
Soft Comput (2016) 20:2233–2243
DOI 10.1007/s00500-015-1638-0

METHODOLOGIES AND APPLICATION

Minimal attribute reduction with rough set based on compactness
discernibility information tree

Yu Jiang · Yang Yu

Published online: 12 March 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Minimal attribute reduction plays an important
role in rough set. Heuristic algorithms are proposed in litera-
ture reviews to get aminimal reduction and yet an unresolved
issue is that many redundancy non-empty elements involv-
ing duplicates and supersets exist in discernibility matrix. To
be able to eliminate the related redundancy and pointless ele-
ments, in this paper, we propose a compactness discernibility
information tree (CDI-tree). The CDI-tree has the ability to
map non-empty elements into one path and allow numerous
non-empty elements share the same prefix, which is recog-
nized as a compact structure to store non-empty elements in
discernibility matrix. A complete algorithm is presented to
address Pawlak reduction based onCDI-tree. The experiment
results reveal that the proposed algorithm is more efficient
than the benchmark algorithms to find out aminimal attribute
reduction.

Keywords Rough set · Discernibility matrix · Minimal
reduction · Compactness discernibility information tree

1 Introduction

Rough set theory, proposed by Pawlak in the 1980s, is a
theory for the study of intelligent systems characterized by
inexact, uncertain or vague information. It has found suc-

Communicated by V. Loia.

Y. Jiang (B)
College of Software Engineering, Chengdu University
of Information Technology, Chengdu 610225, China
e-mail: jiangyu@cuit.edu.cn

Y. Yu
College of Electric Information Engineering, Jiangsu University
of Technology, Changzhou 213001, China

cessful applications in such fields of artificial intelligence as
machine learning, knowledge discovery, decision analysis,
process control and pattern recognition (Slowinski 1992). It
has become one of the flash points in the research area of
information science.

Attribute reduction is one of the most important parts in
rough set, which is defined as a process of deleting redundant
attributes from larger set of condition attributes. As a con-
sequence in Thangavel and Pethalakshmi (2009), up to now,
many strategies for finding reducts have been investigated,
such as discernibility matrix strategy (Chen et al. 2012; Zhou
et al. 2014), positive region strategy (Qian et al. 2010; Jiang
et al. 2011) and other strategies [information entropy (Zheng
and Yan 2012; Jiang et al. 2015), Wasp Swarm Optimization
(Huilian and Yuanchang 2012; Lustiana et al. 2013), hybrid
genetic (Yuan 2014), Ant Colony Optimization (Majdi and
Derar 2013; Lustiana et al. 2013)].

Discernibility matrix is a beautiful theoretical result for
finding reducts in rough set, which was introduced in
Skowron and Rauszer (1992). Both the rows and columns
of the matrix correspond to the objects. An element mi, j of
the matrix is the set of all attributes on which the correspond-
ing two objects xi and x j have distinct values. Now, many
researchers study attribute reduction based on discernibility
matrix (or discernibility function) (Jiang et al. 2008; Yao and
Zhao 2009; Chen et al. 2012; Zhou et al. 2014). Moreover,
vast heuristic algorithms were proposed based on discerni-
bility matrix. In Jiang et al. (2008), an elegant algorithm for
finding a reduct based on the discernibility matrix and an
order of attributes was introduced. In Yao and Zhao (2009),
Yao and his colleagues introduced a method for construct-
ing a minimal discernibility matrix whose elements were
either the empty set or singleton set. The union of all ele-
ments in the minimal discernibility matrix produces a reduct.
In Zhou et al. (2014), a quick attribute reduction algorithm

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-015-1638-0&domain=pdf

2234 Y. Jiang, Y. Yu

based on the improved discernbility matrix was introduced
as well. During the process of finding reducts using the dis-
cernibility matrix, these algorithms have high cost of storage
and heavy computing load. Since numerous redundancy non-
empty elements involving duplicates and supersets exist in
discernibility matrix. To eliminate the related redundancy
elements, some elegant methods were proposed. In Jiang
et al. (2008), a new discernibility matrix was introduced,
which regards a decision-making class as a decision-making
rule. It reduces the non-empty elements in the discernibility
matrix. In addition, a novel condensing tree structure C-Tree
and improving C-Tree were introduced in Yang and Yang
(2008, 2011), respectively, which are order-tree based on the
difference ordering strategy of condition attributes. Although
they resolve the problem about the duplicates in the discerni-
bilitymatrix and have lower space complexity as compared to
the discernibility matrix, they never consider how to resolve
the superset problem. Therefore, it is necessary to design a
new method to store non-empty elements in discernibility
matrix.

Generally speaking, researchers want to find not the set
of all reducts, but a minimal reduct of a given decision table.
Since a minimal reduct is a minimal subset of attributes
that provides the same descriptive ability as the entire set of
attributes (Yao and Zhao 2009). Thus, many heuristic meth-
ods for finding minimal reducts have been investigated (Vin-
terbo and Øhrn 2000; Jiang 2012; Ding et al. 2012; Dongyi
and Zhaojiong 2014).

For example, in Vinterbo and Øhrn (2000), Vinterbo and
Øhrn introduced a genetic algorithm for computing mini-
mal hitting sets. In Jiang (2012), an algorithm for finding
a minimal reduct based on attribute enumeration tree was
also proposed. In Ding et al. (2012), Co-PSAR was intro-
duced based on particle swarmoptimization to find aminimal
reduct. At the same time, an algorithm based on rough set
andWasp SwarmOptimization was also proposed in Huilian
and Yuanchang (2012), which searches through the attribute
space for finding a minimal reduct based on attribute sig-
nificance. Moreover, in Dongyi and Zhaojiong (2014), an
algorithm based on discrete artificial bee colony to find a
minimal reduct was proposed as well.

In these methods, though heuristic algorithms for finding
minimal reducts are effective, many of them can not always
find a minimal reduct when decision tables are given and
even the result is just a superset of a reduct sometimes.

With the above analysis, in this paper, a new data struc-
ture to store non-empty elements in the discernibility matrix,
called compactness discernibility information tree (CDI-tree
in short), is proposed. It is an extended order-tree based on the
given order of condition attributes. TheCDI-tree has the abil-
ity to eliminate duplicates and allow numerous non-empty
elements share one path or the same prefix. It is recognized as
a compact structure to store non-empty elements in discerni-

bility matrix. To further eliminate supersets in discernibility
matrix, CDI-tree incorporates some pruning strategies, such
as core attribute pruning strategy, un-extension path strategy
and truncation path (or deleting subtree) pruning strategy.
Moreover, the time complexity of constructing a CDI-tree
is O(|C | ∗ |U |2). In particular, the space complexity of the
CDI-tree is far less than O(|C | ∗ |U |2) in most cases. To
demonstrate the usefulness and flexibility of the CDI-tree,
one heuristic algorithm for finding a minimal reduct is sug-
gested. The approximately strategy of it is to involve delet-
ing unimportant attributes in each iteration. The experiment
results reveal that the proposed algorithm is more efficient
than the benchmark algorithms to find out a minimal reduct.
And the time complexity of this algorithm is O(|C |2 ∗ |U |2).
At last, we prove in theory that the reduction found by this
algorithm is a Pawlak reduction (by Pawlak, a reduction R
is a Pawlak reduction, if and only if POSR(D) = POSC (D),
and ∀a ∈ R,POSR−{a}(D) �=POSC (D), Here, POS is the
positive region).

The rest of this paper is structured as follows: in Sect. 2,we
give basic concepts and attribute reduction related to rough
set. In Sect. 3, we introduce the building process ofCDI-tree.
In Sect. 4, based on CDI-tree method, a heuristic algorithm
is proposed to get a minimal reduct. At the same time, we
prove in theory that the reduction found by this algorithm is a
Pawlak reduction. In Sect. 5, we perform some experiments
to show the usefulness of CDI-tree. Finally, we conclude the
paper in Sect. 6.

2 Basic concepts of rough set theory

For the convenient description, we introduce some basic
notions of information systems at first (Wong and Ziarko
1985; Pawlak 1991; Zhang et al. 2001).

Definition 1 Adecision table (information table or informa-
tion system) is an ordered quadruple S = (U,C ∪ D, V, f),
where U is a non-empty finite set of objects, C ∪ D is a
non-empty finite set of attributes, C denotes the set of con-
dition attributes and D denotes the set of decision attributes.
C ∩ D = Ø. V is the union of attribute domains. f :
U × (C ∪ D) → V is an information function which asso-
ciates a unique value of each attribute with every object
belonging toU . Let ‘a’ is an attribute in C , xi is an object in
U , then f (xi , a) denotes the value of object xi in attribute ‘a’.
Table 1 lists a decision table, where U = {u1, . . ., u6},C =
{a, b, c, d, e} and D = { f }.

Given |U | = n, discernibility matrix of the decision table
is a matrix which contains n × n elements. Each element of

123

Minimal attribute reduction 2235

Table 1 An example of
decision table U a b c d e f

u1 Reject Agree Agree Agree Agree Reject

u2 Agree Neutralism Reject reject Reject Accept

u3 Agree Reject Reject Reject Reject Reject

u4 Agree Reject Reject Neutralism Reject Accept

u5 Neutralism Reject Neutralism Reject Reject Reject

u6 Neutralism Agree Neutralism Agree Reject Reject

Table 2 Discernibility matrix
corresponding to Table 1 u1 u2 u3 u4 u5 u6

u1 ∅ {a, b, c, d, e} ∅ {a, b, c, d, e} ∅ ∅

u2 ∅ {b} ∅ {a, b, c} {a, b, c, d}

u3 ∅ {d} ∅ ∅

u4 ∅ {a, c, d} {a, b, c, d}

u5 ∅ ∅

u6 ∅

the discernibility matrix is defined as follows:

a∗(xi , x j) = {a ∈ C | j > i ∧ f (xi , a)

�= f (x j , a) ∧ w(x, y) = 1)

Here, ∀x , y ∈ U , w(x, y) is defined as

w(x, y)

⎧
⎪⎪⎨

⎪⎪⎩

1 x ∈ POSC (D) ∧ y /∈ POSC (D)

1 x /∈ POSC (D) ∧ y ∈ POSC (D)

1 x, y ∈ POSC (D) ∧ (x, y) /∈ ind(D)

0 otherwise

where ind(D) is an indiscernibility relation on U , and
POSC (D) is the positive region of D with respect to C .

Definition 2 Discernibility information, DI for short, is the
non-empty element in discernibility matrix.

Definition 3 Discernibility set, Ds for short, is a set includ-
ing all non-empty elements in discernibility matrix.

Definition 4 By DM, if a ∈ C ∧ {a} ∈ DM, ‘a’ is called
necessary attribute or core attribute. A set including all nec-
essary attributes is called core and marked as Core(C).

According to above definitions, based on Table 2,
Ds= {{a,b,c,d,e},{a,b,c,d,e},{b},{a, b, c},{a, b, c, d}, {d},
{a, c, d},{a, b, c, d}}, Core(C) = {b, d}.

Definition 5 Adiscernibility function f A for a decision table
A is a Boolean function of m Boolean variables a′

1, . . ., a
′
m

(corresponding to the attributes a1,…,am) defined as follows:

f A(a
′
1, . . . , a

′
m) = ∧{∨a∗(xi , x j)|1

≤ j ≤ i ≤ n, a∗(xi , x j) �= ∅}
The set of all prime implicants of f A determines the set of
all reducts of A.

Example 1 The discernibility function for Table 1 is as fol-
lows:

f A(a, b, c, d, e, f) = (a ∨ b ∨ c ∨ d ∨ e)

× ∧ (a ∨ b ∨ c ∨ d ∨ e) ∧ b

× ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c ∨ d)

× ∧ d∧(a∨c∨d) ∧ (a ∨ b ∨ c ∨ d).

So Table 1 has one reduction: {b, d}.

3 Compactness discernibility information tree: design
and construction

Discernibility matrix is a beautiful theoretical result for find-
ing out reducts in rough set. However, there are many redun-
dancy non-empty elements involving duplicates and super-
sets in discernibility matrix, and all non-empty elements in
discernibility matrix are employed to find out reducts, which
leads to heavy computing load. Thus, this fact motivates our
idea to develop a novel structure to eliminate the related
redundancy elements.

In this section, with the help of some concept in Han et al.
(2000), Yang and Yang (2008) and Chen et al. (2012), we
introduce a compact data structure called compactness dis-
cernibility information tree to store non-empty elements in a
discernibility matrix efficiently.

3.1 Compactness discernibility information tree

A compactness discernibility information tree (or CDI-tree
in short) is a tree structure defined as follows:

123

2236 Y. Jiang, Y. Yu

1. It consists of one root labeled as “null”, a set of condition-
attribute-prefix subtree as the children of the root, and a
condition-attribute-header table.

2. Each node in the condition-attribute-prefix subtree con-
sists of five fields: attribute-name, count, parent, children
and node-link, where attribute-name registerswhich con-
dition attribute this node represents, count registers the
number of discernibility information represented by the
portion of path reaching this node, parent points to its
parent node, children points to its all children, and node-
link links to the next node in the CDI-tree carrying the
same attribute-name, or null if there is none.

3. Each entry in the condition-attribute-header table con-
sists of two fields: (1) attribute-name and (2) head of
node-link (a pointer pointing to the first node in the CDI-
tree carrying the attribute-name).

Based on this definition, we have the following CDI-tree
construction algorithm.

Algorithm 1. constructSimpleCDI-tree(T) (Simple CDI-tree construction algorithm)
Input: A decision table T.
Output: CDI-tree.
constructSimpleCDI-tree(decision table T)
{

Create the root of a CDI-tree, TN, and label it as “null”;
Let od be an order of condition attributes, which is obtained by choosing condition attributes

from left to right in the decision table T;
Create the condition-attribute-header table HT[1..|C|], according to order od, get every condition

attribute ca in turn and let its attribute-name and head of node-link be ca and null, respectively.
For each object pairs in decision table T do the following.

Compute the discernibility information of each object pair by using formula (1). Select the attrib-
utes in the discernibility information and sort them according to order od. Let the sorted discernibil-
ity information be [b|B], where b is the first element and B is the remaining list. Call insert-
Sub-tree([b|B],TN);

The function insertSub-tree([b|B],TN) is performed as follows:
 A. If (TN has a child N such that N.attribute-name = =b) {

a) increase N´s count by 1;
b) if N is the leaf node then return; //un-extension strategy
c) if b is the last attribute then delete the subtree of root N and remain root N; // truncation
strategy

}
 Else

Create a new node N, with its count initialized to 1, its parent link linked to TN, and its
node-link linked to the nodes with the same attribute-name via the node-link structure.

 B. If B is non-empty, call insertSub-tree(B, N).
}

Example 2 With the above algorithm, aCDI-tree can be con-
structed based on Table 1 as follows:

First of all, let od be the given order of condition attributes
in Table 1: 〈a, b, c, d, e〉. This order is important since each
path of the CDI-tree will follow this order. For each object
pair in Table 1, compute its discernibility information using

formula (1). Select the attributes in the discernibility infor-
mation and sort them according to order od.

Second, the first discernibility information {a, b, c, d, e}
leads to the construction of the first path or branch of the
CDI-tree: 〈a:1, b:1, c:1, d:1, e:1〉 (〈a, b, c, d, e〉 for short), in
which each node is represented using the format “attribute-
name: count”. For the second discernibility information {a,
b, c, d, e}, since its attribute list 〈a, b, c, d, e〉 is identical
to the first one, the path is shared with the count of each
node along the path incremented by 1. The third discernibil-
ity information {b} leads to the construction of a new path
of the CDI-tree:〈b:1〉. For the fourth discernibility informa-
tion {a, b, c}, since its attribute list 〈a, b, c〉 completely is
contained in the existing path 〈a, b, c, d, e〉, thus all nodes
behind node (c)must be deleted from path 〈a, b, c, d, e〉, the
count of corresponding node along the path is incremented
by 1. That is, the original path 〈a:2, b:2, c:2, d:2, e:2〉 is mod-
ified to 〈a:3, b:3, c:3〉. For the fifth discernibility informa-
tion {a, b, c, d}, since its attribute list 〈a, b, c, d〉 completely

contains the existing path 〈a, b, c〉, thus discernibility infor-
mation {a, b, c, d} ismapped to the existing path 〈a,b, c〉, the
count of corresponding node along the path is incremented by
1. The sixth discernibility information {d} leads to the con-
struction of a new path of theCDI-tree:〈d:1〉. For the seventh
discernibility information {a, c, d}, because its attribute list

123

Minimal attribute reduction 2237

Header table

attribute Head of
node-links

a a:6

b:5

c:5

c:1

d:1

b:1 d:1

null

root

b

c

d

e

Fig. 1 The CDI-tree based on Algorithm 1 and Table 1

〈a, c, d〉 shares only the prefix 〈a〉 with the a-prefix subtree,
a’s count is incremented by 1, and one new node (c:1) is
created and linked as a child of node (a:5). At the same time,
another new node (d:1) is created and linked as a child of
node (c:1). Repeat above procedure until the last discernibil-
ity information {a, b, c, d} is inserted into the CDI-tree.

From Fig. 1, we can see that the CDI-tree has the ability
to map non-empty elements into one path and allow a lot of
non-empty elements share the same prefix. It is recognized
as a compact structure to store non-empty elements in dis-
cernibility matrix.

It is well known that core is the most important sub-
set of condition attribute set C . Since none of its elements
can be removed without affecting the classification power
of attributes. If core is used to avoid mapping non-empty
elements including core attributes into CDI-tree, there are
better chances that more paths cannot be constructed if the
core of the decision table is not empty, so that the efficiency
of constructing CDI-tree can be improved.

With the above observations, we can improve Algorithm
1 based on core attributes, as shown in Algorithm 2.

Algorithm 2. constructImprovingCDI-tree(T) (CDI-tree construction algorithm with core attribute as
heuristic information)
Input: A decision table T.
Output: CDI-tree and Core(C).
constructImprovingCDI-tree(T)
{

Create the root of a CDI-tree, TN, and label it as “null”;
Let od be an order of condition attributes, which is obtained by choosing condition attributes from
left to right in the decision table T;
Create the condition-attribute-header table HT[1..|C|], according to order od, get every condition
attribute ca in turn and let its attribute-name and head of node-link be ca and null, respectively.
Create Core(C), and Core(C)=Ø;
For each object pairs in decision table T do the following.
Compute the DI of each object pair by using formula (1). Select the attributes in the DI and sort
them according to order od. Let the sorted DI be [b|B], where b is the first element and B is the
remaining list.
If (DI Core(C) = =

If (the DI includes only one attribute ai){
Core(C)=Core(C) DI;
Delete all paths including node (ai) from CDI-tree;

}
Call insertSub-tree([b|B],TN);

}
The function insertSub-tree([b|B],TN) is performed as follows:

A. If (TN has a child N such that N.attribute-name = =b){
a) increase N´s count by 1;
b) if N is the leaf node then return;
c) if b is the last attribute then delete the subtree of root N and remain root N;

}
Else

Create a new node N, with its count initialized to 1, its parent link linked to TN, and its node-link
linked to the nodes with the same attribute-name via the node-link structure.

B. If B is non-empty, call insertSub-tree(B, N).
}

According to Algorithm 2, a CDI-tree corresponding to
Table 1 shows in Fig. 2.

Obviously, from Fig. 2, it shows that the cost of storage
can be efficiently reduced as compared to Fig. 1. Moreover,
some experimental results are designed in Sect. 5.

For any given decision table, if DIS is a set consisting of
all paths in the CDI-tree, then DIS ⊆ DM and ∀ DI ∈ DM–
DIS, ∃ DI’∈ DIS ∧ DI’ ⊆ DI, that is, the CDI-tree contains
all discernibility information to find out reducts and elimi-
nates the duplicates and supersets exiting in the discernibility
matrix. Therefore, we can naturally deduce that the existing
discernibility matrix-base methods can be used under CDI-

123

2238 Y. Jiang, Y. Yu

Header table

attribute Head of
node-links

a b:1 d:1

null

root

b

c

d

e

null

null

Fig. 2 The CDI-tree based on Algorithm 2 and Table 1

tree structure. To efficiently utilize the CDI-tree structure for
attribute reduction, one CDI-tree-based rough set attribute
reduction algorithm is developed in Sect. 4.

There are several important properties of theCDI-tree that
can be derived from the CDI-tree construction process.

Definition 6 (Core node) For a given CDI-tree, if a path
contains only one node, then this node is the core node.

Property 1. For a given CDI-tree, the attribute represented
by core node is a core attribute.

Rational. If a path contains only one node in CDI-tree, then
there must be an element in discernibility matrix contain-
ing only one condition attribute that is mapped to this path.
According to the definition about core based on the dis-
cernibility matrix, the condition attribute represented by the
attribute-name of core node is the core attribute.

Property 2. For a given CDI-tree, if R is the attribute set,
which consists of all attributes represented by all of the root
node’s children, then ∀A ∈DM, R ∩ A �= ∅ (or POSR(D) =
POSC (D)) holds.

3.2 Complexity analysis of compactness discernibility
information tree

For a given decision table with |U | objects and |C | condition
attributes, the number of non-empty elements in a discerni-
bility matrix is |U |2 at most. Let the number of different
non-empty elements in a discernibility matrix be N . In the
worst case, N is equal to |U |2. By the CDI-tree construction
process, we know that the number of all paths in theCDI-tree
is N at most, and the number of nodes in a path is |C | at most.
So, the space complexity of the CDI-tree is O(|C | ∗ |U |2)
in the worst case. Moreover, in most cases, the nodes in the
CDI-tree are far less than |C | ∗ |U |2, because numerous non-
empty elements in the discernibility matrix share the same
path or the same prefix.

During the CDI-tree construction process, the iteration
times of it are |U |2 atmost, and the number of nodes inserting

intoCDI-tree and the number of nodes deleting from theCDI-
tree are |C | and Ni at most in each iteration, respectively. As
analyzed above, the time complexity of building anCDI-tree
is denoted as follows:

|C | ∗ |U |2 + (N1 + · · · + N 2|C|∗|U |) = |C | ∗ |U |2
+ (N1 + · · · + N 2|C|∗|U |).

In addition, the number of nodes in theCDI-tree is |C |∗ |U |2
at most. N1+· · ·+N 2|C|∗|U | is equal to |C |∗|U |2 in the worst
case. So, |C | ∗ |U |2 + (N1 +· · ·+ N 2|C|∗|U |)= 2∗ |C | ∗ |U |2.
The time complexity for building aCDI-tree is O(|C |∗|U |2).

4 Attribute reduction algorithm based on compactness
discernibility information tree

In this section, to efficiently utilize CDI-tree structure for
attribute reduction, one CDI-tree-based attribute reduction
algorithm is developed. This algorithm is to involve deleting
unimportant attributes in each iteration.

4.1 Attribute significance

Attribute significance denotes the significance of attribute in
decision table, which offers the powerful reference to the
decision. The bigger the significance of attribute, the higher
its position in the decision table, otherwise, the lower its
position.

Definition 7 The attribute significance is defined as the num-
ber of each condition attribute symbol appearing in the CDI-
tree, and denoted as Sig(a).

According toDefinition7 andFig. 1 Sig(a) = 6, Sig(b) =
6, Sig(c) = 6, Sig(d) = 2, Sig(e) = 0.

4.2 Minimal reduction algorithmic descriptions and
pseudocode

In this subsection, we propose an algorithm for finding
a minimal reduct based on CDI-tree. The approximately
strategy of it is to delete a most unimportant attribute in
each iteration, which guarantees that this algorithm can
keep important attributes. At the same time, this algorithm
deletes all paths including core node in every iteration as
well.

According to the above description, the pseudocode for
finding a minimal reduct based on CDI-tree is shown as fol-
lows:

123

Minimal attribute reduction 2239

The function mergeSub-tree(currentNode, parentNode)
(parentNode is the parent of currentNode) is performed as
follows:

(1) If currentNode is a leaf node, then delete the subtree of
parentNode from CDI-tree and return.

(2) The entire subtree of currentNode is merged with the
subtree of parentNode, delete currentNode from CDI-
tree, and return.

4.3 Completeness of algorithm

By the viewpoint of discernibility matrix, a reduction is a
Pawlak reduction, if ©1. ∀A ∈ Ds, A ∩ R �= ∅, ©2. ∀a ∈ R,
∃A ∈ Ds, A ∩ (R–{a}) = ∅. (Jue and Ju 2001).

Theorem 1 If R is a reduction found out by Algorithm 3,
then R is a Pawlak reduction.

Proof According to Algorithm 3, a loop is constructed from
step (4) to step (10) in this algorithm. R ∩ P = ∅ and
(R∪ P) ⊆ C . Suppose the number of the loop is i . Here, i is
an integer (|C | ≥ i ≥ 0). DIS is a set, which consists of all
paths in the CDI-tree. Let DIS0,…, DISk ,…, DISi−1, DISi

be a change list of the DIS. Similarly, Let R0,…, Rk ,…,
Ri−1, Ri be a change list of the R. Let P0,…, Pk ,…, Pi−1,
Pi be a change list of the P. Here, R0 = ∅, Ri = R,P0 = ∅,
DIS0 ⊆ Ds and ∀ DI ∈ Ds–DIS0, ∃ DI’ ∈ DIS0∧ DI’ ⊆ DI.
If m ≥ n, then Rn ⊆ Rm and Pn ⊆ Pm hold. And (1) ∀A ∈
DISk , ∃A’ ∈ DISk−1, A ⊆ A’ holds. (2) ∀A ∈ DISk−1, if
�A’ ∈ DISk , A ⊆ A’ holds, then |A|=1 and A ⊆ Rk−1 hold,
that is, A∩ Rk−1 �= ∅ holds. (3) ∀ A ∈ DISk , A’∈ DISk−1,
if A ⊆ A’, then A = A’ or |A|+1=|A’| holds. Moreover,
if A ⊆ A’ and |A| + 1 = |A’|, then (A’−A) ⊆ Pk−1and
(A’−A)∩ Rk−1 = ∅ hold. In a word, ∀A ∈Ds, A∩ R �= ∅,
and ∀a ∈ R, ∃A ∈ Ds, A ∩ (R−{a}) = ∅ hold. Therefore,
the reduction found out byAlgorithm3 is a Pawlak reduction.

��

4.4 Time complexity analysis

According to the analysis in Sect. 3.2, we can observe that
the number of nodes in CDI-tree is |C | ∗ |U |2 and the time
complexity of building a CDI-tree is O(|C | ∗ |U |2) in the
worst case.

By Algorithm 3, its iteration times is |C | at most, and
the time complexity of computing attribute significance is
O(|C | ∗ |U |2), and the time complexity of mergeSub-tree
(currentNode, parentNode) is O(|C | ∗ |U |2) in the worst
case. Thus, the time complexity of Algorithm 3 is as follows:
O(|C | ∗ |U |2) +|C |∗ O(|C | ∗ |U |2 + |C | ∗ O(|C | ∗ |U |2)+
(N1+ · · · + N |C|).

Since, N1+· · ·+N|C| is equal to |C | ∗ |U |2 at most.
Therefore, the time complexity of Algorithm 3 is O(|C |2 ∗
|U |2).

5 Experimental results and analysis

In this section, to demonstrate the usefulness and com-
pactness of the CDI-tree method, we show some exper-
imental comparisons. First of all, we perform an experi-
ment to verify core attribute pruning strategy that plays an
essential role in the CDI-tree construction process when
the core of a given decision table is not empty. Second,
we perform an experiment to compare the CDI-tree pro-
posed in this paper with C-Tree proposed in Yang and Yang
(2008) based on the same discernibility matrix and attribute
order. At last, we perform another experiment to demon-
strate the reduction results for finding out a minimal reduct
between MARACDI-tree, MinARA, JohnsonReducer and
SAVGeneticReducer. Here, they areMARACDI-tree in this
paper, MinARA in Jiang (2012), JohnsonReducer in John-
son (1974) and SAVGeneticReducer in Vinterbo and Øhrn
(2000).

123

2240 Y. Jiang, Y. Yu

Table 3 The Detailed information of the data sets used in the compar-
ison

Database Abbreviation |U | |C | |D| |Core(C)|
Lenses Lenses 24 4 1 4

Hayes roth HR 132 4 1 3

SPECT SPECT 269 44 1 0

Voting Voting 435 16 1 7

Balance scale BS 625 4 1 4

Tic-tac-toe TTT 958 9 1 0

Chess Chess 3196 36 1 27

Mushroom MR 8124 22 1 0

Letter Letter 20,000 15 1 4

Poker hand PH 25,010 10 1 5

Shuttle Shuttle 58,000 9 1 1

Connect4 Connect4 67,557 42 1 15

Wechoose somedata sets fromUCIdatabase (http://www.
ics.uci.edu/~mlearn/Machine-Learning.html) for the com-
parison. The detailed information shows in Table 3.

Here, |U | is the number of objects of a decision table, |C |
is the number of the condition attribute, |D| is the number
of decision attribute, and |Core(C)| is the number of core
attribute of a decision table.

In addition, the experiments in Sects. 5.1 and 5.2 are con-
ducted on a 3.2-Ghz Pentium® dual-core with 2 GB ofmem-
ory runningMicrosoftWindows 7.However, the experiments
in Sect. 5.3 are conducted on a 1.73-Mhz Pentium III with
768MBofmemory runningMicrosoftWindowsXP, because
JohnsonReducer and SAVGeneticReducer are implemented
inROSETTA andROSETTA runs Microsoft Windows XP.
All codeswere compiled usingMicrosoftVisual Studio 2005.

5.1 Comparisons of constructing CDI-tree with and without
core attribute pruning

It is well known that core is the most important subset of
condition attribute C . None of its elements can be removed
without affecting the classification power of attributes. In
this part, we perform an experiment to verify core attribute
pruning strategy playing an essential role in the CDI-tree
construction process when the core of a given decision table
is not empty.

During the CDI-tree construction process, core attribute
pruning guarantees that the CDI-tree construction algorithm
with core attribute pruning. So CDI-tree based on Algorithm
2 (with core attribute pruning) requires the less computational
cost and less storage cost than CDI-tree based on Algorithm
1 (without core attribute pruning) as shown in Figs. 3 and 4.
Clearly, the CDI-tree based on Algorithm 1 is equal to the
CDI-tree based on Algorithm 2 if the core of a given decision
table is empty.

HR BS voting poker hand letter connect4 shuttle
0

500

1000

1500

2000

2500

UCI data sets

th
e

nu
m

be
r

of
 n

od
es

CDI-tree based on Algorithm2

CDI-tree based on Algorithm1

Fig. 3 The number of nodes in CDI-tree on some datasets

HR BS voting poker hand letter connect4 shuttle
0

100

200

300

400

500

600

700

800

900

1000

UCI data sets

ru
nn

in
g

tim
e/

s

CDI-tree based on Algorithm2

CDI-tree based on Algorithm1

Fig. 4 The running time on some datasets

The experimental result in Fig. 3 shows thatCDI-treewith
core attribute pruning needs the less computational cost than
CDI-tree without core attribute pruning. Since core attribute
pruning guarantees that the CDI-tree construction algorithm
does not construct all the paths including any core attribute.
For instance, using letter, voting and connect4, the number
of nodes in CDI-tree based on Algorithm 1 is approximately
4 times, 12 times and 12 times of the number of nodes in
CDI-tree based on Algorithm 2, respectively.

In Fig. 4,we can see thatCDI-treewith core attribute prun-
ing is obviously faster than CDI-tree without core attribute
pruning. For example, usingpoker hand, letter and shuttle, the
running time ofCDI-treewith core attribute pruning (orCDI-
tree without core attribute pruning) is 118.872 (241.769),
168.885 (307.133) and 739.363 (980.352) respectively.

In summary, we can conclude that CDI-tree with core
attribute pruning needs the less computational cost and less
storage cost than CDI-tree without core attribute pruning.

123

http://www.ics.uci.edu/~mlearn/Machine-Learning.html
http://www.ics.uci.edu/~mlearn/Machine-Learning.html

Minimal attribute reduction 2241

Table 4 The experimental
result based on C-Tree and
CDI-tree

Database |C | |Core(C)| |U | The number of nodes The construct time (s)

C-Tree CDI-tree C-Tree CDI-tree

Chess 36 27 3196 2,665,537 51 12.855 2.278

Letter 15 4 20,000 32,528 545 361.016 168.885

Balance scale 4 4 625 16 5 0.109 0.046

Voting 16 7 435 16,746 50 0.125 0.078

Mushroom 22 0 8124 29,410 21,044 49.670 49.608

Tic-tac-toe 9 0 958 510 45 0.406 0.312

Poker hand 10 5 25,010 1024 23 273.047 118.872

Shuttle 9 1 58,000 389 126 1046.684 739.363

Connect4 42 15 67,557 413,100 21 698.678 688.788

Hayes roth 4 3 132 16 4 0.016 0.0

Table 5 The reduction results
to find a minimal reduct. Database The cardinality of minimal reducts

| JohnsonReducer| |SAVGeneticReducer| |MinARA| |MARACDI-tree|
Lenses 4 4 4 4

Hayes roth 3 3 4 3

SPECT 3 3 3 2

Chess 29 29 29 29

Balance scale 4 4 4 4

Voting 9 9 9 9

Tic-tac-toe 8 8 8 7

Poker hand 7 7 7 6

Shuttle Out of memory Out of memory Out of memory 4

Connect4 Out of memory Out of memory 16 16

5.2 Comparison of CDI-tree and C-Tree

In this part, we experimentally demonstrate the running time
and the storage cost in CDI-tree and C-Tree based on the
same discernibility matrix and attribute order. As pointed in
Yang and Yang (2008), the C-Tree is a compact tree struc-
ture, which may guarantee that less storage cost is required
than the discernibility matrix. As compared with CDI-tree,
C-Tree can restore all information coming from a discerni-
bility matrix, that is, any non-empty element of a discerni-
bility matrix can have a path in C-Tree. CDI-tree contains
all information to find out reducts and integrates many prun-
ing strategies, which can eliminate lots of redundancy ele-
ments and achieve compactness storage of the elements in
the discernibility matrix. For instance, the non-empty ele-
ments, such as {a, b}, {a, b, c}, {a, b, c}, {a, b, c}, {a, b, d}
and {a, b, c, d}, share the same path 〈a, b〉 in the CDI-tree.
Therefore, we naturally come to the conclusion thatCDI-tree
needs the less computational cost and less storage cost than
C-Tree.

The experimental result in Table 4 shows that CDI-tree is
a compact data structure, which also guarantees that the less
computational cost and less storage cost are required than C-
Tree based on same discernibility matrix and attribute order.
For example, using C-Tree structure, chess, connect4, letter,
voting and tic-tac-toe contain over 2.6 × 106, 4.1 × 105, 3.2
× 104, 1.6 × 104 and 5.1 × 102 nodes, respectively, while
they only generate 51, 21, 545, 50 and 45 nodes by employing
theCDI-tree, respectively. Furthermore, fromTable 3,we can
also observe that the running time ofC-Tree is approximately
6 times, 3 times and 3 times of CDI-tree in chess, letter and
poker hand, respectively. Therefore, it is obvious that the
CDI-tree is more compactness than the C-tree, which can
also guarantee that less computational cost is required.

5.3 Comparison of algorithms to find a minimal Reduct

In this part, we compare the method proposed in this paper
(MARACDI-tree) with three common reduction methods for
finding minimal reducts. They areMinARA algorithm based

123

2242 Y. Jiang, Y. Yu

on attribute enumeration tree (Jiang 2012), JohnsonReducer
algorithm and SAVGeneticReducer algorithm. JohnsonRe-
ducer invokes a variation of a simple greedy algorithm to
compute a minimal reduct, as described by Johnson in John-
son (1974). The algorithm has a natural bias towards find-
ing a single prime implicant of minimal length. SAVGeneti-
cReducer is a genetic algorithm for computing minimal hit-
ting sets, as described by Vinterbo and Øhrn (2000). John-
sonReducer and SAVGeneticReducer are implemented in
ROSETTA that is a rough set toolkit for analysis of data.
You can check out the ROSETTA homepage at http://www.
idi.ntnu.no/~aleks/rosetta/ for information.

We experimentally compare these methods and summa-
rize the results in Table 5. From Table 5, we can observe that
MARACDI-tree, MinARA, JohnsonReducer and SAVGe-
neticReducer often find out a minimal reduct. Table 5 shows
thatMARACDI-tree, JohnsonReducer and SAVGeneticRe-
ducer can find out aminimal reduct on “hayes roth”, whereas
MinARA does not. Similarly, MARACDI-tree can find out
a minimal reduct on “SPECT”, “tic-tac-toe”, and “poker
hand”,whereasMinARA,JohnsonReducer and SAVGeneti-
cReducer cannot. In addition, from Table 5, we can also see
that MinARA, JohnsonReducer and SAVGeneticReducer
do not suit for large data sets since their workloads are so
heavy that they will be stopped because of out of memory in
experimental software and hardware environments. In sum-
mary, it has been proven that finding a minimal reduct is
NP-hard problem. Although we cannot prove in theory that
our algorithm can find out a minimal reduct in any cases,
from this section we draw a conclusion thatMARACDI-tree
is the best one to find out a minimal reduct based on UCI
datasets.

6 Conclusions

Attribute reduction is the key research point of rough set
theory that has been widely studied. An effective way for
attribute reduction is to obtain the discernibility matrix.
Unfortunately, a large number of redundant elements exist
in discernibility matrix such as the same elements and the
supersets. In this paper, we propose a CDI-tree recognized
as a compact structure to store non-empty elements of a dis-
cernibility matrix, which can eliminate the related redundan-
cies and pointless elements. The experimental results demon-
strate that CDI-tree has the less computational cost and less
storage cost than C-Tree has. A heuristic algorithm is pro-
posed forminimal attribute reduction based onCDI-tree. The
experimental performance using UCI datasets shows that the
proposed algorithm could find the expectedminimal attribute
reduction. We plan to have tasks in the future work. First is
to explore the methods to get the minimal number of nodes
containing in CDI-tree, and the second is to prove in the-

ory that the proposed minimal attribute reduction algorithm
could find the minimal reduct for any decision tables.

References

Chen D, Zhao S, Zhang L et al (2012) Sample pair selection for
attribute reduction with rough set. IEEE Trans Knowl Data Eng
24(11):2080–2093

Ding W, Wang J, Guan Z (2012) Cooperative extended rough attribute
reduction algorithm based on improved PSO. J Syst Eng Electron
23(1):160–166

Feng JIANG, Sha-sha WANG, Jun-wei DU et al (2015) Attribute
reduction based on approximation decision entropy. Control Decis
30(1):65–70

Han JW, Pei J, Yin YW (2000) Mining frequent patterns without can-
didate generation. Weidong C, Jeffrey F, Proceedings of the ACM
SIGMOD conference onmanagement of data. ACMPress, Dallas,
pp 1–12

Huilian FAN, Yuanchang ZHONG (2012) A rough set approach to fea-
ture selection based on wasp swarm optimization. J Comput Inf
Syst 8(3):1037–1045

Jiang Yu, Wang Xie, Ye Zhen (2008) Attribute reduction algo-
rithm of rough sets based on discernibility matrix. J Syst Simul
20(14):3717–3720, 3725

Jiang Y (2012) Minimal attribute reduction for rough set based on
attribute enumeration tree. Int J Adv Comput Technol 4(19):391–
399

Jian-hua ZHOU, Zhang-yan XU, Chen-guang ZHANG (2014) Quick
attribute reduction algorithm based on the improved discernibility
matrix. J Chin Comput Syst 35(4):831–834

Jing S-Y (2014) A hybrid genetic algorithm for feature subset selection
in rough set theory. Soft Comput 18(7):1373–1382

Johnson DS (1974) Approximation algorithms for combinatorial prob-
lems. J Comput Syst Sci 9:256–278

Jue W, Ju W (2001) Reduction algorithms based on discernibility
matrix: the ordered attributes method. J Comput Sci Technol
16(6):489–504

Lakshmipathi Raju NVS, Dr MN, Seetaramanath D, Srinivasa Rao P
et al (2013) Rough set based privacy preserving attribute reduction
on horizontally partitioned data and generation of rules. Int J Adv
Res Comput Commun Eng 2(11):4343–4348

Mafarja M, Eleyan D (2013) Ant colony optimization based feature
selection in rough set theory. Int J Comput Sci Electron Eng
1(2):244–247

NguyenT-T,NguyenP-K (2013)Reducing attributes in rough set theory
with the viewpoint of mining frequent patterns. Int J Adv Comput
Sci Appl 4(4):130–138

Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11(5):341–356
Pawlak Z (1991) Rough set: theoretical aspects of reasoning about data.

Kluwer Academic Publishers, Boston
Pratiwi L, Choo Y-H et al (2013) Immune ant swarm optimization

for optimum rough reducts generation. Int J Hybrid Intell Syst
10(3):93–105

Qian YH, Liang JY, Pedrycz W, Dang CY (2010) Positive approxima-
tion: an accelerator for attribute reduction in rough set theory. Artif
Intell 174:597–618

SkowronA, Rauszer C (1992) The discernibility matrices and functions
in information systems. In: Slowinski R (ed) Intelligent decision
support. Handbook of Applications and Advances of the Rough
Sets Theory, Kluwer, Dordrecht

Slowinski R (1992) Intelligent decision support–handbook of applica-
tions and advances of the rough sets theory. Kluwer Academic
Publishers, London

123

http://www.idi.ntnu.no/~aleks/rosetta/
http://www.idi.ntnu.no/~aleks/rosetta/

Minimal attribute reduction 2243

Thangavel K, Pethalakshmi A (2009) Dimensionality reduction based
on rough set theory: a review. Appl Soft Comput 9:1–12

Vinterbo S, Øhrn A (2000) Minimal approximate hitting sets and rule
templates. Int J Approx Reason 25(2):123–143

Wang GY, Zhao J, An JJ (2005) A comparative study of algebra view-
point and information viewpoint in attribute reduction. Fundam
Inf 68(3):289–301

Wong SKM, Ziarko W (1985) On optional decision rules in decision
tables. Bull Polish Acad Sci 33(11/12):693–696

Xin-min TAO, Yan WANG, Jing XU et al (2012) Minimum rough set
attribute reduction algorithm based on viruscoordinative discrete
particle swarm optimization. Control Decis 27(2):259–265

Yang M, Yang P (2008) A novel condensing tree structure for rough set
feature selection. Neurocomputing 71(4):1092–1100

Yang M, Yang P (2011) A novel approach to improving C-Tree for
feature selection. Appl Soft Comput 11(2):1924–1931

Yao YY, Zhao Y (2009) Discernibility matrix simplification for con-
structing attribute reducts. Inf Sci 179(5):867–882

Ye D, Chen Z (2014) A new approach to minimum attribute reduction
based on discrete artificial bee colony. Soft Comput. doi:10.1007/
s00500-014-1371-0

Yu JIANG,Yin-Tian LIU, Chao LI (2011) Fast algorithm for computing
attribute reduction based on bucket sort. Control Decis 26(2):207–
212

Zhang WenXiu W, WeiZhi LJY et al (2001) Rough set theory and
method. Beijing Science Press, Beijing

Zhang Q, Shen W (2014) Research on attribute reduction algorithm
with weights. J Intell Fuzzy Syst 27(2):1011–1019

Zheng J, Yan R (2012) Attribute reduction based on cross entropy in
rough set theory. J Inf Comput Sci 9(3):745–750

Zhou J, Miao D, Feng Q et al. (2009) Research on complete algorithms
for minimal attribute reduction. In: Proceedings of the 4th interna-
tional conference on rough sets and knowledge technology. Gold
Coast, Australia, pp 152–159

Zhou J, Miao D, Feng Q, Sun L (2009) Research on complete algo-
rithms for minimal attribute reduction. Rough sets and knowledge
technology, volume 5589 of lecture notes in computer science.
Springer, Berlin, pp 152–159

123

http://dx.doi.org/10.1007/s00500-014-1371-0
http://dx.doi.org/10.1007/s00500-014-1371-0

	Minimal attribute reduction with rough set based on compactness discernibility information tree
	Abstract
	1 Introduction
	2 Basic concepts of rough set theory
	3 Compactness discernibility information tree: design and construction
	3.1 Compactness discernibility information tree
	3.2 Complexity analysis of compactness discernibility information tree

	4 Attribute reduction algorithm based on compactness discernibility information tree
	4.1 Attribute significance
	4.2 Minimal reduction algorithmic descriptions and pseudocode
	4.3 Completeness of algorithm
	4.4 Time complexity analysis

	5 Experimental results and analysis
	5.1 Comparisons of constructing CDI-tree with and without core attribute pruning
	5.2 Comparison of CDI-tree and C-Tree
	5.3 Comparison of algorithms to find a minimal Reduct

	6 Conclusions
	References

