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Abstract In this paper, a fuzzy multi-objective program-
ming problem is considered where functional relationships
between decision variables and objective functions are not
completely known to us. Due to uncertainty in real decision
situations sometimes it is difficult to find the exact functional
relationship between objectives and decision variables. It is
assumed that information source from where some knowl-
edge may be obtained about the objective functions consists
of a block of fuzzy if-then rules. In such situations, the deci-
sion making is difficult and the presence of multiple objec-
tives gives rise tomulti-objective optimization problemunder
fuzzy rule constraints. In order to tackle the problem, appro-
priate fuzzy reasoning schemes are used to determine crisp
functional relationship between the objective functions and
the decision variables. Thus a multi-objective optimization
problem is formulated from the original fuzzy rule-based
multi-objective optimization model. In order to solve the
resultant problem, a deterministic single-objective non-linear
optimization problem is reformulated with the help of fuzzy
optimization technique. Finally, PSO (Particle Swarm Opti-
mization) algorithm is employed to solve the resultant single-
objective non-linear optimizationmodel and the computation
procedure is illustrated by means of numerical examples.
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1 Introduction

Decision makers in many areas, from industry to engineer-
ing and the social sector, face an increasing need to consider
multiple, conflicting objectives in their decision processes. In
this scenario the real-world decision problems can be formu-
lated as multi-objective optimization models. The first note
on multi-objective optimization was given by Pareto (Mietti-
nen 1999); since then, the determination of the compromise
set of solutions for a multi-objective problem is called Pareto
optimization.

Conventional optimization methods assume that all the
parameters and goals of an optimization model are precisely
known. However, in reality problems arise in development
of precise mathematical model of the system due to lack or
abundance of information, subjective opinions, inadequate
formulation of objectives and inability in evaluating the rel-
ative importance among the objectives. Under this circum-
stance to model imprecision and uncertainty of the system,
fuzzy set theory (Zadeh 1965) becomes a natural choice since
it can define the imprecise information in a more logical
and meaningful fashion. Fuzzy multi-objective optimization
problems have been studied in literature by several authors.
Bellman and Zadeh (1970) developed fuzzy optimization
problems by providing aggregation operators to combine
fuzzy goals and fuzzy decision space. Zimmermann (1978)
first used the fuzzified constraints and objective functions
to solve the multi-objective linear programming problems.
Chanas (1989) used the parametric programming technique
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to solve the fuzzy multi-objective linear programming prob-
lems. After this motivation and inspiration there came out a
lot of literature dealing with the fuzzy optimization problems
(e.g., Esogbue 1991; Lee and Li 1993; Sakawa and Sawada
1994;Nishizaki and Sakawa 1995;Mohan andNguyen 1998;
Sakawa and Kato 2000; Ali 2001; Wu 2004; Bector and
Chandra 2005; Wu 2008; Yano and Sakawa 2009; Zhang
et al. 2010). The collection of papers on the topic of the fuzzy
optimization edited by Delgado et al. (1994) and Slowinski
(1998) gave the main stream of this topic. On the other hand,
the books by Zimmermann (1996); Lai and Hwang (1992,
1994) also gave the insightful survey.

In recent times, there are many other interesting articles
concerning the fuzzy multi-objective programming prob-
lems. Thapar et al. (2012) presented genetic algorithm for
solving multi-objective optimization problems with max-
product fuzzy relation equations as constraints. Deep et al.
(2011) proposed an interactive approach based method for
solving multi-objective optimization problems by treating
objectives as fuzzy goals and the satisfaction of constraints
is considered at different α-level sets of the fuzzy parame-
ter used. Kotinis (2014) developed a multi-objective version
of the differential evolution optimization algorithm, which
includes fuzzy adaptation of parameters andK-medoids clus-
tering of solution vector. Li et al. (2013) proposed a multi-
objective train scheduling model by minimizing the energy
and carbon emission cost as well as the total passenger time,
and to represent the fuzzy nature of failure they used the
linear and non-linear fuzzy membership functions. Further,
multi-objective optimization techniques have been applied in
reliability optimization problems (Garg and Sharma 2013),
portfolio selection problems (Liu and Zhang 2013; Khalili-
Damghani and Sadi-Nezhad 2013), designing fuzzy random
routing algorithms for wireless sensor networks (Lu et al.
2014) and solving method of several kinds of matrix games
(Bector and Chandra 2005).

Most of the fuzzy multi-objective decision making
(MODM) problems, currently available in literature, may
be defined mathematically as finding the solution vector, or
vector of crisp decision variables x = (x1, x2, . . . , xn) ∈
R
n that optimizes a vector of objective functions f̃ (x) =

( f̃1(x), . . . , f̃m(x)) subject to Ãx <∼ b̃,where Ã, b̃ are fuzzy

quantities. In the conventional fuzzy optimization prob-
lems, the objective functions (say f̃i , i = 1, 2, . . . ,m) are
expressed as functions of decision variables. However, in
solving practical decision problems, it may not be possi-
ble to get exact functional relationship between the deci-
sion variables and the objective functions (Chakraborty and
Guha 2013). In this situation, we are only able to describe
the casual link between objective functions and decision vari-
ables linguistically from past data. Let us take an example
of an investment company, say Company ABC, which used

to invest money in different amounts among four industries
such as car industry, food industry, computer and arms indus-
try. Suddenly, the company’s performance in the business
has fallen and also the company is facing a loss of over
10% in business. In this situation, there is an urgent need
for reviewing different investments so that from this analysis
the company can get an idea to perform better. The company
administrators, from past experience, can at best provide the
information regarding its different past investments with cor-
responding net profits and as well as risk factors involved
therein in terms of few production rules. For example, the
manager collects the information given below.

If the investment in car industry is “around $80 mil-
lion”, the investment in food industry is “around
$40 million”, the investment in computer industry is
“around $70million” and the investment in arms indus-
try is “around $85 million” then the profit is “satisfac-
tory” and risk is “somewhat”, etc.

In this manner as presented above, the company collects
the past records in the form of rules and constructs a rule
base bearing the information regarding its different invest-
ment amounts, corresponding profits and risks for different
time periods. Due to complexity of the studied system, the
past information cannot be assessed with both precision and
certainty and, thus, the company administrators feel com-
fortable to use linguistic assessments to express them in a
more realistic manner. Now in this scenario the company
is required to maximize the net profit while simultaneously
minimizing the risk, which will be achieved based on its
investments in different industries. Thus, to find the most
suitable investments for the company, we need to formulate
an optimization model, where the investment amounts for
different industries are treated as decision variables with two
objectives, i.e., maximizing profit and minimizing risk. In
designing this optimization model the problems arise, as the
functional relationship between the objective functions and
the decision variables cannot be directly found in the given
information. Here basically, the natures of objectives with
respect to the decision variables are expressed linguistically
by using rule-based system. Obviously the question arises as
to how the company is able to reach a decision. The moti-
vation of the presented work here is to provide a method for
solving these types of practical MODM problems, in which
the functional relationship between decision variables and
objectives is not known.

Now in this respect, Carlsson and Fuller (1998) proposed
a theory to find a compromise solution to the fuzzy multi-
objective mathematical programming problem under fuzzy
rule base constraints. However, in their solution procedure
decision variables are restricted to assume only two linguistic
terms {small, big} which are represented by complementary
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membership functions small(x) = 1 − x and big(x) = x
for x ∈ [0, 1]. However, partitioning the domain of decision
variables into two linguistic terms is an oversimplification
and not practical from the application point of view. The
number of the linguistic terms should be compatible with
the number of conceptual entities a human being can effi-
ciently store and utilize in his inference activities. Therefore,
psychologist (Miller 1956) recommend the use of linguis-
tic terms, less than 5 being not sufficiently informative and
more than 9 being too much for proper understanding of
their differences. Therefore, in the case of real decision sit-
uations a linguistic term set, with 7 ± 2 linguistic terms, is
required for describing the objectives and decision variables
more suitably. Thus,with the increment of linguistic terms for
describing the decision variables as well as objectives, solv-
ing fuzzy-based multi-objective becomes a challenging task
and requires an effective method to tackle this kind of prob-
lemwith immensepotential of practical application.With this
analysis we present a novel fuzzy rule-based multi-objective
optimization model which can model the linguistic depen-
dencies between the decision variables and the objectives
in an improved manner. It is assumed that the information
source from where some knowledge may be obtained about
the objective functions consists of a block of fuzzy if-then
rules and represented as follows:

max/min f (x) = ( f1(x), . . . , fm(x));
subject to{R1(x),R2(x), . . . ,Rp(x)|x ∈ Y },

where x = (x1, x2, . . . , xn) ∈ R
n is the vector of deci-

sion variables, which are treated as linguistic variables, and
Y⊂R

n is a (crisp or fuzzy) set of constraints on the domain
of decision variables x1, x2, . . . , xn . The rule R j (x) consti-
tutes only knowledge available about the values of f (x) =
( f1(x), . . . , fm(x)).

In the present study, to tackle the fuzzy rule-basedMODM
problem, we use appropriate fuzzy reasoning method (Tak-
agi and Sugeno 1985; Tsukamoto 1979) for finding the crisp
values of the objective functions at y ∈ Y. Subsequently, the
original fuzzy rule-based optimization problem transforms
into the following crisp non-linear multi-objective optimiza-
tion problem:

max/min f (y) = ( f1(y), . . . , fm(y)); subject to y ∈ Y

We use aggregation operator for aggregating the different
fuzzy goals of the objectives, andfinally, to solve the resultant
single-objective optimization problem which is non-linear,
a robust global optimization technique is required. In this
view, we employ a recently developed particle swarm opti-
mization (PSO) (Clerc and Kennedy 2002) algorithm to find
the compromise solution of the resulting deterministic non-
linear multi-objective optimization problem.

This paper is organized as follows: Sect. 2 describes some
useful results that are used to solve the proposed problem.
Multi-objective optimization problem under fuzzy if-then
rule base is introduced and the state of art of solving this
kind of problem is developed in Sect. 3. In Sect. 4, the pro-
posed methodology is illustrated using a numerical example.
A practical application of the proposedmethod in production
planning is also described via an example of a toy company,
with detailed comparison analysis in Sect. 4. Finally, some
conclusions are drawn in Sect. 5.

2 Preliminaries

In this section, we revise the concepts of linguistic variable
and its representation.We then briefly review fuzzy reasoning
schemes, which are the basis of our proposal.

2.1 Membership functions for the linguistic value
of decision variable

In the present study, the decision variables x = (x1, x2, . . . ,
xn) ∈ R

nof fuzzy rule-based multi-objective optimization
model are considered as linguistic variables.A linguistic vari-
able may be regarded either as a variable whose value is a
fuzzy number or as a variable whose values are defined in lin-
guistic terms (Zadeh 1975a, b, c). The mathematical formal-
ism of linguistic variable may be presented in the following
way:

Definition 1 (Linguistic variable) A linguistic variable is
characterized by a quintuple (x, J(x), X,G, M) in which x
is the name of the linguistic variable; J(x) is the term set of x ,
i.e., the set of names of linguistic values of x with each value
being a fuzzy number defined on X; G is a syntactic rule for
generating the names of values of x ; andM is a semantic rule
for associating with each value its meaning. The family of
all fuzzy (sub) sets in X is denoted by J(X).

In this paper, it is assumed that the values of each of the
linguistic variables x1, x2, . . . , xn are defined in the interval
[a, b]⊂R.Suppose that X = [a, b] and J(x) consists ofK +
1, (K ≥ 2), terms (see Fig. 1) as given below.

J = {low1, around(a + β), around(a + 2β), . . . , around

(a + (K − 1)β), highK }; where β = (b − a)/K ,

where each term being a fuzzy number may be repre-
sented with the help of triangular membership functions
{μ̃A1 , . . . , μ̃AK+1} of the following form:

μ Ã1
(x) = μ low1(x)

=
{
1 − (x − a)/(b − a) if a ≤ x ≤ b
0 otherwise,

(1)

The fuzzy number Ã1 is denoted as Ã1 = (a; 0, b − a).
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Fig. 1 Membership functions for the linguistic values with (K + 1)
terms

Table 1 The term set J(x)

J(x) Fuzzy numbers

Very low (VL) (0; 0, 100)

Low (L) (25; 25, 75)

Medium (M) (50; 50, 50)

High (H) (75; 75, 25)

Very high (VH) (100; 100, 0)

μ Ãk
(x) = μaround(a+kβ)(x)

=
⎧⎨
⎩
1 − (a + kβ − x)/kβ if a ≤ x ≤ a + kβ
1 − (x − a − kβ)/(b − a − kβ) if a + kβ ≤ x ≤ b
0 otherwise

(2)

for 1 ≤ k ≤ (K − 1) and each of the corresponding fuzzy
number Ãk is denoted as Ãk = (a + kβ; kβ, b − a − kβ).

μ ÃK+1
(x) =

{
1 − (b − x)/(b − a) if a ≤ x ≤ b
0 otherwise

(3)

The fuzzy number Ãk+1 is denoted as Ãk+1 = (b; b− a, 0).
Here, for representing a fuzzy number in [0, 1]withmember-
ship function as described above, we have used the standard
notation, Ã = (m;β, γ ) with mean value m, left spread β

and right spread γ . The novelty of this term set arrangement
is that when a very little knowledge is available about the
boundaries of individual term, each term is stretched over
the whole domain though the mid values of each of the terms
are situated at a fixed distance apart.

Example 1 Suppose x is interpreted as one linguistic vari-
able with term set J(x) = {very low, low, medium,
high,very high}, where each term in J(x) is characterized by
a fuzzy number in the universe of discourse [0, 100]. Then by
utilizing (1), (2) and (3) each term in J(x) can be transformed
to associate fuzzy numbers as provided in Table 1.

2.2 Fuzzy reasoning schemes

Mathematicians, specialists on fuzzy logic, developed many
kinds of fuzzy inference systems. The basic difference

between various models lies in the representation of the con-
sequents of their fuzzy rules. Thus, for making decision from
fuzzy rule-based system, depending on the nature of the con-
sequent of fuzzy if-then rules, two traditional well-known
fuzzy inference mechanisms are employed in this present
study. Before describing these reasoning schemes, we recall
the definition of triangular norms which is used to model
logical connective and. In fuzzy set theory, triangular norms
(in short T-norm) are extensively used to model logical con-
nective and.

Definition 2 (T-norm) A triangular norm T is a function
from [0, 1] × [0, 1] to [0, 1] such that it is symmetric, asso-
ciative and non decreasing in each argument and T (a, 1) =
a∀a ∈ [0, 1].

The effectiveness of the product T-norm (TP (a, b) = ab)
operator has already been discussed in the literature (Deep
et al. 2011) and this inspired us to use the product T-norms to
model the and operator of the given rule base. We also recall
that if x is a linguistic variable in the universe of discourse
X and y ∈ X then we write “x is ȳ” to indicate that ȳ is a
crisp value of the linguistic variable x .

2.2.1 Tsukamoto’s inference scheme

This model is applied if the consequent of each fuzzy if-then
rule is represented by a fuzzy set with a strictly monotone
membership function. A brief description of Tsukamoto’s
fuzzy reasoning method is given below. For this purpose,
consider the following fuzzy inference system:

R j : If x1 is Ã j1 and x2 is Ã j2 and . . . and xn is Ã jn

then z is C̃ j .

Input x1is ȳ1 and x2 is ȳ2 and . . . and xn is ȳn
Output z is zT S,

(4)

where Ã jk ∈ J(Xk) is a value of the linguistic variable
xk defined in the universe of discourseXk⊂R (for k =
1, 2, . . . , n), and C̃ j ∈ J(Z) is a value of the linguistic vari-
able z defined in the universe Z⊂R for j = 1, 2, . . . , p. It
is assumed that Z is bounded. In Tuskamoto’s (1979) fuzzy
reasoning scheme, it is supposed that each C̃ j has strictly
monotonic membership functions on Z . The procedure for
obtaining the crisp output zT S from the crisp input vector
y = (y1, y2, . . . , yn) and fuzzy rule base {R1,R2, . . . ,Rp}
is described below in a stepwise manner.

Step 1 The degree to which input matches the j th ruleR j is
computed by

l j = TP (μ Ã j1
(y1), μ Ã j2

(y2), . . . , μ Ã jn
(yn))

for j=1, 2, . . . , p (5)
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Step 2 In this mode of reasoning, the individual crisp control
actions z j are derived from the relation

l j = μC̃ j
(z j ), i.e., z j = μ−1

C̃ j
(l j ) (6)

The inverse of μC̃ j
is well-defined because of its strict

monotonicity.

Step 3 The overall system output is defined as the weighted
average of the individual outputs, where associated weights
are the firing levels. Therefore, the overall crisp control action
is computed by

zT S = l1z1 + · · · + l pz p
l1 + · · · + l p

(7)

2.2.2 Takagi and Sugeno fuzzy reasoning scheme

Takagi and Sugeno (1985) introduced a fuzzy reasoning
scheme. In this fuzzy reasoning method, a fuzzy rule is of
the following form:

If x1 is Ã1 and x2 is Ã2 then z = f (x1, x2)
′

where Ã1 and Ã2 are fuzzy sets in the antecedent, while
z = f (x1, x2) is a crisp function in the consequent, and
f (., .) is very often a linear function with respect to x1 and
x2. Let us consider the following architecture:

R j : If x1 is Ã j1 and x2 is Ã j2 and . . . and xn is Ã jn

then z = a j1x1 + a j2x2 + · · · + a jnxn + b j .

Input x1 is ȳ1 and x2 is ȳ2 and . . . and xn is ȳn

Output z is zTgS . (8)

where Ã jks are defined as in (4), a jk and b j are real numbers
for j = 1, 2, . . . , p and k = 1, 2, . . . , n. The procedure for
obtaining the crisp output zTgS from the crisp input vector
y = (y1, y2, . . . , yn) and fuzzy rule base {R1,R2, . . . ,Rp}
is are described below:

Step1 The degree to which input matches the j th rule R j is
typically computed using the relation

l j = TP (μ Ã j1
(y1), μ Ã j2

(y2), . . . , μ Ã jn
(yn)),

for j = 1, 2, . . . , p (9)

Step 2 Then the individual rule outputs derived from the rela-
tionship

z j (y) =
n∑

k=1

a jk yk + b j (10)

Step 3 Finally, the crisp control action is represented as

zTgS = l1z1 + · · · + l pz p
l1 + · · · + l p

(11)

Note The main difference between Tsukamoto’s fuzzy rea-
soning scheme and Takagi–Sugeno fuzzy reasoning method

lies in the consequent of the fuzzy rules: the former uses
the fuzzy sets with strict monotonic membership functions
where the latter employs the (linear) functions of input vari-
ables. Depending on the natures of the given information,
which is described by fuzzy rules, it is important to realize
which choice of the reasoning method is appropriate.

3 Multi-objective optimization problem under fuzzy
if-then rules

3.1 Proposed fuzzy rule-based multi-objective optimization
model

Let us consider the following multi-objective optimization
problem in which the functional relationships between the
decision variables and the objective function are not com-
pletely known:

max f (x) = ( f1(x), . . . , fm(x)); subject to

{R1(x),R2(x), . . . ,Rp(x)|x ∈ Y⊂R
n} (12)

where fi :Rn →R is the i th objective function, x1, x2, . . . , xn
are linguistic variables and Y⊂R

n is a (crisp or fuzzy) set
of constraints on the domain of xk(k = 1, 2, . . . , n). The
causal link between x and f (x) is described linguistically
using fuzzy if-then rules R j (x). Moreover, depending on
the nature of information available for the objective func-
tions fi s, R j (x) may be either of following two types:

Type I R j (x): If x1 is Ã j1 and x2 is Ã j2…xn is Ã jn then
f1(x) is C̃1 j , f2(x) is C̃2 j , . . . , fm(x) is C̃mj

Type II R j (x): If x1 is Ã j1 and x2 is Ã j2…xn is Ã jn then
fi (x) = ∑n

k=1 a jik xk + b ji , i = 1, 2, . . . ,m.

It is important to note here that in Type I, the objec-
tive functions, namely fi s, are represented linguistically
using fuzzy sets C̃i j with strictly monotone and continu-
ous membership functions defined in the universe of dis-
course Zi⊂R (for i = 1, 2, . . . ,m). In Type II, the objec-
tive function fi is crisp function of the decision variables and
a jik ,b ji are real numbers. In both Type I and II, fuzzy num-
bers Ã j k( j = 1, 2, . . . , p; k = 1, 2, . . . , n) representing
the linguistic values of the decision variables xk are defined
in the universe of discourse Xk⊂R (for k = 1, 2, . . . , n).

3.2 Formation of the equivalent deterministic
multi-objective optimization model

We shall describe how the proposed model (12), based on the
rule base of Type I and Type II, can be transformed into the
equivalent deterministicmulti-objective optimizationmodel.

Type I In j th rule R j (x), fi assumes linguistic values
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In this situation, the procedure to find a deterministic
model to the fuzzymulti-objective optimization problem (12)
is illustrated stepwise below.
Step 1 Normalization of values of linguistic variables
involved in antecedent and consequent part of rules

Since different types of information are measured in dif-
ferent ways, n variables x1, x2, . . . , xn may be measured in
different scales. Then the values of the linguistic variables
xk(k = 1, 2, . . . , n), i.e., Ã jk = (m jk;β jk, γ jk) need to be
normalized. The purpose of the normalization method is to
preserve the property such that the range of decision variables
belongs to the closed interval [0, 1]. In the present study the
linear scale transformation (Chen 2000; Li 2007) is used to
transform the various decision variables into a comparable
scale.

ã jk =
(
m jk

dmax
k

; β jk

dmax
k

,
γ jk

dmax
k

)
, where

dmax
k = max

1≤ j≤p
{m jk + γ jk | Ã jk = (m jk;β jk, γ jk)} (13)

The linguistic values C̃i j (for i = 1, 2, . . . ,m, j = 1, 2, . . . ,
p) of the objective functions fi (x) are normalized with the
help of same normalization procedure (as mentioned above)
and the corresponding normalized values are denoted as c̃i j .
Then the given fuzzy if-then rule base (i.e., Type I) is trans-
formed into the following form:

R j (x) : If x1 is ã j1 and x2 is ã j2 . . . xn is ã jn then

f1(x) is c̃1 j , f2(x) is c̃2 j , . . . , fm(x) is c̃m j .

Step 2 Equivalent fuzzy rule base
The compositional rule of inference of individual objec-

tive functions will generate p.m number of rules as follows:

R1 j (x) : If x1 is ã j1 and x2 is ã j2, . . . , xn, is ã jn then f1(x) is c̃1 j , j = 1, 2, . . . , p

R2 j (x) : If x1 is ã j1 and x2 is ã j2, . . . , xn is ã jn then f2(x) is c̃2 j , j = 1, 2, . . . , p

. . .

Rmj (x) : If x1 is ã j1 and x2 is ã j2, . . . , xn is ã jn then fm(x) is c̃m j , j = 1, 2, . . . , p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(14)

Step 3 Aggregation of the rule outputs
In this step, on account of our discussion in Sect. 2.2.1

we can apply Tsukamoto’s inference mechanism (4) to find
out precise value of each of the objective function fi (for i =
1, 2, . . . ,m). This means that the crisp value of i th objec-
tive function fi from the crisp input vector y ∈ Y⊂R

n and
the p rules Ri j (x)( j = 1, 2, . . . , p) may be obtained by
employing (5), (6) and (7) as

fi (y) = l1zi1 + · · · + l pzip
l1 + · · · + l p

, (15)

where l j = TP (μã j1(y1), μã j2(y2), . . . , μã jn (yn)) is the
degree to which the input vector match the j th rule Ri j

and zi j = μ−1
c̃i j

(l j ) is the output of the j th rule (i =
1, 2, . . . ,m, j = 1, 2, . . . , p).
Step 4 Construction of equivalent crisp multi-objective pro-
gramming problem

Thus, the optimization problem (12) now converts to a
multi-objective crispmathematical programming problem as
follows:

max f (y) = ( f1(y), . . . , fm(y)) : subject to y ∈ Y (16)

Here the i th objective function may be non-linear in nature

Type II In j th rule R j (x), the crisp functional relationship
between fi s and xk s exists

In this situation to find the compromise solution of the
fuzzy multi-objective optimization problem (12), we have
proceeded in a way similar to Type I and finally the crisp
value of the objective function fi at y ∈ Y⊂R

n is determined
from the given fuzzy rule base using Takagi–Sugeno fuzzy
reasoning scheme (8), (9), (10) and (11) as

fi (y) = l1zi1 + · · · + l pzip
l1 + · · · + l p

(17)

Here, l j is computed in a way similar to Type I and zi j rep-
resenting the output of the j th rule, can be computed as
zi j = ∑n

k=1 a jik xk + b ji . Hence, the equivalent crisp multi-
objective non-linear programming (MONLP) problem of the
form (16) is obtained for Type II also. Now our aim is to solve
multi-objective programming problem (16).

3.3 Solution procedure of multi-objective optimization
model (16)

The abovemulti-objective programming problem (16) yields
not a single optimal solution, but a set of Pareto optimal

solutions, in which one objective cannot be improved with-
out sacrificing other objectives. For practical applications,
however, one solution needs to be selected, which will sat-
isfy the different goals to some extent. Such a solution is
called best compromise solution. In this respect, consid-
ering the imprecise nature of decision makers’ subjective
judgment, it is natural to accept that decision makers may
have fuzzy or imprecise goals for each of the objective
functions (Sakawa and Yano 1985). Decision makers’ fuzzy
goals attached to each of the objectives can be described
via fuzzy sets which are characterized by membership func-
tions. To represent the nature of the fuzzy goal of each
objective function the membership functions was first intro-
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duced by Zimmermann (1978). It was later followed by
Narasimhan (1980), Hannan (1981), Lee and Li (1993), Rao
et al. (1993), Huang (1997), Mohan and Nguyen (1998),
Deep et al. (2011), Thapar et al. (2012), Garg and Sharma
(2013), etc.

In the present study, for easy understanding and obvious
computational advantage, simple linear membership func-
tions μ fi , i = 1, 2, . . . ,m corresponding to the objective
functions fi (y), i = 1, 2, . . . ,m are introduced to represent
goal of each objective function as follows:

μ fi (y) =
⎧⎨
⎩
1 if fi (y) ≥ Mi
fi (y)−mi
Mi−mi

if mi ≤ fi (y) ≤ Mi

0 if fi (y) ≤ mi

(18)

Here Mi is the maximum value (or upper bound) of indi-
vidual objective function fi at which the decision maker is
completely satisfied and Mi can be determined by Mi =
fi (y∗

i ) where y∗
i is the ideal solution for individual objec-

tive function obtained by solving maxy∈Y fi (y). (Mi −mi )

is the subjectively chosen constants of admissible viola-
tions, i.e., at mi the decision maker is not-at-all satisfied.
Basically, mi is the lower bound of each objective which
can be determined with the help of ideal solution as mi =
min1≤s≤m fi (y∗

s ), i = 1, 2, . . . ,m. The membership func-
tionμ( fi (y)) represents the degree of satisfaction of the deci-
sion maker as a value between zero and one.

Having elicited the membership functions μ fi (y), i =
1, 2, . . . ,m for each of the objective functions fi (y) , i =
1, 2, . . . ,m through the interaction of decision maker, the
MONLP (16) can be converted into the fuzzy MONLP pro-
gramming problem defined by

Max
y∈Y (μ f1 (y), μ f2 (y), . . . , μ fm (y)) (19)

One of the crucial parts in fuzzy MONLP is the aggregation
of membership values of the objective functions to convert it
into a single-objective non-linear optimization problem. We
can convert the preceding fuzzy MONLP into the following
single-objective non-linear optimization problem based on
the concept of aggregation operator in the following way:

Max
y∈Y A(μ f1 (y), μ f2 (y), . . . , μ fm (y)), (20)

where A denotes an aggregation function (Grabisch et al.
2009). We recall that an aggregation function A on the scale
[0, 1] is a non-decreasing function A : [0, 1]m → [0, 1] such
that A(0, 0, . . . , 0) = 0 and A(1, 1, . . . , 1) = 1. As a typical
aggregation function, we may recall arithmetic mean, geo-
metric mean, minimum operator, product operator. Among
the several choices, weighted arithmetic mean (Lai and Lai
2000) and minimum operator (Cheng et al. 2013) are widely
used in literature to aggregate the objectives. However, as
mentioned earlier, due to the effectiveness of the product
operator (Cheng and Li 1996; Deep et al. 2011) over the other

existing aggregation functions, we adopt product operator as
aggregation function which may be written as

A(μ f1 (y), μ f2 (y), . . . , μ fm (y))

= μ f1 (y) × μ f2 (y) × · · · × μ fm (y) (21)

One may observe that the value of A(μ f1 (y) μ f2 (y), . . . ,
μ fm (y)) can be interpreted as the overall degree of satis-
faction of decision makers’ fuzzy goals. After eliciting the
choice of aggregation function A, the optimization system
turns into the following single-objective non-linear optimiza-
tion problem defined as follows:

Maximize α1(y) × α2(y) × · · · × αm(y)
subject to

μ fi (y) = αi (y), i = 1, 2, . . . ,m
y ∈ Y,

(22)

where αi (y) is the degree of satisfaction of i th objective.
Since the crisp optimization problem (22) is non-linear

in nature, it requires some effective methods and algorithms
for finding global solution. Among various existing methods
and algorithms, evolutionary algorithmic (EA) approaches
are widely used to find the global solution of the non-linear
optimization problem (Eiben and Smith 2003). The advan-
tage of EA technique is that it does not require any kind
of pre-assumptions, such as continuity, differentiability of
objective functions and constraints. Particle swarm optimiza-
tion (PSO) (Kennedy and Eberhart 1995; Shi and Eberhart
1998a) being prominent, one of the family of EAs has been
applied widely in practical applications. From the applica-
bility point of view, in this paper, we use PSO as a tool to
solve the optimization model (22). The process of solving
optimization problem under fuzzy if-then rules can be sum-
marized in algorithmic form as given below.

Computational algorithm

Step 1Calculate normalized values of the linguistic variables
involved in given rule base representing linguistic relation-
ship between the objectives and decision variables

Step 2 Use suitable reasoning scheme to compute the exact
functional relationship of objectives and decision variables
from the rule base with normalized values of linguistic vari-
ables

Step 3 Calculate the individual upper and lower bound for
each objective function

Step 4 Keeping in view the functional form of the objectives
and the ranges (upper and lower bounds) of each objective
construct fuzzy membership functions using linear functions
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Fig. 2 Flowchart of the proposed method

Step 5 Employ suitable aggregation operator (as suggested
product operator) to aggregate the fuzzy membership func-
tions of each objective

Step 6 Use suitable non-linear optimization algorithm (such
as, PSO) to solve the resulting crisp non-linear single-
objective optimization problem

The flow chart of the proposed algorithm is shown in
Fig. 2. A brief description of the PSO algorithm as used by us
in solving the single-objective crisp non-linear optimization
problem (22) is given in “Appendix”.

Table 2 Linguistic value for x1

J(x1) Fuzzy numbers Normalized fuzzy numbers

Very low (VL) (0; 0, 10) (0; 0, 1.0)

Low (L) (2.5; 2.5, 7.5) (0.25; 0.25, 0.75)

Medium (M) (5.0; 5.0, 5.0) (0.5; 0.5, 0.5)

High (H) (7.5; 7.5, 2.5) (0.75; 0.75, 0.25)

Very high (VH) (10.0; 10.0, 0) (1.0; 1.0, 0)

Table 3 Linguistic value for x2

J(x2) Fuzzy numbers Normalized fuzzy numbers

Very low (VL) (10; 0, 60) (0.143; 0, 0.857)

Low (L) (20; 10, 50) (0.286; 0.143,0.714)

Medium low (ML) (30; 20, 40) (0.429; 0.286,0.571)

Medium (M) (40; 30, 30) (0.571; 0.428, 0.429)

Medium high (MH) (50; 40, 20) (0.714; 0.571, 0.286)

High (H) (60; 50, 10) (0.857; 0.714, 0.143)

Very high (VH) (70; 60, 0) (1.0; 0.857, 0)

4 Numerical illustration

In this section, two numerical examples are presented to
illustrate the proposed methodology and its application in
practice.

In the following example, we provide working of the pro-
posed method in detail.

Example 1 Let us consider the following optimization prob-
lem:

Max ( f1(x), f2(x)) subject to {0 ≤ x1 ≤ 10, 10 ≤ x2 ≤
70, 6x1 + x2 ≤ 90}, where

R1(x): If x1 is high and x2 is very high then f1(x) =
−x1 + x2 and f2(x) = x1 + x2/2.
R2(x): If x1 is low and x2 is high then f1(x) = x1 + x2
and f2(x) = −x1 + x2.

Tables 2 and 3 represent the linguistic scales and their cor-
responding fuzzy numbers for different values of x1 and x2,
respectively. The corresponding normalized values obtained
using (13) are provided in third columns of respective tables.

First step of solving the above rule base multi-objective
optimization problem is to derive corresponding crisp non-
linearmulti-objective optimization problem (16). As the con-
sequent of each fuzzy if-then rule is described via linear func-
tion of input variables, Type II scheme is employed to find the
functional form of objectives. For this purpose, let (y1, y2) be
the input vector of the fuzzy system. Then the firing levels of
the rulesR1,R2 are computed by employing (9) as follows:
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l1 =
⎧⎨
⎩

y1
0.75 .

y2−0.143
0.857 if 0.143 ≤ y1, y2 ≤ 0.75

1−y1
0.25 .

y2−0.143
0.857 if 0.75 ≤ y1, y2 ≤ 1.0

l2 =

⎧⎪⎪⎨
⎪⎪⎩

y1
0.25 .

y2−0.143
0.714 if 0.143 ≤ y1, y2 ≤ 0.25

1−y1
0.75 .

y2−0.143
0.714 if 0.25 ≤ y1, y2 ≤ 0.857

1−y1
0.75 .

1−y2
0.143 if 0.857 ≤ y1, y2 ≤ 1.0

It is clear that if y1 = 1.0 and y2 = 0.143, then no rule
applies because l1 = l2 = 0. So, we can exclude the values
y1 = 1.0 and y2 = 0.143 from the set of feasible solutions.

Now, we employ the compositional rule of inference
of individual objective functions to find out the equiva-
lent fuzzy rule base system (14) for the given set of rules
{R1(x), R2(x)} as follows:

R11(x) : If x1 is high and x2 is very high then f1(x) =
−x1 + x2.

R21(x) : If x1 is high and x2 is very high then f2(x) =
x1 + x2/2.

R12(x) : If x1 is low and x2 is high then f1(x) = x1+ x2.
R22(x) : If x1 is low and x2 is high then f2(x) = −x1 +
x2.

The individual output of the rulesR11,R12 andR21,R22 are
computed z11 = −y1+y2 and z12 = y1+y2; z21 = y1+y2/2
and z22 = −y1 + y2.

Table 4 Upper and lower bounds of f1 and f2

Objective functions Upper bound (Mi ) Lower bound (mi )

f1 0.895 0.3227

f2 0.726 0.5136

Therefore, the overall system output, interpreted as the
crisp values of f1 and f2, at (y1, y2) is computed by (17) as
follows:

f1(y1, y2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1
0.75 .

y2−0.143
0.857 .(y2−y1)+ y1

0.25 .
y2−0.143
0.714 .(y1+y2)

y1
0.75 .

y2−0.143
0.857 + y1

0.25 .
y2−0.143
0.714

if 0.143 ≤ y1 ≤ 0.25, 0.143 < y2 ≤ 0.25

y1
0.75 .

y2−0.143
0.857 .(y2−y1)+ 1−y1

0.75 .
y2−0.143
0.714 .(y1+y2)

y1
0.75 .

y2−0.143
0.857 + 1−y1

0.75 .
y2−0.143
0.714

if 0.25 ≤ y1, y2 ≤ 0.75

1−y1
0.25 .

y2−0.143
0.857 .(y2−y1)+ 1−y1

0.75 .
y2−0.143
0.714 .(y1+y2)

1−y1
0.25 .

y2−0.143
0.857 + 1−y1

0.75 .
y2−0.143
0.714

if 0.75 ≤ y1, y2 ≤ 0.857

1−y1
0.25 .

y2−0.143
0.857 .(y2−y1)+ 1−y1

0.75 .
1−y2
0.143 .(y1+y2)

1−y1
0.25 .

y2−0.143
0.857 + 1−y1

0.75 .
1−y2
0.143

if 0.857 ≤ y1 < 1.0, 0.857 ≤ y2 ≤ 1.0

and

f2(y1, y2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1
0.75 .

y2−0.143
0.857 .(y1+y2/2)+ y1

0.25 .
y2−0.143
0.714 .(y2−y1)

y1
0.75 .

y2−0.143
0.857 + y1

0.25 .
y2−0.143
0.714

if 0.143 ≤ y1 ≤ 0.25, 0.143 < y2 ≤ 0.25

y1
0.75 .

y2−0.143
0.857 .(y1+y2/2)+ 1−y1

0.75 .
y2−0.143
0.714 .(y2−y1)

y1
0.75 .

y2−0.143
0.857 + 1−y1

0.75 .
y2−0.143
0.714

if 0.25 ≤ y1, y2 ≤ 0.75

1−y1
0.25 .

y2−0.143
0.857 .(y1+y2/2)+ 1−y1

0.75 .
y2−0.143
0.714 .(y2−y1)

1−y1
0.25 .

y2−0.143
0.857 + 1−y1

0.75 .
y2−0.143
0.714

if 0.75 ≤ y1, y2 ≤ 0.857

1−y1
0.25 .

y2−0.143
0.857 .(y1+y2/2)+ 1−y1

0.75 .
1−y2
0.143 .(y2−y1)

1−y1
0.25 .

y2−0.143
0.857 + 1−y1

0.75 .
1−y2
0.143

if 0.857 ≤ y1 < 1.0, 0.857 ≤ y2 ≤ 1.0

Now, we may write the crisp multi-objective non-linear opti-
mization model (16) for the given multi-objective optimiza-
tion problem under fuzzy rule constraints as follows:

Maximize f (y) = ( f1(y), f2(y))
subject to

0.67y1 + 0.78y2 ≤ 1,
y1 ∈ [0, 1], y2 ∈ [0.143, 1].

(23)

Now, we are going to employ the procedure describe in Sect.
3.3 to solve multi-objective optimization problem (23). First,
we find the upper and lower bounds of the objectives and the
results are presented in Table 4.

Now analyzing the ranges of functions f1(y1, y2) and
f2(y1, y2) from Table 4, the decision maker constructs mem-
bership functions corresponding to each of the objectives.
Both of the objectives being of maximizing type, their linear
membership functions are constructed as follows:
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Table 5 Pareto-optimal solution
obtained using PSO and GA Method y1 y2 f1 f2 α1(y) α2(y) α1(y) × α2(y)

GA 0.62529 0.74620 0.64409 0.63129 0.56135 0.55537 0.31176

PSO 0.61940 0.75 0.65643 0.62774 0.58292 0.53871 0.31402

Table 6 A sample of 5 rules
surveyed the nature of
objectives depending on the
decision variables

Rule x1 x2 x3 x4 x5 x6 f1 f2

R1 Somewhat Good No Good High Good Not at all Fully

R2 Fully reliable Good No Not at all Not at all Not at all Fully Not at all

R3 Fully reliable Good Not so satisfied Average Very high Good Fully Not at all

R4 Somewhat Average Yes Good Below average Average Not at all Fully

R5 Somewhat Average No Average High Average Fully Not at all

μ f1(y) =
⎧⎨
⎩
1 for f1(y) > 0.895
f1(y)−0.323

0.572 for 0.895 > f1(y) > 0.323
0 otherwise

μ f2(y) =
⎧⎨
⎩
1 for f2(y) > 0.726
f2(x)−0.513

0.213 for 0.726 > f2(y) > 0.513
0 otherwise

Utilizing the above constructedmembership functions for the
satisfaction of the objectives at different points of the feasible
regions, the equivalent single-objective non-linear optimiza-
tion model for the system (23) is formulated as follows:

Maximize α1(y) × α2(y)
subject to

μ fi (y) = αi (y), i = 1, 2
g1(y) = 0.67y1 + 0.78y2 − 1 ≤ 0,
y1 ∈ [0, 1], y2 ∈ [0.143, 1]

(24)

In order to solve the single-objective non-linear optimiza-
tion problem (24), PSO algorithm is utilized and its result is
compared with GA result (Table 5).

From Table 5, it is observed that both PSO and GA algo-
rithms produce almost similar satisfactions for the objectives,
however only notable fact is that GA requires more compu-
tational overhead in comparison to PSO.

Example 2 In this example, the proposed technique for solv-
ing multi-objective optimization under fuzzy rule constraints
is illustrated through a problem of developing strategies for
production of a company.

4.1 Problem description

Let us consider a company, say, Company XYZ, that sells
various types of toys, such as dolls and doll houses, stuffed
toys, puppets, transportation toys, play kitchens and house
toys. The company finds that sales of its products are falling

Table 7 Linguistic value for the decision variables x1, x2, x3, x5,
x6 and f1, f2

J(x) Fuzzy numbers

Poor/Not at all/No (0; 0, 100)

Below average/ Not so satisfactory/Rarely (25; 25, 75)

Average/Moderate/Partial (50; 50, 50)

Good/Somewhat/Satisfied/High (75; 75, 25)

Very good/Fully/Very high/Yes (100; 100, 0)

and the company is operating at a loss. In this situation, the
company reviews its productions of the past several years
and this review, based on mainly past experience and not
on any mathematical formalism, is provided in the form of
fuzzy rule-based system. As the past information may not be
assessed with both precision and certainty, the information
is available in the form of linguistic descriptors. To keep the
matter simple let the amount of the production of six different
types of toys be denoted as a set x = (x1, x2, x3, x4, x5, x6);
profit and goodwill are denoted as f1 and f2. The infor-
mation acquired from past available data is presented in
Table 6.

In the fuzzy rule-based system (given in Table 6 below),
the manager, from experience, can at best provide the infor-
mation about the amount of the past production of different
types of toys (i.e., the linguistic values of (x1, x2, . . . , x6))
and the corresponding profit ( f1) and goodwill ( f2) of the
company.What should be the optimal numbers of the produc-
tions of different types of toys so that the profit and goodwill
earned by the company are maximum?

Fuzzy terms given in Table 6 are quantified using the
membership functions given in (1)–(3). Tables 7 and 8 rep-
resent the linguistic scales and their corresponding fuzzy
numbers for different values of the variables and objectives,
respectively.
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Table 8 Linguistic value for x4

J(x) Fuzzy numbers

Poor/Not at all/No (10; 10, 90)

Below average/ Not so satisfactory/Rarely (32.5; 22.5, 67.5)

Average/Moderate/Partial (55; 45, 45)

Good/Somewhat/Satisfied/High (77.5; 67.5, 22.5)

Very good/Fully/Very high/Yes (100; 100, 0)

Table 9 Upper and lower bounds of f1 and f2

Objective functions Upper bound (Mi ) Lower bound (mi )

f1 0.79786 0.31875

f2 0.68125 0.20213

4.2 Results and discussion

The multi-objective optimization model under fuzzy rule-
base constraints as described in Sect. 3 is formulated for the
given system. As in the given rule-base constraints (Table 6),
both the objectives are described using linguistic variables,
the given system is transformed into corresponding crisp
equivalent multi-objective non-linear optimizationmodel (as
formulated in (16)) using Type I approach. For this purpose,
let (y1, y2, . . . , y6) be the crisp input vector of the fuzzy
system and the overall crisp outputs of the system, obtained
with the help of (15), are denoted as f1(y1, y2, . . . , y6) and
f2(y1, y2, . . . , y6). Themulti-objective non-linear model for
the system can be written as

Maximize f (y) = ( f1(y), f2(y))
subject to

0.15y1 + 0.25y2 + 0.2y3 + 0.2y4 + 0.1y5
+ 0.1y6 ≤ 1
yr ∈ [0, 1], r = 1, 2, 3, 4, 5, 6.

(25)

where thefirst constraint is resource allocation constraint pro-
vided by the company. The single-objective non-linear opti-
mization problem for (25) is constructed using the steps as
described in Sect. 3.3. For each of the objectives, linearmem-
bership functions, which describe satisfaction of the objec-
tives at different points in the feasible region, are constructed
using the upper and lower bounds of each objective (pro-
vided in Table 9). By utilizing the constructed membership
functions of the objectives, the single-objective non-linear
optimization model for the system (25) can be formulated as
follows:

Maximize α1(y) × α2(y)
subject to

μ fi (y) = αi (y), i = 1, 2

g1(y) = 0.15y1 + 0.25y2 + 0.2y3 + 0.2y4
+ 0.1y5 + 0.1y6 − 1 ≤ 0

yk ∈ [0, 1], k = 1, 2, 3, 4, 5, 6.

(26)

Finally, the PSO algorithm is employed to solve this resul-
tant non-linear optimization model (26) and the results are
summarized in Table 10.

After transforming to the original scale, the Company
XYZ should produce approximately 43 dolls and doll houses,
43 stuffed toys, 40 puppets, 26 transportation toys, 38 play
kitchens and 36 house toys every time to achieve better profit
and goodwill.

4.2.1 Comparison analysis

As mentioned earlier, the resulting single-objective non-
linear optimizationmodel (26) can be solved using any global
optimization technique. Here we make a comparison of the
results obtained by PSO (provided in Table 10)with the result
obtained via GA. When decision makers’ satisfaction corre-
sponding to each objective is described using linear mem-
bership function, the optimal solution obtained by solving
optimization model (26) with the help of PSO and GA is
presented in Table 11.

One may observe from Table 11 that both PSO and GA
algorithms produce almost same resultant satisfaction of
objectives and the only notable fact is that GA required more
computational overhead in comparison to PSO.

Another issue is the choice of membership function for
describing decision makers’ satisfaction of different objec-
tive functions. The use of linear membership function in
describing decision makers’ satisfaction may lead to loss
of information (Watada 1997) since it is an approximation
of non-linear membership function. Moreover, linear mem-
bership function does not allow decision maker to provide
any kind of biasness towards objectives. In order to capture
decision makers’ biasness towards one or more objectives,
we use exponential membership function as it can represent
utility functions in a much more realistic way (Li and Lee
1991). An exponential membership function can be defined
as follows:

Table 10 Pareto-optimal solution obtained using PSO

y1 y2 y3 y4 y5 y6 f1 f2 α1(y) α2(y) α1(y) × α2(y)

0.4261 0. 4303 0. 4018 0. 2598 0. 3764 0. 3585 0. 5583 0.4416 0.50000 0.49998 0.24999

123



2256 D. Chakraborty et al.

Table 11 Pareto-optimal solution obtained using PSO and GA with linear membership function

Method (y1, y2, y3, y4, y5, y6) f1 f2 α1(y) α2(y) α1(y) × α2(y)

GA (0.43875, 0.34276, 0.33438, 0.29652, 0.46322, 0.28238) 0.55831 0.44169 0.50001 0.50000 0.25001

PSO (0.42611, 0.43035, 0.401893, 0.25981, 0.37646, 0.35851) 0.55831 0.44168 0.50000 0.49998 0.24999

Table 12 Pareto-optimal solution obtained using PSO with exponential membership function for different set of shape parameters

Shape parameters (y1, y2, y3, y4, y5, y6) f1 f2 α1(y) α2(y) α1(y) × α2(y)

(0.1, 0.8) (0.40519, 0.3520, 0.28348, 0.27171, 0.27982, 0.42038) 0.53587 0.46412 0.44072 0.44781 0.19736

(0.5, 1.5) (0.38741, 0.38186, 0.39034, 0.29371, 0.27627, 0.31627) 0.52335 0.47665 0.36684 0.39117 0.14350

(1, 1) (0.44918, 0.38471, 0.26072, 0.30521, 0.46157, 0.29590) 0.55835 0.44165 0.37756 0.37748 0.14252

(1.5, 1) (0.42076, 0.49883, 0.28759, 0.27278, 0.32119, 0.45360) 0.57691 0.42309 0.35720 0.34104 0.12182

(0.8, 0.1) (0.42253, 0.31141, 0.25591, 0.29221, 0.32075, 0.440919) 0.58083 0.41916 0.44788 0.44066 0.19736

Table 13 Pareto-optimal solution obtained using PSO with linear membership function for different set of weights

Weights (y1, y2, y3, y4, y5, y6) f1 f2 α1(y) α2(y) α1(y)w1 × α2(y)w2

(0.8, 0.2) (0.35848, 0.40524, 0.39516, 0.44369, 0.44260, 0.37675) 0.70205 0.29795 0.8 0.2 0.60630

(0.6, 0.4) (0.34755, 0.46059, 0.30779, 0.41441, 0.316604, 0.30237) 0.60622 0.39377 0.6 0.4 0.51017

(0.4, 0.6) (0.36434, 0.27107, 0.34429, 0.28550, 0.35811, 0.29419) 0.51039 0.48960 0.4 0.6 0.51017

(0.2, 0.8) (0.41158, 0.44484, 0.32821, 0.25107, 0.28042, 0.27625) 0.41457 0.58542 0.2 0.8 0.60620

μ fi (x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if fi (x) ≥ Mi

e
−ai (

fi (x)−M
−(Mi−mi )

)−e−ai

1−e−ai
if mi ≤ fi (x) ≤ Mi

0 if fi (x) ≤ mi

where ai (ai > 0) is the shape parameter that deter-
mines the shape of membership function. Different values
of shape parameter may describe decision makers’ various
types of desirability towards objectives (Gupta andMelhawat
(2009)).Describing decisionmakers’ satisfaction of different
objectives by exponential membership functions, we solve
the optimization model (26) for different values of the shape
parameters with the help of PSO and the results are summa-
rized in Table 12.

It is clear (from the Table 12) that with the changes of
shape parameters in the exponential membership functions,
individual satisfaction of the objectives and also the resulting
overall satisfaction change significantly.

So far as, we have considered that decision maker has
equal preferences for both of the objectives. In other words,
decision makers insist on having no biasness towards the
objectives and this case is basically uniform preference case.
However, in practice decision makers may have different
preferences for each of the objectives. Such preferences of
the decision makers may be incorporated in the form of
weights of the objectives. To capture the preference infor-

mation in our model, we can reformulate (26) as follows
(Chen 2001):

Maximize α1(y)w1 × α2(y)w2

subject to
μ fi (y) = αi (y), i = 1, 2

g1(y) = 0.15y1 + 0.25y2 + 0.2y3 + 0.2y4
+ 0.1y5 + 0.1y6 − 1 ≤ 0

yk ∈ [0, 1], k = 1, 2, 3, 4, 5, 6.

(27)

where w1 and w2 are the weights of the objectives f1
and f2, respectively, and satisfy the conditions w1, w2 >

0, w1 + w2 = 1. The varying nature of preferences of the
objectives may produce different results. Table 13 depicts
Pareto optimal results of the model (27) for different set of
weights.

One may observe (from Table 13) that weighting factor
directly impacts the overall satisfaction of individual objec-
tives. When a lager weight is assigned to an objective in ini-
tial stage, the resulting satisfaction of that objective becomes
higher. It gives the impression that uniform weights generate
nearly uniform degree of satisfaction of individual objec-
tives, as in model (26). So, by assigning appropriate weights
to each of the objectives and solving the correspondingmodel
(as (27)), decision maker can obtain the most satisfying
solution.
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5 Conclusion

In growing complexity of social and economic factors and
rapid changes in business environment, it has become dif-
ficult for any company management to define the connec-
tion between various input decision variables and conflicting
objectives of the company in precise crisp mathematical
framework. Keeping this view in mind, in this paper, we
have developed a fuzzy multi-objective mathematical pro-
gramming problem in which the objective functions cannot
be expressed precisely. It has been assumed that the infor-
mation source fromwhere some knowledge may be obtained
about objective functions consists of a block of fuzzy if-then
rules. The antecedent part of the rules contains some lin-
guistic values of the decision variables and the consequence
part is either a linear combination of crisp values of the deci-
sion variables or consists of linguistic values of the objective
functions. We have focused in this work to solve the multi-
objective optimization problem for the above situations by
taking into account no-preference of decision maker regard-
ing the objectives. Using suitable fuzzy reasoning scheme,
we have obtained the exact functional form of the objective
functions with respect to the decision variables and, thus,
a crisp multi-objective optimization problem is formulated.
The resultant problemhas been solved by treating the goals of
the objectives as fuzzy in nature. Linearmembership function
has been used for fuzzification. We have used product oper-
ator, a compensatory aggregation operator, to aggregate the
membership functions of different objectives. Resulting non-
linear single-objective optimization problem has been solved
using PSO and the obtained results are compared with GA
results. The preferences of decision makers have also been
taken into account and it has been observed from the analysis
that the higher preference to any objective yields the larger
degree of satisfaction of that objective in the resulting overall
satisfaction.

The proposed model is a mathematical tool to the deci-
sion makers for dealing with such kind of complex scenario
and aids the decision makers in making suitable decision. In
future research, it will be interesting to see the application

of the above model as a decision support system in may real-
life problems, such as inventory management, scheduling,
supplier selection, etc.

Appendix

Particle swarm optimization (PSO), introduced by (Kennedy
and Eberhart 1995; Shi and Eberhart 1998a), is a nature-
inspired heuristic global optimization technique. It simulates
the social behavior of bird flocking or fish schooling to con-
figure the heuristic learningmechanism. PSO normally starts
with a set of initial solution (called swarm) of the decision
making problems under consideration. Individual solutions
are called particles and food is analogous to optimal solu-
tion. The particles are flown through a multi-dimensional
search space, where the position of each particle is adjusted
according to its own experience and that of its neighbors.
Let us assume that the dimension of the searching space is
D and the number of particle present in initial solution set
is l. We further assume that at sth generation the position
of the r th particle is xr (s) = [xr1(s), xr2(s), . . . , xrD(s) ],
the velocity of the r th particle is denoted as vr (s) =
[vr1(s), vr2(s), . . . , vr D(s) ], the position vector of the r th
particle at which best fitness encountered so far is denoted
as pbestr (s) = [pbestr1(s), pbestr2(s), . . . , pbestr D(s) ]
and the best position of all the particle is denoted as
gbest (s)= [gbest1(s), gbest2(s), . . . , gbestD(s) ]. In (s+
1)th generation the position and velocity of each particle are
updated using the following rules:

vr (s + 1) = w.vr (s) + c1.uv1.

×(pbestr (s) − xr (s)) + c2.uv2.(gbestr (s) − xr (s)) (28)

xr (s + 1) = xr (s) + vr (s + 1), (29)

where the parameters c1 and c2are constants, uv1 and uv2are
two random variables with uniform distribution in [0, 1] and
w(0 < w < 1) is called the inertia weight which controls the
influence of previous velocity on new velocity. The pseudo-
code of the PSO algorithm is given below.
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Algorithm: Pseudo code of PSO 

1: Fitness func�on 1 2( ), ( , ,...., )Df x x x x x=
2: Set the parameters: constant parameters 1c , 2c , iner�a weight w , number of maximum 

genera�on M.
3: For each par�cle:

Ini�alize par�cle posi�on and velocity; 
4: End For
5: DO:
6: For each par�cle:

(a) Compute fitness value;
(b) If the fitness value is be�er than the best fitness value (pbest) in history then set 

current value as the new pbest;
7: END For
8: Find the par�cle with best fitness value among the en�re par�cles and set it as gbest
9: For each par�cle 

(a) Compute the par�cle velocity by u�lizing (28);
(b) Update par�cle posi�on according to (29);

10: End For
11: WHILE maximum genera�on or minimum tolerance criteria is not a�ained.

Note For solving the optimization models given in Sect.
4, different parameters settings of the PSO algorithm and
system environments are used. The optimization method is
implemented inMATLAB and program is run on a Intel(R)
Core(TM) i5-2500 CPU @ 3.30 GHz processor with 4 GB
RAM under windows environment. To remove stochastic
dependency 30 independent runs are made. In each run PSO
parameters are set as follows: initial population size I =
20, maximum number of generation M = 100, the accel-
eration parameters c1 = c2 = 1.5, inertia weight w is
obtained by putting w1 = 0.9 and w2 = 0.4 in the for-
mula w = (w1 −w2)(

M−s
M )+w1 where M is the maximum

number of generation and sdenotes the current generation
number (Shi and Eberhart 1998b; Clerc and Kennedy 2002).
The termination criteria have been set as either limited to
maximum number of 100 generations or the order of rela-
tive error 10−5, whichever is achieved first. For solving each
optimization problem program has been run 30 times and the
best values are chosen.
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