
Soft Comput (2016) 20:2219–2232
DOI 10.1007/s00500-015-1637-1

METHODOLOGIES AND APPLICATION

Indicator-based set evolution particle swarm optimization
for many-objective problems

Xiaoyan Sun · Yang Chen · Yiping Liu ·
Dunwei Gong

Published online: 12 March 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Multi-objective particle swarm optimization
(MOPSO) has been well studied in recent years. How-
ever, existing MOPSO methods are not powerful enough
when tackling optimization problems with more than three
objectives, termed as many-objective optimization problems
(MaOPs). In this study, an improved set evolution multi-
objective particle swarm optimization (S-MOPSO, for short)
is proposed for solving many-objective problems. Accord-
ing to the proposed framework of set evolution MOPSO (S-
MOPSO), including quality indicators-based objective trans-
formation, the Pareto dominance on sets, and the particle
swarm operators for set evolution, an enhanced S-MOPSO
method is developed by updating particles hierarchically, i.e.,
a set of solutions is first regarded as a particle to be updated
and then the solutions in a selected set are further evolved by
a modified PSO. In the set evolutionary stage, the strategy
for efficiently updating the set particle is proposed. When
further evolving a single solution in the initial decision space
of the optimized MaOP, the global and local best particles
are dynamically determined based on those ideal reference
points. The performance of the proposed algorithm is empir-
ically demonstrated by applying it to several scalable bench-
mark many-objective problems.
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1 Introduction

Multi-objective optimization problems (MOPs) are variable
in practice, i.e., environmental and systems biology (Pedro
et al. 2014), controller tuning (Gilberto et al. 2014), and
machinability of stainless steel (Lobato et al. 2014). InMOPs,
conflicts among objectives usually lead to a set of trade-
off solutions,rather than a single optimal solution. To deter-
mine such a set of solutions, the concept of the Pareto domi-
nance (Goldberg 1988) is used as the foundation to discrim-
inate solutions, and a variety of multi-objective evolutionary
algorithms (MOEAs), e.g., multi-objective particle swarm
optimization (MOPSO) (Reyes-Sierra and Coello Coello
2006), non-dominated sorting genetic algorithm-II (NSGA-
II) (Deb et al. 2002), strength Pareto evolutionary algorithm
(SPEA) (Zitzler and Thiele 1999), and Pareto archived evo-
lutionary strategy (PAES) (Knowles and Corne 1999), have
been proven to be powerful in solving MOPs with two or
three objectives. However, these algorithms scale poorly in
solving MaOPs (Purshouse and Fleming 2003) due to the
increase in the number of non-dominated solutions that dete-
riorates the selection pressure. To well extend the merits of
MOEAs for solving MOPs, three main kinds of MOEAs
have been developed. The first is Pareto-based algorithms.
In general, Pareto dominance often fails to provide enough
selection pressure in a high-dimensional objective space, and
this could lead to the appearance of some modifications of
Pareto-based algorithms when facing many-objective prob-
lems. These modifications typically include enhancing the
Pareto dominance relation, such as the ε-dominance (Deb
et al. 2005), and improving the diversity maintenance strat-
egy in the algorithms, such as the shift-based density esti-
mation (Li et al. 2014). The second is based on decom-
position, e.g., MOEA/D (Zhang and Li 2007). With this
kind of MOEAs, several single-objective optimization prob-
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lems are constructed by decomposing MaOPs using suitable
weighted functions. For the last category, it is generally called
indicator-based MOEAs (Zitzler and Knzli 2004). Zitzler et
al. first proposed an indicator-based framework for reducing
the number of objectives, by regarding a set of candidates
as an individual and directly using some quality indicators,
e.g., hypervolume, diversity or spread of a set of solutions,
to evaluate the performance of the individuals. In this case,
the number of objectives to be optimized is determined by
the adopted indicators, usually no more than three. In addi-
tion, no extra parameters are introduced into this framework.
Therefore, it has been steadily gaining attention recently.

Themain character of the indicator-based algorithm is that
all evolutionary operators perform on not a single solution
as traditional MOEAs do, but sets of solutions. So the corre-
sponding operators for the set evolution are of great impor-
tance. However, few studies have been focused on such an
issue, and most existing methods just adopt simple crossover
and mutation operators of traditional EAs to evolve only
the elements of a set, but neglecting the correlations among
sets.

MOPSO has been demonstrated to be suitable for MOPs
in a faster convergence compared to otherMOEAs (Goh et al.
2010). But when applying PSO for MaOPs, it is difficult to
select the global and local leaders, because almost all indi-
viduals are non-dominated under the Pareto comparison. It is
natural to combine the PSO with the indicator-based MOEA
due to theirmerits. On one hand, if the indicator-based frame-
work is incorporated into PSO, the performance of PSO for
MaOPs is expected to be improved; on the other hand, for an
indicator-based MOEA, if both a set of solutions and a solu-
tion of the set are regarded as different level of particles, the
PSO strategies can be applied to them hierarchically, which
will greatly benefit the fine search. To this end, we have pro-
posed an indicator-based set evolution PSO algorithm (Sun
et al. 2014a, b), including the general framework and some
specific operators of PSO. In work Sun et al. (2014a), the
set-based PSO operator was presented and the associated
selection method of sets leaders was given in detail based on
aweighted indicator by balancing the convergence and diver-
sity of the evolved sets. In Sun et al. (2014b), an alternative
leader selection strategy was addressed and a mutation was
further applied to the solutions of each set. However, in these
algorithms, the set-based PSO operator and the evolution for
the original solutions are not further studied.

The main goal of this study is to improve the performance
of the set-based PSO by proposing an enhanced set PSO
operator and a more efficient PSO for the solutions in the
original space of the MaOPs. Compared with our previous
work, in Sun et al. (2014a, b), the following three different
contents are focused here: (1) a framework of indicator-based
set evolution IS-MOPSO; (2) an improved PSO operator for
evolving sets in a more powerful way; (3) an approach to

updating the solution of a set to guide the population to evolve
toward the true Pareto front.

The remainder of this paper is organized as follows. Sec-
tion 2 gives the main concepts and notations for MaOPs.
Related work on MOEAs for solving MaOPs is introduced
in Sect. 3. Section 4 presents the framework of our improved
indicator-based set evolution PSO, and the specific realiza-
tion of this framework is followed in Sect. 5. The applications
of the proposed algorithm in several benchmark MaOPs and
the associated analysis are demonstrated in Sect. 6. Section
7 draws the main conclusions of the study.

2 Concepts of evolutionary many-objective optimization

Without loss of generality, a minimization problem formu-
lated with Eq. (1) is considered here:

min f(x) = ( f1(x), f2(x), . . . , fm(x))

s.t. gi (x) ≤ 0, i = 1, 2, . . . , k

x ∈ S ⊂ Rn, (1)

where x is an n-dimensional decision variable and its feasible
space is denoted as S; gi (x) ≤ 0, i = 1, 2, . . . , k represents
the i th constraint; f j (x), j = 1, 2, . . . ,m, means the j th
objective, and m refers to the number of objectives to be
optimized. When the value of m is larger than 3, Eq. (1) is
termed as an MaOP.

Evolutionarymany-objective optimization expects to seek
a number of compromising solutions for all objectives under
the concept of the Pareto dominance. Therefore, the related
notations, including the Pareto dominance (PD), the Pareto
optimality, the Pareto optimal set, and the Pareto front (PF)
are of great importance here.

Pareto dominance: For two solutions x1 and x2, if ∀k ∈
{1, 2, . . . ,m} : fk (x1) ≤ fk (x2) and ∃k′ ∈ {1, 2, . . . ,m}:
fk′ (x1) < fk′ (x2), solution x1 is said to dominate x2,
denoted as x1 � x2.

Pareto optimal set and Pareto front: For a solution x∗ ∈ S,
if there is no x′ ∈ S : x′ � x∗, x∗ is said to be non-dominated
and called as a Pareto optimal solution. The set consisting of
all non-dominated solutions is called the Pareto optimal set.
Accordingly, the images of all the Pareto optimal solutions
in the objective space form the Pareto front.

Besides the aforementioned concepts, indicators which
are commonly utilized to evaluate the performances of tra-
ditional MOEAs are especially significant for an indicator-
based MOEA. Therefore, they are briefly introduced here.
So far, such metrics as the generational distance (GD), the
inverted generational distance (IGD), the maximal spread
(MS), hypervolume, and the spacing are very popular. The
main reason is that they provide several criteria related to
(1) proximity, which reflects the distance between the Pareto
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front obtained by an algorithm and the true Pareto front of a
MOP, (2) distribution, which depicts the distribution of solu-
tions along the Pareto front, and (3) spread, which suggests
the extent covered by the Pareto optimal set.

GD indicator: The metric of GD well indicates the gap
between the true Pareto front and the obtained one, which
is formulated as:

GD = 1

nPF

(nPF∑
i=1

d2i

) 1
2

, (2)

where nPF = |PF |, and di = minnPF
g=1√∑m

j=1

(
f j (xi ) − f truej (xg)

)2
represents the Euclidean dis-

tance between the i-th member of the obtained Pareto front
and the closest one of the true Pareto front. Clearly, a small
value of GD is expected, which suggests that the obtained
Pareto front has a good approximation to the true one.

IGD indicator: The IGD indicator can reflect not only the
proximity, but also the distribution of the obtained Pareto
front. Let P true be a set of points with uniform distribution
in the objective space along the true Pareto front, and P an
approximation to the truePareto front, then the IGD is defined
as:

IGD
(
P, P true) =

∑
v∈P true

d (v, P)∣∣P true
∣∣ , (3)

where d (v, P) means the minimal Euclidean distance
between v and the points in P . P must be very near to the
true Pareto front and does not miss any part of the true Pareto
front, if the value of IGD is low enough.

Schotts spacing: Schott (1995) addressed the following
spacing metric to gauge how even the points on the Pareto
front were:

Fd(X) =
√√√√ N∑

j=1

[
d∗(X) − d(x j )

]2
/(N − 1) (4)

where X = {x1, x2, . . . , xN} is a set with N optimal solu-
tions; d(x j ) = minl∈{1,2,...,N },l 
= j

∑m
i=1

∣∣ fi (x j ) − fi (xl)
∣∣,

j = 1, 2, . . . , N , and d∗(X) = 1
N

∑N
j=1 d(x j ). From Eq.

(4), a large value of Fd(X) is expected to obtain an evenly
distributed Pareto front.

Hypervolume The hypervolume indicator Johannes and Zit-
zler (2008) gives the volume of an objective subspace that
is dominated by a solution set. On the basis of a reference
point, xre f , it can be defined as follows:

Fh(X) = λ

⎛
⎝ ⋃

x j∈X
{h| f (x j ) < h < f (xre f )}

⎞
⎠ , (5)

where λ is the Lebesgue measure. A large value of this indi-
cator means that the obtained Pareto front gains not only an
outstanding proximity, but also a good distribution.
Diversity The diversity indicator is used to measure the
extent of a set of optimal solutions. Zitzler et al. (2000) argued
the following expression to calculate the value of the diver-
sity. Similarly, a large value of this indicator is expected to
maintain the diversity of a solution set:

Fe (X) =
√√√√ m∑

i=1

(
N

max
j=1

fi
(
x j

) − N
min
j=1

fi
(
x j

))2

. (6)

3 Related work

Since MOEAs have been proven to be powerful for tackling
MOPs with two or three objectives, it is natural to scale such
a framework toMaOPs. Li et al. (2013) reviewed that various
MOEAs have been improved to solveMaOPs in recent years.
They provided a systematic comparison among eight repre-
sentative MOEAs, e.g., NSGA-II, MOEA/D, and indicator-
basedMOEA, and concluded that different explorative capa-
bilities suggest a careful choice for solving MaOPs. Von
Lcken et al. (2014) also presented a survey on MOEAs for
MaOPs from two aspects, i.e., methods of using alternative
dominance relation and transforming the original MaOP into
a related one. As Christian addressed, the transformation-
based approaches, including decomposition-based MOEAs,
objective aggregation, indicator-based evolution, dimension
reduction, and space partition, are very popular and have
gained much attention.

Among all these compared approaches, three typical algo-
rithms, NSGA-II which is the most powerful tool for solv-
ing MOPs with less than four objectives, the indicator-based
MOEA presented recently, and PSO, are closely correlated
with this study, and therefore relatedwork of these algorithms
will be focused.

3.1 NSGA-II for MaOPs

The framework of NSGA-II has been successfully adopted
to solve MOPs in the past decades and it is of nature to be
expanded to solve MaOPs. However, previous studies have
shown that the dominance relation used in NSGA-II greatly
weakens its performance in comparing individuals as the
number of objectives increases. However, NSGA-II is widely
used in tackling MaOPs by either changing the dominance
relation or enhancing the crowding distance to improve its
scalability.

Mario and Kaori (2007) proposed several substitutive dis-
tance assignment schemes to replace the traditional crowding
distance used in typical NSGA-II. These schemes result in a

123



2222 X. Sun et al.

significantly improved performance for most MaOPs. Yang
et al. (2013) developed a grid-based MOEA by articulating
the grid-based approach to strengthen the selection pressure
and presented the concepts of grid dominance and grid differ-
ences. From the point of improving the evolutionary diver-
sity, Li also presented two kinds of improved MOEAs, i.e.,
shift-based density estimation Li et al. (2014) and diversity
management operation (Li et al. 2014).

3.2 PSO for MaOPs

PSO is performed by updating the position of a particle that
represents a possible solution according to its own flying
experience and that of the swarm. In the basic PSO, the i-th
particle at generation t is updated as follows:

vi (t + 1) = wvi (t) + c1r1(Pi − xi (t)) + c2r2(Pg − xi (t))

xi (t + 1) = xi (t) + vi (t + 1), (7)

where vi (t) and xi (t) are the velocity and the position of the
i-th particle at generation t , respectively; Pi means the local
best of particle i andPg the global best;w refers to the inertia
weight; c1 represents the cognitive weight and c2 the social
weight; r1 and r2 are two random values with the uniform
distribution in the range of [0, 1].

PSO has been recognized to be powerful when han-
dling MOPs and has a rapid convergence compared to other
MOEAs (Margarita and Coello Coello 2006). To extend PSO
for MOPs, the following four aspects are usually focused:
selecting non-dominated solutions, updating the global and
the local best particles, maintaining the population diversity,
and updating the archive.

In the case of selecting non-dominated solutions, the
Pareto dominance is a major principle. Mostaghim and
Teich (2003) incorporated the ε-dominance into MOPSO
to obtain a dominance relation among individuals based on
the grid dominance. Once the dominance concept is defined,
the global and the local best particles will be accordingly
updated. To this end, the newly generated particle is com-
pared to the current local best one, and the non-dominated
one is the new local best particle; otherwise, a randomly
picked out one is regarded as newly local best. As for the
global best particle, an archive is usually constructed along
with the evolution, and each non-dominated particle in this
archive is a candidate of the global best. Then, according to
a specific mechanism, e.g., random, roulette, or tournament
selection (Margarita and Coello Coello 2006), the global best
particle of the swarm is selected. The population diversity is
of considerable importance to the evolution of a swarmdue to
the guidance mechanism of PSO, and the mutation operator
is a suitable way to maintain the population diversity (Coello
Coello et al. 2004).

PSO is also extended to solving MaOPs. Woolard and
Fieldsend (2013) addressed the capability of PSO in solv-
ing MaOPs from several aspects as selecting the global and
the local best particles and updating the archive, seeking for
appropriate dominance relations and evolutionary operators.
Andre and Aurora (2012) investigated the convergence and
the diversity of PSO in solving MaOPs by controlling the
area where the dominated solutions locate. Mostaghim and
Schmeck (2008) proposed a distance-based ranking method
to substitute the Pareto dominance to effectively compare
particles in many-objective PSO. Wickramasinghe and Li
(2009) used reference points to define a distance metric and
applied it to select the leaders. It is worth noting that no
matter the Pareto dominance or the distance-based ranking
metrics used in these PSO methods cannot avoid the com-
plex comparisons among the updating procedure; therefore,
the challenges faced by MOEAs in solving MaOPs are yet
unsolved, suggesting that novel techniques are required to be
explored.

3.3 Indicator-based set evolution for MaOPs

Indicator-based EMOs and PSOs have been extensively
investigated for solving MOPs in recent years. Zitzler and
Kunzli (2004) first suggested directly using one or more
EMO indicators related to proximity, distribution, and spread
of a set of optimal solutions to guide an evolutionary process.
Basseur and Burke (2007) carried out a range of experiments
on different binary indicators. Phan and Suzuki (2013) pro-
posed an indicator-based selection with the R2 indicator to
obtain a diverse set of solutions. Jiang et al. (2014) pre-
sented a simple and fast hypervolume indicator-based EMO
to effectively decrease the high time complexity for mea-
suring the hypervolume contributions of different solutions.
Besides these EMOs, some PSO algorithms are also focused
on using the indicators to select leaders for the updating
operator. Jia et al. (2011) proposed an indicator-based PSO
with local search by articulating the preference of the deci-
sion maker into MOPSO in selecting the leader particles.
Chaman et al. (2014) developed a hypervolume indicator-
based leader selection strategy for PSO, in which the hyper-
volumecontributionof archived solutions for selectingglobal
and local leaders was used. By using R2 indicator to select
leader particles, Castro and Pozo (2014) addressed aMOPSO
to optimize many-objective problems. This algorithm used
a simple hyper-heuristic strategy to automatically select
leader and archiving methods during the search. However,
these algorithms only focused on selection by use of indi-
cators, and not on the set evolution, as addressed in this
paper.

As for indicator-based set evolution, according to the indi-
cators, a set consisting of a number of individuals is deter-
mined to be either selected or not. Compared to previous
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methods of handling MaOPs, the optimized variable here is
not a single solution of the original optimization problem,
but a set consisting of more than one solution. In the litera-
ture, hypervolume has beenwidely adopted as an appropriate
indicator, since it can reflect both proximity and distribution
of a Pareto optimal set (Zitzler et al. 2010).

The framework of indicator-based EMO includes the fol-
lowing two aspects: (1) converting an MaOP to a new opti-
mization problem with not more than three indicator-based
objectives, by regarding a set of solutions as a decision vari-
able to be optimized; (2) developing strategies or operators to
perform the evolution of the set-based population. Accord-
ing to the indicators used to evaluate the performance of a
solution set, the superior set containing a number of Pareto
optimal solutions can be obtained.

To clearly describe the indicator-based set evolution, the
related concepts and notations different from traditional
MOEAs are introduced here. The indicators to be adopted
as the optimized objectives are denoted as: min F(X) =
{F1(X), F1(X), . . . , FM (X)}(M ≤ 3), where X = {x1, x2,
. . . , xP } is the set variable to be optimized with xi , i =
1, 2, . . . , P being a solution of the original MaOP. For such
set-based optimization, the Pareto dominance defined in
Gong et al. (2014) is as follows.

Set-based Pareto dominance: For two sets of solutions, Xi

and X j , Xi is said to dominate X j , denoted as Xi�sparX j

if ∀k ∈ {1, 2, . . . , M} : Fk(Xi ) ≤ Fk(X j ) and ∃k′ ∈
1, 2, . . . , M :Fk′(Xi ) < Fk′(X j ).

It has been experimentally demonstrated that the indicator-
based set evolutionary algorithms are greatly beneficial to
enhancing the selection pressure by converting anMaOP into
the one with two or three indicator-based objectives, which
effectively conquers the deterioration of applying traditional
MOEA to tackle MaOPs. However, the evolutionary oper-
ators must be finely explored to promote the set evolution,
which are greatly different from those traditional EA oper-
ators. In the following, we will take full advantages of PSO
and indicator-basedMOEA to develop set-basedMOPSO for
MaOPs.

4 Framework of the algorithm

The general framework of the set-based PSO has been given
in Sun et al. (2014b). Based on our previous work, the frame-
work of the proposed algorithm is shown in Fig. 1, consisting
of three main parts. (1) Initialization: Some sets of solutions
are randomly initialized in the decision variable space of the
optimized MaOP. In the subsequent evolutionary process,
these sets are individuals to be optimized. (2) Indicator-based
objective transformation: The indicators used to measure the
quality of the sets are calculated as objectives, and thus the

Fig. 1 Framework of the algorithm

MaOP is transformed into an MOP with two or three objec-
tives. (3) Set-based PSO operators for updating the sets of
solutions and also for further evolving the solutions of some
selected sets.

In this paper, the PSO operators for the set evolution will
be highlighted. (1) Updating a particle for the set evolution,
specifically, the evolutionary strategy and the selection of the
global and local best set particles; (2) updating a solution of
a set on considering the selection of the global and local best
particles with a low computational cost. In the next section,
an improved S-MOPSO algorithmwill be presented in detail.
In this method, the non-dominated sorting mechanism used
in NSGA-II is adopted here to compare and sort particles, so
as to select the global and the local best particles during the
set evolution, and thus the archive is not involved anymore.
That is to say, only the set and the solution of a set of updates
are focused on, especially the selection of the global and the
local best particles.
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Fig. 2 Relationship between
the original MaOP and its
converted one

5 Improved S-MOPSO

5.1 Optimization objectives of indicator-based S-MOPSO

In indicator-based set evolution MOEAs, the original MaOP
is first transformed into a newoptimization problem, inwhich
the objectives are some performance indicators addressed in
Sect. 2, and the decision variable represents a set consist-
ing of a number of solutions of the original MaOP. Since
the framework of the algorithm given in Sect. 4 is based on
indicators, the formulation of the transformed optimization
problem is first presented here.

In this study, two most popular indicators to evaluate the
performance of the Pareto front obtained by a MOEA, i.e.,
the distribution metric, Fd(X), expressed with Eq. (4) and
hypervolume, Fh(X), formulated with Eq. (5), are adopted
as two new objectives to be optimized by PSO, and a particle
refers to a solution set is denoted as X.

As addressed before, the larger the values of these two
indicators, the better is the corresponding set. Therefore, the
converted optimization problem is an MOP with two objec-
tives and is expressed as follows:

max F(X) = {F1(X), F2(X)|
F1(X) = Fd(X), F2(X) = Fh(X)}
s.t. X ∈ P(S), (8)

where P means the power set of S and consists of all the
subsets of S;X = {x1, x2, . . . , xP } represents a set consisting
of P solutions of the original MaOP.

To clearly and visually show the relationship between the
original MaOP and its transformed one with two indicator-
based objectives, a problem with three objectives and three
decision variables are illustrated in Fig. 2.

In Fig. 2a, c refer to the objective spaces before and after
transformation of the optimization problem, respectively, and
(b) the decision space. In (b), there are two kinds of symbols
labeled with stars and black dots, respectively, representing
two solution sets. The associated mapping relationship from

(b) to (a) is very clear and fully determined by the original
MaOP. However, such a mapping is quite different between
(b) and (c), i.e., the decision variable in (b) is not a single solu-
tion, but a set consisting of a number of solutions, labeled as
stars or dots in (b), and the objectives in (c) are two indicators.
For the converted objectives, the decision space is composed
of all the subspaces of the original decision space. Therefore,
the evolution in such a framework has an essential difference
with traditional MOEA, and the operators performing on a
setmust be properly designed. In such a scenario, a hierarchi-
cal evolutionmechanism should be developed, with evolving
not only a solution set, but also a solution of this set. To this
end, in the proposed algorithm, a set, X, is first regarded as a
particle, and the corresponding PSO for the set evolution is
developed, so as to take full advantage of information pro-
vided by different sets. Then, an element of a set, which is
a solution of the original MaOP and shown as x1, x2, x3, x4
in Fig. 2b, is further served as a particle and updated by tra-
ditional PSO. The following subsections will give a detailed
description of these contents.

5.2 S-MOPSO

The strategy for updating a set under the mechanism of PSO
is first presented and then the methods of selecting the global
and the local best sets to perform the above updating is
focused on by taking the indicator objectives into account.

As aforementioned, in the indicator-based S-MOPSO, a
decision variable,X, is a set with each of its elements being a
solution of the original MaOP. The following update strategy
is presented by regardingXi (t) as a particle of a swarm with
its size being N (Sun et al. 2014b).

Vi (t + 1) = ωVi (t) + c1r1 [Pi (t) − Xi (t)]

+ c2r2
[
Pg (t) − Xi (t)

]
Xi (t + 1) = Xi (t) + Vi (t + 1), (9)

where the meanings of these parameters are the same as
those in Eq. (7). However, Eq. (9) is distinct from Eq. (7)
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even though they are very similar in form. The parameters,
ω, ck, rk, k = 1, 2, represent matrices with their sizes being
the same as those of particleXi (t), i = 1, 2, . . . , N . Accord-
ingly, the computations of Pi (t)−Xi (t) and Pg (t)−Xi (t)
are also performed on matrices with their dimensions being
N × n.Vi (t) is also a matrix denoting the velocity ofXi (t),
with its j-th column referring to the velocity of the j-th solu-
tion of the original MaOP and formulated as:

V j
i (t) =

⎡
⎢⎢⎢⎢⎣

v
j
i (t, 1)

v
j
i (t, 2)

...

v
j
i (t, n)

⎤
⎥⎥⎥⎥⎦ = ω jV j

i (t − 1)

+c j1r
j
1

[
P j
i (t) − X j

i (t)
]

+ c j2r
j
2

[
P j
g (t) − X j

i (t)
]
.

(10)

In the previous work Sun et al. (2014b), the critical two
terms Pi (t) − Xi (t) and Pg (t) − Xi (t) are directly and
simply calculated according to the indices of the elements
without considering their qualities, which cannot guarantee
the merits of the traditional PSO, in that some elements of
Pi (t) or Pg (t) (the leaders) may be worse than those of
Xi (t). Here, an improvement updating strategy is developed
to overcome this shortage. For the elements in the sets of the
two leaders Pi (t), Pg (t) and the current particle Xi (t), they
are resorted in an ascending order according to their values
on the first objective of the original MaOP.

As has been addressed, lots of researches have been
devoted to the selection of the leaders of PSO, and these
methods can be directly applied to our algorithm. Here, a
weighted approach of selecting the local best particle is first
proposed by balancing the performances of a set in distribu-
tion and convergence. Then, the global best particle is deter-
mined based on sorting the performances of all the local best
particles. Since the above performances can well be depicted
by the two indicators defined in Eq. (8), a weighted indicator
is then defined as follows”

F (Xi ) = αF1 (Xi ) + (1 − α) F2 (Xi .) (11)

It is clear that the value of parameter α is very impor-
tant to the integrated F (Xi ). When the performance of a
set in distribution is good, the evolution of a swarm should
be strengthened on the performance in convergence and the
value of α should be relatively small; otherwise, if the per-
formance of a set in convergence is superior, the distribution
of the set should be further highlighted to promote the evolu-
tion of a swarm and the value of α should be relatively large.
Accordingly, a method is given here to determine the value
of α.

For all the set particles in a swarm, the average value of
F1(X) and that of F2(X) can be calculated as follows:

F̄1 (t) = 1
N

N∑
i=1

F1 (Xi (t))

F̄2 (t) = 1
N

N∑
i=1

F2 (Xi (t))

. (12)

Then, the value of α is defined as:

α(t) = F̄2 (t)

F̄1 (t) + F̄2 (t)
. (13)

According to theweighted value, calculated fromEq. (11),
of each particle the global best particle with the largest value
of F(X) can be selected as follows:

Pg = arg max
i=1,2,...,N

F (Xi ) . (14)

When updating a local best particle, the Pareto dominance
on sets is adopted to compare the quality of each set particle.
For the newly generated particle, Xi (t + 1), and the current
local best particle, Pi (t), ifXi (t + 1) �sparPi (t),Xi (t + 1)
is selected as the new local best particle, Pi (t + 1); if
Xi (t + 1)≺sparPi (t), the local best particle remains
unchanged; if these two particles are non-dominated, the
domination proportion of each particle is calculated based
on the elements belonging to each of these two particles and
the one with a larger proportion is selected as Pi (t + 1).

Set evolution PSO can fully exchange information among
solution sets. However, it does not focus on a specific solu-
tion of a set. When tacklingMaOPs, it is expected to seek for
the Pareto optimal set of this problem. Therefore, it is of con-
siderable necessity to further evolve solutions of a set. Next,
PSO for evolving solutions of a set will be addressed, espe-
cially, the selection of the global and the local best particles
for updating a solution particle.

5.3 PSO for evolving solutions of a set

PSO for evolving solutions of a set is expected to finely
explore solutions in the original searching space S and gain a
valuable Pareto front. Besides, the computational cost should
be acceptable when performing PSO. Therefore, a method of
evolving only solutions of a particularly selected set is devel-
oped here.

The following three issues must be addressed to meet the
above requirements: (1) selecting the set whose elementswill
be further evolved by using PSO; (2) performing appropri-
ate PSO strategies on the solutions of the selected set; (3)
choosing the global and the local best particles for updat-
ing a solution. The general idea of handling these issues is
as follows. In the prophase of the evolution, the worst set is
selected to evolve its elements by using PSO, so as to speed
up the convergence toward the true Pareto front. In such a
scenario, the ideal reference point of the current best set is
selected as the global best particle, and the ideal reference of
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the selected set as the corresponding local best particle. In the
anaphase, the superior set is chosen to evolve its elements by
performing PSO, with the purpose of enhancing the perfor-
mance of this set in proximity and distribution. According to
Eq. (12), the evolution of solutions in a set can be divided into
the following two phases: if F̄1 (t) > F̄2 (t), the evolution is
in the prophase; otherwise, it is in the anaphase.

5.3.1 Selection of a particular set

With the method of non-dominated sorting, all the sets in
P(S) can be sorted according to the values of F1(X) and
F2(X), and their orders obtained. From these sets, the worst
and the best ones with the highest and the lowest orders,
respectively, can be chosen and denoted as SW and SND.

In the prophase, solutions in SW are further updated by
PSO, whereas in the anaphase, solutions in SND are finely
adjusted also by PSO. For solutions in the other sets, they are
evolved only by a mutation operator.

5.3.2 PSO strategies in different sets

It is quite difficult to select the global and the local best
particles for MaOPs if the traditional Pareto dominance is
adopted to compare the solutions. Therefore, we propose an
approach of selecting the virtual global and local best parti-
cles for updating a particle in PSO by taking both SW and
SND into account. In this approach, the ideal reference point
of SND is selected as the global best particle, and the ideal
reference point of a set in SW is taken as the local best particle
when updating solutions in this set.

It is worth noting that the number of sets in SW, denoted
as NW, or that of sets in SND, denoted as NND, may be larger
than one. For the i-th set in SW, its ideal reference point is
denoted as z∗

W,i , with its expression being as follows:

z∗
W,i = {x j

∣∣∣∣ min
x j∈Xi ,Xi∈S/rmW

fk
(
x j

)
,

k = 1, 2, . . . ,m, j = 1, 2, . . . , N , i = 1, 2, . . . , NW}.
(15)

All these ideal reference points are selected as the local best
particles.

For SND, the ideal reference point of its i th set is z∗
ND,i , i =

1, 2, . . . , NND. Since only one global best particle is required
for updating a particle in PSO, the reference point with the
smallest crowding degree is selected., the ideal reference
point of its i th set is . Since only one global best leader is
required for updating a particle in PSO, the reference point
with the smallest crowding degree is selected.

In the anaphase of the evolution, solutions in SND are
evolved with the PSO operators. For the i-th set in SND,
denote its best decision variable as xND,i , whose ideal ref-
erence point is z∗

ND,i , then z∗
ND,i is selected as the global

best particle. Since solutions with the largest contribution to
hypervolume is selected as the local best particle, solutions
of the current best set will be promoted to converge toward
the true Pareto front as soon as possible.

6 Experiments and analysis

6.1 Benchmark optimization problems

The DTLZ benchmark optimization problems are adopted to
evaluate the performance of the proposed S-MOPSO since
the number of objectives of these problems can be freely
varied. Here, five optimization problems, named DTLZ1
to DTLZ7, are selected excepted for DTLZ4 and DTLZ6,
due to their similar Pareto fronts to those of DTLZ2 and
DTLZ3.Thenumber of objectives of eachproblem is denoted
as m, and its value here is set to 5, 10, and 20, respec-
tively. The number of decision variables of each problem
is n = k +m − 1, with the value of k being 5 for DTLZ1, 10
for DTLZ2, DTLZ3, and DTLZ5, and 20 for DTLZ7. Each
of these variables varies from 0 to 1. The detailed expres-
sion of DTLZ1 is shown in Eq. (16). For those of the other
optimization problems, please refer to Zhang et al. (2008).

min f1(x) = 1
2 x1x2 . . . xm−1(1 + g(xm))

f2(x) = 1
2 x1x2 · · · (1 − xm−1)(1 + g(xm))

...

fm−1(x) = 1
2 x1(1 − x2)(1 + g(xm))

fm(x) = 1
2 (1 − x1)(1 + g(xm))

s.t.k = |xm | = 5; 0 ≤ xi ≤ 1, i = 1, 2, . . .m

, (16)

where g(xm) = 100(|xm | + ∑
xi∈xm (xi − 0.5)2 − cos(20π

(xi − 0.5))).

6.2 Parameter settings

The values of the parameters used by all the compared algo-
rithms are listed in Table 1. The other parameters, ω, c1, c2,
r1, and r2, involved in the proposed algorithm, are all vec-
tors. For simplicity, each element of these vectors is set to
the same value. To be specific, each element of ω is 0.4, that
of c1 and c2 is 2, and that of r1 and r2 is a random value
varying in the range of 0 and 1. Besides, the indicators for-
mulated with Eq. (4) and Eq. (5) are calculated to measure
the performances of these compared algorithms in solving
MaOPs.

Here, four groups of experiments are conducted to evalu-
ate the main contents of the proposed S-MOPSO.

1. Selecting the global best set particle. The method of
selecting the global best particle given in Eq. (14) is
greatly influenced by the value of parameter α which is
determined by an adaptive approach. In this experiment,
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Table 1 Parameter settings

Algorithm Population
size

Selection strategy Crossover strategy/
probability

mutation strategy/
probability

Termination
generations, T/rmmax

NSGA-II 100 Tournament selection (2) Simulated binary
crossover /Pc = 0.9

Polynomial mutation
/Pm = 0.1

100

S-MOEMO 10*10 Tournament selection (2) Simulated binary
crossover /Pc = 0.9

Polynomial mutation
/Pm = 0.1

100

S-MOEMO 10*10 Tournament selection (2) – Polynomial mutation
/Pm = 0.1

100

the presented approach of setting the value of α is ana-
lyzed by comparing the indicators under four values of
α.

2. Developing strategies for set evolution PSO. Set evolu-
tion PSO is expected to exchange information among
sets, which is quite different from existing indicator-
based MOEAs. To show its effectiveness, set-based
many-objective evolutionary optimization (S-MOEMO)
(Gong et al. 2014) and NSGA-II (Deb et al. 2002) are
compared here. Since no operations are performed to any
solution of a set in this stage, the crossover and mutation
are only performed to the sets in S-MOEMO, and only
selection is adopted in NSGA-II.

3. Updating solutions of a selected set by using PSO. The
performance of updating solutions of a selected set by
using PSO is discussed here. Both the S-MOPSO algo-
rithm with the above approach and that without it are
conducted, and their results are compared so as to eval-
uate the performance of using the above approach.

4. The overall performance of S-MOPSO. To show the
overall performance of S-MOPSO, the proposed algo-
rithm is compared with S-MOEMO, NSGA-II, and
MOPSO, and the values of the indicators are analyzed.

6.3 Results and analysis

6.3.1 Set evolution PSO + selecting the global best set
particle

Selecting the global best set particle given in Eq. (14) is actu-
ally a critical part of set evolution PSO. Therefore, the exper-
iments on both set evolution PSO and selection on global best
particles are combined together to show their effectiveness.

The effectiveness of selecting the global best set particle
for the set evolution has been demonstrated in our previous
work by setting several different values for the weighting α

and applying them to DTLZ1 and DTLZ2. Here, some other
experimental results are further analyzed by applying the
algorithm to DTLZ3, DTLZ5, and DTLZ7 with their objec-
tive numbers being 5, 10, and 20. The proposed set evolu-
tion together with the global best selection is compared with

S-MOEMO and NSGA-II through the values of the hyper-
volume (H) and distribution (SP). The corresponding results
are depicted in Figs. 3 and 4. For simplicity, the legend of
the curves is only involved in Figs. 3c and 4c.

FromFigs. 3 and 4, the following observations can be con-
cluded: (1) For the Hypervolume, an indicator used to show
the convergence of the obtained Pareto solutions, the pro-
posed set-based PSO together with the selection of global
leader always outperforms the other two compared algo-
rithms. (2) For the SP, an indicator for measuring the dis-
tribution of the solutions, our algorithm performs better than
S-MOEMO and NSGA-II except for the DTLZ3 with 20
objectives. (3) The variations of the Hypervolume somewhat
contradict that of the SP. (4) For S-MOEMO, its evolutionary
operators among sets regard a solution of a set as a gene, so
that the crossover actually transfers solutions without gen-
erating any new solution, which is quite different from the
proposed algorithm. (5) ForNSGA-II, because only selection
is performed, i.e., no crossover and mutation( as described
in Sect. 6.2), the values of SP and H In Figs. 3 and 4 remain
unchanged.

In summary, (1) the proposed S-MOPSO outperforms the
compared two algorithms on the whole, suggesting that the
proposed set evolution PSO is effective; (2) the proposed
approach of adaptively setting the value of α is effective for
selecting the global best set particle.

6.3.2 PSO for evolving solutions of a selected set

This experiment is done to investigate the performances of
PSO for evolving solutions of a selected set. Under the
set evolution S-MOPSO framework shown in the previous
experiment, the two algorithms, i.e., S-MOPSO with and
without the above mechanism, are compared. To be clearly
demonstrated, S-MOPSO without the above mechanism is
simplified as S-MOPSO-N. DTLZ2 and DTLZ3 with the
number of objectives being 5, 10, and 20 are solved here
by using S-MOPSO and S-MOPSO-N, respectively, and the
values of the SP and H indicators are shown in Figs. 5 and 6.
For the other problems, similar experimental results can be
obtained.
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Fig. 3 Values of hypervolume (H)

Figures 5 and 6 reports that, (1) for each optimization
problem, the value of SP has an evident increase when PSO
for evolving solutions of a set is included in S-MOPSO. Fur-
thermore, this value augments in each generation, especially
for DTLZ2. (2) From the aspect of theH indicator, the perfor-
mance of S-MOPSO is also enhanced when PSO is used to
evolve solutions of a set. (3) The improvement in the SP indi-
cator is greater than that of H, indicating that the proposed
PSO evolution of solutions of a set contributes more to the
diversity of the Pareto optimal set, which is very important
to tackle MaOPs.

To sum up, the proposed PSO for evolving solutions
of a selected set is powerful in enhancing the H and SP
indicators of S-MOPSO, indicating that this approach can
further improve the performance of the obtained Pareto
optimal set in diversity and convergence, which is well
in accord with the intention of the proposed evolutionary
mechanism.

6.3.3 Overall performance of S-MOPSO

In the aforementioned comparisons, the S-MOPSO has been
compared with NSGA-II (as shown in Figs. 3, 4); there-
fore, here it is qualified by comparing it to S-MOEMO and
MOPSO (without set evolution) on the indicators of SP and
H. The Mann–Whitney U test is used to conduct a non-
parametric statistical hypothesis test for S-MOPSO and S-
MOEMO since they both belong to indicator-based EMOs.
In addition, DTLZ1, DTLZ2, DTLZ3, DTLZ5, and DTLZ7
with 5, 10, and 20 objectives are solved, and their experi-
mental results are listed in Table 2.

From Table 2, the proposed S-MOPSO outperforms S-
MOEMO except for DTLZ2 with 5 objectives and DTLZ3
with 20 objectives. The values of SP and H obtained by S-
MOPSO and S-MOEMO are larger than that of NSGA-II,
indicating that the set-based evolutionary strategies are supe-
rior toMOPSOwhich is powerful for aMOPwith less than 4
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Fig. 4 Values of distribution (SP)

Fig. 5 SP of S-MOPSO with and without evolving solutions of a set using PSO
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Fig. 6 H of S-MOPSO with and without evolving solutions of a set using PSO

Table 2 Values of SP and H of compared algorithms

S-MOPSO MOPSO S-MOEMO

SP H SP H SP H

DTLZ1

5 0.4743† 0.9382† 0.1623 0.7422 0.3062 0.7616

10 1.1256 0.9432† 0.2576 0.7192 1.1060 0.8871

20 22.1854† 0.9361† 0.6558 0.8734 4.8384 0.9314

DTLZ2

5 0.6404 0.8758 0.1334 0.7629 0.4694 0.8923†

10 1.5297† 0.9038 0.2332 0.6975 0.9731 0.8971

20 3.7495† 0.9464† 0.7190 0.6965 2.0394 0.9032

DTLZ3

5 0.5289† 0.9106 0.2812 0.6155 0.4289 0.9028

10 0.9649† 0.9380† 0.1993 0.5880 0.8888 0.9073

20 1.1051 0.9705† 0.3967 0.8539 1.2485† 0.9332

DTLZ5

5 0.7699† 0.7003† 0.5729 0.4027 0.4124 0.6582

10 0.6777 0.8222 0.4968 0.6123 0.5689 0.8423†

20 1.8464† 0.6874† 0.5981 0.6379 1.3868 0.6456

DTLZ7

5 0.7875† 0.9681† 0.6898 0.8271 0.5617 0.9308

10 1.9687† 0.9190† 1.0237 0.5998 1.0279 0.8839

20 1.8545 0.7200† 1.6419 0.5257 1.6223 0.6803

The values with bold and dagger symbols are significantly better than the compared ones

objectives. The reason is that set-based MOEA can maintain
enough selection pressure and the diversity of a population,
so as to promote the evolution to be effective for MaOPs.

In summary, the proposed PSO for evolving sets and solu-
tions of a set is effective for solving MaOPs, and the perfor-
mances of S-MOPSO in convergence and distribution are
enhanced by its merit in well maintaining the diversity of a
population.

7 Conclusion

Aframework for set evolutionmany-objective particle swarm
optimization is presented by incorporating indicator-based
set MOEA with PSO for conquering the deficiency of tra-
ditional MOEA when tackling MaOPs. An improved S-
MOPSO is addressed by focusing on PSO for evolving sets
and solutions of a set. Two commonly used indicators, i.e.,
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distribution and hypervolume, are adopted as the converted
objectives; thus aMaOP is first transformed into a traditional
MOP with only two objectives. Then the PSO operators are
developed by considering both a set and a solution of a set
as different levels of particles. In addition, the approach of
selecting the global and the local best particles under two
different levels, i.e., an entire set and a solution of a set,
are explored. The proposed algorithm is applied to five scal-
able benchmark optimization problems, and the experimental
results demonstrate that S-MOPSO is effective in obtaining
solutions with good distribution and convergence by com-
paring it to MOPSO and S-MOEMO.

It is worth noting that the computational complexity of
the proposed algorithm, caused by the two levels of PSO
operators, especially selecting the global and the local best
particles, is higher than the compared algorithms. Therefore,
it is of significance to design appropriate PSO operators with
a low computational cost for such a framework, including
the selection of the global and the local best particles, the
construction and the update of an archive. Besides, other
indicators, e.g., IGD, may also bring surprising outcomes
with a low computational cost. All these issueswill be further
studied in the future.
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