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Abstract Forecasting has often played predominant roles
in daily life as necessary measures can be taken to bypass
the undesired and detrimental future prompted by this fact,
the issue of forecasting becomes one of the most important
topics of research for themodern scientists and as a result sev-
eral innovative forecasting techniques have been developed.
Amongst various well-known forecasting techniques, fuzzy
time series-basedmethods are successfully used, though they
are suffering from some serious drawbacks, viz., fixed sized
intervals, using some fixed membership values (0, 0.5, and
1) and moreover, the defuzzification process only deals with
the factor that is to be predicted. Additionally, most of the
existing and widely used fuzzy time series-based forecast-
ing algorithms employ their own clustering techniques that
may be data-dependent and in turn the predictive accuracy
decrease. Prompted by the fact, the present author developed
a novel multivariate fuzzy forecasting algorithm that is able
to remove all the drawbacks as also can predict the future
occurrences with better predictive accuracy. Moreover, the
comparisons with the thirteen other existing frequently used
forecasting algorithms (viz., conventional, fuzzy time series-
based algorithms and ANN) were performed to demonstrate
its better efficiency and predictive accuracy. Towards the
end, the applicability and predictive accuracy of the devel-
oped algorithm has been demonstrated using three different
data sets collected from three different domains, such as: oil
agglomeration process (coal washing technique), frequently
occurred web error prediction and the financial forecasting.
The real dataset related to oil agglomeration was collected
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fromCIMFER,Dhanbad, India, that regarding the frequently
occurredweb error codes ofwww.ismdhanbad.ac.in, the offi-
cial website of ISM Dhanbad, was collected from the Indian
School ofMines (ISM)Dhanbad, India server and the finance
data set was collected from the Ministry of Statistical and
Program Implementation (Govt. of India).
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List of symbols

Z+ The set of positive integers
cl(r)(r ∈ Z+) Cluster r generated by the chosen

clustering algorithm
ai (i ∈ Z+) The i th (i ∈ Z+) cluster or interval

related to the main factor
Ai (i ∈ Z+) The linguistic variables correspond-

ing to ai
b j,i (i, j ∈ Z+) The i th cluster or interval of the j th

secondary factor
Bj,i (i, j ∈ Z+) The linguistic variables correspond-

ing to b j,i

M(i, j) The j th(i ∈ Z+) element of the
i th(i ∈ Z+) cluster of the main fac-
tor

S(i)p,q(i, p, q ∈ Z+) The qth element of the pth cluster
of the i th secondary factor

Predicted (i) The predicted value of i

1 Introduction

In quite a many real-world applications related to science,
technology, stock price forecasting, university enrollments,
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weather forecasting, etc., prediction may often play a pre-
eminent part as it can save peoples’ precious time and imper-
ative measures can well be taken prior getting some cynical
results. Many widely used crisp and fuzzy set theory-based
methods for predictions are available in literature (Aladag
et al. 2008; Aliev et al. 2008; Bulut 2014; Bulut et al. 2012;
Chen et al. 2013; Chen and Tanuwijaya 2011; Chen 1996;
Chatterjee and Roy 2014a, b; Duru 2010, 2012; Duru and
Bulut 2014; Dunn 1973; Huarng 2001a, b; Huarng and Yu
2005, 2006; Mamdani 1977; Ross 2010; Song and Chissom
1993a, b, 1994; Tanaka 1996; Tseng et al. 2001; Tsaur 2008;
Khashei 2012; Zadeh 1975); of them the latter one has the
capability of handling the uncertainty efficiently.Among sev-
eral fuzzy set theory-based prediction techniques, themodels
exploiting the potentiality of fuzzy time series are the main
subject of interest of the present paper as it has huge appli-
cation in different aforementioned areas.

Fuzzy time series, based on the concept of fuzzy reasoning
(Rabiei et al. 2014) proposed by Mamdani (1977), was first
introduced by Song and Chissom (1993a, b, 1994), follow-
ing which many variations and versions of fuzzy time series
and their rigorous applications were discussed and published
in many papers by several researchers (Aladag et al. 2008;
Chen et al. 2013; Chen and Tanuwijaya 2011; Chatterjee
and Roy 2014a, b; Chen 1996; Duru and Bulut 2014; Dunn
1973; Huarng 2001a, b; Huarng and Yu 2005, 2006; Mam-
dani 1977; Ross 2010; Song and Chissom 1993a, b, 1994;
Tanaka 1996; Tseng et al. 2001). In their extensive study
Song and Chissom (1993a, b, 1994) have mainly developed
both the time invariant and time variant time series models
and explained themwith the help of some real-life examples,
which are, however, improved by Chen (1996) and Chen and
Tanuwijaya (2011) for the development of certain prediction
algorithm. Another significant improvisation was made by
Aladag et al. (2008) by using the feed forward neural net-
work to define fuzzy relations in higher order fuzzy time
series. Apart from this, several modifications of their work
are found in literature. In a recent study, Chen and Tanuwi-
jaya (2011) have adopted some relevant steps to make the
interval size variable whereas, no improvisation was made to
generate different membership values of the elements apart
from 0, 0.5, and 1 as also the influences of the other factors
are still not considered in the defuzzification process.

However, most of the existing extensively utilized fuzzy
forecastingmethods based on fuzzy time series used the static
length of intervals, i.e., the same length of intervals, however,
Huarng (2001a, b) pointed out that the lengths of intervals
will greatly affect forecasting results, where the drawback
of the static length of intervals being that the historical data
are roughly put into the intervals, even if the variance of
the historical data is not quite high. And the most impor-
tant yet, the predictive accuracy of the existing fuzzy time
series-based forecasting techniques is usually not satisfac-

tory. Additionally, defuzzification process of the main factor
does not consider the effects of the remaining secondary fac-
tors, which is, however, a major drawback of the existing
widely used a forestated approaches. Furthermore, the mem-
bership distribution techniques employed by the aforemen-
tioned approaches suffer from some unrealistic assumptions
and limitations in that the membership values can only be
0, 0.5, and 1. It is said to be an unrealistic assumption and
limitation as, in many real-life applications, it is generally
found that the membership of an element within a cluster
(or interval) lies either in (0, 0.5) or (0.5, 1). In these cases,
the predictive accuracy may be hampered if any of the mem-
bership values among 0, 0.5, and 1 is applied. Moreover,
all the existing aforementioned fuzzy forecasting algorithms
mainly utilize their own clustering techniques that may not
be able to partition all the data sets correctly as the nature of
the data sets change with the ever changing circumstances,
due to which, frequently, it can be found that the data sets
may contain categorical entries (true–false type), however,
in the remaining cases it may contain numeric digits (real,
integers) or mixture of numeric as well as categorical types
(Bezdek et al. 1984; Dunn 1973; Hartingan andWong 1979).
Moreover, due to the changes in some statistical properties,
viz., coefficient of variation, correlation, etc., the nature of
the data sets may vary (Bezdek et al. 1984; Dunn 1973;
Hartingan and Wong 1979). As a result, it is not possible
for a single clustering algorithm to correctly partition (i.e.,
the partitions containing almost similar types of data) all the
data sets. Consequently, the accuracy of the corresponding
forecasting algorithm decreases significantly and it becomes
data-dependent (Bezdek et al. 1984; Dunn 1973; Hartingan
and Wong 1979), as the clustering algorithm used by them
may be suitable for certain types of data sets. One possible
solution to this problem is to search the particular clustering
algorithms which are most suitable for the data sets under
consideration. Apart from this, all the existing and frequently
used fuzzy time series-based forecasting algorithms cannot
check whether the data set is stationary or not, which can be
a possible reason behind their unsatisfactory predictive accu-
racy. Hence, in the present paper, initially, the author checks
whether the data set is stationary or not. If it is found to be
stationary, continue with the proposed forecasting algorithm.
Otherwise, the non-stationarity, trend components, etc. of the
data set have been removed and next, the author selects the
suitable clustering algorithm by checking the DVI (Bezdek
et al. 1984; Dunn 1973; Hartingan and Wong 1979) index of
the generated clusters which are frequently used to evaluate
their quality.

From the foregoing survey of literature, it evinces itself
clearly that the existing fuzzy time series-based forecast-
ing techniques have the aforementioned limitations, which
require certain improvements in the modeling technique for
better predictive accuracy.Motivated by the aforestated com-
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parative study, the present author improvised themultivariate
fuzzy ‘if-then’ rule-based model, incorporating both cluster-
ing (overlapping and non-overlapping) and prediction, by
making the interval size variable (due to the selected suit-
able clustering algorithm) (described in Sect. 3), varying
the membership value from 0 to 1 in contrast to the other
researchers who have used only three values, viz., 0, 0.5,
and 1, employing the influences of different factors at the
time of defuzzification and prediction, and better accuracy
for predicting different instances of the data set. The mem-
bership distribution technique adopted by the proposed fuzzy
prediction algorithm is mainly based on some well-defined
functions that can generate real numbers lying between 0
and 1, making it more realistic than others. Moreover, the
defuzzification process acquired by the proposed algorithm
can exploit the influences of different factors on the very
factor that is to be predicted. Again, the selected suitable
clustering algorithm (that depends on the nature of the data
set) perfectly partition the data set and as a result, the fore-
casting accuracy increases (Huarng 2001a). Consequently,
this improvised model as such is capable to overcome the
aforesaid drawbacks.

Finally, three different examples related to three differ-
ent areas of science and technology were cited, that demon-
strate the potentiality and the applicability of the proposed
algorithm over a vast domain. For the first example, the fail-
ure data, collected from the logs (access and error logs) of
www.ismdhanbad.ac.in, the official website of ISM Dhan-
bad, India, was used and the above findings were satisfacto-
rily validated. Quite on a contrary, the next example is related
to the very popular oil agglomeration process for the benefi-
ciation of coal fines (coal washing technique), a heavily used
technique in the coal industrieswhere the proposed algorithm
proves its better predictive accuracy. The corresponding data
were collected from the CIMFER (a CSIR Lab, Govt. of
India), Dhanbad, India. Consequently, it can be concluded
that the proposed algorithm has a vast area of implementa-
tion. The remaining example is related to a financial data
collected from the Ministry of Statistics and Program Imple-
mentation, Govt. of India and the above findings are satis-
factorily validated again. Next, the outcomes of the proposed
algorithm were compared with various fuzzy and statistical
techniques. Moreover, Chen and Tanuwijaya (2011) method
was applied on the aforementioned examples by replacing its
clustering techniquewith c-means (Bezdek et al. 1984) and k-
means (Hartingan and Wong 1979) algorithms, respectively
to demonstrate the influence of clustering on the predictive
accuracy of the fuzzy time series-based forecasting models.
Additionally, the proposed algorithm was validated by the
‘Chi-square test of goodness of fit’.

Before proceeding to develop the fuzzy logic-based clus-
tering and prediction algorithm, it would be apt for clarity
to describe the organizational structure of the paper by dis-

cussing its important components in different sections and
subsections. This includes review fuzzy time series in Sect.
2; development of the proposed algorithm in Sect. 3; dis-
cussion of the test results in Sect. 4. Towards the end, the
important findings and conclusions of the present work are
encapsulated in Sect. 5. Each of these sections is dealt with
herein under in the paragraphs that follow:

2 Review of fuzzy time series

This subsection presents a review of the fuzzy time series.
Fuzzy time series-based on the concept of fuzzy reason-

ing proposed by Zadeh (1975), Mamdani (1977), was first
introduced by Song and Chissom (1993a, b, 1994), follow-
ing which many variations and versions of fuzzy time series
and their rigorous applications were discussed and published
in many papers by several researchers. Fuzzy time series is
basically defined in the following way:

Definition 1 (Fuzzy time series) Assuming Y (t), (t =
1, 2 . . .) is the subset of R

1 (one-dimensional Euclidian
space), which is the universe of discourse where fuzzy sub-
sets mi (t), (i = 1, 2 . . .) are defined and let F(t) be a col-
lection of mi (t), (i = 1, 2 . . .), then, F(t) is called a fuzzy
time series defined on Y (t)(t = 1, 2 . . .). Here, F(t) is
regarded as a linguistic variable and mi (t), (i = 1, 2 . . .)

can be viewed as possible linguistic values of F(t), where
mi (t), (i = 1, 2 . . .) are represented by fuzzy sets.

From this, it can be observed that F(t) is a function of time
t, i.e., the value of F(t) being different at different times.
According to Mamdani (1977) and Chen and Tanuwijaya
(2011), Chen et al. (2013), if there exists a fuzzy relationship
R(t, t − 1), such that F(t) = F(t − 1) ◦ R(t, t − 1), where
‘◦’ is the fuzzy Max–Min composition operator, then F(t)
is caused by F(t − 1). The relationship between F(t) and
F(t − 1) is denoted by: F(t) → F(t − 1). For example,
for t = 2013, the fuzzy relationship between F(t − 1) and
F(t) is given by F(2012) → F(2013). It is to be noted that
the right-hand side of the fuzzy relation represents the future
fuzzy set (forecast), its crisp counterpart being denoted as
Y (t).

It is very much significant to note that the main differ-
ence between fuzzy and conventional time series lies in the
fact that the values of the former are fuzzy sets, while the
values of the latter are the real numbers. As a corollary, it
can be roughly assumed that a fuzzy set is a class with fuzzy
boundaries.

Definition 2 (n order fuzzy relations) If F(t) be a fuzzy
time series and if F(t) is caused by F(t − 1), F(t − 2) . . .

F(t − n), i.e., the next state is caused by the current and its
n previous states, then this fuzzy logical relationship (FLR)
would be represented by:
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F(t − n), . . . F(t − 2), F(t − 1) → F(t)

and is called the n order fuzzy time series. n order-based
fuzzy time series models are referred to as the higher order
models.

If for any time t, F(t) = F(t − 1) and F(t) has only
finite elements, then F(t) is called a time invariant fuzzy
time series, otherwise, it is called a time variant fuzzy time
series.

Different relevant examples of fuzzy time serieswere cited
by Song and Chissom (1993a, b, 1994) as also by Chen and
Tanuwijaya (2011), Chen et al. (2013).

3 The proposed algorithm

In this section, the proposed multivariate fuzzy forecast-
ing algorithm has been developed. But before attempting
to develop the algorithm, it would be appropriate to briefly
touch upon the existing fuzzy forecasting techniques, after
which the developed predictive algorithm will be compared
to the latter’s for accuracy and predictability.

Most of the existing fuzzy forecasting techniques, in gen-
eral, employ the following four steps (Aladag et al. 2008;
Bulut 2014; Bulut et al. 2012; Chatterjee and Roy 2014a, b;
Chen et al. 2013; Chen and Tanuwijaya 2011; Chen 1996;
Duru 2012, 2010; Dunn 1973; Huarng 2001a, b; Huarng
and Yu 2005, 2006; Mamdani 1977; Ross 2010; Song and
Chissom 1993a, b, 1994; Tanaka 1996; Tseng et al. 2001;
Zadeh 1975):

– Step 1: Partitioning the universe of discourse into inter-
vals,

– Step 2: Fuzzifying the historical data,
– Step 3: Building fuzzy logical relationship and obtaining
fuzzy logical relationship groups, and

– Step 4: Calculating the forecast output.

However, all the aforementioned fuzzy time series-based
forecasting algorithms are not checking the stationarity of
the data set and, as a consequence, the predictive accuracy
of these algorithms reduces. With this in mind, in the present
paper, the author has introduced a step called stationarity
checking (Step 1) and using the above four steps as the basis,
a novel and innovative fuzzy clustering and prediction algo-
rithm is being attempted to be developed to enable one to
forecast different instances of the data set. For reference,
the flow chart of the proposed algorithm may be seen in the
already depicted Fig. 1. This new algorithm has five steps,
e.g., Step 1. Stationarity Checking; Step 2. Clustering; Step
3. Computation of different parameters of the proposed algo-
rithm; Step 4. Distribution of membership; Step 5.Multivari-

Fig. 1 Flow chart of the proposed multivariate fuzzy clustering algo-
rithm

ate fuzzy forecasting algorithm. Now, the development of the
proposed algorithm is being done as follows:

Step 1: stationarity checking

Data points are often non-stationary or have means, vari-
ances and covariances that change over time (Lutkepohl
2005). Non-stationary behaviors can be trends, cycles, ran-
domwalks or combinations of the three. Non-stationary data,
as a rule, are unpredictable and cannot be modeled or fore-
casted (Lutkepohl 2005). The results obtained using non-
stationary time series may be spurious in that they may indi-
cate a relationship between two variables where one does
not exist. To receive consistent, reliable results, the non-
stationary data needs to be transformed into stationary data
(Lutkepohl 2005). In contrast to the non-stationary process
that has a variable variance and a mean that does not remain
near, or returns to a long-run mean over time, the stationary
process reverts around a constant long-term mean and has a
constant variance independent of time.

However, the sad fact is that a lot of important real-time
series are not even approximately stationary. For example,
most the share market data fall in this category. For example,
most the share market data falls in this category. Hence, to
check the stationarity of the input series, initially, theDickey–
Fuller test (Lutkepohl 2005) has been conducted. If the series
is stationary, then, simply the suitable clustering algorithm
has been selected for partitioning the data set. Otherwise,
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the data set has been treated as the non-stationary time series
(Lutkepohl 2005). The conventional approach is to try to sep-
arate time series like this into a persistent trend, and station-
ary fluctuations (or deviations) around the trend (Lutkepohl
2005),

Yt = Xt + Zt , i.e., series = fluctuations + trend.

Since a constant can be added or subtracted to each Xt with-
out changing whether theyare stationary, then it can be stip-
ulated E(Xt ) = 0, i.e., E(Yt ) = E(Zt ). In other situations,
the decomposition might be multiplicative instead of addi-
tive, etc. (Lutkepohl 2005). Again, in case of multiple inde-
pendent realizations Yi,t of the same process, say m of them
having same trend Zt , then the common trend can be found
by averaging the time series:

Zt = E(Yi,t ) ≈
m∑

i=1

Yi,t

Multiple time series with the same trend do exist, especially
in the experimental sciences (Lutkepohl 2005).

Once we have the fluctuations, and are reasonably satis-
fied that they’re stationary, we can model them like any other
stationary time series. Of course, to actually make predic-
tions, the trend needs to be extrapolated, which is a harder
business described as follows:

3.1 Trend components

The problem with making predictions when there is a sub-
stantial trend is that it is usually hard to know how to con-
tinue or extrapolate the trend beyond the last datapoint. If
we are in the situation where we have multiple runs of the
same process, we can at least extrapolate up to the limits of
the different runs. If we have an actual model which tells us
that the trend should follow a certain functional form, and
we have estimated that model, we can use it to extrapolate
(Lutkepohl 2005).

3.2 Pure random walk (Yt = Yt−1 + εt )

Randomwalk predicts that the value at time “t” will be equal
to the last period value plus a stochastic (non-systematic)
component that is a white noise, which means εt is indepen-
dent and identically distributed with mean “0” and variance
“σ 2” (Lutkepohl 2005). Random walk can also be consid-
ered as a process integrated of some order, a process with a
unit root or a process with a stochastic trend. It is a non-mean
reverting process that can move away from the mean either
in a positive or negative direction. Another characteristic of a
random walk is that the variance evolves over time and goes
to infinity as time goes to infinity and hence, a random walk
cannot be predicted (Lutkepohl 2005).

3.3 Random walk with drift (Yt = α+Yt−1 + εt )

If the random walk model predicts that the value at time “t”
will equal the last period’s value plus a constant, or drift (α),
and a white noise term (εt ), then the process is random walk
with a drift. It also does not revert to a long-run mean and
has variance dependent on time (Lutkepohl 2005).

3.4 Deterministic trend (Yt = α+βt + εt )

Often a random walk with a drift is confused for a determin-
istic trend. Both include a drift and a white noise component,
but the value at time “t” in the case of a random walk is
regressed on the last period’s value (Yt−1), while in the case
of a deterministic trend it is regressed on a time trend (βt).
A non-stationary process with a deterministic trend has a
mean that grows around a fixed trend, which is constant and
independent of time (Lutkepohl 2005).

3.5 Random walk with drift and deterministic trend
(Yt = α+Yt−1 + βt + εt )

Another example is a non-stationary process that combines a
random walk with a drift component (α) and a deterministic
trend (βt). It specifies the value at time “t” by the last period’s
value, a drift, a trend and a stochastic component (Lutkepohl
2005).

3.6 Seasonal components

Sometimes, it can be found that time series contain com-
ponents which repeat, pretty exactly, over regular periods.
These are called the seasonal components, after the obvious
example of trends which cycle each year with the season. But
they could cycle over months, weeks, days, etc... (Lutkepohl
2005). The decomposition of the process is thus

Yt = Xt + Zt + St ,

where Xt can be considered as the stationary fluctuations, Zt

is the long-term trend and St is the repeating seasonal com-
ponent. If Zt = 0 or equivalently if we have a good estimate
of it and can subtract it out, St can be found by averaging
over multiple cycles of the seasonal trend (Lutkepohl 2005).
Assume that, the period of the cycle is T, then m = n

T num-
ber of full cycles can be found and St can be calculated as
follows:

St ≈ 1

m

m−1∑

j=0

Yt+ jT .

This is because of the fact that, Zt = 0,Yt = Xt + St and St
is periodic, St = St+T . Sometimes, it is necessary to know
the overall trend present in the data. If there are seasonal
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components, they have to be subtracted before trying to find
Zt . The detrending can be done as follows:

Let Yt has the linear time trend as follows:

Yt = β0 + βt + Xt

with Xt stationary. Then, if the difference between successive
values Yt has been taken, the trend goes away:

Yt − Yt−1 = β + Xt − Xt−1.

Since, Xt is stationary, (β + Xt − Xt−1) is also station-
ary. However, if the first difference does not look stationary,
then the other differences can be taken until the input series
becomes stationary. In this way, the trend components can
be removed from the data set. Similarly, applying the above
procedure the random walk with or without a drift can be
transformed to a stationary process (Lutkepohl 2005). More-
over, once (Yt+1 − Yt ) has been predicted, Yt can be added
to get Yt+1.

Step 2: clustering

(i) Initially, the suitable clustering algorithms [by check-

ing the DVI (Bezdek et al. 1984; Dunn 1973; Hartingan
and Wong 1979) indices of the generated clusters, given in
Sect. 4] from the aforementioned classes apply to the data
sets corresponding to the main (dependent variable) and the
secondary factors (independent variables) to generate the
variable-sized overlapping or non-overlapping clusters. In
many cases, it can be found that different clustering algo-
rithms are suitable for the data sets corresponding to themain
and the secondary factors. Moreover, the number of clusters
generated from the data sets of the main as well as the sec-
ondary factors may differ as it depends on the nature of the
data set.

(ii) Next, the resulting clusters of the main and the sec-
ondary factors are related to that of the main factors for
establishing the fuzzy logical relationships which has been
discussed latter.

Step 3: computation of different parameters of the pro-
posed algorithm

Some parameters of the proposed algorithm are now
defined as below:

max[i], (i ∈ Z+): Maximum element of the i th cluster.
min[i], (i ∈ Z+): Minimum element of the i th cluster.

mid [i], (i ∈ Z+) = 0.5 ∗ (max[i] + min[i])

mean = 1

no. of clusters of themain factor

∑

i∈Z+
mid [i] (1)

sum_deviation = 1

no. of clusters of themain factor

∗
√∑

i∈Z+
(mean − mid [i])2 (2)

mean_sec [ j]

=
∑

i∈Z+

(
mid_sec[ j]

no. of clusters of the j th secondary factor

)

sum_deviation_sec[ j]
= 1

no. of clusters of the j th secondary factor

∗
√∑

i∈Z+
(mean_sec [ j] − mid_sec [ j] [i])2, (3)

where mean_sec[ j]; ( j ∈ Z+) is the mean_clust of the
j th secondary factor and, as a consequence, k number of
mean_sec can be found.

global_deviation = 1∏
k∈Z+

∏
p∈Z+ nk,p

√∑

i∈Z+
(mean − mid [i])2 +

∑

j∈Z+

∑

i∈Z+
(mean_sec [ j] − mid_sec [ j] [i])2, (4)

where mid_sec[ j] [i]; (i, j ∈ Z+) is the mid of the i th
(i ∈ Z+) cluster of the j th( j ∈ Z+) secondary factor.

Here,nk,p is the total number of elements of the pth cluster
of the kth main factor.

These parameters will be eventually used in the develop-
ment of the algorithm.

Step 4: distribution of membership

In this step, it is to be necessarily checked up as to whether
the distances between an element and the mid[i], (i ∈ Z+)

were less than sum_deviation or not. However, if it is less
than sum_deviation, then the algorithm would itself generate
a membership of the element in that cluster.

On the other hand, to check the influence of different
secondary factors on the main factor, it is to be necessarily
checked up as to whether the distances between the elements
of the main factor and the mid_sec[ j] [i]; (i, j ∈ Z+) were
less than global_deviation or not. If it is less, then the influ-
ence of the i th(i ∈ Z+) cluster of the j th( j ∈ Z+) secondary
factor on the element of themain factormust be counted. This
part enables the present forecasting algorithm to consider the
influences of different factors on a particular factor.

Step 5: multivariate fuzzy forecasting algorithm

In this step, the multivariate fuzzy forecasting algorithm,
based on the k-means clustering and fuzzy time series tech-
nique is developed. The novel feature of this algorithm is
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that it takes care of overlapping as well as non-overlapping
clusters.

(a) Clustering Let the universe of discourse of the main
factor is divided into a number disjoint intervals or clus-
ters (by the chosen clustering algorithm) denoted by ai , (i ∈
Z+). The corresponding linguistic variables are denoted by
Ai , (i ∈ Z+). Similarly, b j,p, ( j, p ∈ Z+) is the pth cluster
of the j th secondary factor and the corresponding linguistic
variable is denoted by Bj,p, ( j, p ∈ Z+). In this paper, the
dependent variable present in the system is the main factor;
however, the independent variables are the secondary factors
present in the system.

(b) Defining fuzzy sets The memberships of Ap in ap
(where p ∈ Z+), i.e., the local influences ( fL ), are deter-
mined by the following symmetric triangular fuzzy member-
ship function that can remove the drawback of fixed mem-
bership values, viz., 0, 0.5 and 1 by takingmore real numbers
lying between 0 and 1:

fL(Ap) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1; membership of Ap in ap(
1 − xi

ni∗n p

)
; where i ∈ Z+; i �= p

0; in case of the empty clusters of themain
aswell as the secondary factors.

(5)

Again, the memberships of Ap in different clusters of the
secondary factors b j,i , (i, j ∈ Z+), i.e., the global influences
( fG ), are determined by the following triangularmembership
function which can take more real numbers lying between 0
and 1 apart from 0, 0.5 and 1:

fG(Ap) =
(
1 − x j,i

n j,i ∗ n p

)
; i, j ∈ Z+; p = fixed (6)

Here, the memberships of the linguistic variable correspond-
ing to a cluster of a particular factor on different clusters of
the same factor are called the local influence ( fL ). On the
other hand, the memberships of the linguistic variable corre-
sponding to a cluster ofmain factor on different clusters of the
other factors are called the global influence ( fG). In this case,
the significance of the local and the global influences are to
establish the influences of several other clusters belong to the
same or different factors on a cluster of a particular factor.

Variables used in the above equations are explained as
follows:

n p, (p ∈ Z+) :Total number of elements of ap, (p ∈ Z+).
xi , (0 ≤ xi ≤ ni ∗ n p) : Total number of distances of the

elements of ai , (i ∈ Z+) from ap, (p ∈ Z+) is greater than
sum_deviation of the main factor (Cf. Step 3 above).

x j,i , (i, j ∈ Z+) : Total number of distances of the ele-
ments of ai , (i ∈ Z+) from b j,i , (i, j ∈ Z+) is greater than
global_deviation (Cf. Step 3 above).

When all the distances are less than sum_deviation of the
main factor, i.e., xi = 0, it could well be discerned that
ai = ap and fL(Ap) = 1.

For the fuzzy set representation of the linguistic variables
Ap of main factor, both the local ( fL) and the global ( fG)

influences are considered as follows:

Ap =
∑

i∈Z+

fL(Ap)

ai
+
∑

j∈Z+

∑

i∈Z+

fG(Ap)

b j,i
. (7)

Previously, it was mentioned that the secondary factors are
mainly the independent variables present in the system.
Hence, no other factors have the influences on the secondary
factors. Consequently, in case of the secondary factors, the
global influences are not considered. Now, the memberships
of Bp,q on bp,i can be defined with the help of the following
triangular fuzzymembership function that can takemore real
numbers lying between 0 and 1 apart from 0, 0.5 and 1:

f (Bp,q) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1; membership of Bp,q in bp,q(
1 − xp,i

n p,i∗n p,q

)
; for other over lapping clusters;

p, q = fixed; i ∈ Z+
0; for the empty clusters

(8)

The fuzzy set representation of the linguistic variable Bp,q

is given as follows:

Bp,q =
∑

i∈Z+

f (Bp,q)

bp,i
. (9)

Variables used in the above equation are defined as follows:
n p,q , (p, q ∈ Z+): Total number of elements in bp,q ,

(p, q ∈ Z+).
xp,i , (0 ≤ xp,i ≤ n p,i ∗ n p,q): Total number of distances

of the elements of bp,i , (i ∈ Z+) from bp,q is greater than
sum_deviation of the pth secondary factor.

(c) Prediction: Rule 1 The elements within the data set
can be predicted by this rule. The membership of M(p, q)

on M(i, j) (i.e., local influence, i.e., gL , the influence of
a particular occurrence of the main factor on the its other
occurrence) can be defined with the help of the following
triangular fuzzymembership function that can takemore real
numbers lying between 0 and 1 apart from 0, 0.5 and 1:

gL(M(p, q)_M(i, j)) =
(
1 − |M(p, q) − M(i, j)|

sum_deviation

)
;

|M(p, q) − M(i, j)| ≤ sum_deviation �= 0 (10)

Here, M(p, q) is the qth element of the pth cluster of the
main factor. Again, the memberships of M(p, q) in S( j)i,l ,
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i.e., the global influences (gG), are determined by the follow-
ing fuzzy triangular membership function:

gG(M(p, q)_S( j)i,l) =
(
1 −

∣∣M(p, q) − S( j)i,l
∣∣

global_deviation

)
;

∣∣M(p, q) − S( j)i,l
∣∣ ≤ global_deviation �= 0 (11)

Variables used in the above equations are, in turn, defined as
follows:

gL(M(p, q)_M(i, j)): local membership of M(p, q) on
M(i, j).

gG(M(p, q)_S( j)i,l): global membership of M(p, q) on
S( j)i,l .

Next, the fuzzy sets corresponding toM(p, q), (p, q ∈ Z+)

are then defined in the following manner:

M(p, q) =
∑

i∈Z+

∑

j∈Z+

gL(M(p, q)_M(i, j))

ai

+
∑

j∈Z+

∑

i∈Z+

∑

l∈Z+

gG(M(p, q)_S( j)i,l)

b j,i
. (12)

Now in the next step, the construction of fuzzy logical rela-
tionship on fuzzified main and secondary factors is made as
follows:

M(i, j), S(1)a,b, S(2)c,d , . . . S(k)l,p → M(m, n),

where M(i, j), S(1)a,b, S(2)c,d , . . . S(k)l,p denotes fuzzi-
fied value of the main factor, the fuzzified value of the first
secondary factor, the fuzzified value of the second secondary
factor, ..., and the fuzzified value of the kth secondary factor
at stage t , then at the stage (t +1) the main factor will be nth
element of the mth cluster of the main factor.

The defuzzified predicted occurrences of the main factor
can be calculated in the following manner:

predicted(M(p, q))

=
1 ∗ mid(ap) +∑i∈Z+

{∑
j∈Z+

(
1 − |M(p, q)−M(i, j)|

sum_deviation

)}
∗ mid(ai ) +∑ j∈Z+

{∑
i∈Z+

∑
l∈Z+

(
1 − |M(p, q)−S( j)i,l |

global_deviation

)}
∗ mid(b j,i )

1 +∑ j∈Z+
(
1 − |M(p, q)−M(i, j)|

sum_deviation

)
+∑i∈Z+

∑
l∈Z+

(
1 − |M(p, q)−S( j)i,l |

global_deviation

)

(13)

If the fuzzified value of themain factor, the fuzzified value
of the first secondary factor, the fuzzified value of the second
secondary factor, ..., and the fuzzified value of the kth sec-
ondary factor at time (t−1) areM(i, j), S(1)a,b, S(2)c,d , . . .
S(k)l,p, respectively, and there is a fuzzy logical rela-
tionship in the fuzzy logical relationship group, shown as
follows:

M(i, j), S(1)a,b, S(2)c,d , . . . S(k)l,p → M(m1, n1),

M(m2, n2), M(m3, n3) . . .M(mr , nr )

In case of the secondary factors (mainly the independent vari-
ables), the memberships of S(i)p,q on S(i)l, j (local influ-
ence) are defined with the help of the following triangular
fuzzy membership function that can take more real numbers
lying between 0 and 1 apart from 0, 0.5 and 1:

g(S(i)p,q_S(i)l, j ) = (1 −
∣∣S(i)p,q − S(i)i, j

∣∣
sum_deviation_sec [i]

);
|S(i)p,q − S(i)i, j | ≤ sum_deviation_sec [i] �= 0, (14)

where g(S(i)p,q_S(i)i, j ) = Local membership of S(i)p,q on
S(i)i, j .

Fuzzy set representations for the elements of the sec-
ondary factors are defined as follows:

S(l)p,q =
∑

l∈Z+

∑

j∈Z+

g(S(i)p,q_S(i)l, j )

bi,l
(15)

The secondary factors are mainly the independent variables
present in the system. Hence, in this case, to form the fuzzy
logical relationship the concept of univariate time series is
used as follows:

S(l)p,q → S(l)r,s,

where S(l)p,q → S(l)r,s denotes that ‘if the fuzzified value
of the lth secondary factor at stage t is the qth element of
its pth cluster, then at the stage (t + 1) the aforementioned
secondary factor will be its sth element of the r th clus-
ter’. This is because of the fact that, in this case no other
factor except itself has the influence on an independent
variable.

The defuzzified predicted occurrences of the lth(l ∈ Z+)

secondary factor can be calculated using the following equa-
tion:

predicted(S(l)p,q)

=
∑

i∈Z+
{∑

j∈Z+
(
1 − |S(l)p,q−S(l)i, j |

sum_deviation_sec[l]

)}
∗ mid(bl,i )

∑
j∈Z+

(
1 − |S(l)p,q−S(l)i, j |

sum_deviation_sec[l]

)

(16)

Rule 2 An important feature of this rule is that the elements
lying outside the data set can precisely be predicted. The
corresponding fuzzy logical relationship can be constructed
as follows:
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M(i, j), S(1)p,q , S(2)r,s, . . . S(n)x,y → #, where ‘#’ is
the element lying outside the data set. Then the predicted
value of # can be calculated as follows:

predicted(#) =
∑

i∈Z+ mid [ai ] +∑ j∈Z+
∑

i∈Z+
(
1 − x j,i

n

) ∗ mid_sec
[
b j,i
]

Total number of clusters of the main factor +∑ j∈Z+
∑

i∈Z+(1 − x j,i
n )

, (17)

where x j,i is the number of mid values of the clus-
ters of the main factor having distances greater than the
global_deviation from mid

[
b j,i
]
and n is total number of

mid-values of the main factor.
The secondary factors are mainly the independent vari-

ables present in the system. Hence, in this case, to form
the fuzzy logical relationship the concept of uni-variate time
series is used as follows:

S(i)p,q → #_S(i),

where S(i)p,q → #_S(i) denotes that ‘if the fuzzified
value of the i th secondary factor at stage t is the qth
element of its pth cluster, then at the stage (t + 1) the
aforementioned secondary factor will be defuzzified to its
unknown value #_S(i)’. The defuzzified predicted value of
‘#_S( j)’(unknown occurrences of the i th secondary factor)
can then be calculated as follows:

predicted(#_S( j))

=
∑

i∈Z+ mid
[
b j,i
]

Total number of clusters of the j th secondary factor
(18)

After this, the defuzzified unknown occurrences of the
main and the secondary factors are inserted into the dataset
and repeat the step 1 to step 4 of the developed algorithm to
predict the next occurrences of them.

The above-developed algorithm can thus effectively han-
dle both the overlapping and non-overlapping clusters,
besides making predictions and handling the uncertainty as
well.

4 Test results of the developed algorithm

In this section, three different real-life examples related to
three different areas, viz.,web technology, coal industries and
finance were cited, that demonstrate the potentiality and the
applicability of the proposed algorithm over a vast domain.
The first example deals with the prediction of some fre-
quently occurred web errors during the execution of www.
ismdhanbad.ac.in, the official website for Indian School of
MinesDhanbad, India. Quite on a contrary, the next one deals
with the prediction of the yield % of the clean coal during the
oil agglomeration process for the beneficiation of coal fines.

However, the last one deals with the prediction of records
(mainly financial data), provided by the ministry of statisti-
cal and program implementation, Govt. of India.

The proposed forecasting method was compared with
thirteen different conventional (uni-variate and multivari-
ate time series models), e.g., VAR, MA, Holt-Winter, Box-
Jenkins (Lutkepohl 2005), and fuzzy time series-based fore-
casting algorithms, viz., Bulut et al. (2012), Bulut (2014),
Duru (2010, 2012), Chatterjee and Roy (2014a), Chatter-
jee and Roy (2014b), Chen and Tanuwijaya (2011) (replac-
ing its clustering algorithm with c-means and k-means tech-
niques, respectively).Moreover, the accuracy of the proposed
algorithm has also been compared with the ANN approach
(Aladag et al. 2008). To check the forecasting accuracy of
the proposed algorithm, in this paper root mean squared error
(RMSE), root median squared errors (RMdSE) and median
relative absolute error (MdRAE) have been used as the accu-
racy metrics. RMSE is a biased accuracy metric (Hyndman
2006). On the other hand, RMdSE is not scale-free (Hynd-
man 2006). The comparative study can be found in Table 1,
5, 9, 11, 12, 13 and 14.

However, in many cases, it can be found that different
clustering techniques are suitable for the main and different
secondary factors due to the change in the nature or properties
(viz., statistical, etc.) of the corresponding data sets. Hence,
for simplicity of calculation, in this paper the author mainly
concentrates on three verywell-known clustering techniques,
viz., c-means, k-means and the automatic clustering algo-
rithm, to discuss the experimental results obtained by imple-
menting the proposed algorithm. But prior going to discuss
the experimental results, it would be apt for clarity to explain
briefly the concept of DVI (Bezdek et al. 1984; Dunn 1973;
Hartingan and Wong 1979) as it is used to check the quality
of the generated clusters.

A validity index is used to evaluate the quality of the
clusters generated by the clustering algorithm (Bezdek et al.
1984; Dunn 1973; Hartingan and Wong 1979). For the per-
formance measure of the proposed algorithm and the quality
of the generated clusters, in this paper, the Dynamic Validity
Index (DVI) is used and are defined as follows:

Let n be the number of data points, k be the pre-defined
upper bound of the number of clusters, and zi be the center
of the cluster ci . The dynamic validity index (DVI) is given
as follows:

DVI = min
p

{IntraRatio(p) + γ ∗ InterRatio(p)} , (19)
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Table 1 DVI index values of different clusters of the data sets of the
main factors

DVI

c-means clustering k-means clustering Automatic clustering

Web data set

0.069505004 0.00705373 2.001338869

Oil agglomeration data

0.15009829 0.1312234796 2

Finance data

1.99458593542 1.9201220134 2.0458593542

where IntraRatio and InterRatio are defined as follows:

IntraRatio(p) = Intra(p)

MaxIntra
, InterRatio(p) = Inter(p)

MaxInter

Intra(p) = 1

n

p∑

i=1

∑

x∈Ci

x − z2i ,MaxIntra = max
i

{Intra(i)}

Inter(p) =
max
i, j

(zi − z2j )

min
i �= j

(zi − z2j )

p∑

i=1

1
∑p

j=1 zi − z2j
,

MaxInter = max
i

{Inter(i)}

For simplicity of calculation, in the present study, k-means,
c-means (with 3 clusters each) and the automatic clustering
algorithms are applied to partition the data sets. The DVI of
the clusters of all the data sets, used in this study, generated
by the aforementioned clustering algorithms are shown in
Table 1.The forecastedvaluesmaychangewith the clustering
algorithm.

4.1 An example regarding web error prediction

In this subsection, the developed algorithm has been vali-
dated by predicting the frequently occurred web errors using
the data collected from the HTTP log files (error and access
logs) (Huynh and Miller 2009) of http://www.ismdhanbad.
ac.in, i.e., the official website of Indian School of Mines
Dhanbad, India, which is a non-commercial and dynamic
website that utilizes the PHP (http://www.php.net) script-
ing language, MySql (http://www.mysql.com) for the back-
end database and is hosted on an Apache HTTP Daemon.
For scrutinizing the stability and reliability of the data,
the log files (HTTP access and error logs) were chosen
to cover 387 consecutive days, starting from 30th Septem-
ber 2010 to 22nd October 2011, during which, the web-
site had received approximately, 6,367,893 hits, 188,369
unique visitors, 13,612 unique URLs, 25,433 unique user
agents [viz. Mozilla/5.0+ (compatible; +Googlebot/2.1; ++
http://www.google.com/bot.html)], transferred a total amount

Table 2 The occurrences of different frequently occurred error codes
from 30/9/2010 to 22/10/2011 along with their positions in the respec-
tive clusters generated by the k-means clustering algorithm. Dickey–
Fuller test for checking stationarity of the series corresponding to the
main, 1st and 2nd secondary factors

Main factor (404) 1st secondary
factor (406)

2nd secondary
factor (403)

3890 = M(1, 1) 0 = S(1)1,1 6 = S(2)1,1
3646 = M(3, 1) 4 = S(1)3,1 4 = S(2)1,1
2387 = M(1, 2) 346 = S(1)3,2 3 = S(2)1,2
3852 = M(1, 3) 342 = S(1)1,2 3 = S(2)3,3
3283 = M(1, 4) 12 = S(1)1,3 6 = S(2)2,4
3215 = M(1, 5) 0 = S(1)1,4 14 = S(2)1,5
3097 = M(3, 2) 0 = S(1)3,3 2 = S(2)2,1
4875 = M(2, 10) 342 = S(1)1,5 10 = S(2)1,2
2687 = M(2, 4) 0 = S(1)1,6 2 = S(2)3,3
2791 = M(2, 5) 0 = S(1)1,7 6 = S(2)3,4
2503 = M(2, 2) 0 = S(1)2,1 6 = S(2)2,5
2415 = M(3, 3) 318 = S(1)1,8 14 = S(2)2,2
4372 = M(1, 6) 0 = S(1)1,9 10 = S(2)1,6
3199 = M(2, 11) 0 = S(1)1,10 3 = S(2)1,6
2884 = M(2, 6) 0 = S(1)1,11 4 = S(2)3,7
2809 = M(2, 7) 0 = S(1)1,12 6 = S(2)1,8
2797 = M(2, 8) 0 = S(1)3,4 1 = S(2)2,9
2940 = M(2, 9) 343 = S(1)1,13 9 = S(2)1,10
2856 = M(1, 7) 0 = S(1)1,14 3 = S(2)1,7
3465 = M(1, 8) 4 = S(1)1,15 4 = S(2)1,8
3485 = M(1, 9) 1 = S(1)1,16 4 = S(2)3,11
2694 = M(2, 3) 0 = S(1)1,17 6 = S(2)2,12
2403 = M(2, 1) 0 = S(1)1,18 10 = S(2)1,13
… … …

Dickey–Fuller test

Series p values Result

Main factor (404) 0.01 < 0.05 Stationary

1st secondary factor
(406)

0.01 < 0.05 Stationary

2nd secondary factor
(403)

0.01 < 0.05 Stationary

of 87,964,646 KBytes data, and approximately, 35,137 num-
bers of sessions were created. The most frequently-occurred
web failures corresponding to each day of http://www.
ismdhanbad.ac.inare tabulated and shown in Table 2. From
this table, it is observed that, the error code 404 numeri-
cally dominates the others, which is in tune with the find-
ings of the survey results from 1994 to 1998 by the Graph-
ics, Visualization, and Usability Center of Georgia Institute
of Technology (http://www.gvu.gatech.edu/user_surveys/),
which states that 404 errors are most commonly occurred
errors that users encounterwhile browsing theweb. The other
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two most frequently occurred web error codes in case of
http://www.ismdhanbad.ac.in are 406 (not acceptable) and
403 (forbidden) (Huynh and Miller 2009). Therefore, the
error code 404 is now considered as the main factor and the
error codes 406, 403 are now treated as the two secondary
factors. Accordingly, the occurrences of 404 (main factor)
are preferentially predicted on the basis of 406 and 403 (sec-
ondary factors). Now, for the modeling purpose 70% of the
data set, i.e., (387 × 0.7) ≈ 270 data have been used and
remaining 117 (30%) have been left for prediction purpose
(post sample period).

Again, the stationarity of the series of occurrences cor-
responding to the error codes 404, 406, 403 has also been
checked using the Dickey–Fuller test (Lutkepohl 2005)and
found that all the series are stationary (Table 2).

Initially, for the simplicity of calculation, the main and
the secondary factors, shown in Table 2, are partitioned
into clusters with the help the k-means (with 3 clusters),
c-means (with 3 clusters), and the automatic clustering algo-
rithm (Chen and Tanuwijaya 2011) and the correspond-
ing results are shown in Table 3. Next, different cluster-
ing indices, viz., DVI, are calculated to check the quality
of the generated clusters, and it is found that the k-means
(with 3 clusters) is most suitable for the data set shown in
Table 2 due to lowest DVI among all the aforementioned
clustering algorithms. Consequently, the proposed algorithm
employs the k-means clustering technique to partition the
main and the secondary factors in step 2 (Cf. Sect. 3). The
resulting non-overlapping, non-empty clusters of the main
and the secondary factors are denoted by ai ; (i = 1, 2, 3)
and bi, j ; (i = 1, 2; j = 1, 2, 3), respectively. The linguis-
tic variables corresponding to the clusters of the main and
the secondary factors are denoted by Ai ; (i = 1, 2, 3) and
Bi, j ; (i = 1, 2; j = 1, 2, 3), respectively.

Next, using step 3 of the proposed algorithm (Cf. Sect.
3), different parameters are calculated and are shown in
Table 3. The fuzzy sets corresponding to Ai ; (i = 1, 2, 3) and
Bi, j ; (i = 1, 2; j = 1, 2, 3) are defined using step 4(b)(Cf.
Sect. 3) of the developed algorithm. For example, the fuzzy
set A1 (linguistic variable corresponding toa1) canbedefined
as follows [using Eq. (7)]:

A1 = 1

a1
+
(
1 − 8

8∗12
)

a2
+
(
1 − 1

8∗3
)

a3

+
2∑

j=1

3∑

i=1

(
1 − x j,i

n j,i∗n p

)

b j,i

= 1

a1
+ 0.917

a2
+ 0.958

a3
+

2∑

j=1

3∑

i=1

0

b j,i

From the above fuzzy set representation, it is quite clear that
the membership values can be real numbers lying between
0 and 1, apart from 0,0.5 and 1. Moreover, from the above

equation, it is quite clear that there are influences of different
secondary factors on the main factor, which is, however, a
remarkable feature of the proposed algorithm. Similarly, the
fuzzy sets corresponding to the remaining main, 1st and 2nd
secondary factors can be calculated. FromTable 2, it is found
that 3870 = M(1, 1) ∈ a1. Similarly, the positions of the
other elements of the main and the secondary factors can be
found.

Again, sum_deviation_sec[1] = 3.623 and sum_
deviation_ sec[2] = 0.7577. The fuzzy set representation
for B1,3 (linguistic variable corresponding to b1,3) is given
as follows:

B1,3 =
3∑

i=1

f (B1,3)

b1,i
,

or, B1,3 = 1

b1,3
+
(
1 − 4

20

)

b1,1
+
(
1 − 5

10

)

b1,2

= 1

b1,3
+ 0.8

b1,1
+ 0.5

b1,2
.

Next, different fuzzified occurrences of the main, 1st, and
2nd secondary factors of www.ismdhanbad.ac.in were tab-
ulated and the data are shown in Table 2. Using Rule 1 of
the developed algorithm, different fuzzy logical relation-
ships were established. From Table 2, it is seen that 3,205
= M(1, 5) ∈ a1. Accordingly, the corresponding fuzzy set
can be defined, using Eq. (13), as given below:

M(p, q) =
∑

i∈Z+

∑

j∈Z+

gL(M(1, 5)_M(i, j))

ai

+
∑

j∈Z+

∑

i∈Z+

∑

l∈Z+

gG(M(1, 5)_S( j)i,l)

b j,i

In the same way, fuzzy sets corresponding to the other fuzzi-
fied occurrences of the main and secondary factors were
defined. The fuzzy set representation for 4 = S(1)3,1 is given
as follows:

S(1)3,1 =
3∑

i=1

∑

j∈Z+

gL(S(1)3,1_S(1)i, j )

b1,i

Again, from first row of Table 2 using Rule 1 (Cf. Sect. 3),
the following fuzzy logical relationship was formed.

‘If the 1st element of the 1st cluster of themain factor (i.e.,
fuzzified value M(3,1)), 1st element of the 1st cluster of the
1st secondary factor (i.e., fuzzified value S(1)1,1), and 1st
element of the 1st cluster of the 2nd secondary factor (i.e.,
fuzzified value S(2)1,1) are at stage 1, then at the stage 2 the
main factor will be the 3rd element of the 1st cluster of the
main factor (i.e., fuzzified value M(1,1))’. Symbolically, it
is expressed as:
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Table 3 Different clusters of the main and the secondary factors using the k-means, c-means and the automatic clustering algorithm

Clusters generated by the k-means clustering algorithm [web error data set]

Cluster no. Clusters or intervals Max Min Mid Mean Sum_deviation Global_deviation

Clusters of the main factor 16.744

a1

{
3870, 2397, 3842, 3263, 3205, 4352,

2886, 3415, . . .

}
4352 2397 3374.5 3358 150.65

a2

{
2493, 2593, 2644, 2657, 2701, 2894,

2819, 2787, 2910, 4845, 3169, 3455, . . .

}
4845 2493 3669

a3 {3626, 3087, 2435,…} 3626 2435 3030.5

Clusters of the 1st secondary factor

a1,1 {0, 342, 0, 0, 0, 0, 0, 0, 0, 343, 1, 0,…} 343 0 171.5 167.83 3.623

a1,2 {0, 346, 342, 12, 0, 0, 0, 4,…} 346 0 173

a1,3 {0, 318,…} 318 0 159

Clusters of the 2nd secondary factor

a2,1 {4, 10, 2, 6, 6, 3, 4, 6, 1, 9, 4, 6, 10,…} 10 1 5.5 7.33 0.7577

a2,2 {6, 3, 3, 6, 14, 10, 3, 4,…} 14 3 8.5

a2,3 {2,14,…} 14 2 8

Clusters generated by the c-means web data set

Min Max Mid Dev_diff

Clusters of the main factor

a1

{
3870, 2397, 3842, 3263, 3205,

4352, 2886, 3415, . . .

}
2397 4352 3374.5 3108.474474

a2

{
3169, 2894, 2819, 2787, 2910, 3455,

2644, 4845, 2657, 2701, 2593, 3626, . . .

}
2593 4845 3719

a3 {3087, 2435,…} 3087 2435 2761

Clusters generated by the Automatic Clustering Algorithm

Min Max Mid Avg_diff Dev_diff

Clusters of the main factor

a1

⎧
⎨

⎩

2397, 2435, 2493, 2593, 2644
2910, 3087, 3169, 3205, 3263,

3415, 3455, 3626, 3842, 3870, . . .

⎫
⎬

⎭ 2046 4111 3078.5 97.45455 3108.474474

a2 {4352, 4845,…} 4111 4845 4478

Clusters of the 1st secondary factor

b1.1 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 4, 12,…} –82.96 165 41.02 15.72727 68.95013

b1.2 {318,342,342,243,346,…} 41.02 428.96 234.499

Clusters of the 2nd secondary factor

b2.1 {1,…} 1 1 1 0.590909 138.6

b2.2 {2, 2,…} 2 2 2

b2.3 {3, 3, 3, 3,…} 3 3 3

b2.4 {4, 4, 4, 4,…} 4 4 4

b2.5 {6, 6, 6, 6, 6, 6,…} 6 6 6

b2.6 {9,…} 9 9 9

b2.7 {10, 10, 10,…} 10 10 10

b2.8 {14,14,…} 14 14 14

M(1, 1), S(1)1,1, S(2)1,1 → M(3, 1).

In case of the fuzzified one-step ahead occurrence of themain
factor (i.e., error code 404) on 23/10/10, i.e., ‘#’, a fuzzy

logical relationship was established by applying Rule 2 (Cf.
Sect. 3) of the developed algorithm as follows:

‘If the 11th element of the 1st cluster of the main fac-
tor (i.e., fuzzified value M(1, 11)), the 17th element of the
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Table 4 Fuzzy logical relationship among main (404), 1st secondary
(406) and 2nd secondary (403) factors

Fuzzy logical relationship

M(1, 1), S(1)1,1, S(2)1,1 → M(3, 1)

M(3, 1), S(1)3,1, S(2)1,1 → M(1, 2)

M(1, 2), S(1)3,2, S(2)1,2 → M(1, 3)

M(1, 3), S(1)1,2, S(2)3,3 → M(1, 4)

M(1, 4), S(1)1,3, S(2)2,4 → M(1, 5)

M(1, 5), S(1)1,4, S(2)1,5 → M(3, 2)

M(3, 2), S(1)3,3, S(2)2,1 → M(2, 10)

M(2, 10), S(1)1,5, S(2)1,2 → M(2, 4)

M(2, 4), S(1)1,6, S(2)3,3 → M(2, 5)

M(2, 5), S(1)1,7, S(2)3,4 → M(2, 2)

M(2, 2), S(1)2,1, S(2)2,5 → M(3, 3)

M(3, 3), S(1)1,8, S(2)2,2 → M(1, 6)

M(1, 6), S(1)1,9, S(2)1,6 → M(2, 11)

M(2, 11), S(1)1,10, S(2)1,6 → M(2, 6)

M(2, 6), S(1)1,11, S(2)3,7 → M(2, 7)

M(2, 7), S(1)1,12, S(2)1,8 → M(2, 8)

M(2, 8), S(1)3,4, S(2)2,9 → M(2, 9)

M(2, 9), S(1)1,13, S(2)1,10 → M(1, 7)

M(1, 7), S(1)1,14, S(2)2,7 → M(1, 8)

M(1, 8), S(1)2,8, S(2)1,7 → M(1, 9)

M(1, 9), S(1)1,15, S(2)1,8 → M(2, 3)

M(2, 3), S(1)1,16, S(2)3,11 → M(2, 1)

…

M(2, 19), S(1)1,37, S(2)2,32 → #

1st cluster of the 1st secondary factor (i.e., fuzzified value
S(1)1,17), and the 12th element of the 2nd cluster of the 2nd
secondary factor (i.e., fuzzified value S(2)2,12) are at stage
21, then at stage 22 the fuzzified occurrence of the main fac-
tor will be ‘#’. Then, the fuzzy logical relationship would
symbolically be expressed as:

M(1, 11), S(1)1,17, S(2)2,12 → #.

Different fuzzy logical relationships are contained in Table 4.
With the help of Rule 1 of the developed algorithm (Cf.

Sect. 3), different knownoccurrences of themain factor given
in Table 2 can be predicted. The defuzzified predicted value
of M(1,5), i.e., 3,205, was calculated as follows (Cf. Sect. 3):

predicted(3636) = 3633

In the same way, the remaining known occurrences of the
main factor can easily be predicted and shown in Table 5.

Again, using Rule 2 of the developed algorithm (Cf. Sect.
3), the occurrence of the main factor on 23/10/2011, i.e., #,
can be predicted as follows:

predicted(#) = 3719 + 3374.5 + 2761 + 0

3
≈ 3285.

Next, to check the predictive accuracy RMSE values are cal-
culated as follows:

RMSE

=
√∑n

i=1(Forecasted_occurrencei − Actual_occurrencei)2

n

(20)

The variables, used in the above equation, are defined as
follows:

Forecasted_occurrencei: i th forecasted occurrence of
the main factor.

Actual_occurrencei i th actual occurrence of the main
factor.

Next, the outputs of the proposed algorithm were com-
pared with that of the algorithm developed by Chen and
Tanuwijaya (2011) using the automatic clustering algorithm
and the results, given in Table 5, establish the superiority of
the former. Afterwards, the outcomes of the proposed algo-
rithm are compared with that of the algorithm developed by
Chen and Tanuwijaya (2011), replacing the automatic clus-
tering by k-means and c-means, respectively and the results
are given in Table 5 which also shows the better predictive
accuracy of the former. Quite interestingly, it is found that
the predictive accuracy of the algorithm proposed by Chen
and Tanuwijaya (2011) increases if the automatic clustering
algorithm is replaced by the k-means and c-means, respec-
tively as they can produce better quality clusters than the
former (one possible reason). Additionally, it is also found
that in this case, the quality of the clusters generated by the
k-means algorithm (checking the DVI index, given in Table
1) is better than that of the c-means clustering approach and,
as a consequence, better forecasted outputs are found from
Chen and Tanuwijaya algorithm (2011) if the automatic clus-
tering is replaced by k-means than c-means algorithm. The
above discussion clearly establishes the influence of choos-
ing suitable clustering algorithm on the forecasted results of
the fuzzy time series-based prediction algorithms. The results
are shown in Table 5. The RMSE, RMdSE and MdRAE val-
ues for the proposed forecasting algorithm is lesser than all
of its competitors that can be found from the Tables 5, 9, 11,
12, 13 and 14. The bold portions of the tables confirms the
propositions.

Moreover, the outputs of the proposed algorithm is com-
pared with two statistical models, viz., MA(1) (univariate
time series model) (Lutkepohl 2005) and VAR(1) (multivari-
ate time series model) (Lutkepohl 2005) and found better
predictive accuracy of the proposed algorithm. The corre-
sponding MA(1) model is given as follows:

MA(1) : XT = ZT − 0.2024ZT−1,
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Table 5 Forecasted outcomes
(approx.) along with theRMSE,
RMdSE, MdRAE values for the
post sample period

Original Chen and Tanuwijaya Proposed algorithm
with k-means

MA(1) VAR(1)

Automatic c-means k-means

3871 3681.1 3374.5 3419 3810 – 3870

3636 3790.29 3352.25 3794.5 3633 – 3021.972

2391 2379.9 2737 2579 2388 – 3079.081

3842 3800.6 3460.5 3301.5 3802 3270.07 3725.4

3203 3029 3170.75 3012 3100 3138.1 3400.52

3215 3099.5 3141.75 2983 3269 3138.1 3169.742

3047 3012.67 3082.75 3230 3046 3129.3 3175.025

4845 4762 4749.1 4109.75 4845 3147 3192.863

2697 2580 2865.25 3188 2680 3147 3182.917

2801 2890 2889.75 3210 2942 3138.1 3288.237

2993 2972 2835.75 3156 2889 3147 3281.256

2535 2887 4502.561 3077 2687 3129.3 3305.21

4252 4391 3118.75 3863.25 4100 3138.1 3693.958

3269 2781 2986.25 2965 3295 3138.1 2917.842

2994 3019 2948.75 3306.5 2959 3138.1 3175.37

2919 3231 2932.75 3269 2924 3129.3 3237.059

2887 2875 2994.25 3253 2972 3120.5 3255.083

2910 2617 2962.55 3314.5 2981 3129.3 3258.708

2986 3151 3246.75 3302.5 3054 3138.1 3612.5

3315 3011 3266.75 3088 3277 3120.5 3238.139

3555 3617 2861.25 3108 3533 3138.1 3125.881

2644 2998 2785.75 3181 2943 3138.1 3113.724

… … … … … … …

RMSE 867.1063 573.6783 437.5398 32.90529 595.4581 3200.03

RMdSE 815.1 513.7 417.5 29.92 515.8 3175.3

MdRAE 807.1 501.8 407.8 27.79 501.8 3112.3

where {ZT } is the white noise series corresponding to the
series of the occurrences of 404 error code, i.e., {XT } (given
in Table 2). The MA coefficients are determined with the
help of the maximum likelihood method. Here, the white
noise variance corresponding to {XT } can be calculated as
0.369892× 106 whereas, the standard error of the MA coef-
ficients can be calculated as 0.324468. The AICC and BIC
(Lutkepohl 2005) of the proposed MA(1) model can be cal-
culated as 0.364795×103 and 0.360366×103, respectively.
The predicted occurrences of different web errors are given
in Table 5. Similarly, the corresponding VAR(1) model is
given as follows:

⎛

⎝
YT
X1T

X2T

⎞

⎠ =
⎛

⎝
−0.2218 1.0948 0.6846
−0.05292 −0.01587 −15.08921
−0.002207 −0.004290 −0.019705

⎞

⎠

×
⎛

⎝
YT−1

X1T−1

X2T−1

⎞

⎠+
⎛

⎝
3892.9216
460.21221
14.357282

⎞

⎠

+
⎛

⎝
−16.7561
−10.67506
−0.080135

⎞

⎠ ,

where YT = occurrences of error code 404 (main factor),
X1T = occurrences of the error code 406 (first secondary
factor) and X2T = the occurrences of the error code 403 (the
second secondary factor). Again, (3892.9216 460.21221
14.357282)T and (−16.7561 − 10.67506 − 0.080135)T are
the constant and the trend components of the above-
mentioned VAR(1) model. The forecasted outputs of the
VAR(1) model are shown in Table 5. Moreover, from Fig.
2, it is clear that the predicted accuracy of the proposed algo-
rithm is better than all the other approaches used in the present
study.

Additionally, χ2-goodness of fit test too was carried out to
validate the developed multivariate fuzzy forecasting algo-
rithm. Here, χ2

Computed = 20.83 < 40.289 = χ2
Tabulated at

22 degrees of freedom and 1% level of significance for the
data set given in Table 2. Therefore, the developed algorithm
stands fully validated.
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Fig. 2 Original and the predicted occurrences of 404

4.2 An example regarding coal processing

This sub section showcases a real example of the oil agglom-
eration (Sahinoglu and Uslu 2011) process for the benefici-
ation of coal fines (coal washing), where the environment
is much different from that of the websites. Oil agglom-
eration can be used for separation of particles suspended
in water differing in affinity towards oil drops. The affin-
ity of particles suspended in water towards oil drops is
called aquaoleophilicity (Sahinoglu and Uslu 2011). The
term aquaoleophilicity reflects the fact that particles like oil
drops in water. This property in similar to the hydrophobicity
utilized in flotation in which the oil drop is substituted with
the gas bubble. Successful oil agglomeration requires vig-
orous stirring to disperse oil drops and particles to facilitate
sufficient number of collisions between them (Sahinoglu and
Uslu 2011). For this purpose, impellers are required as the
main equipment (Sahinoglu and Uslu 2011). Different prop-
erties of the impellers (independent variables) along with

the experimental (dependent variable) and predicted % yield
(clean coal) that used in this experiment are given in Tables
6 and 9. Figure 3 pictorially demonstrates the oil agglom-
eration process. Different abbreviations of the independent
variables used in Tables 6 and 9 are given as follows:

IB: Number of impellers blades; IN: number of impellers;
ID: diameters of the impellers; IW: width of the impellers’
blades; RPM: impeller’s speed (in revolution per minute).

The experimental yield (%) of the clean coal is the depen-
dent variable. Here, the experimental yield (%) of the clean
coal has been predicted based on IB, IN, ID, IW and RPM
(independent variables). For the experimental purpose, in this
paper a data set of length 81 has been used. Some part of the
data set has been shown in Table 6. Here, for the modeling
purpose 70 % of the data set, i.e., (81 × 0.7) ≈ 57, data have
been used and the remaining are used for prediction purpose
(post sample period).

From the first row of Table 6, it is found that if the number
of impellers’ blade is 2, number of impellers are 4, diam-
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Table 6 Different independent and dependent variables of the oil agglomeration data set along with their respective positions in the clusters
generated by the k-means clustering algorithm

Independent variables Dependent

IB IN ID IW RPM Experimental yield %

2 = S(1)3,1 4 = S(2)1,1 90 20 = S(4)3,1 1200 = S(5)2,1 58.2300 = M(2, 1)

3 = S(1)1,1 4 = S(2)1,2 90 20 = S(4)3,2 1200 = S(5)2,2 63.1500 = M(3, 1)

4 = S(1)2,1 4 = S(2)1,3 90 20 = S(4)3,3 1200 = S(5)2,3 65.0000 = M(1, 1)

5 = S(1)2,2 4 = S(2)1,4 90 20 = S(4)3,4 1200 = S(5)2,4 65.2500 = M(1, 2)

4 = S(1)2,3 1 = S(2)2,1 90 20 = S(4)3,5 1200 = S(5)2,5 59.2900 = M(2, 2)

4 = S(1)2,4 2 = S(2)2,2 90 20 = S(4)3,6 1200 = S(5)2,6 62.5500 = M(3, 2)

4 = S(1)2,5 3 = S(2)2,3 90 20 = S(4)3,7 1200 = S(5)2,7 63.0000 = M(3, 3)

4 = S(1)2,6 4 = S(2)1,5 90 20 = S(4)3,8 1200 = S(5)2,8 65.0000 = M(1, 3)

4 = S(1)2,7 5 = S(2)3,1 90 20 = S(4)3,9 1200 = S(5)2,9 65.0000 = M(1, 4)

4 = S(1)2,8 3 = S(2)2,4 75 20 = S(4)3,10 1200 = S(5)2,10 59.5000 = M(2, 3)

4 = S(1)2,9 3 = S(2)2,5 90 20 = S(4)3,11 1200 = S(5)2,11 63.0000 = M(3, 4)

4 = S(1)2,10 3 = S(2)2,6 100 20 = S(4)3,12 1200 = S(5)2,12 63.2400 = M(3, 5)

4 = S(1)2,11 3 = S(2)2,7 110 20 = S(4)3,13 1200 = S(5)2,13 63.5600 = M(3, 6)

4 = S(1)2,12 3 = S(2)2,8 100 15 = S(4)2,1 1200 = S(5)2,14 57.3600 = M(2, 4)

4 = S(1)2,13 3 = S(2)2,9 100 20 = S(4)3,14 1200 = S(5)2,15 63.2400 = M(3, 7)

4 = S(1)2,14 3 = S(2)2,10 100 25 = S(4)1,1 1200 = S(5)2,16 66.7300 = M(1, 5)

4 = S(1)2,15 3 = S(2)2,11 100 20 = S(4)3,15 800 = S(5)3,1 55.2400 = M(2, 5)

4 = S(1)2,16 3 = S(2)2,12 100 20 = S(4)3,16 1200 = S(5)2,17 63.2400 = M(3, 8)

4 = S(1)2,17 3 = S(2)2,13 100 20 = S(4)3,17 2400 = S(5)1,1 64.2900 = M(1, 6)

… … … … … …

Dickey–Fuller test

Series p values Results

IB 0.01 < 0.05 Stationary

IN 0.01 < 0.05 Stationary

ID 0.01 < 0.05 Stationary

IW 0.01 < 0.05 Stationary

RPM 0.01 < 0.05 Stationary

Experimental yield % 0.01 < 0.05 Stationary

eters of the impellers are 90 mm., width of the impeller
blade is 20 mm., and the speed of the impellers are 1200
RPM, then the experimental yield (%) of the clean coal
is 58.2300 %, whereas, the predicted yield (%) of clean
coal by the developed algorithm and the ANN approach
are 57.37 % and 62.17563 %, respectively (Table 9). The
main motive behind citing this example is to unveil the
extensive applicability of the developed prediction algo-
rithm in different parts of science and technology. In this
case, the ceil of the experimental yield (dependent vari-
able), i.e., Experimental Yield, is considered as the main
factor whereas, IB, IN, ID, IW and RPM (all the independent
variables) are considered as the secondary factors. The fol-
lowing table shows different instances or observations of
the independent and dependent variables involved in this
experiment.

Applying step 1 and step 2 of the developed algorithm
(Cf. Sect. 3) on the dataset (shown in Table 6) non- over-
lapping clusters generated by the k-means, automatic and
c-means clustering algorithms are shown in Table 7. Next, to
choose the suitable clustering algorithm, initially, the DVI of
the clusters generated by the aforementioned clustering algo-
rithm are calculated and are shown in Table 1, from which it
is quite clear that the k-means clustering algorithm can pro-
duce better quality clusters. Consequently, in this case, the
k-means clustering algorithm has been applied to partition
the data set.

The mean, sum_deviation and the global_deviation (Cf.
Sect. 3) are given as follows:

mean = 62.625, sum_deviation = 2.165,

global_deviation = 14.07.
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Fig. 3 Oil agglomeration process

Table 7 Clusters of the main and the secondary factors generated by the above-mentioned clustering algorithm

Clusters generated by the k-means clustering algorithm [oil data set]

Cluster no. Clusters or intervals Min Max Mid Mean Sum_deviation

Clusters of the main factor 2.165

a1 {65, 65.25, 66.73, 63.29,…} 65 66.73 65.865 62.625

a2 {63.15, 62.55, 63, 66.73, 64.29,…} 62.55 66.73 64.64

a3 {58.23, 59.29, 59.5, 57.36, 55.24,…} 55.24 59.5 57.37

Clusters generated by the c-means clustering algorithm

Min Max Mid Avg_diff

Clusters of the main factor

a1 {58.23, 59.29, 59.5, 57.36, …} 57.36 59.5 58.43 0.63834

a2 {55.24,…} 55.24 55.24 27.62

a3

⎧
⎨

⎩

63.15, 65, 65.25, 62.55, 63, 63.15, 65,
59.29, 62.55, 63.56, 63.24, 66.73,

63.24, 64.29, . . .

⎫
⎬

⎭ 62.55 66.73 64.64

Clusters generated by the automatic cluetsring algorithm

Min Max Mid Avg_diff Dev_diff

Clusters of the main factor

a1

⎧
⎪⎪⎨

⎪⎪⎩

55.24, 57.36, 58.23, 59.29, 59.5,
62.55, 63, 63, 63.15, 63.24, 63.24,
63.24, 63.56, 64.29, 65, 65.25,

66.73, . . .

⎫
⎪⎪⎬

⎪⎪⎭
23.456 98.55 37.53 0.63834 63.56886

Clusters of the 1st secondary factor

b1.1

{
2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

4, 5, . . .

}
0.074 6.928 6.93 0.16667 3.855269

Clusters of the 2nd secondary factor

b2.1

{
1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,

4, 5, . . .

}
–0.5 5.5 5 0.23 3

Clusters of the 3rd secondary factor

b3.1

⎧
⎨

⎩

75, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90,
100, 100, 100, 100, 100, 100,

100, 100, . . .

⎫
⎬

⎭ 27.62 157. 39 92.5 1.94444 94.77869

Clusters of the 4rd secondary factor

b4.1

{
15, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 25, . . .

}
4.98 35.025 20 5.277778 20.04994

Clusters of the 5th secondary factor

b5.1

⎧
⎪⎪⎨

⎪⎪⎩

800, 1200, 1200, 1200, 1200, 1200,
1200, 1200, 1200, 1200, 1200, 1200,
1200, 1200, 1200, 1200, 1200, 1200,

2400, . . .

⎫
⎪⎪⎬

⎪⎪⎭
188.88 3011.13 1411.13 88.88889 1222.24752
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In each case k-means clustering algorithmwith three clusters
was applied and as a consequence, the dataset corresponding
to all the main and secondary factors were divided into 3
clusters each.

The fuzzy set representation for A0 (the linguistic variable
corresponding to a0) is as follows [Cf. Eq. (7)]:

A0 = 1

a0
+
(
1 − 1

36

)

a1
+ 0

a3
+

5∑

j=1

3∑

i=1

(
1 − x j,i

n j,i∗n p

)

b j,i

= 1

a0
+ 0.97

a1
+ 0

a3

Fuzzy set representation for the other linguistic variables for
the main factor can be similarly defined. The fuzzy set rep-
resentations for B1,4 is given as follows:

B1,4 = 0

b1,0
+ 0

b1,1
+ 0

b1,2
+ 0

b1,3
+ 1

b1,4

+ 0

b1,5
+ 0

b1,6
+ 0

b1,7
+ 0

b1,8
+ 0

b1,9
.

The fuzzy set representation for M(2,1) is defined as follows
[Cf. Eq. (12)]:

M(2, 1) = 1

a2
+ 0

a1
+ 0

a3

+
5∑

j=1

3∑

i=1

∑

l

gG(M(2, 1)_S( j)i,l)

b j,i

Different fuzzified occurrences of the main and the sec-
ondary factors as also the possible fuzzy relationships are
tabulated and shown in Tables 6 and 8.

Again, from the first row of Table 16, using Rule I (Cf.
Sect. 3), the following fuzzy logical relationship was formed:

‘If the 1st element of the 2nd cluster of the main factor
[i.e., fuzzified value M(2,1)], 1st element of the 3rd cluster
of the 1st secondary factor [i.e., fuzzified value S(1)(3,1)],
1st element of the 1st cluster of the 2nd secondary fac-
tor [i.e., fuzzified value S(2)(1,1)], 1st element of the 2nd
cluster of the 3rd secondary factor [i.e., fuzzified value
S(3)(2,1)], 1st element of the 3rd cluster of the 4th sec-
ondary factor [i.e., fuzzified value S(4)(3,1)], and 1st ele-
ment of the 2nd cluster of the 5th secondary factor [i.e.,
fuzzified value S(5)(2,1)] are at stage 1, then at the next
stage the fuzzified main factor will be M(3,1)’. The possible
fuzzy logical relationships are tabulated and shown in Table
8 below.

Table 8 Fuzzy logical relationships of the data set given in Table 6

Fuzzy logical relationships

M(2, 1), S(1)3,1, S(2)1,1, S(3)2,1, S(4)3,1, S(5)2,1 → M(3, 1)

M(3, 1), S(1)1,1, S(2)1,2, S(3)2,2, S(4)3,2, S(5)2,2 → M(1, 1)

M(1, 1), S(1)2,1, S(2)1,3, S(3)2,3, S(4)3,3, S(5)2,3 → M(1, 2)

M(1, 2), S(1)2,2, S(2)1,4, S(3)2,4, S(4)3,4, S(5)2,4 → M(2, 2)

M(2, 2), S(1)2,3, S(2)2,1, S(3)2,5, S(4)3,5, S(5)2,5 → M(3, 2)

M(3, 2), S(1)2,4, S(2)2,2, S(3)2,6, S(4)3,6, S(5)2,6 → M(3, 3)

M(3, 3), S(1)2,5, S(2)2,3, S(3)2,7, S(4)3,7, S(5)2,7 → M(1, 3)

M(1, 3), S(1)2,6, S(2)1,5, S(3)2,8, S(4)3,8, S(5)2,8 → M(1, 4)

M(1, 4), S(1)2,7, S(2)3,1, S(3)2,9, S(4)3,9, S(5)2,9 → M(2, 3)

M(2, 3), S(1)2,8, S(2)2,4, S(3)2,10, S(4)3,10, S(5)2,10 → M(3, 4)

M(3, 4), S(1)2,9, S(2)2,5, S(3)2,11S(4)3,11, S(5)2,11 → M(3, 5)

M(3, 5), S(1)2,10, S(2)2,6, S(3)1,1, S(4)3,12, S(5)2,12 → M(3, 6)

M(3, 6), S(1)2,11, S(2)2,7, S(3)3,1, S(4)3,13, S(5)2,13 → M(2, 4)

M(2, 4), S(1)2,12, S(2)2,8, S(3)1,2, S(4)2,1, S(5)2,14 → M(3, 7)

M(3, 7), S(1)2,13, S(2)2,9, S(3)1,3, S(4)3,14, S(5)2,15 → M(1, 5)

M(1, 5), S(1)2,14, S(2)2,10, S(3)1,4, S(4)1,1, S(5)2,16 → M(2, 5)

M(2, 5), S(1)2,15, S(2)2,11, S(3)1,5, S(4)3,15, S(5)3,1 → M(3, 8)

M(3, 8), S(1)2,16, S(2)2,12, S(3)1,6, S(4)3,16, S(5)2,17 → M(1, 6)

. . .

M(1, 6), S(1)2,17, S(2)2,13, S(3)1,7, S(4)3,17, S(5)1,1 → #

The defuzzified predicted value of M(3,1) can be calcu-
lated as follows [Cf. Eq. (13)]:

predicted(M(3, 1)) =
1 ∗ 64.64 +

{(
1 − 65−63.15

2.165

)
+
(
1 − 65.25−63.15

2.165

)
+
(
1 − 63.15−63

2.165

)}
∗ 65.865

1 +
{(

1 − 65−63.15
2.165

)
+
(
1 − 65.25−63.15

2.165

)
+
(
1 − 63.15−63

2.165

)} ≈ 65.26.

Similarly, the other predicted experimental yields (%) can be
calculated which are shown in Table 9.

Tables 9, 13 show the forecasted outputs of the pro-
posed and several other prediction methods [proposed by
Chen and Tanuwijaya 2011 (using automatic, c-means and k-
means clustering algorithms), ANN, VAR(1), MA(3), Holt-
Winter, Box-Jenkins, Bulut et al. 2012; Bulut 2014; Duru
2010, 2012; Chatterjee and Roy 2014a, b] with their RMSE,
RMdSE and MdRAE values, which establishes the better
efficiency and accuracy of the former. The pictorial represen-
tations of the above results are shown in Fig. 4. Comparing
the DVI values it has been found that the quality of the clus-
ters generated by the k-means clustering algorithm is better
than the other two aforementioned clustering methods. Quite
interestingly, it has been found that the forecasting accuracy
of the Chen and Tanuwijaya (2011) method is enhanced if
the automatic clustering technique is replaced by the k-means
clustering algorithm. From the above discussion, it is quite
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Table 9 Forecasted outputs (approx.) of different prediction methods for the oil agglomeration data set

Experimental
yield (%)

Proposedwith
k-means

Chen and Tanuwijaya ANN VAR(1) MA(3) Holt-winter Box-jenkins

Automatic k-means c-means

58.2300 57.37 37.53 57.38 58.325 62.17 37.13 – 59 69

63.1500 65.26 47.87 57.8 58.28 59.97 32.14 – 59 69

65.0000 64.98 51.336 63.57 63.9 63.65 34.92 – 67 77

65.2500 65.38 51.138 67 64.82 67.65 37.70 – 71 81

59.2900 57.37 51.38 57.13 64.95 62.47 36.12 – 71 81

62.5500 63.13 48.40 58.33 58.80 63.03 33.13 61.4 63 73

63.0000 64.16 50.039 63.28 63.6 59.67 35.97 66.1 67 77

65.0000 64.98 50.26 63.5 63.83 63.65 34.92 62.6 67 77

65.0000 64.98 51.26 57 64.82 63.65 37.76 62.9 71 81

59.5000 58.17 51.26 57 64.83 62.47 36.30 62.9 71 81

63.0000 64.75 48.51 58.44 58.92 59.67 34.02 62.9 63 73

63.2400 64.16 50.039 63.5 63.83 61.92 37.6 62.9 67 77

63.5600 64.71 50.38 63.62 63.94 59.97 41.35 62.9 67 77

57.3600 64.82 50.54 63.78 64.10 59.40 36.32 62.9 71 81

63.2400 64.75 47.444 57.37 57.96 61.97 37.69 62.9 59 79

66.7300 64.75 50.38 63.62 62.89 64.95 44.88 62.9 62 72

55.2400 64.82 52.079 63.78 63.94 58.15 37.93 62.9 67 77

63.2400 64.75 46.38 57.37 65.69 59.97 37.69 62.9 65 75

64.2900 65.00 50.38 63.6 40.24 60.65 37.13 62.9 47 67

… … … … … … … … … …

RMSE 2.3804 14.3019 4.494 6.7538 2.7273 26.086 62.977 3.639 7.119

RMdSE 2.134 13.419 3.194 6.5131 2.1272 25.1097 61.107 3.169 7.669

MdRAE 2.204 13.268 3.187 6.5135 2.103 25.016 61.987 3.338 7.189

clear that the clustering technique has an influence on the
fuzzy time series-based forecasting methods which corrob-
orates well with the findings of Huarng (2001a). Hence, the
proposed algorithm employs the k-means clustering tech-
nique to partition the data set given in Table 6 for better pre-
dictive accuracy. Next, the proposed forecasting algorithm
can consider the contributions of different secondary factors
on the defuzzified predicted occurrences of the main factor,

which makes it more realistic than the other existing, exten-
sively used fuzzy time series-based forecasting algorithms.
Finally, the proposed algorithm has been compared with the
ANN (Aladag et al. 2008) approach and two statistical meth-
ods, viz., VAR(1) (multivariate time series model), MA(3)
(univariate time series model) to establish its better predic-
tive accuracy. The corresponding VAR(1) model is given as
follows:
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Fig. 4 The pictorial representation of the original and the predicted values (approx.) of the oil agglomeration data set

⎛
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1.94318 −4.72287 −2.83968 −0.36636 −2.60480 −0.03826
0.004213 0.016857 0.0467286 0.0041039 0.0004224 −0.0002691
0.210601 −1.749276 0.014056 −0.033934 −0.197276 −0.003480
1.99407 −2.80078 −5.28686 0.14733 −1.95601 −0.03234
0.81219 −1.03003 −1.06770 −0.19284 −.77454 −0.01384
173.799 −220.979 −226.111 24.399 −205.855 −2.551

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

Yt−1

X1t−1

X2t−1

X3t−1

X4t−1

X5t−1

⎞

⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎝

97.17546
3.7110951
7.627039
51.93884
23.98482
825.107

⎞

⎟⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎜⎝

0.27969
−0.0210704
0.038676
0.80671
0.21784
47.180

⎞

⎟⎟⎟⎟⎟⎟⎠
,

where (97.17546 3.7110951 7.627039 51.93884 23.98482
825.107)T and (0.27969 − 0.0210704 0.038676 0.80671
0.21784 47.180)T are the constant and the trend components
of the proposedVAR(1)model. Similarly, theMA(3) is given
as follows:

MA(3) : Xt = Zt − 0.5711Zt−1 − 0.5727Zt−2

+ 0.9981Zt−3,

where {Xt } is the series of the experimental yield (%) and
{Zt } is the corresponding white noise. The white noise vari-
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ance corresponding to {Xt } can be calculated as 2.964867
whereas, the standard errors of theMAcoefficients are calcu-
lated as 0.01408, 0.010068 and 0.01408. The corresponding
AICC and BIC (Lutkepohl 2005) of the MA(3) model can
be calculated as 91.686132 and 84.536399, respectively.

Additionally, theχ2
computed = 1.688 < χ2

tabulated = 7.05 at
99%confidence level shows that the proposedmethod is fully
validated in case of the present example. Figure 4 presents
the pictorial representations of the original and the predicted
values of different elements of the oil agglomeration data set,
using different algorithms used in the present study and also
shows that the predictive accuracy of the proposed algorithm
is better than all of its competitors.

4.3 An example regarding finance data forecasting

In this sub section, the proposed algorithm is applied on a real
financial data set, collected from theMinistry of Statistics and
Program Implementation,Govt. of India (http://mospi.nic.in/
Mospi_New/upload/asi/mospi_asi_rate_list.pdf), to show its
efficiency, accuracy and applicability on financial data fore-
casting. The frequency of the data set is only 18, which is
quite small for modelling as well as prediction. With this in
mind, in this case the entire data set has been used for mod-
eling as well as prediction purpose. The detailed description
of the data set is given in the aforementioned web site. Here,
the no. of records (year-wise) is considered to be the main
factor, however, number of schedules, users in India and the
users outside India are considered as the 1st, 2nd and 3rd
secondary factors, respectively. For simplicity of calculation,
the author has considered only three clusters for the k-means
and the c-means clustering algorithms. Different clusters of
themain and the secondary factors generated by the k-means,
automatic clustering and the c-means clustering are tabulated
and are shown in Table 10.

From Table 11 it can be found that in case of the finance
data set the forecasted output by the Chen and Tanuwijaya
method improves if its clustering technique (automatic clus-
tering) is replaced by hard c-means and k-means clustering
algorithm. Consequently, Table 11 shows that the RMSE of
the Chen and Tanuwijaya method improves up to 8 times
(approximately) in case of the k-means clustering algorithm,
however, in case of the c-means clustering algorithm that
is improved up to 3 times (approximately). The above dis-
cussion clearly evinces the influences of the selection of
the suitable clustering algorithm on the forecasted output
and corroborates well with the findings of Huarng and Yu
(2006). Further, to check the quality of the clusters gener-
ated by the automatic clustering algorithm (2011), k-means
clustering algorithm and the c-means clustering algorithm,
shown in Table 10, the DVI indices are calculated which
clearly shows that the k-means algorithm (among the afore-
mentioned three) is the most suitable clustering technique

for the finance data set (given in http://mospi.nic.in/Mospi_
New/upload/asi/mospi_asi_rate_list.pdf). Hence, the above
study strongly establishes that the poor selection of cluster-
ing strategy may hamper the forecasted outputs of the fuzzy
time series based prediction algorithms. For example, from
Table 11, it is clearly seen that the forecasted outcomes of
the algorithm proposed by Chen and Tanuwijaya (2011) are
improved if the automatic clustering algorithm is replaced
by c-means and k-means clustering algorithms. To overcome
this drawback, the proposed algorithmprovides theflexibility
to choose suitable clustering technique and in turn the RMSE
decreases. In this case, the proposed algorithm employs the
k-means clustering algorithm for the clustering purpose due
to its suitability of the data set.

The existing extensively used fuzzy time series-based
forecasting algorithms do not incorporate the influences of
the secondary factors at the time of defuzzification of the
main factor, which is, however, removed by the proposed
algorithm. Consequently, Table 11 shows the superiority of
the proposed algorithm in terms of RMSE over the algo-
rithm proposed by Chen and Tanuwijaya (2011) (using the
automatic clustering method, k-means and c-means), MA(3)
and the VAR(1) models. The corresponding MA(1) model is
given as follows:

x(t) = z(t) + 0.2996 z(t − 1).

Additionally, the χ2
computed = 24.98 < χ2

tabulated = 25.989 at
90%confidence level shows that the proposedmethod is fully
validated in case of the present example. The proposed algo-
rithm has been compared with the algorithms proposed by
Chen and Tanuwijaya (2011) (using automatic, c-means and
k-means clustering algorithms), MA(1), Holt-Winter, Box-
Jenkins, (Bulut et al. 2012; Bulut 2014; Duru 2010, 2012;
Chatterjee and Roy 2014a, b) and the corresponding results
are given in Table 11. The pictorial representation of the
above results is shown in Fig. 5. Figure 5 shows the better
predictive accuracy of the proposed algorithm.

4.4 Comparison with the ‘traditional four step’ algorithm

The membership values of the ‘traditional four step’ algo-
rithms (Aladag et al. 2008; Bulut et al. 2012; Bulut 2014;
Chen et al. 2013; Chen and Tanuwijaya 2011; Chen 1996;
Duru 2010, 2012; Duru and Bulut 2014; Dunn 1973; Huarng
2001a, b; Huarng and Yu 2005, 2006; Mamdani 1977; Ross
2010; Song and Chissom 1993a, b, 1994; Tanaka 1996;
Tseng et al. 2001; Zadeh 1975) can only be 0, 0.5 and 1.
On the other hand, the membership values in case of the
proposed algorithm can be more real numbers lying in the
interval [0,1] apart from 0, 0.5 and 1. It is to be remembered
that most of the existing ‘traditional four step’ algorithms
can only be used in case of static length intervals. Quite on
the contrary, the developed algorithm is itself capable to take
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Table 10 Different clusters of the finance data generated by the aforementioned clustering algorithms

Clusters generated by the k- means clustering algorithm [financial data]

Clusters of the main factor

a1 {543115, 1544154, 1599949}

a2 {1526444, 1634492}

a3

{
161391, 1047407, 1093914, 1408012, 1674753, 1700939, 1733773, 1742098,

1759856, 1810409, 1981445, 1992578

}

Clusters of the 1st secondary factor

b1,1 {28723, 41846, 42242, 49340, 54348, 56557, 56888}

b1,2 {(25332, 33515, 40059, 41096, 56889, 57304, 57771, 58617, 59825)}

b1,3 {57926}

Clusters of the 2nd secondary factor

b2,1 {30159, 43939, 44354, 51807, 57065, 59385, 59732}

b2,2 {(26599, 35191, 42062, 43151, 59733, 60169, 60660, 61548, 62817)}

b2,3 {60823}

Clusters of the 3rd secondary factor

b3,1 {177890, 259304, 261718, 305685, 336757, 350436, 352458}

b3,2 {156969, 207600, 248204, 254600, 352458, 355037,358008, 363166, 370635}

b3,3 {358854}

Clusters by the Chen and Tanuwijaya algorithm

a1

{
161391, 543115, 1047407, 1093914, 1408012, 152444, 1544154, 1599949, 1634492,

1674753, 1700939, 1733773, 1742098, 1759856, 1810409, 1981445, 1992578, 2081116

}

b1,1

{
25332, 28723, 33515, 40059, 41096, 41846, 42242, 49340, 54348, 56557, 56888, 56889,

57304, 57771, 57926, 58617, 59825, 66875

}

b2,1

{
26599, 30159, 35191, 42062, 43151, 43939, 44354, 51807, 57065, 59385, 59732, 59733,

60169, 60660, 60823, 61548, 62817, 70219

}

b3,1

{
156969, 177890, 207600, 248204, 254600, 259304, 261718, 305685, 336757, 350436, 352458,

352458, 355037, 358008, 358854, 363166, 370635, 414313

}
,

Clusters of the main factor generated by the c-means clustering algorithm

a1 {1733773, 1093914}

a2 {1599949, 543115, 1047407}

a3

{
161391, 1408012, 152444, 1544154, 1634492,

1674753, 1700939, 1742098, 1759856, 1810409, 1981445, 1992578, 2081116

}

care of both static and variable-sized overlapping as well as
non-overlapping intervals. The effects of the previous and the
very next elements of a particular point can only be consid-
ered in case of almost all the existing ‘traditional four step’
algorithms. In case of the developed algorithm, the effects
of all the elements, present in the data set can be consid-
ered for predicting a particular element. This feature makes
the developed algorithm more flexible and also superior to
the ‘traditional four step’ algorithms. Apart from this, the
developed algorithm can take care of both stationary as well
as non-stationary data sets, which cannot be found in case
of other ‘traditional four step’ algorithms. Consequently, the
predictive accuracy of the proposed algorithm increases.

From the foregoing analysis and discussion of the algo-
rithm implementation test results, it is safely concluded that
the developed algorithm is not only accurate but is also supe-
rior to the other existing algorithms.

4.5 Comparison with some other well-known, recently
developed fuzzy time series-based algorithm

This sub section presents a comparative study of the proposed
algorithm with some well-known recently developed fuzzy
time series-based forecasting algorithms as follows:

There is a huge number of recently developed well-known
fuzzy time series-based forecasting algorithms available in
literature (Bulut 2014; Bulut et al. 2012; Duru 2010, 2012;
Chatterjee andRoy2014a, b). TheworkofDuru (2010) is suf-
fered from the equi-spaced and fixed sized intervals. More-
over, for partitioning purpose Duru (2010) has developed
his own clustering strategy that may not be able to gener-
ate best quality clusters from different types of data sets.
Hence, the predictive accuracy of the algorithm has been
affected as the lengths of the intervals have an influence on
the predicted accuracy of the proposed algorithm (Huarng
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Table 11 Original and different predicted outcomes (approx.) of the finance data along with their RMSE, RMdSE and MdRAE

Original Proposedwith
k-means

Chen and Tanuwijaya MA(1) Holt–Winter
algorithm

Box–Jenkins

Automatic
clustering

k-means c-means

1700939 1701989 5166866.6 1076984.5 1121253.5 – 5112546.6 5119901

1599949 1599147 5095792.1 1386235.5 1411096.25 – 5054112.1 5054989

1408012 1408182 4999823.6 1338466.75 1335740.5 – 4912473.6 4912998

1634492 1632792 5113063.6 1494365 1264632.75 1956700 5115433.6 5115970

1674753 1674853 5133193.1 1607650 1377872.75 1989700 5170113.1 5170978

1733773 1733879 5362704.1 1375868.75 1398003.25 2104400 5311014.1 5311981

543115 543189 4567375.1 1402652.5 1573808.25 2104400 4510015.1 4510976

1047407 1047079 4819521.1 810049.75 8073235 2104400 4816091.1 4816991

1093914 1093956 4827774.6 1062195.75 1059469.5 2104400 4812094.6 4812959

161391 171452 4376513.1 1085449.25 1253878.75 2104400 4317223.1 4317991

1526444 1526474 5059039.6 616461.5 641322.25 2104400 5011409.6 5011989

1544154 1544284 5166866.6 1298988 1323848.75 2104400 5111046.6 5111946

2081116 2081617 5336375.6 1867008 1332703.75 2104400 5323115.6 5323999

1810409 1810439 5201022.1 1579050.25 1601184.75 2104400 5200022.1 5200899

1981445 1988444 5286540.1 1443696.75 1465831.25 2704400 5212000.1 5212999

1992578 1992558 5292106.5 1529214.75 1551349.25 2804400 5212026.5 5212926

1759856 1759835 5175745.6 1534781.25 1556915.75 2504400 5130265.6 5130999

1742098 1742088 5166866.6 1418420.25 1440554.75 2504400 5110676.6 5110986

RMSE 633.4374 3569949.56 464814.43 1737853.6 950450.7 1664420.18 1664958.96

RMdSE 603.49 3569949.56 464814.43 1737853.6 950450.7 1664420.18 1664958.96

MdRAE 599.79 3569949.56 464814.43 1737853.6 950450.7 1664420.18 1664958.96

Dickey–Fuller test for stationarity checking

Series p value Result

Original 0.01 <0.05 Stationary

1st secondary factor 0.01 <0.05 Stationary

2nd secondary factor 0.01 <0.05 Stationary

2001a). Consequently, the proposed algorithmbecomes data-
dependent. Again, at the time of forecasting the main fac-
tors, the contributions of the secondary factors are not con-
sidered. Moreover, the membership values are only 0, 0.5
and 1. Again, this algorithm is not able to judge the sta-
tionarity of the data set, i.e., if the data set is non-stationary
then also the prediction mechanism remains the same, which
can be considered as a major drawback. Latter, Duru (2012)
developed a fuzzy integrated logical forecasting model for
dry bulk shipping index forecasting, in which, again the
membership values have been taken only 0, 0.5 and 1.
Moreover, the sizes of the intervals have been considered
as fixed and the stationarity of the data set has not been
checked.

In their extensive study, Bulut et al. (2012) have developed
a fuzzy integrated logical forecasting (FILF) model of time
charter rates in dry bulk shipping, which is mainly a vec-

tor autoregressive design of fuzzy time series with fuzzy c-
means clustering algorithm. But this approach is again data-
dependent as the fuzzy c-means clustering algorithmmay not
be able to partition all the data sets into best quality clusters.
It can be verified with the help of corresponding DVI values
(Dunn 1973). Again, in the latter year, Bulut (2014) hasmod-
ified his previous approach bymodeling seasonality using the
fuzzy integrated logical forecasting (FILF) approach, which
is, however, not free from all the aforementioned drawbacks.

In some recent studies, Chatterjee and Roy (2014a, b)
have developed two novel fuzzy time series-based forecast-
ing algorithms, which are, however, not free from certain
important drawbacks in the modeling techniques. The first
major drawback in the modeling technique of these algo-
rithms is the inability to judge whether the data set is sta-
tionary or non-stationary. The non-stationary behaviors can
be trends, cycles, random walks or combinations of the
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Fig. 5 The pictorial representation of the original and the predicted values (approx.) of the finance data set

three. Non-stationary data, as a rule, are unpredictable and
cannot be modeled or forecasted (Lutkepohl 2005). The
results obtained using non-stationary time series may be
spurious in that they may indicate a relationship between
two variables where one does not exist (Lutkepohl 2005).
As a consequence, the predictive accuracy of the algorithms
(Chatterjee and Roy 2014a, b) reduces. Another major draw-
back in the aforementioned algorithms is that in both the
cases the authors (Chatterjee and Roy 2014a, b) have devel-
oped their own clustering algorithms, which may not be able
to generate best quality clusters for all types data sets (clearly
shown in Table 1) and, as a consequence, the predictive
accuracy of the forecasting algorithms decreases (Huarng
2001a, b). Moreover, developing own clustering algorithms,
in turn, makes the corresponding fuzzy time series-based
forecasting algorithms data-dependent, as all the clustering
algorithms are not suitable for all type of data sets. This is
because of the fact that all the clustering algorithms are not
able to generate best quality clusters of all the data sets. With
this in mind, in the present paper, at first the suitable clus-

tering algorithm for the data set has been chosen and then
the proposed forecasting algorithm has been applied. Again,
the algorithm proposed by Chatterjee and Roy (2014b) does
not incorporate the influences of the secondary factors on
the main factor at the time of defuzzification, which can be
considered as a severe drawback in the modeling technique.
However, this drawback has been removed in the proposed
algorithm.

Additionally, the algorithms proposed by Chatterjee and
Roy (2014a, b) have presented both sample and post-sample
period results to investigate both estimation accuracy and
forecasting accuracy, respectively. However, any developed
forecasting methodmust confirm that the post-sample period
is not used for clustering the data set. If the aforemen-
tioned algorithms (Bulut 2014; Bulut et al. 2012; Duru 2010,
2012; Chatterjee and Roy 2014a, b) are suitable for fore-
casting the unknown future, clusters should not be esti-
mated by using test period since it has been assumed that
they are unknown future values and, as a consequence,
they may not contribute to the business practice. The pro-
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Table 12 The occurrences of different frequently occurred error codes from 30/9/2010 to 22/10/2011 along with their positions in the respective
clusters generated by the k-means clustering algorithm

Original main
factor (404)

Proposed
algorithm

Bulut et al.
(2012)

Bulut
(2014)

Duru
(2010)

Duru
(2012)

Chatterjee and
Roy (2014a)

Chatterjee and
Roy (2014b)

3871 3811 3641 3411 3566 3761 3809 3870

3636 3633 3833 3333 3603 3679 3605 3633

2391 2381 2781 2581 2481 2472 2376 2388

3842 3802 3902 3412 3702 3702 3891 3802

3203 3100 3500 3810 3090 3301 3057 3110

3215 3269 3769 3969 3119 3379 3196 3299

3047 3046 3546 3516 3166 3157 3086 3146

4845 4845 4045 4125 4735 4605 4845 4815

2697 2680 2780 2230 2645 2790 2656 2681

2801 2942 2042 2372 2763 2999 2700 2742

2993 2889 2989 2478 2889 2899 2592 2899

2535 2687 2987 2377 2488 2797 2434 2587

4252 4100 4900 4380 4300 4144 4351 4260

3269 3295 3795 3375 3275 3495 3168 3185

2994 2959 2459 2429 2909 2987 2893 2890

2919 2924 2324 2524 2933 2804 2818 2874

2887 2972 2472 2632 2872 2992 2786 2982

2910 2981 2781 2351 2902 2781 2908 2901

2986 3054 3754 3374 3154 3154 2885 3004

3315 3277 3877 3497 3233 3707 3414 3217

3433 3533 3933 3503 3733 3603 3454 3324

2644 2943 2243 2653 2343 2987 2643 2954

3860 3810 3110 3530 3710 3610 3892 3771

… … … … … … … …

RMSE 32.91 103.79 111.57 107.91 95.99 79.91 78.39

RMdSE 29.92 105.78 112.78 109.78 98.97 79.995 79.12

MdRAE 27.79 101.75 109.77 107.44 95.37 75.46 78.19

The corresponding RMSE, RMdSE and MdRAE values are also given in this Table

posed forecasting method can remove the above-mentioned
drawbacks, making it a very powerful tool for forecasting.
Apart from this, the proposed algorithm has better predic-
tive accuracy than the aforementioned all the fuzzy time
series-based forecasting algorithms. It can be easily found
from Table 12, 13 and 14 as in each case the proposed
algorithm has the least RMSE, RMdSE and MdRAE val-
ues (Hyndman 2006). From the above study, it is quite clear
that the proposed algorithm is not only capable of remov-
ing all the drawbacks of the existing fuzzy time series-based
forecasting algorithms, but also, can correctly incorporate
the influences of different secondary factors on the main
factor. As a result, the predictive accuracy of the proposed
algorithm increases and the modeling becomes more realis-
tic.

From Tables 12, 13 and 14 it can be found that the predic-
tive accuracy of the proposed algorithm is highest and that

of the algorithm developed by Chatterjee and Roy (2014a)
remains in the second position for all the data sets used in
the present study.

Apart from this, some more differences (regarding the
modeling technique) between the proposed algorithm and
the algorithms proposed by Chatterjee and Roy (2014a, b)
have been given as follows:

(i) The function defined in the prediction Rule 1 [Eq.
(10)] of the proposed algorithm is more realistic than that
of Chatterjee and Roy (2014a, b). This is because of the fact
that, in the former case the absolute distance between the
two points (main, secondary factors) has been considered.
Accordingly, the rules of predictions have been modified for
themain as well as the secondary factors. However, in the lat-
ter cases the number of points which have distances greater
than sum_deviation is considered. Consequently, the predic-
tive accuracy of the proposedmodel increases.Moreover, the
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Table 13 The original and the predicted values (approx.) of the oil agglomeration data set using the proposed and different fuzzy time series based
approaches

Main factor Proposed
algorithm

Bulut et al.
(2012)

Bulut
(2014)

Duru
(2010)

Duru
(2012)

Chatterjee and
Roy (2014a)

Chatterjee and
Roy (2014b)

58.2300 57.37 46.57 47.41 35.35 42.97 57.23 56.93

63.1500 65.26 57.77 47.18 38.18 49.07 62.28 56.18

65.0000 64.98 55.376 45.68 33.9 43.65 64.72 59.82

65.2500 65.38 57.428 47 34.87 43.95 60.71 59.75

59.2900 57.37 54.47 37.13 34.99 42.17 60.71 59.71

62.5500 63.13 51.16 41.33 38.81 43.13 59.14 59.14

63.0000 64.16 50.139 43.21 33.16 41.97 59.14 59.14

65.0000 64.98 55.376 45.68 33.88 43.65 64.72 59.72

65.0000 64.98 55.376 45.68 33.88 43.65 64.72 59.72

59.5000 58.17 50.96 3790 34.78 42.27 57.23 57.23

63.0000 64.75 50.139 43.21 38.19 49.61 59.14 59.14

63.2400 64.16 53.639 43.15 33.18 42.97 59.74 59.74

63.5600 64.71 53.938 41.16 33.19 43.17 59.99 59.99

57.3600 64.82 48.54 43.68 34.19 39.41 61.73 59.73

63.2400 64.75 53.639 43.15 33.18 41.17 59.74 59.74

66.7300 64.75 51.28 43.61 32.19 44.99 58.18 58.18

55.2400 64.82 42.45 39.11 33.19 48.75 50.19 50.19

63.2400 64.75 53.639 43.15 33.18 41.17 62.28 59.28

64.2900 65.00 51.39 43.16 30.12 40.61 60.19 59.19

… … … … … … … …

RMSE 2.3804 18.317 24.446 36.789 32.773 6.096 7.907

RMdSE 2.134 18.019 24.047 36.508 32.239 6.071 7.018

MdRAE 2.204 19.398 25.576 37.758 33.870 7.092 8.512

The corresponding RMdSE and MdRAE values are also given in this Table

algorithm developed by Chatterjee and Roy (2014b) is not
able to consider the influences of different secondary factors
at the time of defuzzification of the main factor.

(ii) In case of the algorithm proposed by Chatterjee and
Roy (2014a) the accuracy_factor has to be chosen only
based on the expert judgment as no hard and fast rule
has been given by them. Hence, if the accuracy_factor ∈
(0,
∣∣∣mean_distance

2

∣∣∣] ⊂ R is perfectly chosen, the predictive

accuracy increases, otherwise, it will decrease. But, every
time it is not possible to choose correct accuracy_factor and,
as a consequence, the result deteriorates. Keeping this in
mind, in the present paper, the author has removed this con-
cept. For example, the mean_distance (Chatterjee and Roy
2014a) of the web error data set, given in Table 2 is 792.
Hence, by Chatterjee and Roy (2014a)

0 < accuracy_factor ≤
∣∣∣∣
mean_distance

2

∣∣∣∣ ;

i.e.,0 < accuracy_factor ≤
∣∣∣∣
792

2

∣∣∣∣ ;
i.e., 0 < accuracy_factor ≤ 396.

Hence, accuracy_factor∈ (0, 396] ⊂ R, i.e.,accuracy_factor
can be any real number among the infinitely many real num-
bers lying between 0 and 396, which is, however, one of
the most difficult tasks. Hence, accuracy_factor choosing is
the biggest challenge in case of the algorithm proposed by
Chatterjee and Roy (2014a). Keeping this in mind, this con-
cept has been removed from the present forecasting algo-
rithm.

(iii) In the modern fast and competitive world every algo-
rithm needs both accuracy and lesser computational com-
plexity simultaneously, i.e., faster execution. This is because
of the fact that modern people or different industries will
choose the algorithm having better accuracy and lesser exe-
cution time. Hence, the proposed algorithm has also been
compared in the ground of computational complexity (Knuth
1973) with the algorithms proposed by Chatterjee and Roy
(2014a, b).

The computational complexity of the algorithm pro-
posed by Chatterjee and Roy (2014a) can be calculated as
(C ∗ θ(s) + D ∗ M(s));C, D ∈ Z

+, except the calculation
of the accuracy_factor. If it is calculated, the complexity
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Table 14 The original and the predicted values (approx.) of the finance data set using the proposed and different fuzzy time series-based approaches

Main factor Proposed
algorithm
k-means

Bulut et al.
(2012)

Bulut
(2014)

Duru
(2010)

Duru
(2012)

Chatterjee and
Roy (2014a)

Chatterjee and
Roy (2014b)

1700939 1701989 2186867 1176183 1326253 1966510 1914746 1969746

1599949 1599147 2095792 1376132 1461716 1906760 1954492 1973432

1408012 1408182 2999823 1338466 1636760 1759801 1814951 1818360

1634492 1632792 2113063 1494365 1261632 1852750 1915451 1914521

1674753 1674853 2133193 1607650 1367672 1882614 1945153 1937073

1733773 1733879 2362704 1375868 1396063 2102360 1914854 1914260

543115 543189 459375 1402652 573807 894400 548195 519595

1047407 1047079 2819521 1510949 1073735 1604260 1614891 1642691

1093914 1093956 2827774 1062495 1059779 1604940 1614394 1677794

161391 171452 157713 185049 127878 904941 1015023 1018443

1526444 1526474 1759039 1616361 1691922 2104380 1915109 1914389

1544154 1544284 1769866 1218688 1329130 2159800 1915346 1934646

2081116 2081617 2460375 1857018 1785713 2598400 2925215 2959815

1810409 1810439 2291012 1571050 1635174 2304598 2505212 2585712

1981445 1988444 2206540 1440696 1675130 2759800 2915200 2998200

1992578 1992558 2202196 1519214 1697589 2875900 2912026 2975926

1759856 1759835 2170149 1544781 1668705 2759400 1935495 1947895

1742098 1742088 2101876 1498420 2269051 2840400 1913954 1998454

RMSE 633.4374 167644.694 76779.51 56182.21 130383.071 114856.09 122087.14

RMdSE 603.49 160894.7 76081.6 56018.3 130314.1 114109.1 121014.1

MdRAE 599.79 160801.7 76076.6 56010.3 130301.1 114001.1 121007.1

The corresponding RMdSE and MdRAE values are also given in this table

increases heavily. This is because of the fact that every
time an accuracy_factor has to be selected from the set

(0,
∣∣∣mean_distance

2

∣∣∣] (having infinite number of elements, as

open set has infinite elements) and the same value has been
used for prediction. Continuing this process infinite number
of accuracy_factors can be found along with infinite num-
ber of predicted values. The accuracy_factor correspond-
ing to the best predicted data (having least RMSE, RMdSE
and MdRAE) can be selected as the accuracy_factor. It
may involve infinite number of comparisons. Hence, the
above procedure increases the complexity of the algorithm
greatly. Quite on the contrary, the computational complex-
ity of the proposed algorithm (if k-means clustering algo-
rithm has been adopted) is found to be best in partition-
ing the experimental data set. For this purpose, the DVI
values (Dunn 1973) of the generated clusters can be com-
pared) is at most (O(nkdi) + D ∗ M(s)); n, k, d, i, D ∈
Z

+, where M(s) can be considered as the complexity
of the chosen multiplication algorithm, when the inputs
are two s-digit numbers. Again, n is the number of d-
dimensional vectors, k the number of clusters and i the num-
ber of iterations needed until convergence (Knuth 1973).
This will change if a new clustering algorithm has been
adopted. But, still the complexity is less than the algo-

rithm proposed by Chatterjee and Roy (2014a) as no
clustering algorithm involves infinite number of compar-
isons.

On the other hand, the computational complexity of
the algorithm proposed by Chatterjee and Roy (2014b) is
(C ∗ M(s) ∗ M(s) ∗ θ(s) + D ∗ M(s));C, D ∈ Z

+, which
is greater than the proposed algorithm. This increment is
because of the adopted clustering algorithm implementing
the concept of Mahalanobis distance (Chatterjee and Roy
2014b). Hence, the computational complexity of the pro-
posed algorithm is less than the algorithm proposed by Chat-
terjee and Roy (2014b). However, the complexity of the
algorithms proposed by Chatterjee and Roy (2014a, b) is
less than the algorithm proposed by Chen and Tanuwijaya
(2011).

(iv) The proposed algorithm is easier to implement than
the algorithms proposed by Chatterjee and Roy (2014a, b).

4.6 Analysis of the residuals

This subsection showcases the analysis of the residuals of
the proposed multivariate fuzzy forecasting algorithm. The
residual of an observed value is the difference between the
observed value and the estimated function value. The main
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Fig. 6 The rescaled residuals of the web error data set
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Fig. 7 The rescaled residuals of the oil agglomeration data set

motive of this analysis is to confirm that the remaining resid-
uals do not follow any specific pattern and as a result they can
be considered as the white noise (Lutkepohl 2005). Figure 6
confirms that the remaining residuals of theweb error data set
for the proposed algorithm do not include any pattern and, as
a consequence, they can be considered as white noise. Sim-
ilarly, Fig. 7 confirms that the remaining residuals of the oil
agglomeration data set (given in Table 13) do not follow any
pattern and hence, it can be considered as the white noise.
In a similar manner, from Fig. 8, it can be found that the
residuals of the finance data set for the proposed clustering
algorithm can also be considered as the white noise as they
do not follows any pattern.

5 Conclusion

The present paper demonstrates a novel multivariate fuzzy
time series-based forecasting algorithm that is able to remove
the drawbacks of the previously developed fuzzy time series-

-3.

-2.

-1.

0.

1.

2.

0 10 20 30 40 50 60

Rescaled Residuals

Fig. 8 The rescaled residuals of the finance data set

based techniques. Initially, the proposed algorithm can check
the stationarity of the data set. If the data set is stationary, the
proposed algorithm continues its different steps. Otherwise,
it removes the non-stationarity of the data set and continues
with the different steps of the proposed forecasting algorithm.
Again, this novel algorithm can generate variable-sized clus-
ters or intervals by applying a suitable clustering algorithm,
assign more real numbers lying between 0 and 1 as the mem-
bership values of different elements, incorporate the effects
of different secondary factors in the defuzzification process,
which are, however, considered as the important findings
arising out of this work. Moreover, the developed algorithm
shows better predictive accuracy. For testing purpose, the
developed algorithm was applied on three different domains,
viz., oil agglomeration process for the beneficiation of the
coal fines (coal washing technique), the frequently occurred
web error prediction (a burning topic related to web tech-
nology) and financial data forecasting which manifests its
applicability over broad domains like, the coal industries,
web technology as well as finance. The real dataset related
to the oil agglomeration for the beneficiation of coal fineswas
collected fromCIMFER, Dhanbad, India (aCSIRLab, run by
theGovt. of India), and that regarding the frequently occurred
web error codes of www.ismdhanbad.ac.in, the official web-
site of ISM Dhanbad, was collected from the Indian School
ofMinesDhanbad, India server. However, the remaining data
setwas collected from theMinistry of Statistical andProgram
Implementation, Govt. of India. The proposed forecasting
method was compared with thirteen different conventional
(univariate and multivariate), e.g., VAR, MA, Holt–Winter,
Box–Jenkins (Lutkepohl 2005), and fuzzy time series-based
forecasting algorithms, viz., Bulut et al. (2012), Bulut (2014),
Duru (2010, 2012), Chatterjee and Roy (2014a, b), Chen and
Tanuwijaya (2011) (replacing its clustering algorithmwith c-
means and k-means techniques, respectively). Moreover, the
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accuracy of the proposed algorithm has also been compared
with the ANN approach (Aladag et al. 2008). But in every
case, the proposed algorithm proves its efficiency and better
predictive accuracy. Hence, from the above study it is quite
clear that the proposed algorithm can be applicable over a
large domain more accurately for forecasting purpose.
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