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Abstract We computed linguistic information at the lex-
ical, syntactic, and semantic levels for Recognizing Infer-
ence in Text (RITE) tasks for both traditional and simplified
Chinese in NTCIR-9 and NTCIR-10. Techniques for syn-
tactic parsing, named-entity recognition, and near synonym
recognition were employed, and features like counts of com-
monwords, statement lengths, negationwords, and antonyms
were considered to judge the entailment relationships of two
statements, while we explored both heuristics-based func-
tions and machine-learning approaches. The reported sys-
tems showed their robustness by simultaneously achieving
second positions in the binary-classification subtasks for both
simplified and traditional Chinese in NTCIR-10 RITE-2. We
conducted more experiments with the test data of NTCIR-
9 RITE, with good results. We also extended our work to
search for better configurations of our classifiers and inves-
tigated contributions of individual features. This extended
work showed interesting results and should encourage fur-
ther discussions.
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1 Introduction

Recognizing textual entailment1 (RTE) (Dagan et al. 2006)
has become a major research topic in natural language
processing (NLP) in the past decade (Watanabe et al. 2013a).
Given a pair of statements, text (T ) and hypothesis (H), the
most basic format of an RTE task is to determine whether H
is true when T is true; namely, whether or not T entails H . A
more challenging format is to determinewhether T and H are
contradictory statements (Dagan et al. 2009). More recently
in PASCAL RTE-6,2 NTCIR-10 RITE-2,3 and NTCIR-11
RITE-VAL,4 researchers investigated and evaluated meth-
ods for identifying statements in a collection, e.g., a corpus
like Wikipedia, which are relevant to a given statement T ,
where relevancy includes both entailment, paraphrase, and
contradiction.

The RTE tasks are relevant and applicable to many
NLP applications, including knowledge management (Tsujii
2012). If a statement entails another in a collection of state-
ments, then one may not need to consider both statements to
produce a concise summary of the collection, so recogniz-
ing entailments is useful for automatic text summarization
(Lloret et al. 2008; Tatar et al. 2009). Similar reasons apply
to how recognizing entailment can be applied to question
answering systems (de Salvo et al. 2005). When a question
entails another, the recorded answer to the previous ques-
tion may be useful for answering the new question. RTE
can also be useful for judging the correctness of students’
descriptive answers in assessment tasks. It is rare for stu-

1 The pronunciations and translations of all Chinese strings mentioned
in this paper are provided in the Appendix.
2 http://www.nist.gov/tac/2010/RTE/.
3 http://www.cl.ecei.tohoku.ac.jp/rite2.
4 https://sites.google.com/site/ntcir11riteval/.
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dents to respond to questions with statements that are exactly
the same as the instructors’ standard answers. It is also not
practical to expect instructors to list all possible ways which
students may answer a question. In such cases, recognizing
paraphrase relationships between students’ and instructors’
answers becomes instrumental (Nielsen et al. 2009).We have
also applied RTE techniques to enable computers to take
reading comprehension tests that are designed for middle
school students (Huang et al. 2013).

Dagan et al. (2009) provided an overview of the app-
roaches for RTE. Treating RTE as a classification task is
an obvious option, where different systems consider vari-
ous factors to make the final decisions. Due to the availabil-
ity of the training data in RTE activities, machine learning-
based approaches are common. Researchers design methods
to utilize different levels of linguistic, including syntactic and
semantic, information provided in the given statement pairs
to judge their relationships. Transformation-based methods
offer interesting alternatives for the RTE tasks. If a state-
ment can be transformed into another via either syntactic
rewriting (Bar-Haim et al. 2008; Stern et al. 2011; Shibata
et al. 2013) or logical inference procedures (Chambers et al.
2007; Takesue andNinomiya 2013;Wang et al. 2013;Watan-
abe et al. 2013b), then the statements may be highly related.
In addition to using the information conveyed by the given
statements, external information like common sense knowl-
edge and ontology about problem domains can strengthen
the basis on which entailment decisions are made (de Salvo
et al. 2005; Stern et al. 2010).

The first corresponding event of PASCAL RTE for
Japanese andChinese tookplace inNTCIR-9, andwasnamed
RITE as the acronym for “Recognizing Inference in Text”
(Shima et al. 2012). NTCIR-10 continued to host RITE-2 for
Japanese and Chinese, and had, respectively, ten and nine
teams participating in the traditional and simplified Chinese
subtasks (Watamabe et al. 2013). All of these participants
considered different combinations of linguistic information
as features to determine the entailment relationships of state-
ment pairs. Most of them employed support vector machines
as the classifiers.

There were different subtasks in NTCIR-9 RITE and
NTCIR-10 RITE-2. The binary classification (BC) subtask
required participants to judge whether or not T entails H .
In this paper, we will focus only on the BC subtasks in the
NTCIR RITE tasks, as we believe that the BC subtask is the
most fundamental subtask of them all.

In NTCIR-10 RITE-2, the best performing team in the
BC subtask for traditional Chinese (CT) adopted a voting
mechanism (Shih et al. 2013). The best performing team in
the BC subtask for simplified Chinese (CS) employed an
alignment-based strategy (Wang et al. 2013).We (Huang and
Liu 2013) trained heuristic functions to achieve second best
performance in the BC subtasks for both CT and CS. The

best team outperformed us in the BC subtask for CT by only
0.7 % in the F1 measure. Chang et al. (2013) embraced deci-
sion trees as the classifier but did not achieve an impressive
performance.

For obvious reasons, all participating systems in NTCIR-
10 RITE-2 used some forms of linguistic features to make
decisions. As may be expected, different systems consid-
ered different sets of features and applied them in different
ways. We computed lexical, syntactic, and semantics infor-
mation about the statement pairs to judge their entailment
relationships. The linguistic features were computed with
public tools and machine-readable dictionaries, including
the Extended HowNet5 (Chen et al. 2010). Preprocessing
steps for the statements included conversion between sim-
plified and traditional Chinese, Chinese segmentation, and
converting formats of Chinese numbers. We employed such
linguistic information as (1) words that were shared by both
statements; (2) synonyms, antonyms, and negation words;
(3) information about the named entities of the statement
pairs; and (4) similarity between parse trees and dependency
structures, etc.

Theperformanceof our approacheswas sufficiently robust
that we achieved the second best scores in both CT and
CS subtasks. Since each participating team could submit
running results of three different configurations, we actu-
ally experimented with our models that we built by training
heuristic functions and support vectormachines (SVMs).Our
best results were achieved by the trained heuristic functions,
achieving second position in theBC subtasks for bothCT and
CS. Our SVM-based models achieved the third best score in
the BC subtask for CT, but dropped to 12th position in BC
subtask for CS.

We have extended our work after participation in NTCIR-
10 RITE-2. We ran grid searches of larger scales to find the
best combinations of parameters and features for the clas-
sification models. In general, conducting the grid searches
helped us build better models. However, the experimental
results also provide interesting and seemingly perplexing
material for further discussion in the paper.We also tested our
systems with the test data for the BC subtasks of NTCIR-9
RITE, and found that we were able to achieve better perfor-
mance than the best performer in NTCIR-9 RITE tasks.

We explain the preprocessing of the text material and
extraction of their linguistic features in Sect. 2, examine the
constructions of the heuristics-based and machine learning-
based classifiers in Sect. 3, present and discuss the exper-
imental results in Sect. 4, review and deliberate on some
additional observations in Sect. 5, and wrap up this paper in
Sect. 6.

5 http://ehownet.iis.sinica.edu.tw/.
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2 Major system components

In this section, we describe components of our running sys-
tems, including the preprocessing steps and the extraction of
fundamental linguistic features.

2.1 Preprocessing

In this subsection, we explain the preprocessing steps:
traditional-to-simplifiedChinese conversion, numeric format
conversion, and Chinese segmentation.

2.1.1 Traditional-to-simplified Chinese conversion

Werelied onStanfordNLP tools6 to doChinese segmentation
and named-entity recognition. As those tools were designed
to perform better for simplified Chinese, we had to convert
traditional Chinese into simplified Chinese. We converted
words between their traditional and simplified forms of Chi-
nese with an automatic procedure which relied on a tool in
MicrosoftWord.Wedidnot designor invent a conversiondic-
tionary of our own, and the quality of conversion depended
solely on Microsoft Word.

There are two major methods for converting between tra-
ditional and simplified Chinese text. The simpler option is
just to do character-to-character conversion, e.g., changing
“ ”7 to “ ”. A
more sophisticated and better conversion is to do word-
to-word conversion, changing this sample statement to
“ ”. This latter conversion includes
the simplified Chinese words, i.e., “ ”, “ ”, and
“ ” that are used in the training of the Stanford tools, so is
more likely to lead to better system performance. Microsoft
Word offers the second type of conversion as much as it
can, and we understand that Microsoft Word might not con-
vert all traditional Chinese words perfectly to their simplified
counterparts, e.g., the result of converting “ ” is
“ ”. “ ” is a preferred conversion.
However, Microsoft Word is a good and accessible current
choice.

2.1.2 Numeric format conversion

There are multiple ways for people to write numbers in Eng-
lish text, e.g., sixteenvs. 16. InChinese, there are at least three
ways to write numbers in text, e.g., “3”, “ ”, and “ ” for the
number “3”. There are also specific characters to express spe-
cific numbers, e.g., “ ” and “ ” for 20 and 30, respectively.
In addition, there are simplified ways to express relatively

6 http://nlp.stanford.edu/software/index.shtml.
7 The pronunciations and translations of all Chinese strings mentioned
in this paper are provided in the Appendix.

small numbers, e.g., “ ” for 32 but “ ” for 12. In the
latter case, “ ” is more formal but is rarely used.

To streamline our handling of numbers in Chinese state-
ments, we employed regular expressions to capture specific
strings and convert them to Arabic numerals. The conver-
sions need special care for some extraordinary instances.
For instance, one may not want to convert “ ” to
“ ” or convert “ ” to “ ”.

2.1.3 Chinese string segmentation

We employed the Stanford Word Segmenter8 (Chang et al.
2008) to segment Chinese character strings into word tokens.
Unlike most alphabetical languages in which words are sep-
arated by spaces, Chinese text strings do not have delimiters
between words. In fact, Chinese text did not use punctuation
marks until modern times. In the field of natural language
processing, converting a Chinese string into a sequence of
Chinese words is called segmentation (or tokenization) of
Chinese.

A major challenge of Chinese segmentation is that dif-
ferent segmentations of a given Chinese string can represent
very different meanings of the original string. We can seg-
ment the string “ ” in two different ways:
{“ ”, “ ”, “ ”} or {“ ”, “ ”, “ ”,
“ ” }. Adopting the former segmentation, the transla-
tion of the original Chinese string is “how many more years
can one do research”. Adopting the latter will lead to “how
many more years can the graduate student survive”. To most
native speakers of Chinese, the former segmentation is much
more natural, but the latter is not unacceptable. In the 2012
Bakeoff for Chinese segmentation, the best performing sys-
tem reached an F1 measure slightly shy of 95 % (Duan et al.
2012).

2.2 Lexical semantics

2.2.1 Lexical resources and computation for Chinese
synonyms

The number of words shared by statement pairs is the most
commonly used feature to judge entailment. Identifying
words that are shared literally is a direct way to compute
word overlaps. Indeed, in previous RTE and RITE events,
organizers provided baseline systems which calculated char-
acter overlaps to determine entailment (Bar-Haim et al. 2006;
Stern et al. 2011).

In practice, people may express the same or very similar
ideas with synonyms and near synonyms, so their identifi-
cation is also very important. The following statements are

8 http://nlp.stanford.edu/software/segmenter.shtml.
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very close in meaning though they do not use exactly the
same words.

(1) Tamara is reluctant to raise this question.
(2) Tamara hesitates to ask this question.

Translating this pair into Chinese will also show the impor-
tance of identifying synonyms.

(3) Tamara
(4) Tamara

The literature has seen abundant ways to compute syn-
onyms for English, particularly those that computed the sim-
ilarity between words based on WordNet9 (Budanitsky and
Hirst 2006). In contrast, we have yet to find a good way to
compute synonyms for Chinese.

To compute synonyms for a given word, we rely on both
existing lexicons and computing methods. We acquired a
dictionary for synonyms and antonyms10 from the Ministry
of Education (MOE) of Taiwan. This MOE dictionary lists
16,005 synonyms and 8625 antonyms.

We could employ the extended HowNet11 (E-HowNet),
which can be considered as an extended WordNet for Man-
darin Chinese, to look up synonyms of Chinese words. E-
HowNet contains 88,079 traditional Chinese words in the
2012 version, and can provide synonyms of Chinese words,
so we could use the list of synonyms directly. We will find 38
synonymous words12 which carry the concept of “hesitate”
in E-HowNet. In this particular case, we would be able to tell
that “ ” in statement (3) and “ ” in statement (4) are
synonymous with the list in E-HowNet. However, “ ” in
statement (3) does not belong to the synonym list13 of “ ”
in statement (4). “ ” is similar to “raise” in English. One
can raise a question or a concern, so “raise” alone does not
necessarily relate to asking questions.

We could also use the definitions for words in E-HowNet
to estimate the relatedness between two Chinese words by
their taxonomical relations and semantic relations (Chuang
et al. 2012;Chen2013;Huang andLiu2013). In thiswork,we
converted the definition of aword into a “definition tree”, e.g.,
Fig. 1, according to the taxonomy in E-HowNet. Each node

9 http://wordnet.princeton.edu/.
10 http://dict.revised.moe.edu.tw/.
11 http://ehownet.iis.sinica.edu.tw/.
12

.
13

.

Fig. 1 A definition tree for “ ” (metallurgy)

represents a primitive unit, a function word, or a semantic
role. Considering each internal node in a definition tree as a
root, we built a collection of subtrees of the definition tree.
In Fig. 1, there are 15 nodes.

The DICE coefficient14 between the collections of sub-
trees of two definition trees is used to measure the degree of
relatedness of two definitions. Given two collections, e.g., X
and Y , the DICE coefficient is defined in Eq. (1), where |X |
is the number of elements in X .

DICE(X, Y ) = 2 |X ∩ Y |
|X | + |Y | (1)

Due to the definition, aDICEcoefficientmust fall in the range
of [0, 1]. Two definitions will be considered anonymous if
their DICE coefficient is larger than a threshold, for which
we chose to use 0.88 based on a small-scale experiment.

Computing Chinese synonyms only with information in
dictionaries is an imperfect method. Chinese text contains
out-of-vocabulary (OOV) words a lot more frequently than
English text. For these OOV words, dictionary-based meth-
ods cannot always help.

2.2.2 Chinese antonyms and negation words

We consider two ways to express opposite meanings. The
first is antonyms, e.g., “good” vs. “bad”; and the second is
through negation words, e.g., “good” and “not good”.

We relied on the lists of antonyms provided by the MOE
dictionary (cf. Sect. 2.2.1). Since there are only 8625 words

14 http://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_
coefficient.
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in the antonym lists in the dictionary, we can handle only a
very small number of antonyms at this moment.

We created a list of negation words based on our own
judgment. This list of negation words include “ ”, “ ”,
“ ”, “ ”, and “ ”. Note that we consider “ ”, “ ”, “ ”,
and “ ” to be negation words only when they are individual
words after segmentation. Hence, we will handle words like
“ ” correctly. This list allows us to find that statements (5)
and (6) (used inNTCIR-10RITE-2) have oppositemeanings.

(5)
(6)

We could also handle other negation words like “ ”,
“ ”, “ ”, and “ ”. However, this heuristic list is as
yet unable to handle all possible Chinese negation words cor-
rectly. A more complex word like, “ ”, would need
special attention in our system. A direct application of our
heuristic list will treat this word as two negations, but this
word is not really related to negation.

2.2.3 Named entity and verb recognition

Among parts of speech in almost all languages, nouns and
verbs are the essential parts for understanding the core mean-
ings of sentences. Information about named entities such as
persons, locations, organizations, and time are crucial for
inferring relationships between statements. A software tool
for named entity recognition (NER) not only annotateswords
in a sentence as nouns but also subcategorizes them as per-
sons, locations, organization names and time specifications.
Although current technologies for NER do not offer per-
fect performance, being able to carry out NER even par-
tially paves a way to handle typical questions regarding the
five Ws (What, When, Where, Why, Who). We employed
S-MSRSeg, which is a tool for named entities recognition
developed by Microsoft Research (Gao et al. 2005).

Verbs provide information about the actions or states that
a given sentence describes. Recognizing verbs for a sentence
pair is thus useful. We employed the Stanford parser (Levy
and Manning 2003) to do the tagging of parts of speech.
Although it is possible to consider sub-categorization of
verbs, we did not do so in the current study.

2.3 Syntactic features

We parsed the Chinese statements with the Stanford parser
(Levy and Manning 2003) to obtain the parse trees and the
part-of-speech (POS) tags for words. A parse tree of a sen-
tence reveals important information about the meaning of
the sentence. At this moment, we used the parsing results
to do two types of comparisons. The first was to compare
the similarity between the parse trees of T and H with the

samemethod (the DICE coefficient) that we used to compare
the definition trees of different senses as explained in Sect.
2.1.1. We also compared the collections of POS tags of two
sentences, particularly the tags for verbs.

Based on our experience, the Stanford parser works better
for simplified Chinese than for traditional Chinese. Hence,
we converted statements of traditional Chinese into simpli-
fied Chinese before the parsing step in our procedures (cf.
Sect. 2.1.1).

We noticed that the Stanford parser did not always pro-
duce the best or even correct parse trees for the given state-
ments. The parser ranked candidate parse trees with proba-
bilistic models, and produced the trees with leading scores.
Although we could request more than one parse tree for a
given statement, we chose to use only the top-ranked tree for
computational efficiency of our systems.

2.4 Semantic features

It is preferable to employ higher level information about
statement pairs to judge their entailment relationships. After
considering information available at the lexical and syntactic
levels, semantic features immediately came to mind. How-
ever, there are multiple ways to define and represent sen-
tential semantics. Frame semantics is a conceivable choice
(Fillmore 1976; Burchardt et al. 2009), for instance. In this
work, we explored an application of dependency structures
(Chang et al. 2009).

Linguists consider the context of words a very important
factor to define meaning. “You shall know a word by the
company it keeps” (Firth 1957) or similar arguments (e.g.,
Firth 1935; Harris 1954) are commonly cited in courses on
linguistics. “One sense per discourse, one sense per collo-
cation” (Yarowsky 1995) appears in the literature in com-
putational linguistics very frequently. For this reason, using
vector space models to capture contextual information has
become one of the standard approaches in both natural lan-
guage processing and information retrieval.

In our work, we explored an application of dependency
structures to capturing the contextual information in a sen-
tence.There are differentways to apply thedependency struc-
tures for inferring entailment relationships, and we note that
Day et al. also employed the tree-edit distances of depen-
dency structures in NTCIR-10 RITE-2 (Day et al. 2013).

We illustrate our methods with a short English exam-
ple, “We consider dependency structures for inferring tex-
tual entailment”, to make the example more easily under-
standable to non-Chinese speakers. We list the typed and
collapsed dependencies of this statement below. A depen-
dency relation is expressed in the format of relation-name
(governor, dependent), where both governor and dependent
are words appended with their positions in the sentence.
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Table 1 Matrix form for
encoding dependency structures

We Consider Dependency Structures Inferring Textual Entailment

We 0 1 0 0 0 0 0

Consider 0 0 0 0 0 0 0

Dependency 0 0 0 1 0 0 0

Structures 0 1 0 0 0 0 0

Inferring 0 1 0 0 0 0 0

Textual 0 0 0 0 0 0 1

Entailment 0 0 0 0 1 0 0

nsubj(consider-2, We-1)
root(ROOT-0, consider-2)
amod(structures-4, dependency-3)
dobj(consider-2, structures-4)
prepc_for(consider-2, inferring-6)
amod(entailment-8, textual-7)
dobj(inferring-6, entailment-8)

We can ignore the root node and build a matrix to encode the
direct relationships between words, as shown in Table 1. The
column headings show the governors, and the row headings
show the dependents. A cell will be 1 if there is a relation-
ship from the dependent to the governor. Hence, ignoring
the relation name, the cell (We, consider) is 1 because of
nsub(consider-2, We-1). Notice that the matrix is not sym-
metric because of the functions of words in different rela-
tionships.

The matrix, denoted by R, encodes the holistic relation-
ships between words in a statement, and can be considered a
way to represent the context of words in a given statement.
There are many similar applications of suchmatrices in com-
puter science, e.g., for modeling connectivity between web
pages (Page et al. 1998) and for modeling traffic networks
(Liu and Pai 2006).

As R encodes only the direct relationships betweenwords,
we can compute the powers of R to explore the indirect rela-
tionships between thewords. For example, a “1” in the second
power of R, R2, shows that there is a one-step indirect rela-
tionship between twowords. Ifwe compute the second power
of thematrix in Table 1, wewill find that the cell with “depen-
dency” as the row heading and with “consider” in the column
heading is 1—suggesting the idea of “consider dependency”
in the statement. When we compute higher powers of R, we
will find fewer “1”s in the matrices because there are fewer
word pairs with very remote indirect relationships.

Based on such observations, we explored the possibility of
encoding the sentential context with the union of the powers
of R for a statement. In the reported experiments in this paper,
we chose to compute the XR matrix, defined in Eq. (2), for
a given statement. A cell in XR will be 1 if the cell at the
corresponding positions in any of the first five powers of R
is 1.

XR = R ∪ R2 ∪ R3 ∪ R4 ∪ R5 (2)

3 Classification methods

Although machine learning-based algorithms are the most
conceivable method for classification problems including the
recognition of textual entailment (Dagan et al. 2009), the size
of training data available at NTCIR-10 RITE-2 was not large
enough to make us feel comfortable to just take this intu-
itive avenue. Hence, in addition to applying support vector
machines, we also tried to come up with our own parameter-
ized heuristic functions to make classification decisions. The
parameters would be tuned with the training data, so, tech-
nically, we can still consider our first approach as a machine
learning-based method.

3.1 Trained heuristic functions

We explain the individual factors that we considered in our
heuristic function in the following subsections.

3.1.1 Word overlap

Character overlap was used in the baseline systems in previ-
ous RTE (Bar-Haim et al. 2006) and RITE evaluations (Stern
et al. 2011). Perhaps, for this reason, word overlapmay be the
most common feature used by participating teams in these
events.

Since our goal is to judge whether T entails H , we would
like to know the portion of words in H that also appear in
T . In addition, we consider word overlap rather than char-
acter overlap. The difference is important because Chinese
words are consisted of Chinese characters. Some words may
contain just one character, but most others contain multiple
characters. Hence, we must segment the given statements to
compute theirwordoverlap.Thewordoverlap betweenT and
H is defined in Eq. (3), whereW (T ) andW (H), respectively,
denote the bags of words of T and H after the segmentation
step (cf. Sect. 2.1.3). We borrow the symbol for set intersec-
tion, ∩, to indicate the common part of two bags of words.
We represent the size of a bag of words by surrounding the
notation for the bag with vertical bars, e.g., |W (T )|.
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WOL(T, H) = |W (T ) ∩ W (H)|
|W (H)| (3)

Assume that we segment the statements in sentences (5) and
(6) to obtain (7) and (8), respectively. Their word overlapwill
be 6/7, and their character overlap will be 14/16.

(7)
(8)

3.1.2 Missing named entities

The intuition is: if some named entities in H are missing in
T , then it may be less likely for T to entail H . Hence, we
measured the missing named entities (MNE) in (4), where
count(T , H) is the number of named entities that appear
in H but not in T . Namely, let NE(T ) and NE(H), respec-
tively, denote the collections of named entities in T and H .
count(T ,H) is then defined as NE(H)\(NE(T ) ∩ NE(H)).

MNE(T, H) = α × count(T, H) (4)

The value of α would be selected with a training procedure.

3.1.3 Imbalanced negations

The following statement pair appeared in the development
set of NTCIR-10 RITE-2.

(9)
(10)

These statements convey opposite meanings because of the
negation word “ ”. Hence, we consider a penalty term for
imbalanced negations, IN(T ,H) in Eq. (5), based on the num-
ber of negation words (cf. Sect. 2.2.2) for both T and H ,
where |NEG(T )| and |NEG(H)| are the number of negation
words in T and H , respectively.

IN(T, H) =
{

β, |NEG(T )| �= |NEG(H)|
0, otherwise

(5)

The value of β would be selected with a training procedure.

3.1.4 Occurrence of antonyms

As an extension of the consideration of negation words, the
occurrence of antonyms, in T , of some words, in H , indicate
that the statement pairs are unlikely to entail one another.
Hence, we considered the following factor in our heuristic
function.

OA(T, H) =

⎧⎪⎨
⎪⎩

γ, {t is an antonym of h

| t ∈ W (T ), h ∈ W (H)} �= ∅
1, otherwise

(6)

The value ofγ was in the range of [1, 2] andwould be selected
with a training procedure.

3.1.5 An integrated heuristic decision function

Putting Eqs. (3), (4), (5), and (6) together, we have the fol-
lowing score function for whether T entails H .

s(T, H) = WOL(T, H) − MNE(T, H) − IN(T, H)

OA(T, H)
(7)

Relying on intuitive hunches, we subtract or divide the scores
for negative factors, andwe admit that the arrangements were
not scientific and not normative.

In some cases, the order of named entities influences the
entailment relationships. The following statement pair shows
an extreme example.

(11)
(12)

The word overlap of them is perfect, but they express almost
opposite information. For such observations, we also con-
sidered the order of named entities (ONE) in our heuristics
when s(T ,H) is large enough.

We define a penalty term for the order of named entities
in (8).

ONE(T, H) =
{

δτ , s(T, H) ≥ λ

1, otherwise
(8)

The value of τ is the number of pairs of named entities in T
and H that have different orders. In sentences (11) and (12),
the named entities “ ” and “ ” have different orders,
so τ will be one in this instance. The values of δ, which is in
the range of [1, 2], and λ would be selected with the training
data.

Integrating Eqs. (7) and (8), we obtain the following
heuristic decision function that we used in the NTCIR-10
RITE-2 task. If score(T , H) exceeds a chosen threshold, E ,
we will determine that T entails H .

Score(T, H) = s(T, H)

ONE(T, H)
(9)

3.1.6 A brief critical review

In the previous subsections, we introduced individual terms
for the final version of the heuristic decision function in
Eq. (9). We tried to justify the influences of each individ-
ual term by isolated observations, so each individual term
may look reasonable. Unfortunately, real-world statements
can be complex, and may demand deeper understanding of
the statement pairs to determine whether or not their entail-
ment relationships hold.
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Table 2 List of candidate features for machine learning-based classifiers

ID Type Definition ID Type Definition

F1 Num |W (T )∩W (H)|
|W (H)| F2 Num | {h|h ∈ NE(H), h /∈ NE(T )} |

F3 Num τ defined in Sect. 3.1.5 F4 Num | {t ∈ ANT(h)|t ∈ W (T ), h ∈ W (H)} |
F5 Bool 1, if |NEG(T )| = |NEG(H)|; 0, else F6 Num |W (T )| and |W (H)|
F7 Bool 1, if |W (T )| > |W (H)|; 0, else F8 Num DICE coefficient between the subtrees of the

parse trees of T and H

F9 Num |NE(T )∩NE(H)|
|NE(H)| F10 Num |NE(T )| and |NE(H)|

F11 Num |NEG(T )| and |NEG(H)| F12 Num |NEG(T )∩NEG(H)|
|NEG(H)|

F13 Num |{t ∈ SYN(h)|t ∈ W (T ), h ∈ W (H)}| F14 Num |{t∈SYN(h)|t∈W (T ),h∈W (H)}|
|W (H)|

F15 Num |VERB(T )∩VERB(H)|
|VERB(H)| F16 Num |XR(T )∩XR(H)|

|XR(H)|
F17 Num |VERB(T )| and |VERB(H)|

Consider the following statement pair which appeared in
the NTCIR-10 RITE-2 development set.

(13)
(14)

We have a pair of antonyms, i.e., “ ” and “ ”. We also
observe that a pair of named entities have reversed order in
the statement pair, i.e., “ ” and “ ”. The existence of
antonyms and the reversed order of a named entities pair are
considered negative factors against the holding of entailment
relationships in the previous subsections, when we discussed
them separately. However, in this case, when both negative
factors occur, they cancel each other out, and this statement
pair can be considered as a pair of paraphrased statements.
As a consequence, our heuristic function would fail to work
for them.

Despite such practical challenges, Eq. (9) is indeed the
decision function that we employed to achieve the second
positions in the BC subtasks for both TC and SC in NTCIR-
10 RITE-2. We will provide details about its performance
shortly.

3.1.7 Machine learning methods

We considered more features when we ran experiments that
employed techniques of support vector machines, decision
trees, and linearly weighted models.

3.1.8 The candidate features

We considered 17 candidate features that are listed in Table
2, where we use X to denote a sentence and x to denote a
word in X in the following definitions.

1. “Num” and “Bool”, respectively, denote “numeric” and
“Boolean” in the Type column.

2. W (X): the collection of words of a sentence X (after
segmentation).

3. S ∩ T : the collection of elements that appear in both
collection S and collection T .

4. |S|: the number of elements in the collection S.
5. NE(X): the collection of named entities in a sentence X .
6. ANT(x): the collection of antonyms of a word x .
7. NEG(X): the collection of negation words in a sen-

tence X .
8. SYN(x): the collection of synonyms or near synonyms

of x .
9. VERB(X): the collection of POS tags of the verbs in X

(cf. Sect. 2.3).
10. XR(X): the XR matrix of X (cf. Sect. 2.4).

Many of the features listed in Table 2 are derivations of those
basic features that we discussed in Sects. 2.2, 2.3, and 2.4.
Others were selected due to similar rationalities, so we do
not repeat the same reasoning, and explain their derivations
only briefly below.

F1: This is the word overlap discussed in Sect. 3.1.1.
F2: This is the count(T, H ) in Sect. 3.1.2.
F3: This feature is defined in Sect. 3.1.5.
F4: This feature is similar to the word overlap that we

discussed in Sect. 3.1.1, except that we consider the
antonyms here.

F5: This feature measures whether T and H have the
same number of negation words (cf. Sect. 3.1.3).

F6: We consider the number of words in T and H . These
are typical features for all RITE and RTE systems
(Shima et al. 2012).

F7. We examine whether T is longer than H . This is also
a typical feature for RITE and RTE systems (Shima
et al. 2012).

F8: This is Eq. (1) (cf. Sect. 2.2.1).
F9: This feature calculates the overlap of named entities

that we discussed in Sect. 2.

123



Chinese textual entailment in NTCIR RITE evaluation tasks 319

F10: These features record the quantities of named entities
in T and H (cf. Sect. 2).

F11: These features record the quantities of negation
words in T and H (cf. Sect. 2.2.2).

F12: This feature calculates the overlap of negation words
in T and H (cf. Sect. 2.2.2).

F13: This feature records the overlap of synonyms in T
and H (cf. Sect. 2.2.1).

F14: This feature records the proportion of synonyms in
H (cf. Sect. 2.2.1).

F15: Mimicking the principle of calculating word over-
laps, this feature records the proportion of common
verbs in T and H (cf. Sect. 2.2.3).

F16: This feature was discussed in Sect. 2.4.
F17: Analogous to the principle of computingword counts

in T and H (F6), these features record the number of
verbs in T and H .

Notice that we would consider counts for both T and H
when we adopted F6, F10, F11, and F17. These counts are
numeric features for the statements, and we thought it would
be unreasonable to consider just the count for an individual
statement in the statement pairs.

3.1.9 The classifiers: SVMs, decision trees, and linearly
weighted models

We employed the libSVM library for SVMs (Chang and Lin
2011) and Weka for decision trees and linearly weighted
functions for classification (Witten et al. 2011).

We used the radial basis function as the kernel function
in libSVM, and tuned the parameters with standard methods
recommended by Chang and Lin (2011). The values of the
features were also normalized as recommended.

We utilized the packages for learning decision trees and
linearly weighted models with the default settings in Weka,
and did not attempt to change the parameters of the packages.

When using the linearly weighted functions to judge the
entailment relationship of a statement pair, we computed the
score of the statement pair with a linearly weighted func-
tion. This function considered the features that are listed in
Table 2. A statement pair whose score was larger than 0.5
was considered to have an entailment relationship. We let
the learning package find the coefficients that would opti-
mize the classification results. In essence, this procedure of
using linearly weighted functions is quite similar to our using
heuristic functions in Sect. 3.1.

4 Empirical evaluations

We applied the aforementioned features and classification
methods to participate in the BC subtask of the NTCIR-10

RITE-2 task, and achieved the second positions for both tra-
ditional Chinese (TC) and simplified Chinese (SC). Since the
winning teams of the TC and SC tracks were different, we
have good reason to believe that our system is relativelymore
robust in its performance.

In this long section, we provide information about the
data sources in Sect. 4.1, and explain the methods for typical
RITE evaluations in Sect. 4.2. The results of our participa-
tion in NTCIR-10 are reported in Sect. 4.3. Due to time con-
straints, we did not choose the parameters for our heuristic
functions (cf. Sect. 3.1) systematically when we participated
in the evaluation tasks. We have extended our work after-
wards, and the results are presented in Sects. 4.4 through
4.7. The purpose of conducting these new experiments was
to check how different approaches and different data sets
influenced the observed results. Some additional discussions
about the results are provided in Sect. 5.

4.1 Data sources

By participating in the NTCIR-10 RITE-2 task, we obtained
a development data set for training purposes and a test data
set for formal runs. We could also download the test data
set for NTCIR-9 RITE. Table 3 shows the statistics of the
provided data for RITE tasks.

The development data set contains pairs of statements that
are annotated with the correct answers as to whether or not
the first statement entails the second. We list a positive pair
(with a “Y” label) and a negative pair (with an “N” label)
below. In Table 3, we show the number of “Y” pairs and “N”
pairs.

4.2 Evaluation metrics

We use the evaluation metrics adopted by the NTCIR-10
RITE-2 tasks. They are standard definitions of accuracy, pre-
cision rate, recall rate, and the F1 measure (Watanabe et al.
2013a).

Accuracy is the proportion of the correct classifications
among all predicted classifications. Y-precision is the pro-
portion of true Y pairs among all pairs that are classified as
Y. Y-recall is the proportion of true Y pairs among all pairs
that are actually Y. N-precision is the proportion of true N
pairs among all pairs that are classified as N. N-recall is the
proportion of true N pairs among all pairs that are actually N.
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Table 3 Quantities of statement
pairs in the RITE and RITE-2
data sets.

Category NTCIR-9 RITE test NTCIR-10 RITE-2
development

NTCIR-10 RITE-2 test

Language TC SC TC SC TC SC

Y pairs 450 263 716 528 479 422

N pairs 450 144 605 286 402 359

Total 900 407 1321 814 881 781

Table 4 Parameters for the heuristic decision functions

E α β γ λ δ Accuracy %

TC 0.57 0.28 0.24 2.0 0.85 2.0 72.90

SC 0.56 0.25 0.24 2.0 0.85 2.0 71.25

The F1 measure is defined as the division of the product of
2, precision, and recall over the sum of precision and recall.
MacroF1 is the average of the F1 measures of the Y category
and the N category.

4.3 NTCIR-10 RITE-2 evaluation task

Table 4 shows the parameters that we used for our heuristic
functions to participate in NTCIR-10 RITE-2. The meanings
of E , α, β, γ , λ, and δ were explained in Sect. 3.1. We chose
the values of these parameters based on observed results of
some experiments that we conducted with the development
set. A statement pair, T and H , whose score(T ,H), defined in
Eq. (9), exceeded the value of E would be considered to have
the entailment relationship. The aim at our training stage was
to optimize accuracy.

At the time when we submitted our results, we wanted
to study the effects of considering synonyms in computing
word overlap. Hence, we submitted two runs of classifica-
tions that were obtained by two procedures that differed
only in whether synonyms were considered as overlapped
words. The formal run that was obtainedwhenwe considered
synonyms was MIG-2, and the formal run that intentionally
ignored synonyms was MIG-1.

When we had to submit the results for formal runs, we
had just begun to try machine learning-based models. At
that moment, we only tried SVMs and decision trees with
a specific set of features. We employed F1, F2, F6, F7, F8,
F10, F11, F12, F13, and F14 for TC (cf. Table 2), and F1,
F2, F6, F7, F8, F9, and F10 for SC. Using the 10-fold cross-
validation on the development set with SVM models, we
observed 71.46 % in accuracy for TC and 75.55 % for SC,
andwe submitted a runwith these configurations. The results
obtained with such SVM models were coded MIG-3.

Table 5 lists the results of MIG-1, MIG-2, and MIG-3,
along with the results of the best performing team, IASL-2
(Shih et al. 2013), for TC. Table 6 lists the results of MIG-1,

MIG-2, and MIG-3, along with the results of the best per-
forming team, bcNLP-3 (Wang et al. 2013), for SC.Wedonot
show percentage signs in Tables 5 and 6 and all the remaining
tables to save space.

The performance values of IASL-2 and MIG-2 are really
close to each other in Table 5. In contrast, although MIG-
2 achieved the second best performance for SC, there were
big gaps between the performance values of bcNLP-3 and
MIG-2 in Table 6.

TheMacroF1 values in Tables 5 and 6 indicate that consid-
ering synonyms in calculating word overlap helped MIG-2
to perform better than MIG-1 in the evaluation of both TC
and SC.

Manymay be disappointed that using SVM-based models
did not achieve the best performance. None of the leading
teams, including IASL-2, bcNLP-3, and MIG-2, used SVM.
The best performing systems that used SVMs are MIG-3 in
Table 5 for TC and CYUT-3 (Wu et al. 2013) in Table 6 for
SC. Both achieved third place. IMTKU-1 (Day et al. 2013)
used SVM-based models as well, and performed similarly
with MIG-3 in TC subtasks. We suspect that the relatively
small size of the available data for training, listed in Table 3,
may have contributed to this phenomenon. We will discuss
this issue further in Sect. 5.2.

4.4 More experiments for the heuristic functions

We relied on limited experimental results to select the combi-
nations of the parameters for the heuristic function, and chose
to use the combination listed in Table 4. After NTCIR-10, we
had the opportunity to run a more exhaustive grid search for
the parameters.

Using the settings in Table 4 as seeds, we chose a range for
each of the parameters, and ran experiments on all possible
combinations of the parameters with the development set
of NTCIR-10 RITE-2. The ranges and increments for all
parameters are listed inTable 7.Notice that the ranges contain
the values whichwe listed in Table 4. Although the selections
of the ranges and increments remained arbitrary, the searched
region was quite large, and we had to conduct more than 317
million experiments to search the region for both TC and for
SC. Hence we ran the experiments more than 634 million
times with the development set.
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Table 5 Partial results of BC
subtask for TC in NTCIR-10
RITE-2

Rank Team-ID MacroF1 Acc. Y-F1 Y-Prec. Y-Rec. N-F1 N-Prec. N-Rec.

1 IASL-2 67.14 67.76 71.66 68.64 74.95 62.63 66.48 59.20

2 MIG-2 67.07 67.54 70.99 69.03 73.07 63.14 65.51 60.95

3 MIG-3 66.99 67.54 71.23 68.74 73.90 62.76 65.85 59.95

4 IMTKU-1 65.99 66.29 69.16 68.80 69.52 62.83 63.22 62.44

6 MIG-1 65.42 65.61 67.94 68.88 67.01 62.91 61.93 63.93

Table 6 Partial results of BC
subtask for SC in NTCIR-10
RITE-2

Rank Team-ID MacroF1 Acc. Y-F1 Y-Prec. Y-Rec. N-F1 N-Prec. N-Rec.

1 bcNLP-3 73.84 74.65 78.43 72.58 85.31 69.25 78.25 62.12

2 MIG-2 68.09 68.50 71.72 69.64 73.93 64.45 66.97 62.12

3 CYUT-3 67.86 68.12 70.74 70.16 71.33 64.98 65.63 64.35

6 MIG-1 65.71 65.81 67.56 69.33 65.88 63.87 62.11 65.74

12 MIG-3 57.19 63.64 73.80 60.42 94.79 40.59 81.51 27.02

Table 7 Ranges and increments for the grid search

Parameter Range Increment

E [0.40, 0.70] 0.01

α [0.05, 0.35] 0.01

β [0.05, 0.35] 0.01

γ [1.00, 2.00] 0.10

λ [0.55, 0.90] 0.05

δ [1.00, 2.00] 0.10

Table 8 Best combinations of parameters for TC

Configuration
ID

E α β γ λ δ Accuracy

C1 0.54 0.1 0.27 1.8 0.85 1.9 73.05

C2 0.56 0.08 0.25 1.0 0.85 1.8 73.13

C3 0.56 0.08 0.25 1.7 0.85 1.8 73.20

C4 0.56 0.09 0.25 1.0 0.85 1.8 73.28

C5 0.56 0.09 0.25 1.7 0.85 1.8 73.35

C6 0.57 0.28 0.24 2.0 0.85 2.0 72.90

Within the region described in Table 7, we found some
combinations of these parameters that would help us achieve
higher accuracies than those listed in Table 4. Table 8 lists
such new settings for TC, and Table 9 lists such new settings
for SC. If we had used an exhaustive search for the parame-
ters, we would have used the combinations in Tables 8 and
9 to participate in NTCIR-10 RITE-2, rather than using the
combinations listed in Table 4. Note that we intentionally
repeated the settings listed in Table 4 in Table 8, i.e., C6,
and in Table 9, i.e., C12, to facilitate comparison between
results.

We used the settings in Table 8 to run experiments on
the TC test set of NTCIR-10 RITE-2. Recall that when we

Table 9 Best combinations of parameters for SC

Configuration
ID

E α β γ λ δ Accuracy

C7 0.40 0.17 0.10 1.1 0.85 1.0 74.69

C8 0.40 0.18 0.07 1.1 0.85 1.0 74.82

C9 0.40 0.18 0.09 1.1 0.85 1.0 74.94

C10 0.40 0.20 0.07 1.1 0.85 1.0 75.06

C11 0.41 0.20 0.06 1.0 0.85 1.0 75.18

C12 0.56 0.25 0.24 2.0 0.85 2.0 71.25

submitted our classification results for formal runs, MIG-1
did not consider synonyms for counting word overlap, but
MIG-2 did. We did not consider synonyms in experiments to
obtain the results in Table 10, and considered synonyms to
obtain Table 11.

Comparing the MacroF1 values in Table 10 with that of
MIG-1 in Table 5, we find that using any of the five new
settings would help us achieve better MacroF1 scores, but
only marginally. Comparing the MacroF1 values in Table 11
with that of MIG-2 in Table 5, we see that using three of
the five new settings would help us improve the MacroF1
scores. Using two of these new settings, i.e., C2 and C4,
would actually help us achieve the best MacroF1 in formal
runs. Nevertheless, we note that the improvements were not
very significant.

We used the settings in Table 9 to run experiments on the
SC test set of NTCIR-10 RITE-2. Tables 12 and 13, respec-
tively, list the results of not considering and considering syn-
onyms. Although the new settings achieved better accuracies
for the development data than the settings listed in Table 4,
they would not provide better performances for the test data.

Considering synonyms in computingword overlapswould
lead to better performance for TC subtasks in NTCIR-10
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Table 10 Using settings in Table 8 but no synonyms for TC in NTCIR-
10 RITE-2

ID MacroF1 Acc. Y-Prec. Y.-Rec. N-Prec. N-Rec.

C1 65.79 66.29 67.91 72.03 64.08 59.45

C2 65.73 66.29 67.70 72.65 64.31 58.71

C3 65.55 65.95 68.01 70.56 63.28 60.45

C4 65.75 66.29 67.77 72.44 64.23 58.96

C5 65.56 65.95 68.08 70.35 63.21 60.70

C6 (MIG-1) 65.42 65.61 68.88 67.01 61.93 63.93

Table 11 Using settings in Table 8 and synonyms for TC in NTCIR-10
RITE-2

ID MacroF1 Acc. Y-Prec. Y.-Rec. N-Prec. N-Rec.

C1 66.79 67.76 67.63 78.08 67.99 55.47

C2 67.46 68.56 67.91 79.96 69.72 54.98

C3 67.12 67.99 68.07 77.45 67.86 56.72

C4 67.25 68.33 67.79 79.54 69.28 54.98

C5 66.92 67.76 67.96 77.04 67.46 56.72

C6 (MIG-2) 67.07 67.54 69.03 73.07 65.51 60.95

Table 12 Using settings in Table 9 but no synonyms for SC in NTCIR-
10 RITE-2

ID MacroF1 Acc. Y-Prec. Y.-Rec. N-Prec. N-Rec.

C7 62.05 66.33 62.80 92.42 80.00 35.65

C8 61.98 66.33 62.76 92.65 80.38 35.38

C9 62.24 66.45 62.90 92.42 80.12 35.93

C10 62.67 66.71 63.15 92.18 80.00 36.77

C11 63.94 67.35 63.94 90.76 78.57 39.83

C12 (MIG-1) 65.71 65.81 69.33 65.88 62.11 65.74

Table 13 Using settings in Table 9 and synonyms for SC in NTCIR-10
RITE-2

ID MacroF1 Acc. Y-Prec. Y.-Rec. N-Prec. N-Rec.

C7 59.35 64.92 61.42 94.31 81.95 30.36

C8 59.05 64.66 61.27 94.08 81.20 30.08

C9 59.44 64.92 61.46 94.08 81.48 30.64

C10 60.10 65.30 61.78 93.84 81.43 31.75

C11 61.68 66.33 62.60 93.60 82.00 34.26

C12 (MIG-2) 68.09 68.50 69.64 73.93 66.97 62.12

RITE-2. The corresponding MacroF1 values in Table 11 are
better than those in Table 10. In contrast, considering syn-
onyms did not lead to consistent improvements in MacroF1
scores for SC subtasks in NTCIR-10 RITE-2. The corre-
sponding MacroF1 scores in Table 13 are not necessarily
higher than those in Table 12.

4.5 More experiments for the machine learning-based
models

In Sect. 4.3, we reported results of using an SVMmodel with
a set of features that were chosen based on some small-scale
experiments. Since the size of the training data is not large
and we have listed only 17 candidate features in Table 2, it
is not infeasible for us to use all possible combinations of
the 17 features with a classification model to pinpoint the
combination that produces the best classification results for
the training data. The number of experiments is 217, which
is 131,072.

We actually executed just such a brute-force search for
SVMs, decision trees, and linearly weighted functions with
the TC and SCdevelopment set ofNTCIR-10RITE-2. Tables
14 and 15 list the selected sets of features along with the
accuracies observed in the 10-fold cross-validation learning
processes, where SVM, DT, and LM, respectively, denote
SVMs, decision trees, and linearly weighted models. Recall
that, in Sect. 4.3, the selected feature set for SVMs led to
71.46 % in accuracy for TC and 75.55 % for SC at training
time, both of which are not very different from their coun-
terparts in Tables 14 and 15.

Comparing Tables 14 and 15, we can see that the best
combination of features varies with the language and the
nature of the classifiers.

Having identified the best features for different classifiers
with the development dataset, we ran the classifiers, which
were based on linear models, on the test dataset of NTCIR-
10 RITE-2. Tables 16 and 17 list the results for TC and SC,
respectively. A comparison between the MacroF1 scores in
Table 16 and the MacroF1 of MIG-3 in Table 5 shows that
none of the classifiers that used the new feature sets outper-
formed the SVM model which we used in the TC subtask in
the NTCIR-10 RITE-2. On the contrary, the MacroF1 scores
in Table 17 are significantly better than the MacroF1 of the
MIG-3 in Table 6. Nevertheless, even after such improve-
ments, these new results would not be good enough to be
listed among the top 5 results for the SC subtask in NTCIR-
10 RITE-2.

4.6 Evaluations with NTCIR-9 RITE test data

We reused the classification models that we trained with the
NTCIR-10 RITE-2 development dataset to predict the entail-
ment of the test data for NTCIR-9 RITE. According to Shima
et al. (2012), the best accuracy scores achieved by software
for the TC and SC were 66.11 and 77.64 %, respectively.

We used our heuristic functions with the settings listed
in Table 8 to predict the entailment relationships of the TC
test dataset of NTCIR-9 RITE. Again, we ran two sets of
experiments, differing inwhether or not synonymswere used
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Table 14 Feature selection with
the TC development set of
NTCIR-10 RITE-2

Model ID Feature ID Accuracy

SVM-1 F1, F2, F3, F4, F5, F6, F8, F9, F12, F14 71.99

SVM-2 F1, F2, F4, F5, F6, F8, F9, F11, F12, F14 71.84

DT-3 F1, F2, F3, F5, F7, F8, F12, F13, F15 71.78

DT-4 F1, F2, F3, F5, F7, F8, F10, F13, F15 71.74

LM-5 F1, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17 72.98

LM-6 F1, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F15, F16, F17 72.75

Table 15 Feature selection with
the SC development set of
NTCIR-10 RITE-2

Model ID Feature ID Accuracy

SVM-7 F1, F2, F5, F6, F7, F9, F13, F16 75.80

SVM-8 F1, F2, F3, F5, F6, F7, F16 75.80

DT-9 F1, F2, F5, F7, F11, F12 76.44

DT-10 F1, F2, F4, F5, F7, F8, F11, F12 76.40

LM-11 F1, F2, F3, F4, F5, F7, F8, F9, F10, F12, F13, F15, F16, F17 77.40

LM-12 F1, F3, F4, F5, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17 77.27

Table 16 Results of using LM and the best feature sets for TC test set
of NTCIR-10 RITE-2

Model ID MacroF1 Acc. Y-Prec. Y.-Rec. N-Prec. N-Rec.

LM-5 64.60 64.81 67.94 66.81 61.22 62.44

LM-6 64.10 64.36 67.30 67.01 60.89 61.19

Table 17 Results of using LM and the best feature sets for SC test set
of NTCIR-10 RITE-2

Model ID MacroF1 Acc. Y-Prec. Y.-Rec. N-Prec. N-Rec.

LM-11 62.16 65.94 62.87 90.28 76.57 37.33

LM-12 62.05 65.81 62.81 90.05 76.14 37.33

Table 18 Using settings in Table 8 but no synonyms for TC inNTCIR-9
RITE

ID MacroF1 Acc. Y-Prec. Y.-Rec. N-Prec. N-Rec.

C1 73.18 73.44 69.57 83.33 79.22 63.56

C2 73.29 73.56 69.63 83.56 79.44 63.56

C3 73.59 73.78 70.34 82.22 78.61 65.33

C4 73.52 73.78 69.89 83.56 79.56 64.00

C5 73.82 74.00 70.61 82.22 78.72 65.78

C6 73.83 73.89 71.81 78.67 76.41 69.11

in computingword overlap, and the results are listed inTables
18 and 19.

The data in Tables 18 and 19 show that our accuracy scores
were better than the best score achieved by the systemswhich
participated in the TC evaluation task of NTCIR-9. However,

Table 19 Using settings in Table 8 and synonyms for TC in NTCIR-9
RITE

ID MacroF1 Acc. Y-Prec. Y.-Rec. N-Prec. N-Rec.

C1 71.53 72.11 67.18 86.44 81.00 57.78

C2 71.94 72.56 67.41 87.33 82.02 57.78

C3 72.41 72.89 68.13 86.00 81.02 59.78

C4 72.07 72.67 67.53 87.33 82.08 58.00

C5 72.54 73.00 68.25 86.00 81.08 60.00

C6 73.00 73.22 69.68 82.22 78.32 64.22

Table 20 Using settings in Table 8 but no synonyms for SC inNTCIR-9
RITE

ID MacroF1 Acc. Y-Prec. Y.-Rec. N-Prec. N-Rec.

C7 67.69 75.18 73.82 95.44 82.09 38.19

C8 67.69 75.18 73.82 95.44 82.09 38.19

C9 67.69 75.18 73.82 95.44 82.09 38.19

C10 68.11 75.43 74.04 95.44 82.35 38.89

C11 68.11 75.43 74.04 95.44 82.35 38.89

C12 67.66 71.01 76.36 79.85 59.85 54.86

we also observed that considering synonyms in TC experi-
ments for NTCIR-9 actually decreased the performance of
our systems.

Wealso usedour heuristic functionswith the settings listed
in Table 9 to predict the entailment relationships of the SC
test dataset of NTCIR-9 RITE. Analogously, we ran two sets
of experiments, differing in whether or not synonyms were
used in computing word overlap, and the results are listed in
Tables 20 and 21.
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Table 21 Using settings in Table 8 and synonyms for SC in NTCIR-9
RITE

ID MacroF1 Acc. Y-Prec. Y.-Rec. N-Prec. N-Rec.

C7 65.96 74.94 72.80 97.72 88.89 72.80

C8 65.96 74.94 72.80 97.72 88.89 72.80

C9 65.96 74.94 72.80 97.72 88.89 72.80

C10 66.41 75.18 73.01 97.72 89.09 73.01

C11 66.41 75.18 73.01 97.72 89.09 73.01

C12 67.57 71.74 75.52 83.27 62.39 75.52

Table 22 Results of using the best feature sets for TC test set ofNTCIR-
9 RITE

Model ID MacroF1 Acc. Y-Prec. Y.-Rec. N-Prec. N-Rec.

LM-5 71.50 71.89 67.75 83.56 78.55 60.22

LM-6 72.48 72.89 68.39 85.11 80.29 60.67

Table 23 Results of using the best feature sets for SC test set ofNTCIR-
9 RITE

Model ID MacroF1 Acc. Y-Prec. Y.-Rec. N-Prec. N-Rec.

LM-11 71.58 77.64 75.90 95.82 85.33 44.44

LM-12 72.36 78.13 76.36 95.82 85.71 45.83

The statistics in Tables 20 and 21 show that our accuracy
scores were not as good as the best score achieved by the
systems which participated in the SC subtask of NTCIR-
9 RITE. Similar to what we observed in Tables 18 and 19,
considering synonyms in SC experiments forNTCIR-9RITE
brought down the performance of our systems.

Weused the linearmodel-based classifierwith the best fea-
ture sets (cf. Tables 14, 15 in Sect. 4.5) to predict the entail-
ment relationships for the test dataset of NTCIR-9 RITE.
Tables 22 and 23 show the results for TC and SC, respec-
tively. Once again, the accuracies for TC were better than the
best performing team which actually participated in NTCIR-
9 RITE. Moreover, the accuracy achieved by LM-12 was
also slightly better than the best accuracy for SC in NTCIR-
9 RITE.

4.7 Effects of syntactic and semantic information

In order to study the effects of considering parse trees (F8 in
Table 2) and the dependency structures (F16 in Table 2), we
intentionally removed F8 and F16 from LM-5 and LM-6 in
Table 14 and LM-11 and LM-12 in Table 15. We used LM-
5A, LM-6A, LM-11A, and LM-12A to denote these new set-
tings. Table 24 lists the MacroF1 and accuracy scores when
we used LM-5A, LM-6A, LM-11A, and LM-12A with lin-
early weighted models to predict entailment.

Although we hoped that considering higher level linguis-
tic information could make a significant contribution to the
scores, the data does not support our hypothesis decisively.
Most of the time, considering F8 and F16 made the clas-
sification results only relatively and marginally better for
simplified Chinese. The effects of considering F8 and F16
were quite arbitrary for test data of traditional Chinese, as
indicated by the left side of Table 24.

5 Additional discussions

In this section, we discuss some issues that involve observa-
tions obtained inmultiple experiments.More specifically, we
discuss the implication thatwas suggested by the experiments
reported in Sect. 4. Although one might expect that some
approaches should have achieved better performance than
others, such expectations might not be realized in the current
study. We investigate the issues and elaborate on possible
reasons for the gap between the actual results and expected
outcomes in this section.

5.1 Y-precision, Y-recall, N-precision, and N-recall

Although we have focused mostly on the effects of using dif-
ferent methods and features on the achieved MacroF1 and
accuracy scores, the values of the Y-precision, Y-recall, N-
precision, andN-recall are informative for the design of algo-
rithms.

It should be noted that, when handling the statement pairs
of simplified Chinese, our methods had high values in Y-

Table 24 Effects of considering syntactic and semantic information indecisive

Traditional Chinese Simplified Chinese

RITE.Test RITE-2.Test RITE.Test RITE-2.Test

MacroF1 Acc. MacroF1 Acc. MacroF1 Acc. MacroF1 Acc.

LM-5 71.50 71.89 64.60 64.81 LM-11 71.58 77.64 62.16 65.94

LM-5A 71.70 72.00 64.51 64.81 LM-11A 70.95 77.15 62.31 65.81

LM-6 72.48 72.89 64.10 64.36 LM-12 72.36 78.13 62.05 65.81

LM-6A 71.32 71.67 64.34 64.70 LM-12A 69.25 75.68 62.03 65.56
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Table 25 Performance statistics
of teams which participated in
both SC and TC subtasks in
NTCIR-10 RITE-2

Teams Simplified Chinese Traditional Chinese

Ranks MacroF1 Acc. Ranks MacroF1 Acc.

JUNLP 24 48.49 48.66 16 48.72 48.81

IASL 10,18 60.45 63.25 1,14 67.14 67.76

MIG 2,6,12 68.09 68.50 2,3,6 67.07 67.54

CYUT 3,7,9 67.86 68.12 12,13,15 55.16 55.16

Yuntech 14,15,16 53.52 59.54 8,9,10 62.31 62.54

IMTKU 13,17,23 54.28 62.74 4,7,17 65.99 66.29

WHUTE 8,11 61.65 66.58 5 65.55 66.29

recall and N-precision and low values in N-recall in Sects.
4.4 and 4.5. After using the training methods, our meth-
ods showed a tendency to grant entailed relationships to
statement pairs. We suspect that this phenomenon may have
resulted from the imbalanced portions of Y-pairs and N-pairs
in the development set (cf. Table 3).

5.2 Performance of SVM-based systems

Indeed, it is not surprising that the quality of training data
influenced the performances of the trained models. The
amount of data available for training may have also affected
the performances of teams which adopted supported vector
machines (SVMs) as their classifiers. Table 25 shows some
statistics of the performance of all of the teams which partic-
ipated in the BC subtask for both simplified and traditional
Chinese in NTCIR-10 RITE-2. Since each team could sub-
mit up to three runs of their systems, a team would have
as many results as the runs they submitted. The “MacroF1”
and “Acc.” columns show the highest MacroF1 and accuracy
achieved by the teams.

Among the seven teams, only IASL (Shih et al. 2013)
did not use SVMs, and MIG (Huang and Liu 2013) used
SVMs in one of their three runs. The other five teams used
SVMs as their classifiers, and only CYUT (Wu et al. 2013)
achieved better performance in simplified Chinese than in
traditional Chinese. Although MIG’s best performance in
simplifiedChinese is better than its best performance in tradi-
tional Chinese, as shown in Table 25, MIG’s performance in
simplified Chinese is actually poorer than its performance in
traditional Chinese whenMIG used an SVM-based classifier
(cf. MIG-3 in Tables 5, 6).

5.3 Effects of specific features on experiments with real test
data

Comparing the experimental results discussed in Sects. 4.3,
4.4, and 4.5, we found that, overall, using systematic ways to
search for parameters and features offered us more chances
to achieve better performance than relying on results of intu-
itively selected experiments to build an inference system.

We have also attempted to compare many experimental
results that were influenced by whether or not we considered
synonyms in computing word overlap in Sect. 4. The follow-
ing statement pair ofNTCIR-10RITE-2 provides an example
of the need to consider synonyms. One needs to recognize
the synonymous relationship between “ ” and “ ” to
correctly handle this pair.

(15)
(16)

Nevertheless, experimental results showed that considering
synonyms only helped improve our performance in the TC
experiments in NTCIR-10 RITE-2. Similar results were not
observed in other experiments that we reported in Sects. 4.4
and 4.6. This may have resulted because the test data did
not include many instances that really needed synonyms to
make correct judgments and may have also been caused by
imperfect judgment of synonymous relationships between
Chinese words, which remains a very challenging problem
for Chinese.

The entailment relationships between a statement pairmay
hold for a wide variety of reasons and their combinations,
and the organizers of evaluation tasks try to cover as many
different types of entailment relationships as possible in the
datasets (Dagan et al. 2009; Shima et al. 2012; Watanabe
et al. 2013a). As a consequence, the overall performance
might not be improved instantly due to the consideration of
just one specific factor. Researchers have studied the correla-
tion between datasets and performance of systems (Lin et al.
2015). Hence, it may not be easy to single out and justify the
extract contribution of a specific feature with real test data.

The same phenomenon occurred again when we tried to
examine the effects of considering syntactic and semantic
information to judge entailment relationships with experi-
ments reported in Sect. 4.7.

5.4 World knowledge and subjective judgments

In the real world, we may not be able to judge whether
one statement entails another solely by linguistic information
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(Vanderwende et al. 2006; Dagan et al. 2009). This is particu-
larly true whenworld knowledge, connotation and subjective
judgments are involved. Following are some statement pairs
that were used in NTCIR-10 RITE-2.

Knowledge about the conversion between “ ” (meter) and
“ ” (centimeter) is required to judge whether (17) entails
(18).

(17)
(18)

The standard answer to the statement pair (19) and (20) is
yes, probably because the annotator believed that something
that is “ ” (highest) must also be “ ” (high). However,
this may not be always true, just like the best performer in a
contest might not really achieve very high scores.

(19)
(20)

6 Concluding remarks

The main goal of this paper is not to provide a comprehen-
sive survey of studies on textual entailment. Rather, we pro-
vide empirical experience obtained from experiments with
real test data in NTCIR-9 RITE and NTCIR-10 RITE-2. For
additional survey articles that we have not discussed, read-
ers might want to refer to Androutsopoulos andMalakasiotis
(2010), Watanabe et al. (2012).

In this paper, we presented the linguistic features and the
computationalmodelswhichwe used to achieve second posi-
tions in the BC subtask for both simplified and traditional
Chinese in NTCIR-10 RITE-2. Significantly extended inves-

tigations were carried out, reported, and analyzed to share
our empirical experience in textual entailment based on the
real data used in NTCIR-9 RITE and NTCIR-10 RITE-2.
More experiments, including experiments on English test
data used in PASCAL RTE-1 and RTE-2, are available in
Huang (2013).

Based on the experience and discussions reported in this
paper, we believe that more work on true natural language
understanding is needed to achieve better performance in tex-
tual entailment recognition. For future work, we are explor-
ing the possibility of applying techniques of textual entail-
ment for answering questions in reading comprehension tests
that are designed for language learners (Huang et al. 2013).
When computers can do the reading comprehension tests rea-
sonably well, they might also explain the answers to students
and serve as a learning companion.
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Appendix

We provide information about the Chinese text included in
this paper. The section column indicates the sections where
the Chinese text appears. The Chinese column shows the
mentioned Chinese text. The Pronunciation column shows
the pronunciations of the Chinese texts in Hanyu pinyin. The
Translation/Interpretation column provides a way to inter-
pret the Chinese text in this paper.

123



Chinese textual entailment in NTCIR RITE evaluation tasks 327

123



328 W.-J. Huang, C.-L. Liu

Exports

Exports

Exports

Britain

out

123



Chinese textual entailment in NTCIR RITE evaluation tasks 329

References

Androutsopoulos I, Malakasiotis P (2010) A survey of paraphrasing
and textual entailment methods. J Artif Intell Res 38:135–187

Bar-Haim R, Dagan I, Dolan B, Ferro L, Giampiccolo D, Magnini B
(2006) The second PASCAL recognising textual entailment chal-
lenge. In: Proceedings of the second PASCAL challenges work-
shop on recognising textual entailment

Bar-HaimR,Dagan I,Mirkin S, Shnarch E, Szpektor I, Berant J, Green-
thal I (2008) Efficient semantic deduction and approximate match-
ing over compact parse forests. In: Proceedings of the TAC 2008
workshop on textual entailment

Budanitsky A, Hirst G (2006) Evaluating WordNet-based measures of
lexical semantic relatedness. Comput Linguist 32(1):13–47

Burchardt A, Pennacchiotti M, Thater S, Pinkal M (2009) Assessing
the impact of frame semantics on textual entailment. Nat Lang
Eng 15(4):527–550

Chambers N, Cer D, Grenager T, Hall D, Kiddon C, MacCartney B, de
Marneffe MC, Ramage D, Yeh E, Manning CD (2007) Learning
alignments and leveraging natural logic. In: Proceedings of the
ACL-PASCAL workshop on textual entailment and paraphrasing,
pp 165–170

Chang CC, Lin CJ (2011) LIBSVM: a library for support vector
machines. In: ACM Trans Intell Syst Technol 2(3):article 27

Chang PC, Galley M, Manning CD (2008) Optimizing Chinese word
segmentation for machine translation performance. In: Proceed-
ings of the third workshop on statistical machine translation, pp
224–232

Chang PC, Tseng H, Jurafsky D, Manning CD (2009) Discriminative
reordering with Chinese grammatical relations features. In: Pro-
ceedings of the thirdworkshop on syntax and structure in statistical
translation

Chang TH, Hsu YC, Chang CW, Hsu YC, Chang JI (2013) KC99: a
prediction system for Chinese textual entailment relation using
decision tree. In: Proceedings of the tenth NTCIR conference, pp
469–473

Chen KJ (2013) Lexical semantic representation and semantic compo-
sition: an introduction to E-HowNet. http://rocling.iis.sinica.edu.
tw/CKIP/paper/Technical_Reprt_E-HowNet.pdf

Chen WT, Lin SC, Huang SL, Chung YS, Chen KJ (2010) E-HowNet
and automatic constructionof a lexical ontology. In: Proceedings of
twenty-third international conference on computational linguistics
(demonstration volume), pp 45–48

Chuang YH, Liu CL, Chang JS (2012) Effects of combining bilingual
and collocational information on translation of English and Chi-
nese verb-noun pairs. Int J Comput Linguist Chin Lang Process
17(3):1–28

Dagan I,DolanB,MagniniB,RothD (2009)Recognizing textual entail-
ment: rational, evaluation and approaches. Nat Lang Eng 15(4):i–
xvii

Dagan I, Glickman O, Magnini B (2006) The PASCAL recognising
textual entailment challenge. Lect Notes Comput Sci 3944:177–
190

Day MY, Tu C, Huang SJ, Vong HC, Wu SW (2013) IMTKU textual
entailment system for recognizing inference in text at NTCIR-10
RITE2. In: Proceedings of the tenth NTCIR conference, pp 462–
468

de Salvo Braz R, Girju R, Punyakanok V, Roth D, Sammons M (2005)
Knowledge representation for semantic entailment and question-
answering. In: Proceedings of IJCAI-05 workshop on knowledge
and reasoning for question answering

Duan H, Sui Z, Tian Y, Li W (2012) The CIPS_SIGHAN CLP 2012
Chineseword segmentation onmicroblog corpora bakeoff. In: Pro-
ceedings of the second CIPS-SIGHAN joint conference on Chi-
nese language processing, pp 35–40

Fillmore CJ (1976) Frame semantics and the nature of language. Ann
N Y Acad Sci 280(1):20–32

Firth JR (1935) The technique of semantics. Trans Philolog Soc
34(1):36–73

Firth JR (1957) A synopsis of linguistic theory 1930–1955. In: Studies
in linguistic analysis, pp 1–32

Gao J, Li M, Wu A, Huang CN (2005) Chinese word segmentation and
named entity recognition: a pragmatic approach. Comput Linguist
31(4):531–574

Harris Z (1954) Distributional structure. Word 10(23):146–162
HuangWJ (2013) Textual Entailment Recognition forChinese andEng-

lish. Master’s Thesis, Department of Computer Science, National
Chengchi University, Taiwan

HuangWJ, Lin PC, Liu CL (2013) An exploration of textual entailment
and reading comprehension for Chinese and English. In: Proceed-
ings of the twenty-fifth conference on research on computational
linguistics and speech processing, pp 105–119

Huang WJ, Liu CL (2013) NCCU-MIG at NTCIR-10: using lexical,
syntactic, and semantic features for theRITE tasks. In: Proceedings
of the tenth NTCIR conference, pp 430–434

123

http://rocling.iis.sinica.edu.tw/CKIP/paper/Technical_Reprt_E-HowNet.pdf
http://rocling.iis.sinica.edu.tw/CKIP/paper/Technical_Reprt_E-HowNet.pdf


330 W.-J. Huang, C.-L. Liu

LevyR,ManningCD (2003) Is it harder to parseChinese, or theChinese
Treebank? In: Proceedings of the forty-first annual meetings of
association for computational linguistics, pp 439–446

Liu CL, Pai TW (2006) Methods for path and service planning under
route constraints. Int J Comput Appl Technol 25(1):40–49

Lin CJ, Lee CW, Shih CW, HsuWL (2015) Rank correlation analysis of
RITE datasets and evaluation metrics—an observation on NTCIR-
10 RITE Chinese subtasks. Web Intell 13(2)

Lloret E, Ferrández Ó, Muñoz R, Palomar M (2008) A text summariza-
tion approach under the influence of textual entailment. In: Pro-
ceedings of the fifth international workshop on natural language
processing and cognitive science, pp 22–31

Nielsen RD, Ward W, Martin JH (2009) Recognizing entailment in
intelligent tutoring systems. Nat Lang Eng 15(4):479–502

Page L, Brin S, Motwani R, Winograd T (1998) The Pagerank cita-
tion ranking: bringing order to the web. Technical report, Stanford
Digital Library Technologies Project

Shibata T, Kurohashi S, Kohama S, Yamamoto A (2013) Predicate-
argument structure based textual entailment recognition system of
Kyoto team for NTCIR-10 RITE-2. In: Proceedings of the ninth
NTCIR conference, pp 537–544

ShihCW,LiuC,LeeCW,HsuWL(2013) IASLRITEsystematNTCIR-
10. In: Proceedings of the tenth NTCIR conference, pp 425–429

Shima H, Kanayama H, Lee CW, Lin CJ, Mitamura T, Miyao Y, Shi
S, Takeda K (2012) Overview of NTCIR-9 RITE: recognizing
inference in text. In: Proceedings of the ninth NTCIR conference,
pp 291–301

Stern A, Lotan A, Mirkin S, Shnarch E, Kotlerman L, Berant J, Dagan
I (2011) Knowledge and tree-edits in learnable entailment proofs.
In: Proceedings of the text analysis conference (TAC’11)

Stern A, Shnarch E, Lotan A, Mirkin S, Kotlerman L, Zeichner N,
Berant J, Dagan I (2010) Rule chaining and approximate match in
textual inference. In: Proceedings of the text analysis conference
(TAC’10)

Takesue Y, Ninomiya T (2013) EHIME textual entailment system using
Markov logic in NTCIR-10 RITE-2. In: Proceedings of the tenth
NTCIR conference, pp 507–511

Tatar D, Mihis AD, Lupsa D, Tamaianu-Morita E (2009) Entailment-
based linear segmentation in summarization. Int J Softw Eng
Knowl Eng 19(8):1023–1038

Tsujii J (2012) Natural language understanding, semantic-based infor-
mation retrieval and knowledge management. In: Proceedings of
the ninth NTCIR conference, p 8

VanderwendeL,MenezesA, SnowR (2006)Microsoft research atRTE-
2: syntactic contributions in the entailment task: an implementa-
tion. In: Proceedings of the second PASCAL challenges workshop
on recognising textual entailment

Wang XL, Zhao H, Lu BL (2013) BCMI-NLP labeled-alignment-based
entailment system for NTCIR-10 RITE-2 task. In: Proceedings of
the tenth NTCIR conference, pp 474–478

Watanabe Y, Miyao Y, Mizuno J, Shibata T, Kanayama H, Lee CW,
Lin CJ, Shi S, Mitamura T, Kando N, Shima H, Takeda K
(2013a) Overview of the recognizing inference in text (RITE-2)
at NTCIR-10. In: Proceedings of the tenth NTCIR conference,
pp 385–404

Watanabe Y,Mizuno J, Inui K (2013b) THN’s natural logic-based com-
positional textual entailment model at NTCIR-10 RITE-2. In: Pro-
ceedings of the tenth NTCIR conference, pp 531–536

Watanabe Y, Mizuno J, Nichols E, Narisawa K, Nabeshima K, Okazaki
N, Inui K (2012) Leveraging diverse lexical resources for tex-
tual entailment recognition. ACM Trans Asian Lang Inf Process
11(4):Article 18

Witten IH, Frank E, Hall MA (2011) Data mining: practical machine
learning tools and techniques. Morgan Kaufmann, Burlington

Wu SH, Yang SS, Chen LP, Chiu HS, Yang RD (2013) CYUT Chinese
textual entailment recognition system for NTCIR-10 RITE-2. In:
Proceedings of the tenth NTCIR conference, pp 443–448

Yarowsky D (1995) Unsupervised word sense disambiguation rival-
ing supervised methods. In: Proceedings of the thirty-third annual
meeting of the association for computational linguistics, pp 189–
196

123


	Exploring lexical, syntactic, and semantic features for Chinese textual entailment in NTCIR RITE evaluation tasks
	Abstract 
	1 Introduction
	2 Major system components
	2.1 Preprocessing
	2.1.1 Traditional-to-simplified Chinese conversion
	2.1.2 Numeric format conversion
	2.1.3 Chinese string segmentation

	2.2 Lexical semantics
	2.2.1 Lexical resources and computation for Chinese synonyms
	2.2.2 Chinese antonyms and negation words
	2.2.3 Named entity and verb recognition

	2.3 Syntactic features
	2.4 Semantic features

	3 Classification methods
	3.1 Trained heuristic functions
	3.1.1 Word overlap
	3.1.2 Missing named entities
	3.1.3 Imbalanced negations
	3.1.4 Occurrence of antonyms
	3.1.5 An integrated heuristic decision function
	3.1.6 A brief critical review
	3.1.7 Machine learning methods
	3.1.8 The candidate features
	3.1.9 The classifiers: SVMs, decision trees, and linearly weighted models


	4 Empirical evaluations
	4.1 Data sources
	4.2 Evaluation metrics
	4.3 NTCIR-10 RITE-2 evaluation task
	4.4 More experiments for the heuristic functions
	4.5 More experiments for the machine learning-based models
	4.6 Evaluations with NTCIR-9 RITE test data
	4.7 Effects of syntactic and semantic information

	5 Additional discussions
	5.1 Y-precision, Y-recall, N-precision, and N-recall
	5.2 Performance of SVM-based systems
	5.3 Effects of specific features on experiments with real test data
	5.4 World knowledge and subjective judgments

	6 Concluding remarks
	Acknowledgements
	Appendix
	References




