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Abstract As an important multi-objective optimization
algorithm, multi-objective evolutionary algorithm based on
decomposition (MOEA/D) attracts more and more attention
recently. In this paper, some methods inspired from quan-
tum behavior are integrated in MOEA/D. A new algorithm,
quantum-inspired MOEA/D (QMOEA/D), is proposed and
proved to be effective to improve the performance of
MOEA/D. In the new algorithm, a global solution (GS)
and a local solution (LS) are stored for each subproblem.
The attractor and characteristic length in quantum-inspired
method are designed with GS and LS. The LS is selected
as the attractor for each subproblem. And the characteristic
length is associated with the difference between the LS and
GS. The algorithm based on nondominated sorting is used for
comparing firstly. Then the original and some advanced ver-
sions of MOEA/D are used as the comparison algorithms.
Through the comparison it can be found that GS and LS
are helpful to retain the diversity of the solutions. A wide
Pareto front can be obtained on most of the test suites. And
the quantum-inspired generator is effective to obtain better
solutions with GS and LS.
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1 Introduction

As an important aspect in engineering application and sci-
entific research, optimization is indispensable. In practical
problems it is usual to optimize several objectives at the same
time. These problems are multi-objective optimization prob-
lem (MOP). For anyMOP, there are several points in decision
space called Pareto optimal solutions (PS). Each objective of
PS cannot be better without making deterioration of other
objectives. The objective vectors of PS are Pareto front (PF).
The purpose of an algorithm for solvingMOP can be summa-
rized as the following aspects: (1) searching solutions whose
objective vectors are on or near PF; (2) searching solutions
whose objective vectors distribute along PF as widely as pos-
sible.

Evolutionary computing has been widely used to solve
MOP and is a great success solving many problems. Lit-
eratures Deb et al. (2002) and Zitzler et al. (2002) are
some well-known multi-objective evolutionary algorithms
(MOEAs). In Deb et al. (2002) a fast nondominated sorting
approach is proposed. The solutions are ranked by their levels
of nondomination firstly. Then with comparison of crowding
distance, the population can be updated given convergence
and diversity. In Zitzler et al. (2002) both dominating and
dominated solutions are used to assign the fitness of one solu-
tion. In the updating of archive, the number of individuals
is constant and the boundary solutions remain. Both algo-
rithms treat the MOP as a whole and improve the quality of
population by the domination relationship. Many advanced
versions have been proposed to improve the performance in
this framework. Elhossini et al. (2010) combine evolution-
ary algorithm (EA) and particle swarm optimization (PSO)
to solveMOPs. Both EA operator and PSO operator are used.
In Zhang et al. (2008), a regularity model is built to predict
the promising area of optimal solutions in decision space.
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Instead of treating the MOP as a whole, many tradi-
tional mathematical programming methods solve MOP by
decomposing it into a number of single objective problems.
Based on this idea, Zhang and Li (2007) proposed a new
framework of MOEA, multi-objective optimization evolu-
tionary algorithm based on decomposition (MOEA/D). It
uses a set of single objective problems to solve MOP. This
is a very different work from domination-based algorithms.
The population of MOEA/D is composed by different single
objective problems. The purpose of searching the PS for a
MOP is transformed to search the best solutions of these sin-
gle objective problems. In another words, the best solutions
of these single objective problems are on the PS of the MOP.
Once all the global optimal solutions of the single objective
problems are obtained, the MOP is solved. In recent years,
MOEA/D attracts more and more research attention. Zhang
et al. (2010), Li andLanda-Silva (2011),Martínez andCoello
Coello (2011), Sindhya et al. (2011), Ishibuchi and Nojima
(2011), Cheng et al. (2012) are some of the studies.

In optimization of a single objective problem, avoiding the
solutions trapping into local optimum is an important issue. It
is also a key point inMOEA/D. The local optimumwill lower
the performance ofMOEA/D from both the convergence and
diversity of the solutions. From the view of convergence, it
is obvious that the local optimal solution is not on the PS.
From the view of diversity, the local optimumwill assimilate
the solutions of different subproblems. It will be described
in part III in detail. In order to make the evolution of sub-
problems in MOEA/D more effective, some effort has been
made in the last several years. Li and Zhang (2009), Zhang
et al. (2009), Montaño et al. (2010) are some of them. In
Li and Zhang (2009) a version combining DE operator and
MOEA/D is proposed. A newmating pool is formed for gen-
erating of new solutions and updating of the subproblems.
In Zhang et al. (2009), a strategy of allocation of computa-
tional resource is designed to make the algorithm focus more
attention on more promising subproblems. In Montaño et al.
(2010), the neighbors of one solution are determined with
theEuclidean distance between solutions. The nondominated
solution among its neighbors is defined as locally nondomi-
nated solution. These solutions are selected to generate new
ones for maintaining the diversity.

Quantum-inspired evolutionary computing (QIEC) is a
method based on concept and principle from quantum
mechanics. Narayanan and Moore (1996) firstly combine
evolutionary computation (EA) and quantum-inspired com-
putation to solve the traveling salesman problem. After that a
series of EA inspired by quantum computation appear, such
as Han and Kim (2002), Abs da Cruz et al. (2004), Jiao et al.
(2008). They are a kind of algorithm characterized by quan-
tum bits and quantum gates. The quantum gates are used to
change the quantum bits and generate new solutions through
observing. Another kind of quantum-inspired computation

is proposed by Sun et al. (2004). It is an idea inspired by
the behavior of particles in a potential field. The particles
are bounded by the attractor. Meanwhile, they will appear
in anyplace of the space with different probability density.
Via setting potential well and solving Schrödinger equation,
a new style to search space is built. Based on this point,
Li et al. (2012) proposed an improved cooperative quantum-
behaved particle swarm optimizationmethod for solving real
parameter optimization and obtained a good performance.

In this paper, we combine the attractor-based quantum
method with MOEA/D to solve multi-objective optimiza-
tion problems. It takes efforts on two sides: (1) define a
so-called global solution (GS) and a local solution (LS) for
each subproblem. The GS is the solution with the best scalar
function value for the subproblem. The LS is the best solu-
tion among the solutions fitting the subproblem; (2) a new
method inspired from quantum behavior for generating new
solutions is designed forMOEA/D. New solutions are gener-
ated around LS to ensure wide searching in space. And with
maximum likelihood estimation, GS keeps appearing prob-
ability as high as possible in the next generation. Through
the new style of generating solutions, the GS and LS guide
the evolution cooperatively. The whole paper is arranged as
follow: Sect. 2 shows the background and basic methods
related to our work. In Sect. 3, some features ofMOEA/D are
shownand themotivation andprocess of embeddingquantum
method in MOEA/D are explained. In Sect. 4, some exper-
imental results are shown and analyzed. In Sect. 5, some
conclusions and prospect are summarized.

2 Background and basic method

2.1 MOP decomposition and MOEA/D

In order to solve a MOP, many methods have been proposed
to decompose a MOP into a number of scalar optimization
problems. In Marler and Arora (2004) many styles can be
found. In this chapter, three approaches mentioned in Zhang
and Li (2007) are introduced.

The first one is the weighted sum approach which is effec-

tive for convex problems.
⇀

λ = (λ1, λ2, . . . λm)T is a weight
vector, i.e., λi ≥ 0(i = 1, 2, . . . ,m) and

∑m
i=1 λi = 1. A

subproblem constructed by a scalar function can be stated as:

Minimize gws
(

X |⇀λ
)

=
m∑

i=1

λi fi (xi )

subject to X ∈ �n (1)

Here
⇀

λ is a coefficient of this scalar function. X is the
variable vector to be optimized.
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Another approach is Tchebycheff Approach. The form of
the scalar function can be expressed as:

Minimize gte
(

X

∣
∣
∣
∣
⇀

λ,
⇀

Z∗
)

= max
1≤i≤m

{
λi | fi (xi ) − z ∗

i

}

subject to X ∈ �n (2)

Here
⇀

Z∗ is called reference point, i.e., z∗i = minX∈�n fi (X).
The third method is penalty-based boundary intersection

(PBI) approach. The form of the scalar function can be
described as:

Minimize gpbi
(

X

∣
∣
∣
∣
⇀

λ,
⇀

Z∗
)

= d1 + θd2

subject to X ∈ �n

where d1 =

∥
∥
∥
∥
∥
(

⇀

Z∗ −F(X))
T ⇀

λ)

∥
∥
∥
∥
∥

∥
∥
∥
∥

⇀

λ

∥
∥
∥
∥

and d2 =
∥
∥
∥
∥F(X) − (

⇀

Z∗ −d1
⇀

λ)

∥
∥
∥
∥ (3)

⇀

Z∗ is reference point as in Tchebycheff Approach. θ > 0 is a
penalty parameter. The details of this approach can be found
in Zhang and Li (2007).

MOEA/D is a framework combining the population of
subproblems with EA to solve a MOP. Because the sub-
problems are single objective problems, the values of scalar
functions are used to evaluate solutions instead of using
Pareto domination comparison. The process of MOEA/D is
shown in Algorithm 1:

Algorithm 1: The framework of MOEA/D

Initialization:
1. The population size N (the number of subproblems);
2. N weight vectors;
3. N solutions and the value of responding scalar function for 
each weight vector;
4. T: the size of neighbors.
While (stopping condition is not true)
step 1. Generate new solution for each subproblem;
step 2. Calculate the objective vector  of the new solution;
step 3. Calculate the values of scalar functions of current 

subproblem and its neighbors;
step 4. Update current subproblem and its neighbors. If the 

new value is better than the value stored before, replace 
the old solution with the new one and store the new value.

End While
Output:  the solutions stored for the subproblems.

The framework of MOEA/D has some natural advantages
than the non-domination-based MOEAs. The first one is
its computational complexity. As well known, the compu-
tational complexity of fast nondominated sorting (Deb et al.
2002) is as high as O(MN 2) (where M is the number of
objectives and N is the population size). But in the frame of
MOEA/D, for the nondominated sorting is avoided, the com-
putation cost is low. Another advantage of MOEA/D is its
ability of maintaining diversity. Each subproblem responds a
region in PF. A uniform and broad searching can be offered
with different subproblems. No special operators for diver-
sity of solutions are needed.

2.2 Quantum-inspired method in EC

Quantum-inspired methods used in EC are a series of
approaches coming from the concepts and equations of quan-
tum mechanics. Usually these methods are associated with
quantum gates, quantum chromosome, quantum bits, poten-
tial well, etc. In this paper, we mainly focus on the method
based on attractor and characteristic lengthwhich is proposed
by Sun et al. (2012).

In order to illustrate these approaches, some background
knowledge is required. In classical physics, the state of
motion of a particle is described by Newton equation based
on Newton three laws of motion. The motion is determinis-
tic, i.e., once the coordinate and momentum of a particle are
given, its trajectory can be grasped. But in quantum space,
there is wave particle duality. The motion trajectory of a par-
ticle is uncertain even if the coordinate and momentum is
given. The particle can appear at any location of the space at
the next time point. Instead of predicting the exact location
of the particle, we just have the ability to give the probability
density of appearing in the space. This prediction is achieved
through wave function �(X, t), the square of whose mod-
ulus is probability density. Here a three-dimensional space
acts as an example. For a given time point, some equations
can be described as follows:

Q = |�(x, y, z)|2 (4)
+∞∫

−∞
|�|2dxdydz =

+∞∫

−∞
Qdxdydz = 1 (5)

x, y, z are coordinates describing the space. Q is the prob-
ability density function of appearing on any location for a
particle.

In order to get the probability density function Q,
Schrödinger equation should be solved. The formof the equa-
tion can be described as:

ih
∂

∂t
ψ(X, t) = ∧

H ψ(X, t) (6)
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Fig. 1 Particles in quantum space

Here h is Planck constant.
∧
H is Hamiltonian operator:

∧
H = − h2

2m
∇2 + V (X) (7)

m is the mass of the particle and V (X) is the potential field
where the particle is. ∇2 is the Laplacian operator.

As shown in Fig. 1, in the quantum space, a point A and
any point B have the low and high energy, respectively. This
form of potential field is called potential well. Assuming
V (X) is one dimensional δ potential well:

V (X) = −γ δ(X − p) = −γ δ(Y ) (8)

Here Y = X− p. p is the coordinate of A. γ is an intensity
coefficient. Then assuming the particle is in a certain energy
state, the Schrödinger equation is equivalent to the following
form:

d2φ(Y )

dY 2 + 2m

h2
[E + γ δ(Y )]φ(Y ) = 0 (9)

Here the probability density can be given as:

Q(Y ) = |φ(Y )|2 = 1√
L
e−2|Y |/L (10)

L = h2/mγ . Based on the probability density function, the
location of a particle can be determined by a stochastic equa-
tion as:

X = p ± L

2
ln(1/μ) (11)

μ ∼ U (0, 1).The details of above derivation of the equations
can be referenced in Sun et al. (2004).

According to Eq. 11, it can be found that a particle will
appear around p, the bottom of the potential well, with
high probability. And in other locations, the particle will
appear with low probability. This point will be discussed
more clearly in Sect 3. Here p and L are called as attractor
and characteristic length, respectively. In Sun et al. (2012), a
series of choice are given for the attractor and characteristic
length. In the following section, special p and L are designed
for MOEA/D according to its characters.

3 Motivation and quantum-inspired MOEA/D

3.1 Motivation

Assuming the set of subproblems in MOEA/D is {S1, S2,
S3, . . . SN}, the desired result is that every global optimum
of the subproblems can be obtained to form the PF of the
MOP. In the original framework of MOEA/D, a best solution
is stored for each subproblem and it can be updated by new
solutions generated from its neighbors. It means a new solu-
tion can be used on different subproblems. Or it can be said
the solutions of several subproblems can be replaced by the
same one. Obviously this cooperation of subproblems can
improve the convergence of the solutions because more cal-
culated resources are spend on several best solutions found
so far. But on the other side, this cooperation blocks search-
ing the global optimums of subproblems at some cases. Once
a good solution is obtained by a subproblem, the solutions
stored by its neighbors may be updated by the good one. This
will lead the best solution of the neighbor to lose its trajectory.
A visual example is shown in Fig. 2. For each subproblem,
the best solution stored is represented as the hollow point.
The ideal state is that the hollow point move along its arrow
and reach a black point on the PF. Thus when all the hol-
low points reach the black points, the whole PF is obtained.
But during the evolution, once a good solution like the red
point appears, the best solutions of Sk, Sk+1 will be updated
by the red point. The moving strategy of these two hollow
points will deviate from the intended track. The immediate
result is that the black point responding these hollow points
cannot be reached at the end of the evolution. From the point
of PF, it will be observed that some parts of the PF cannot
be found. Some studies have shown similar shortcomings.
Liu et al. (2014) points out the simple replacement may miss
some search regions. Li and Zhang (2009) indicates the loss
of diversity at the early stage of search on some problems.
And in Sect. 4, some visual results of the original MOEA/D
can be seen.

Based on above characters of the original MOEA/D, a
special quantum-inspired method is designed to relieve the
side effects of the cooperation among subproblems. It focuses
on the design of the attractor and the characteristic length
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Fig. 2 The updated hollow points in oval with the red point (color
figure online)

used in quantummethod. The next two subsections will show
the details.

3.2 The attractor and characteristic length
for QMOEA/D

In order to construct the attractor and characteristic length of
QMOEA/D, two solutions are stored for each subproblem.
One ismarked as global solution (GS) and the other ismarked
as local solution (LS).When a new solution is generated from
one subproblem, the GSs of its neighbors will be updated.
Then a most suitable subproblem for the new solution will be
determined and the LSs of its neighbors will be updated. The
visual difference between GS and LS is shown in Fig. 3. A
new solution represented by a black point is generated from
subproblem Sn . The GSs of the neighbor subproblems of Sn
will be updated if the black point is better than the stored
GSs. Obviously the black point is closer to the subproblem
Sm . Thenwewill determinewhether the LSs of the neighbors
of Sm should be replaced by the new point according to the
scalar function value.

Why are these two solutions stored for one subproblem?
As what have been discussed, during the moving of one
solution, if the objective vector deviates from the intended
region, this solution is not suitable for the corresponding
subproblem. It will mislead the subproblem to spend calcu-
late resources on the regions focused by other subproblems,
which is not helpful to obtain the global optimum. For a new
solution which has a good scalar function value, if it deviates
from the region of responding subproblem, it cannot update
the LS of the subproblem. So the LSs are used to keep the
solutions moving along the intended region. The GS is the
same as the solutions in original MOEA/D. Except the scalar
function value, no special information is used to guide the

Fig. 3 The update of the GS and LS with a newly generated solution

Fig. 4 The probability density with p = 0, L = 1

updating of GS. It is obvious that the solutions with best
fitness should remain so to promote the evolution of popula-
tions. So with the use of LSs and GSs of these subproblems,
the solutions are expected to move along the suitable direc-
tion to obtain the whole PF.

In quantum-inspired algorithms, the probability density
function of the new solution deduced from Eq. 10 can be
described as:

Q(X) = 1√
L
e−2|X−p|/L (12)

When p = 0, L = 1 and p = 0, L = 5, the probability
density function of X is shown in Figs. 4 and 5, respectively.
It is easy to find that solutions near attractor p are more likely
to be generated. But the characteristic length L can be used
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Fig. 5 The probability density with p = 0, L = 5

to modify the appearing probability of one location. When
L = 1 and L = 5, the distributions are significantly different.

TakingbothMOEA/Dandquantum-inspiredmethods into
account, the LS of each subproblem is selected as the attrac-
tor. Because the LS is the best one among the solutions fitting
for the subproblem, more calculate resources should be spent
around LS in generating more suitable solutions. Thus, Eq.
12 becomes the following form:

Q(X) = 1√
L
e−2|X−LS|/L (13)

In evolutionary algorithm, it is reasonable to remain the best
solution. So for each subproblem, the solutions around GS
which is the best solution obtained so far should have a high
probability to appear. From Eq. 13 and maximum likelihood
estimation, L can be obtained as:

L = 2 |GS − LS| (14)

Thus the equation for QMOEA/D to generate new solution
Ns can be described as:

Ns = LS ± (GS − LS) ∗ ln(1/μ) (15)

3.3 Framework of QMOEA/D

In the above subsection, two main elements in quantum-
inspired method are constructed for MOEA/D. Based on the
previous attractor and characteristic length, the framework
of QMOEA/D is shown as Algorithm 2:

Algorithm 2: The framework of QMOEA/D

Initialization:
1. The population size N (also the number of subproblems);
2. Uniform N weight vectors;
3. N solutions for each subproblem and stored as the GSs and 
LSs;
4. the number of neighbors, T
While (stopping condition is not true)
FOR i=1: N
step 1. Generate new solution Ns as Equation 15;
step 2. Polynomial mutation for Ns;
step 3. Calculate the objective vector )(NsF of Ns;
step 4. For every subproblem among 

iS and its neighbors, 
calculate the scalar function value with )(NsF . If the 
value is better than the stored GS, update the GS with 
Ns ;

step 5. Find a most suitable subproblem 
kS for Ns;

step 6. For every subproblem among 
kS and its neighbors, 

calculate the scalar function value with )(NsF . If the 
value is better than the stored LS, update the LS with 
Ns ;

End For
End While
Output: the GSs of the subproblems.

In the above framework, step 5 would be discussed
in detail. For each subproblem Si whose weight vector
is

(
λ1i , λ

2
i , . . . , λ

m
i

)
, we normalize its weight vector to

be

(

1,
λ2i
λ1i

, . . . ,
λmi
λ1i

)

. And the objective vector F(Ns) =
(
f 1Ns, f 2Ns, . . . , f mNs

)
is also normalized as

(
1,

f 2Ns
f 1Ns

, . . . ,
f mNs
f 1Ns

)
.

The Euclidean distance between these two normalized vec-
tors is recorded as the distance between Ns and Si . The
subproblem with the shortest distance to Ns is selected as
the most suitable one.

4 Comparison and discussion

In the following, the performance metric and test suits used
in our experiments are introduced firstly. Then the compari-
son betweenQMOEA/Dandnondominated sorting approach
NSGA-II, QMOEA/D and original MOEA/D (MOEA/D-
SBX), QMOEA/D and some other advanced MOEA/D are
shown, respectively. And some discussion about QMOEA/D
is made in the last subsection.

4.1 Performance metric

In the experiments, inverted generational distance (IGD)
(Sierra and Coello Coello 2005) is used as the metric to mea-
sure the quality of solution sets. P* is an objective vector
set whose members distribute on the true PF uniformly. P is
another objective vector set whose members are obtained by
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Fig. 6 A PF losing diversity

a multi-objective optimization algorithm. Then the IGD of
P can be calculated as:

IGD(P) =
∑

ν∈P∗
d(ν, P)

|P∗| (16)

Here |P∗| is the number of members in P* and set 500 in
our experiments. d(ν, P) is the minimum distance from ν to
the set P .

It is obvious that the IGD is able to measure the con-
vergence of solutions. Meanwhile, the metric can reflect the
diversity of solutions like Fig. 6. When the objective vectors,
represented by the hollow circles, are not distributed along
PF widely, no solutions in set P is near with set A. So the
sum of the distance in Eq. (16) will be large. And the IGD of
the hollow circles could not be small.

For the comparison experiments in this section, sev-
eral independent runs are performed with each algorithm.
The average value, best value and standard deviation are
shown and compared, respectively. To be more rigorous,
the Wilcoxon signed-ranks test is performed on each prob-
lem. The significance level is set to be 0.05 (García et al.
2009). The sign (+) indicates the comparison algorithm is
significantly better than QMOEA/D. The sign (−) indi-
cates the comparison algorithm is significantly worse than
QMOEA/D. The sign (=) indicates no significant difference.

4.2 Multi-objective suites

Eight test problems are used in the experiments. All the test
suites are minimization problems. ZDT1 and ZDT2 come
from Zitzler et al. (2000). ZZJ1, ZZJ2, ZZJ5 and ZZJ6 come
from Zhang et al. (2008). MOP1 and MOP2 come from Liu
et al. (2014). The details of the functions are as follows:

ZDT1:

f1(x) = x1

f2(x) = g(x)
[
1 −

√
f1(x)
g(x)

]

where g(x) = 1 +
9

(
n∑

i=2
xi

)

n−1

and xi ∈ [0, 1] i = 1, . . . , n, n = 30.
ZDT2:

f1(x) = x1

f2(x) = g(x)

[

1 −
(

f1(x)
g(x)

)2
]

where g(x) = 1 +
9

(
n∑

i=2
xi

)

n−1

and xi ∈ [0, 1] i = 1, . . . , n, n = 30.
ZZJ1:

f1(x) = x1

f2(x) = g(x)
[
1 −

√
f1(x)
g(x)

]

where g(x) = 1 +
9

(
n∑

i=2
(xi−x1)2

)

n−1

and xi ∈ [0, 1] i = 1, . . . , n. n = 30.
ZZJ2:

f1(x) = x1

f2(x) = g(x)

[

1 −
(

f1(x)
g(x)

)2
]

where (x) = 1 +
9

(
n∑

i=2
(xi−x1)2

)

n−1

and xi ∈ [0, 1] i = 1, . . . , n, n = 30.
ZZJ3:

f1(x) = x1

f2(x) = g(x)
[
1 −

√
f1(x)
g(x)

]

where g(x) = 1 +
9

(
n∑

i=2
(x2i −x1)2

)

n−1

and xi ∈ [0, 1] i = 1, . . . , n, n = 30.
ZZJ4:

f1(x) = x1

f2(x) = g(x)

[

1 −
(

f1(x)
g(x)

)2
]

where g(x) = 1 +
9

(
n∑

i=2
(x2i −x1)2

)

n−1

and xi ∈ [0, 1] i = 1, . . . , n, n = 30.
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QMOEA/D NSGA-II
ZDT1:

ZDT2:

ZZJ1:

ZZJ2;

ZZJ5:

ZZJ6

MOP1;

MOP2:

Fig. 7 The PFs from the 30 independent runs on the 8 test problems. The left are the results of QMOEA/D. The right are the results of NSGA-II
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MOP1:

f1(x) = (1 + g(x))x1

f2(x) = (1 + g(x))(1 − √
x1)

where g(x) = 2 sin (πx1)
∑n

i=2(−0.9t2i + |ti |0.6),

ti = xi − sin(0.5πx1)

and xi ∈ [0, 1] i = 1, . . . , n, n = 10.
MOP2:

f1(x) = (1 + g(x))x1
f2(x) = (1 + g(x))(1 − x21 )

where g(x) = 10 sin(πx1)
∑n

i=2

( |ti |
1+e5|ti |

)

ti = xi − sin(0.5πx1)

and xi ∈ [0, 1] i = 1, . . . , n, n = 10.

4.3 Comparison betwwen QMOEA/D and NSGA-II

In this subsection, a comparison ismade betweenQMOEA/D
and NSGA-II which is the classical evolutionary algorithm
for multi-objective optimization. The population size is 100
for both the algorithms like Deb et al. (2002). 3× 105 fitness
evaluations or 3000 generations are used as the termination
condition. The neighbor size for QMOEA/D is 20. The para-
meters used for crossover and mutation keep the same with
Deb et al. (2002). 30 independent experiments are run with
each algorithm on each problem.

The PFs found in the 30 runs are plotted in Fig. 7. For each
problem, all the PFs obtainedwith one algorithm are overlaid
in the figure. The same style is used for plotting other figures
of PFs in the following subsections.

Table 1 shows the average, best and std of IGDs on
different problems, respectively. For ZDT1–ZZJ6, both the
algorithms can obtain the whole PFs. But the quality of these
PFs is quite different. QMOEA/D outperforms NSGA-II on
all these six problems on both the average IGD and best IGD.
Especially on ZDT2 and ZZJ6, the advantage is huge from
the view of average IGD. And the std shows QMOEA/D has
a more steady performance than NSGA-II. On MOP1 and
MOP2, the PFs obtained by QMOEA/D are wider than the
ones from NSGA-II which can be observed from Fig. 7.

With signed-ranks test, it can be observed that on all the
eight problems QMOEA/D outperforms NSGA-II signifi-
cantly. The different frameworks of the two algorithms may
be a main reason for the different performance. Methods
based on decomposition performs better than the methods
based on domination ranking on many test problems, which

Table 1 The average, best and std of IGDs among the 30 independent
runs with QMOEA/D and NSGA-II

QMOEA/D NSGA-II

ZDT1

Average 0.0038 0.0050(−)

Best 0.0038 0.0044

Std 3.7183e−007 2.9886e−004

ZDT2

Average 0.0038 0.0455(−)

Best 0.0038 0.0057

Std 4.0808e−007 0.1534

ZZJ1

Average 0.0038 0.0059(−)

Best 0.0038 0.0053

Std 1.5117e−005 2.6504e−004

ZZJ2

Average 0.0039 0.0060(−)

Best 0.0038 0.0056

Std 1.1305e−004 2.0953e−004

ZZJ5

Average 0.0043 0.0059(−)

Best 0.0040 0.0054

Std 1.1727e−004 2.7980e−004

ZZJ6

Average 0.0058 0.3485(−)

Best 0.0045 0.0056

Std 7.4539e−004 0.3038

MOP1

Average 0.0602 0.3388(−)

Best 0.0355 0.3216

Std 0.0431 0.0078

MOP2

Average 0.2558 0.3487(−)

Best 0.2344 0.3042

Std 0.0384 0.0148

The bold values show the better one in the comparison

has been shown in Zhang and Li (2007). The quantum-
inspired operators for MOEA/D may be another important
factor. In the next subsection, the influence of quantum-
inspired operator will be shown through the comparison
between QMOEA/D and the original MOEA/D.

4.4 Comparison betwwen QMOEA/D and the original
MOEA/D

The performance of QMOEA/D and the original MOEA/D
(MOEA/D-SBX) are shown in this subsection. For fairness,
the common parameters keep the same in both the algo-
rithms. The population size is 200. The size of neighbor is
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QMOEA/D MOEA/D-SBX
ZDT1:

ZDT2:

ZZJ1:

ZZJ2;

ZZJ5:

ZZJ6

MOP1;

MOP2:

Fig. 8 The PFs from the 30 independent runs on the 8 test problems. The left is the results of QMOEA/D. The right is the results of MOEA/D-SBX

20. The decomposition approach used here is Tchebycheff.
And 3 × 105 fitness evaluations are used as the termination
condition. The distribution index for polynomial mutation is

20 and themutation rate is 1/n. n is the dimension of the deci-
sion space. In MOEA/D, the distribution index for simulated
binary crossover (SBX) is set to 20. And the SBX rate is 1.
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Both MOEA/D-SBX and QMOEA/D have been run 30
times independently on the 8 test problems, respectively.
Figure 8 shows the Pareto fronts obtained from the 30 inde-
pendent runs.

From the shapeof the obtainedPFs, an intuitive conclusion
is that QMOEA/D can find more complete PFs. Both algo-
rithms have good performance on ZDT1 and ZDT2. But on
ZZJ1, ZZJ2, ZZJ5, ZZJ6 andMOP1, MOEA/D-SBX has lit-
tle effect. Only a few points or parts near the PF are obtained.
However QMOEA/D has better performance on these five
problems. Except MOP1, the PFs from QMOEA/D are com-
plete and smooth. For MOP1, although the convergence of
the obtained PF is not good, the PF is relatively complete. On
MOP2, a good PF is not obtained with both the algorithms.
MOEA/D-SBX only obtains several points near the bound-
ary of the PF. Meanwhile, a part with bad convergence of PF
is found with QMOEA/D on this problem.

Generally speaking, the original MOEA/D (MOEA/D-
SBX) is easy to lose the diversity of the solutions which has
been proved by the shape of PF. Among the eight problems,
the whole PF is obtained only on two problems. The results
also tally with the motivation of our work. Some reasons for
the poor performance on diversity have been shown in Part
III. The solution cannot move along its own intended track
in the framework of MOEA/D-SBX. Thus some parts of the
PF cannot be found.

Compared with MOEA/D-SBX, QMOEA/D has a sig-
nificant improvement. In order to show the results more
precisely, Table 2 presents the average, best and std of IGDs
with the 30 independent runs on the 8 problems. The better
one is marked with bold style.

From the view of signed-ranks test, QMOEA/D outper-
forms MOEA/D-SBX on all the problems except ZDT2.
Especially for ZZJ1, ZZJ2, ZZJ5, ZZJ6 and MOP1, the IGD
values have great improvement than the original MOEA/D.
Because IGD is an index evaluate the solutions from both
the convergence and diversity. Generally speaking, the huge
difference can be attributed to the failure of MOEA/D-SBX
in obtaining the complete PF.

4.5 Comparison between QMOEA/D and some
advanced versions of MOEA/D

In this subsection, two advanced versions of MOEA/D are
used as the comparison algorithms. One is MOEA/D-DE (Li
and Zhang 2009) and the other is MOEA/D-DRA (Zhang
et al. 2009).

In MOEA/D-DE, three aspects are modified based on
MOEA/D-SBX. (1) The differential evolution (DE) oper-
ator, instead of SBX, is used to generate new solutions;
(2) the neighbors are used as the mating/update range with
probability δ. Otherwise, the whole subproblems are used
as the mating/update range; (3) the new generated solutions

Table 2 The average, best and std of IGDs among the 30 independent
runs with QMOEA/D and MOEA/D-SBX

QMOEA/D MOEA/D-SBX

ZDT1

Average 0.0019 0.0019(−)

Best 0.0019 0.0019

Std 2.1970e−006 3.0931e−006

ZDT2

Average 0.0019 0.0019(+)

Best 0.0019 0.0019

Std 8.0367e−007 1.0515e−006

ZZJ1

Average 0.0019 0.2406(−)

Best 0.0019 0.1563

Std 2.4867e−005 0.0285

ZZJ2

Average 0.0019 0.6097(−)

Best 0.0019 0.6097

Std 1.5081e−005 1.1292e−016

ZZJ5

Average 0.0025 0.3569(−)

Best 0.0023 0.2918

Std 1.0848e−004 0.0335

ZZJ6

Average 0.0033 0.6097(−)

Best 0.0022 0.6097

Std 7.7697e−004 1.1292e−016

MOP1

Average 0.0440 0.3263(−)

Best 0.0354 0.2856

Std 0.0059 0.0121

MOP2

Average 0.2485 0.3543(−)

Best 0.1870 0.3543

Std 0.0428 8.1818e−017

can update nr solutions stored in mating/update range at
most. These are the differences between MOEA/D-DE and
MOEA/D-SBX. The details of MOEA/D-DE can be found
in Li and Zhang (2009).

In MOEA/D-DRA, except the three aspects mentioned
above, a utility value is stored for each subproblem. The
utility value is calculated based on the relative decrease of
the scalar function value during several generations. It is used
to allocate the compute resources to different subproblems.
The details of MOEA/D-DRA can be found in Zhang et al.
(2009).

In this subsection, the common parameters are the same as
above subsection. The population size is 200. The neighbor
size is 20. Tchebycheff approach is also used here. 3 × 105
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QMOEA/D MOEA/D-DE MOEAD-DRA
ZDT1

ZDT2

ZZJ1

ZZJ2

ZZJ5

ZZJ6

MOP1

MOP2

Fig. 9 The PFs from the 30 independent runs on the 8 test problems. The left is the results of QMOEA/D. Themiddle is the results ofMOEA/D-DE.
The right is the results of MOEA/D-DRA

fitness evaluations are used as the termination condition. The
distribution index for polynomial mutation is 20 and the
mutation rate is 1/n. n is the dimension of decision space.

Here the F and CR in DE is set to 0.5 and 1.0, respectively,
like Li and Zhang (2009). nr and δ used in MOEA/D-DE
and MOEA/D-DRA are set to 2 and 0.9, respectively. In
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MOEA/D-DRA, the utility value is updated every 50 gen-
erations.

For these three algorithms, the experiments are run 30
times independently. Figure 9 shows all the PFs obtained in
the 30 runs. From the left to the right, the figures respond
to QMOEA/D, MOEA/D-DE and MOEA/D-DRA, respec-
tively.

From Fig. 9, it can be found that all these three algorithms
have better performance thanMOEA/D-SBX.On the first six
problems, all these three algorithms can obtain the complete
PF. But on MOP1, only QMOEA/D obtains the relatively
complete PF. On MOP2, the solutions from MOEAD-DRA
focus on the two ends of PF. From the view of PF shape,
QMOEA/D and MOEA/D-DE have a similar performance
on this problem.

In MOEA/D-DE, the new generated solution can update
only nr solutions instead of updating T solutions. This
strategy may reduce the negative influence caused by other
subproblems. It will help the solution move along its own
track. The same mechanism also exists in MOEA/D-DRA.
This is the reason why these two algorithms have a good per-
formance on the first six problems. For the last two problems,
there are some deception regions in their decision space. It
is a challenge for many algorithms.

Somemore precise values are given in the following. Table
3 shows the average, best and std IGDs of the 30 independent
runs on each problems. The best one is marked with bold
style.

For the average IGDs, QMOEA/D obtains 6 best results
among the 8 ones. On ZZJ5 and ZZJ6, the IGD values of
QMOEA/D are slightly worse than the best ones. On MOP1
and MOP2, the best ones com from QMOEA/D. Especially
on MOP1, the advantage is greater than the results of the
other two algorithms. For the best IGDs, QMOEA/D obtains
5 best results among the 8 ones. On ZZJ5, ZZJ6, and MOP2,
the results of QMOEA/D are worse than the best one. But
the shortage is slight. On MOP1, the best value also belongs
to QMOEA/D with huge advantage.

Generally speaking,QMOEA/Dhas good performance on
most of the test problems. Although not all the best results are
from QMOEA/D, QMOEA/D can offer competitive results
among these advanced versions of MOEA/D.

4.6 Some further discussion of the operators
in QMOEA/D

As described in the above section, two changes are proposed
in QMOEA/D. One is the stored GS and LS. The other is the
quantum-inspired generator. In this subsection, the different
effect of the two changes in QMOEA/D will be discussed
based on some results of the comparison experiments.

A comparison algorithm called SMOEA/D is designed
based on QMOEA/D. In SMOEA/D, GS and LS are also

Table 3 The average, best and std of IGDs among the 30 independent
runs with QMOEA/D, MOEA/D-DE and MOEA/D-DRA

QMOEA/D MOEA/D-DE MOEA/D-DRA

ZDT1

Average 0.0019 0.0019(−) 0.0021(−)

Best 0.0019 0.0019 0.0021

Std 2.1970e−006 5.8507e−006 8.8219e−019

ZDT2

Average 0.0019 0.0019(−) 0.0019(−)

Best 0.0019 0.0019 0.0019

Std 8.0367e−007 2.4349e−006 6.6164e−019

ZZJ1

Average 0.0019 0.0019(+) 0.0021(−)

Best 0.0019 0.0019 0.0021

Std 2.4867e−005 2.2132e−006 4.4109e−019

ZZJ2

Average 0.0019 0.0019(+) 0.0019(−)

Best 0.0019 0.0019 0.0019

Std 1.5081e−005 6.7863e−007 1.1027e−018

ZZJ5

Average 0.0025 0.0019(+) 0.0021(+)

Best 0.0023 0.0019 0.0021

Std 1.0848e−004 4.1794e−006 1.7644e−018

ZZJ6

Average 0.0033 0.0829(−) 0.0021(+)

Best 0.0022 0.0019 0.0021

Std 7.7697e−004 0.2101 8.8219e−019

MOP1

Average 0.0440 0.3278(−) 0.3233(−)

Best 0.0354 0.2997 0.3233

Std 0.0059 0.0143 0

MOP2

Average 0.2485 0.2604(=) 0.3543(−)

Best 0.1870 0.1710 0.3543

Std 0.0428 0.0657 5.6460e−017

stored and used as the parent solutions for each subprob-
lem. But the new solutions are generated with simulated
binary crossover (SBX), which means step 1 in Algorithm
2 is replaced with SBX.

The distribution index in SBX is set to be 20. For both
QMOEA/D and SMOEA/D, the population size is 200. And
the stopping condition is 3× 105 fitness evaluations. 30 inde-
pendent runs are also performed.

The PF shape of QMOEA/D and SMOEA/D are plotted
in Fig. 10. Table 4 shows the average, best and std of IGDs
on different problems, respectively. The better one is marked
with bold style.

Firstly, the discussion is about the use of GS and LS.
From Figs. 8 and 10, it can be found that the PFs obtained

123



3270 Y. Wang et al.

QMOEA/D SMOEA/D
ZDT1:

ZDT 2:

ZZJ1:

ZZJ2;

ZZJ5:

ZZJ6

MOP1;

MOP2:

Fig. 10 The PFs from the 30 independent runs on the 8 test problems. The left is the results of QMOEA/D. The right is the results of SMOEA/D
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by SMOEA/D and QMOEA/D are more complete than the
PFs obtained by the original MOEA/D. Although the gen-
erators are different in QMOEA/D and SMOEA/D, in these
two algorithms the GS and LS are stored and used for one
subproblem. So it can be concluded that the use of LS andGS
is helpful to retain the diversity of solutions in the framework
of decomposition.

Secondly, the discussion is around the quantum-inspired
generator. The main difference between QMOEA/D and
SMOEA/D focuses on the different generators. In Table 4,
different performance on the value of IGDs are shown. For
ZDT1, ZDT2, ZZJ1, ZZJ2 and ZZJ6, the IGDs are similar for
both the methods. With signed-rank test, it can be found that
QMOEA/D is still better than SMOEA/D on two of them.
For ZZJ5, MOP1 and MOP2, QMOEA/D is advantageous
to SMOEA/D on both the average and best value. From
the view of signed-rank test, QMOEA/D also outperforms
SMOEA/D significantly on these three problems. Although
the SMOEA/D has the ability to retain the relatively com-
plete shape of PF. The quality of the solutions is not as
good as the results obtained by QMOEA/D. As described
above, the only difference between these two algorithms is
the generator. With the same parents, GS and LS, the solu-
tions obtained by QMOEA/D have better performance than
the solutions offered by SMOEA/D. The advantages should
be contributed to the generator used in QMOEA/D. It means
the quantum-inspired generator is more effective to improve
the performance of original MOEA/D with GS and LS.

5 Summary

MOEA/D decomposes aMOP into a number of single objec-
tive optimization problems. This framework provides us
great convenience to the use of some methods which are
widely applied in single objective optimization. But subprob-
lems inMOEA/D are not totally the same as the simple single
objective problems. In order to use the approaches in this
framework effectively, more special features of MOEA/D
should be mined.

In this paper, we combine the quantum-inspired method
with MOEA/D because of the poor performance on the
diversity. The subproblems in MOEA/D are some associ-
ated problems. The neighboring weight vectors respond to
the similar subproblems. The information from the neighbor
problems may make the solution deviate from its own track
and reduce the diversity of the solutions. So we store LS
and GS for each subproblem. Besides, special attractor and
characteristic length are designed for MOEA/D.

And the experimental results show that the QMOEA/D is
an effective and competitive algorithm for solvingMOPs.But
on some test problems such as MOP2, no excellent results
are obtained. More study about MOEA/D are needed. Some

Table 4 The average, best and std of IGDs among the 30 independent
runs with QMOEA/D and SMOEA/D

QMOEA/D SMOEA/D

ZDT1

Average 0.0019 0.0019(−)

Best 0.0019 0.0019

Std 2.1970e−006 2.3930e−006

ZDT2

Average 0.0019 0.0019(=)

Best 0.0019 0.0019

Std 8.0367e−007 4.2073e−007

ZZJ1

Average 0.0019 0.0020(−)

Best 0.0019 0.0019

Std 2.1867e−005 2.4046e−005

ZZJ2

Average 0.0019 0.0019(=)

Best 0.0019 0.0019

Std 1.5081e−005 3.9973e−005

ZZJ5

Average 0.0025 0.0028(−)

Best 0.0023 0.0026

Std 1.0848e−004 8.5506e−005

ZZJ6

Average 0.0033 0.0033(=)

Best 0.0022 0.0023

Std 7.7697e−004 4.8834e−004

MOP1

Average 0.0440 0.1415(−)

Best 0.0354 0.0430

Std 0.0059 0.0512

MOP2

Average 0.2485 0.2628(−)

Best 0.1870 0.2360

Std 0.0428 0.0186

The bold values show the better one in the comparison

more special behavior characters should be discovered for
designing more reasonable approach.
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