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Abstract This paper presents a novel framework for
dynamic textures (DTs) modeling and recognition, inves-
tigating the use of chaotic features. We propose to extract
chaotic features from each pixel intensity series in a video.
The chaotic features in each pixel intensity series are con-
catenated to a feature vector, chaotic feature vector. Then,
a video is modeled as a feature vector matrix. Next, two
approaches of DTs recognition are investigated. A bag of
words approach is used to represent each video as a histogram
of chaotic feature vector. The recognition is carried out by
1-nearest neighbor classifier. We also investigate the use of
earth mover’s distance (EMD)method.Mean shift clustering
algorithm is employed to cluster each feature vector matrix.
EMD method is used to compare the similarity between two
videos. The output of EMDmatrix whose entry is the match-
ing score can be used to DTs recognition. We have tested our
approach on four datasets and obtained encouraging results
which demonstrate the feasibility and validity of our pro-
posed methods.

Keywords Chaotic features ·Bag of words (BoWs) · Earth
mover’s distance (EMD) · Dynamic textures recognition
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1 Introduction

Dynamic textures (DTs) are video sequences of moving
scenes that exhibit certain stationary properties in time
domain (Doretto et al. 2003) which can be observed every-
where in our daily life, such as dancing grass, turbulentwater,
a crowd of people and so on. The applications of DTs are
widely spread in many research fields, to name a few, layer
segmentation, texture synthesis for realistic rendering and
texture segmentation for localizing textures. Therefore,many
methods are proposed to model DTs (Doretto et al. 2003;
Chan and Vasconcelos 2005a, b, 2007; Ravichandran et al.
2012; Peteri and Chetverikov 2005; Chetverikov and Pteri
2005; Fazekas and Chetverikov 2005; Szummer and Picard
1996; Bar-Joseph et al. 2001; Fitzgibbon 2001; Wang and
Zhu 2003; Sivic and Zisserman 2003; Laptev and Linde-
berg 2003). Recently, many work advocates the use of linear
dynamical systems (LDSs) or a variety of LDSs for DTs
recognition. While DTs are generated by a complex time
varying dynamical system, the LDSs model is constrained
to linear assumption which makes it restrictive for modeling
DTs in reality. Take boiling water for example, it presents a
chaotic characteristic and these dynamical systems are diffi-
cult to be described by linear system.

Motivated by these challenges, we propose a chaotic fea-
ture vector for DTs recognition. Unlike the traditional meth-
ods for static textures which only pay attention to the spatial
relation between pixels, the temporal property of the pixel
intensity series is an important clue for DTs modeling. In
DTs, each pixel intensity series can be treated as a chaotic
time series.

Figure 1 illustrates DTs of boiling water from dataset
(Doretto et al. 2003). The central part of the figure shows
one frame from the video of boiling water. It also shows four
pixel intensity series. The x-axis is frame number and the y-
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Fig. 1 Pixels intensity in a video changed over time

axis is the gray value. From Fig. 1, people cannot figure out
the size of the boiling water is 102 cm large or 102 m, with-
out something or some tool next to it. This is usually called
self-similarity. That is, the object has the same structure at
all scales. The natural scenes such as coastline possess the
common characteristics of self-similarity. Fractal dimension
is developed to measure the self-similarity property. Many
physical processes produce self-similarity property and nat-
ural scene can be modeled by fractal dimension (Pentland
1984). Natural textures have a linear log power spectrum
which is related to the fractal dimension and is suitable to
characterize textures (Field 1987). Since the stationary prop-
erty of DTs, we conjecture that self-similarity exists in each
pixel intensity series.

Suppose there is a collection of V = v1, . . . , vN , v ∈
RW∗L∗T video sequences, where W , L , T , and N are

width, length, frame number and total number of the
sequence, respectively. A one-dimensional pixel intensity
series {xi, j (t)}Tt=1 = vq(i, j, :), where i and j are horizontal
and vertical coordinate of xi, j (t) in video, respectively. Each
pixel intensity series xi, j can be represented by a chaotic fea-
ture vector. ADTvideo can be represented by a feature vector
matrix. Then, we use two methods for DTs recognition.

For the first method, we follow the well-known bag of
words (BoWs) approach which has been adopted by many
computer vision researchers (Chen and Prasanna 2013; Fei-
Fei and Perona 2005; Lazebnik et al. 2006). A codebook
is learned by clustering all the feature vector matrix. Dur-
ing clustering, each chaotic feature vector is assigned to the
codeword that is closest to it in terms of Euclidean distance.
These representative chaotic feature vectors are called code-
words in the context of BoWs approach. After the generation
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of the codebook, each feature vector matrix is represented by
a histogram based on chaotic feature vectors.

However, the codebook size will affect the result of recog-
nition accuracy rate. The reason is that quantize chaotic fea-
ture vector space into fixed-size bins of histogram will lose
the structure information. To obtain a more compact and
descriptive representation of the distribution of chaotic fea-
ture vectors in a video, we perform clustering on each feature
vector matrix first. Signatures which summarize the distribu-
tion of chaotic feature vectors in each feature vector matrixes
provide a measure of similarity between two videos. Then,
earth mover’s distance (EMD) (Rubner et al. 1998) method
is employed to compare similarity between feature vector
matrixes.

The contribution of our paper lies in: (1) investigation
of the appropriateness of chaotic dynamical system for DTs
modeling and recognition, (2) a new chaotic feature vector
is proposed to characterize nonlinear dynamics of DTs, (3)
experimental validation of the feasibility and potential merits
of carrying out DTs using methods from chaotic dynamical
system.

The rest of the paper is organized as follows: Sect. 2 dis-
cusses related work. The video representation we explore
is presented in Sect. 3. Section 4 describes our approach in
detail, including the chaotic features, a brief overview of the
BoWs approach, EMD method approach, and the specifics
of learning and recognition procedures. Recognition results
are provided and discussed in Sect. 5. Section 6 concludes
the paper.

2 Related works

In this section, we review previous work on DTs recognition.
DTs recognition has been studied for decades. The exist-
ing methods that model DTs can be categorized into three
approaches: (1) Physics based approach that derives a model
of the DTs. The model is simulated to synthesize the surface
of the ocean (Fournier and Reeves 1986). The main disad-
vantage of this method is that the model is closely tied to
specific physical process and thus difficult to generalize to a
large class of DTs.

(2) Image-based approach based on frame-to-frame esti-
mation to extract motion field features. Various motion fea-
tures are proposed, normal flow (Peteri and Chetverikov
2005) and optical flow features (Chetverikov and Pteri 2005;
Fazekas and Chetverikov 2005) which are computation effi-
cient and natural way to depict the local DTs. Themain draw-
back of this approach is that the flow features (e.g., optical
flow) are computed based on the assumption of local smooth-
ness and brightness constancy. The non-smoothness, discon-
tinuities DTs are difficult to process.

(3) Statistical generative models to jointly capture the
spatial appearance and statistical models have been exten-
sively studied. They include auto-regressive models (Szum-
mer and Picard 1996) multi-resolution analysis (Bar-Joseph
et al. 2001). Recently, many work models the DTs as LDSs.
LDSs are learned by system identification to model DTs
(Doretto et al. 2003). UCLA dataset is provided which con-
tains 200 videos and widely used as a benchmark dataset in
varies of DTs recognition methods. Gaussian mixture mod-
els (GMMs) of LDSs are also used to model DTs. And
expectation-maximization algorithm is derived for learning
and recognizing a mixture of DTs (Chan and Vasconce-
los 2005a). Then, LDSs model is extend with a nonlin-
ear observation to recognize DTs (Chan and Vasconcelos
2007). A probabilistic kernel is derived which is capable
to describe both the spatial-temporal process and tempo-
ral process (Ravichandran et al. 2012). BoWs approach is
used in Ravichandran et al. (2012) to model each DT video
with LDSs and recognize DTs. They propose bag-of-systems
that is analogous to the BoWs approach for DTs recognition.
The method in Ravichandran et al. (2012) obtains promising
results that is better than state of the art methods.

Chaotic dynamical system has been studied extensively in
physics community (Kantz and Schreiber 1997) and is intro-
duced into computer vision community recently (Ali et al.
2007; Wu et al. 2010; Shroff et al. 2010). Trajectories of
reference points are used in Ali et al. (2007) as time series.
And chaotic features are extracted and combined to a fea-
ture vector to characterize the different motion properties
of time series. Experimental results validate the feasibility
and merits of using method from chaotic dynamical system.
People’s tracks are treated as time series in Wu et al. (2010).
Chaotic features are calculated to detect and locate anom-
alies. Other chaotic features are used in image processing. A
modified box-count approach is proposed to estimate fractal
dimension and experiment of image segmentation is effective
(Chaudhuri and Sakar 1995).

Inspired by the work mentioned above, we are interested
in exploring the use of typical recognition framework in con-
junction with a representation based on chaotic feature vec-
tor. We present our proposed algorithm in the following sec-
tion.

3 Chaotic dynamical system

In this section, we present the background material related
to the chaotic dynamical system. The dynamical system can
be depicted by a state space models y(t) = fm(y(t − 1)),
where y(t) is the observation at time t , and fm is a map-
ping function. The mapping function fm can be computed
by system identification if the system is linear (Doretto et al.
2003). However, when the system is nonlinear, especially in
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the natural wild system, it is not an easy work to compute
the mapping function fm. By virtue of chaotic dynamical
system, we calculate two chaotic features of pixel intensity
series y(t) instead of computing mapping function fm . We
next describe the framework to compute chaotic features.

Takens’ theorem (Taken 1981) states that a map exists
between the original state space and a reconstructed state
space. That is the pixel time series {xi, j (t)}Tt=1 can be written
into a matrix:

xi j =

⎛
⎜⎜⎜⎜⎜⎝

x0 xτi j . . . x(mi j−1)∗τi j

x1 xτi j+1 . . . x(mi j−1)∗τi j+1

x2 xτi j+2 . . . x(mi j−1)∗τi j+2

. . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎠

(1)

where τi j is embedding time delay and mi j is embedding
dimension. τi j and mi j can be computed by mutual informa-
tion algorithm (Fraser et al. 1986) and false nearest neighbor
algorithm (Kennel et al. 1992), respectively.

Chaotic features are measures that quantify the properties
that are invariant under transformations of the state space.
We next introduce chaotic features used in this paper.

3.1 Box-count dimension

Box-count dimension (Kantz and Schreiber 1997) measures
the degree of a set holds in space. If a point set is coveredwith
a regular grid of boxes of length ε and N (ε) is the number
of boxes which contain at least one point, then box counting
dimension Db is

Db = limε→0
lnN (ε)

ln 1
ε

(2)

3.2 Correlation dimension

Correlationdimension Dc (PeterGrassberger and ItamarPro-
caccia 1983) characterizes the system complexity and calcu-
lated as the slope of lnc(ε) versus ln(ε),

Dc = limε→0
lnc(ε)

lnε
(3)

where ε is radius and c(ε) is correlation integral (Kantz and
Schreiber 1997).

When the one-dimensional pixel intensity series trans-
formed to an m dimensional phase space, the box-count
dimension and the correlation dimension can be used tomea-
sure the smoothness of the transformed phase space. The
smooth the phase space, the smaller are the two dimensions.

Fig. 2 Features computed from videos

3.3 Chaotic feature vector

Given a video vq , embedding time delay and embed-
ding dimension are two important parameters to deter-
mine the geometry information in the phase space recon-
struction. Box-count dimension and correlation dimension
provide complementary information to characterize self-
similarity property. Our chaotic feature vector is c fi j =
{τi j ,mi j , Dbi j , Dci j }. A video vq can be transformed to a
feature vector matrix and each pixel intensity series xi, j (t)
is represented by feature vector c fi j . The video vq is repre-
sented by a W ∗ L ∗ 4 dimensional features vector matrix.
In Fig. 2, we give the results of features computed in sev-
eral videos. Details of the datasets will be given in Sect. 5.
X−Y denotes the horizontal and vertical coordinates of pixel
intensity series.

4 Recognition algorithm

To investigate whether the feature vector is suitable for DTs
recognition, we present two recognition methods to validate
our conjecture.

4.1 BoWs approach

After the chaotic feature vector is obtained, DTs are repre-
sented as a collection of codewords in a pre-defined code-
book. In the BoWs approach, a text document is encoded as
a histogram of the number of occurrences of each codeword.
Similarly, a video can be characterized by a histogram of
codewords count according to

h
(
vq

) = (
hi

(
vq

))
i=1,...,K , wi th

(
hi

(
vq

)) = n
(
vq , cwi

)

(4)
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Fig. 3 Flowchart of BoWs approach

wheren(vq , cwi )denotes the number of occurrences of code-
word cwi in video vq and K is the codebook size. A code-
book consists of a set of representative chaotic feature vectors
learned from training samples.

Figure 3 shows an overview of BoWs approach in both
learning and recognition. In learning step, each video is rep-
resented by a feature vector matrix which is mentioned in
Sect. 3. The K-means clustering algorithm is employed to
obtain the cluster centers which generate the codebook. Each
class can be represented by a histogram of the codebook after
all feature vector matrixes are mapped to the cluster centers
using nearest neighbor algorithm. The goal of learning is
to achieve a model that best represents each DTs’ class. In
recognition, we find the unknown histogram of a video that
fits best the model of a particular class via 1-nearest neighbor
(1-NN).

In Fig. 4, we show ten examples from testing videos with
their corresponding DTs codewords histograms to demon-
strate discrimination of the distribution of the learned DTs
codewords. It is clear to see that DTs from each category
have different dominant peaks. Meanwhile, different cate-
gories have someoverlap bins. That is the reason of confusing
different classes.

4.2 EMD-based approach

4.2.1 Overview of the framework

Figure 5 shows a summary of EMD method approach.
Chaotic feature vectors in each video are first computed to
form a feature vector matrix as stated in Sect. 3. The mean
shift algorithm is employed to group the chaotic feature vec-
tors in each video into clusters. Then, the EMDmethod (Rub-
ner et al. 1998) is used to handle the degree of similarity
between the feature vector matrix. The output is an EMD
cost matrix which can be used for learning and recognition.

Details about the generation of chaotic feature vector clus-
tering and the chaotic feature vector matching are presented
in the following.

4.2.2 Chaotic feature vector clustering and matching

Mean shift clustering algorithm, unlikeK-means and GMMs
need to define the number of clusters ahead, is a non-
parametric clustering algorithm. It is suitable to cluster non-
Gaussian feature space. Therefore, we use mean shift algo-
rithm (Comaniciu and Meer 2002) for chaotic feature vector
clustering. Other clustering methods that do not require a
priori knowledge about the number of clusters can also be
used.

To compute similarities between videos that are repre-
sented by cluster centers, we need to define an appropriate
similarity measure. EMD method is appropriate to compute
the cluster centers’ similarities as signature represents a set
of chaotic feature vectors. Matching cluster centers can be
naturally cast as a transportation problem (Dantzig 1951) by
defining one cluster center as the supplier and the other as
the consumer, and by setting the cost for a supplier-consumer
pair to equal the ground distance between an element in the
first cluster center and an element in the second (Fig. 6).

Let P = {((pi , wpi ) | 1 ≤ i ≤ m)} and Q =
{((q j , wq j ) | 1 ≤ j ≤ n)} be two cluster centers, where
pi and qi are the mean chaotic feature vector, wpi and wqi
are the weight of cluster centers, andm and n are the number
of the chaotic feature vector. The distance is as follows:

EMD(P, Q) = �m
i=1�

n
j=1di j fi j

�m
i=1�

n
j=1 fi j

(5)

where D = {di j } is the distance between two cluster centers
pi and q j . F = [ fi j ] is the flow between pi and p j . Equation
(5) is governed by the following constraints:

fi j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (6)

�n
j=1 fi j ≤ wpi , 1 ≤ i ≤ m, (7)

�m
i=1 fi j ≤ wq j , 1 ≤ j ≤ n, (8)

�m
i=1�

n
j=1 fi j = min

(
�m
i=1wpi , �

n
j=1wq j

)
(9)

The EMD cost matrix is then used in a form of Gaussian
kernel as follows:

Kernel (P, Q) = exp
(
−ρEMD (P, Q)2

)
(10)

where ρ is the kernel parameter. The transformed EMD cost
matrix is then used for DTs classification.
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Fig. 4 Example histograms of the codebook (codebook size , K =300) for ten selected testing DTs
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Fig. 5 Process flow of
EMD-based approach

Fig. 6 Example of EMD-based matching between two feature clusters
P and Q; lines indicate flows between two clusters

4.3 Spatial–temporal feature recognition algorithm

Spatial–temporal feature which is widely used in action
recognition (Dollar et al. 2005) and DTs recognition
(Ravichandran et al. 2012) is employed in our EMD-based
approach as a baseline method. The BoWs approach of
spatial–temporal feature has been used in Ravichandran et al.
(2012). The feature produces dense spatial–temporal features
that can improve the recognition performance. It includes
two separate filters in spatial and temporal directions: 2-D
Gaussian filter in space and 1-D Gabor filter in time. The
response function at position (x, y, t) is as follows:

R = {I ∗ gσ (x, y)∗ hev(t)}2 +{I ∗ gσ (x, y)∗ hod(t)}2 (11)

where gσ (x, y) is the 2-D Gaussian spatial Gaussian filter,
and hev and hod are a quadrature pair of 1D Gabor filter in
time domain, which are defined as:

hev (t) = −cos (2 ∗ π ∗ t ∗ ω) exp
(−t2/τ 2

)
(12)

hod (t) = −sin (2 ∗ π ∗ t ∗ ω) exp
(−t2/τ 2

)
(13)

where ω = 4/τ . Figure 7a shows the original video of
each frame, and Fig. 7b shows the cuboid. For 3D video
cuboids, we concatenate each column to flatten them into 1D
vector and follow the similar step of EMD-based approach
as mentioned above. The recognition process is shown in
Fig. 8.

5 Experiment

In this section, we present an evaluation of the proposed
two algorithms on four diverse datasets: UCLA-8 dataset,
UCLA-9 dataset, newDT-10 dataset, and DynTex++ dataset.
The comparison is performed with other methods that have
reported on these datasets.

Fig. 7 Spatial–temporal feature
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Fig. 8 Recognition process

5.1 Implementation detail

5.1.1 Datasets

The UCLA dataset is used in Chan and Vasconcelos (2005b),
Ravichandran et al. (2012) and Saisan et al. (2001) which
contains different DTs, such as boiling water, candle, fire,
flowers and so on. The video sequences are gray scale in each
class with 75 frames and the dimension is 48 * 48. Figure 9
shows nine examples from the UCLA dataset.

Most of the LDSs-based methods use UCLA dataset as a
test bed. Thus, we adopt the UCLA dataset to test our pro-
posed method. The UCLA dataset can be classified to 9 class
datasets which are boiling water (8), fire (8), flowers (12),
fountains (20), plants (108), sea (12), smoke (4), water (12)

Fig. 9 Examples from the UCLA dataset

and waterfall (16), where the numbers denote the number of
sequences in the dataset. The dataset can be further reduced
to 8 class by removing sequences of ’plants’ since the num-
ber of sequences of plant far outnumber the number of the
other classes. These four datasets are a challenging test bed
to address the DTs categorization problem.

To test our method in unconstrained conditions (e.g., cam-
era motion), we collect 16 river videos and combine the
videoswithUCLA-9 dataset to a newdataset, named newDT-
10 dataset. The new videos which are captured with smooth
shaking are gray scale in each class with 75 frames and the
dimension is 48*48. This dataset is a challenging testing bed
to address the DTs categorization problem.

The fourth dataset is DynTex++ dataset (Ghanem and
Ahuja 2010) which contains 36 categories of different DTs
and 100 in each category. In this dataset, there contains a total
of 3,600 videos which provide a richer benchmark.

5.1.2 Codebook formation

Our chaotic feature vector is a 4-attribute, which consists
of embedding time delay, embedding dimension, box-count
dimension and correlation dimension. The chaotic feature
vectors are normalized to have values between 0 and 1. For
generating the codebook, we use K-means clustering algo-
rithm directly on the Euclidian distance of the 4-attribute
across the entire feature vector matrix and obtain the clus-
ter centers, which form our histogram bins. The number
of the clusters K is the codebook size which varies from
K = 100, 200, to 1,000. After formation of the codebook,
each 4-attribute chaotic feature vector of a feature vector
matrix is mapped to a certain cluster center, which should be
the nearest neighbor of that chaotic feature vector. After all
chaotic feature vectors of a feature vector matrix are mapped
to the cluster centers, the feature vector matrix can be repre-
sented by a histogram of the codebook.

5.1.3 Recognition method

1-NN classifier is chosen as the classifier with 50% of
the dataset for training and the rest for testing. The results
reported in this paper have been averaged over 10 times.

Features used in this paper:
We compare the performance of our approach with four

feature-based methods: single LDS approach (Saisan et al.
2001), 3D SIFT (Scovanner et al. 2007), Spatial temporal
feature and pixel intensity series. We briefly explain these
features and give some implementation details.

Single LDS Approach: We model the entire DTs video
using a single LDS. Given a test DT video, we compute the
Martin distance (Cock and Moor 2000) and Fisher distance
between the testing LDS and each of the LDS models of the
training set.
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3D SIFT that represents the 3D nature of videos is
employed in the BoWs approach. We used the original code
provided by the authors at http://crcv.ucf.edu/source/3D.

Spatial–temporal feature parameters:
The spatial–temporal feature parameters are set toσ = 1.5

and τ = 2.5.
Pixel intensity series: The pixel intensity series are

treated as a basic feature and implemented by the BoWs
approach and EMD approach, respectively, for comparison
with chaotic feature vector.

5.2 UCLA-8 dataset

Figure 10 shows the confusion matrix for spatial–temporal
feature approach on the UCLA-8 dataset corresponding
to the recognition rate 71.52%. Figures 11 and 12 show
the confusion matrix for BoWs approach and EMD-based
approach on the UCLA-8 dataset corresponding to the recog-
nition rate 72.83 and 85% respectively. Several methods

Fig. 10 Confusion matrix of spatial–temporal feature approach on
UCLA-8 dataset. The overall recognition performance is 71.52%

Fig. 11 Confusion matrix of BoWs approach on UCLA-8 dataset. The
overall recognition performance is 72.83%

Fig. 12 Confusion matrix of EMD-based approach on UCLA-8
dataset. The overall recognition performance is 85%

Fig. 13 Confusion matrix of spatial–temporal feature approach on
UCLA-9 dataset. The overall recognition performance is 35.3%

such as spatial–temporal feature with BoWs approach have
been used (Ravichandran et al. 2012). LDSs with BoWs
approach are implemented and the best recognition rate is
84% (Ravichandran et al. 2012). The recognition rate of
using single LDS, 3D SIFT and pixel intensity series (100
codewords) is 59.78, 50 and 53.48% respectively. The recog-
nition rate of EMD-based approach using pixel intensity
series is 32.61%.

5.3 UCLA-9 dataset

Figure 13 shows the confusion matrix for spatial–temporal
feature approach on the UCLA-9 dataset corresponding to
the recognition rate 35.3%. Figures 14 and 15 show the con-
fusion matrix for BoWs approach and EMD-based approach
on the UCLA-9 dataset corresponding to the recognition rate
83.3 and 85.1% respectively. LDSs with BoWs approach are
implemented and the best recognition rate is 78% (Ravichan-
dran et al. 2012). The recognition rate of using single LDS,
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3D SIFT and pixel intensity series (100 codewords) is 67.5,
69 and 73.2% respectively. The recognition rate of EMD-
based approach using pixel intensity series is 14.2%.

The confusion matrixes show the confusion between
“fountain” and between “waterfall” (in Fig. 11), “fountain”
and between“water” (in Fig. 12), and between “flowers” and
“plant” (in Figs. 14, 15). This is consistent with our intuition
that similar DTs are more easily confused with each other.

In Figs. 11, 12, 14 and 15, the results show that the pro-
posed chaotic feature vector achieves high performances. In
the BoWs approach, the results of chaotic feature vector on
the two datasets are better than that in Ravichandran et al.
(2012). In the same EMD-based approach, the performance
of chaotic feature vector is better than the performance of
spatial temporal feature. In Fig. 10, several categories such
as boiling water, fire and fountain show higher recognition
results while the rest give higher error rate. The reason is
that the spatial–temporal feature response strongly to motion

Fig. 14 Confusion matrix of BoWs approach on UCLA9 dataset. The
overall recognition performance is 83.3%
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Fig. 15 Confusionmatrix ofEMD-based approach onUCLA9dataset.
The overall recognition performance is 85.1%

information and the fire class provides the motion character-
istics.

5.4 NewDT-10 dataset

Figure 16 shows the confusion matrix for spatial–temporal
feature approach on the newDT-10 dataset using 100 code-
words corresponding to the recognition rate 41.39%. Figures
17 and 18 show the confusionmatrix for BoWs approach and
EMD-based approach on the newDT-10 dataset correspond-
ing to the recognition rate 74.14 and 75.93% respectively.
The recognition rate of using single LDS, 3D SIFT and pixel
intensity series (100 codewords) is 67.13, 65 and 68.77%
respectively. The recognition rate of EMD-based approach
using pixel intensity series is 14.2%. The recognition rate of
EMD-based approach using pixel intensity series is 21.48%.
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Fig. 16 Confusion matrix of spatial–temporal feature approach on
newDT-10 dataset. The overall recognition performance is 41.39%
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Fig. 17 Confusion matrix of BoWs approach on newDT-10 dataset.
The overall recognition performance is 74.14%
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Fig. 18 Confusion matrix of EMD approach on newDT-10 dataset.
The overall recognition performance is 75.93%
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Fig. 19 Confusion matrix of BoWs approach for pixel intensity series
approach on DynTex++ dataset. The overall recognition performance
is 49.67%

5.5 DynTex++ dataset

Figure 19 shows the confusion matrix of BoWs approach for
pixel intensity series approach on the DynTex++ dataset cor-
responding to the recognition rate 49.67%. Figure 20 shows
the confusion matrix of BoWs approach for chaotic feature
vector approach on the DynTex++ dataset corresponding to
the recognition rate 64.22%. Figure 21 shows the confusion
matrix of EMD approach for pixel intensity series approach
on the DynTex++ dataset corresponding to the recognition
rate 32.39 %. Figure 22 shows the confusion matrix of EMD
approach for chaotic feature vector approach on the Dyn-
Tex++ dataset corresponding to the recognition rate 59.33%.
The recognition rate of using single LDS is 47.2%. The best
performance in Ghanem and Ahuja (2010) is 63.7%.
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Fig. 20 Confusionmatrix of BoWs approach for chaotic feature vector
approach on DynTex++ dataset. The overall recognition performance
is 64.22%
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Fig. 21 Confusion matrix of EMD approach for pixel intensity series
approach on DynTex++ dataset. The overall recognition performance
is 32.39%

5.6 Codebook size

The purpose of this experiment is to validate the effect of
different codebook size towards DTs recognition. Figure 23
shows the results obtained by different codebook size using
BoWs approach on UCLA-8 dataset and UCLA-9 dataset,
respectively.

In Fig. 23, the recognition rate is between 60 and 85%. It
shows some dependency of the recognition accuracy on the
size of the codebook. The experiment coincides our conjec-
ture that the recognition rate varies with the codebook size.
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Fig. 22 Confusion matrix of EMD approach for chaotic feature vector
approach on DynTex++ dataset. The overall recognition performance
is 59.33%
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Fig. 23 Recognition performance on UCLA-8 dataset and UCLA-9
dataset using different codebook size

5.7 Discussion

A few interesting observations can be made from the exper-
imental results: Our proposed chaotic feature vector-based
approach significantly outperforms the traditional LDSs-
based method. Comparing results of the LDSs-based BoWs
approachwith the results in Ravichandran et al. (2012) on the
UCLA-8 andUCLA-9 datasets, our proposed chaotic feature
vector-basedmethods showmore than 5% improvement over
its LDSs-based counterpart (Ravichandran et al. 2012). This
can be attributed to the fact that chaotic feature vector being
based on chaotic dynamical system depicts fractal dimension
of pixel intensity series. The fractal dimension is known to
contain useful information for texture modeling.

In the first three datasets, the EMD-based approach pro-
duces better recognition results compared to the BoWs
approach. This coincides with the former statement that in
the EMD-based approach the signature can be more descrip-
tive to summarize the distribution of chaotic feature vec-
tors than histogram. We advocate the use of EMD-based
approach because along with superior results it also offers
ways to other DTs applications (e.g., DTs segmentation). In
the DynTex++ dataset, the BoWs-based approach performs
better than the EMD-based method. This can be attributed to
the fact that the content of the dataset is simple. Therefore,
the mean shift clustering algorithm cannot obtain significant
signatures (foreground).

Traditional DTs recognition methods such as LDSs based
have been studied and perfected for at least a decade, while
our method is built on new techniques that have not previ-
ously been applied to DTs analysis.We believe that “mature”
methods such as LDSs have been pushed close to the intrin-
sic limit of their performance, while novel methods such as
ours have a much greater potential for improvement in the
future.

6 Conclusions

We test our algorithm on four DTs datasets. The perfor-
mances for the four datasets support our conjecture that
the proposed approach is appropriate for DTs modeling and
recognition. First chaotic features are extracted from each
pixel intensity series and concatenated to a chaotic feature
vector. Each video is represented by a feature vector matrix.
Two recognition schemes are adopted. Following the BoWs
approach, we show the histogram of each category. Another
scheme is first clustering chaotic feature vectors in each fea-
ture vector matrix. Then, EMD method is employed to mea-
sure the similarity between two videos. The matching score
is used as a kernel for recognition. Utilizing the proposed
recognition framework, we have achieved very competitive
performances on four diverse datasets. Based on our exper-
iments, we observe that in most of the cases, EMD-based
approach is better than BoWs approach using the 1-NN clas-
sifier.

Futurework includes testingmoreDTs datasets and inves-
tigating how to fuse our proposed featureswith other features.
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