rules is high, after sifting process the SD of the
accuracy becomes low.

4.5 Comparison with others

To compare our results with other studies, we have used
KEEL software (Alcalá-Fdez et al. 2009; Derrac et al. 2015).
We have downloaded the latest version of the software
(V2014-01-29) from http://www.keel.es. Ten evolutionary
rule learning algorithms are used in which 5 of them learn

Table 7 Results of Sifter on all datasets

Breast CMC Heart Iris Liver PIMA

Accuracy 97.378 ± 0.428 53.723 ± 0.240 86.914±0.478 97.533±0.000 69.411±0.265 79.456±0.387

NR 16.853±3.338 14.507±1.665 9.480±0.493 5.053±0.570 9.160±0.881 18.573±1.940

SRL 11.067±1.037 8.840±0.674 5.427±0.394 4.707±0.404 5.573±0.525 12.720±0.949

Time avg. 12:29 20:18 9:10 1:28 3:35 22:01
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crisp rules and 5 of them learn fuzzy rules in an evolutionary
way. Experimentally, we have tried to set the best parameters
for them. We just compare our results in terms of accuracy
and SD of accuracy, because the number of rules (NR) in
KEEL algorithms is a fixed parameter that is input. Since we
have set it, we do not compare KEEL algorithms with our
algorithm in aspects of NR and SRL. To set this parameter,
we set it with the mean value of NR in our algorithm. As it
can be seen, our two-stage algorithm works better than other
algorithms. Our emphasis is that if there is a better rule learn-
ing algorithmwith results better than our algorithm, if we use
it in first stage of our algorithm, not only its results will be
improved but also that algorithm will be turned to a robust
algorithm. In fact, the stage 2 of our algorithm can be used
as a post-processing algorithm on all of the other algorithms.
The results are listed in Table 8.

5 Conclusion

In this paper, improving the accuracy and interpretability
was our objective. To improve interpretability, three crite-
ria were measured: NR, SRL and SD of the accuracy. To
achieve our objectives, the main pool was filled using two
rule learning approaches: the Pittsburgh and Iterative. Then
a new approach was introduced for robust selection of the
best rule set from the main pool; which we named it as Sifter.
This paper offered a new division of the rules that helps Sifter
work better: the backbone rules, and the sidebar rules. Also
in this study, we offered the rule set distance (RSD) measure
that is calculated in two modes: morphologically and seman-
tically. Finally, the experimental results showed that we have
successfully improved the two objectives that are naturally
in conflict.
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