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Abstract A variant of teaching–learning-based optimiza-
tion algorithm (TLBO) with multi-classes cooperation and
simulated annealing operator (SAMCCTLBO) is proposed
in paper. To take full advantage of microteaching, the pop-
ulation is divided into several sub-classes, the mean of all
learners in teacher phase of original TLBO is replaced by
the mean solutions of different sub-classes, the modifica-
tion might make the mean solutions improved quickly for
the effect of microteaching is often better than teaching in
big classes. With considering the limitation of learning abil-
ity of learner, the learners in different sub-classes only learn
new knowledge from others in their sub-classes in learner
phase of SAMCCTLBO, and all learners are regrouped ran-
domly after some generations to improve the diversity of the
sub-classes. The diversity of the whole class is improved by
simulated annealing operator. The effectiveness of the pro-
posed algorithm is tested on several benchmark functions,
the results demonstrate that SAMCCTLBO has some good
performances when compared with some other EAs.

Keywords Teaching–learning-based optimization ·
Particle swarm optimization · Multi-class cooperative ·
Simulated annealing

1 Introduction

Global optimization is a concerned research area in sci-
ence and engineering for several decades. As many real-
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world optimization problems can be converted as global opti-
mization problems, good optimization algorithms are always
needed to derive the global optimal solution. Some traditional
methods often fail while solving complex global optimiza-
tion problems (Floudas and Gounaris 2009). Some meta-
heuristics are developed to improve the performance of solv-
ing global optimization problems. Among these methods,
particle swarm optimization algorithm (PSO) and its vari-
ants play an important role in solving global optimization
problems for it is easy to be realized. Inertia weight PSO
(WPSO) is introduced to balance the global and local search
abilities. Linearly decreasing inertiaweight PSO (LDWPSO)
is proposed to improve the performance of WPSO (Shi and
Eberhart 1998). PSO with a constriction factor (PSO-cf) was
introduced by Clerc and Kennedy (2002). Some methods
have been presented to improve the performance of PSO
by designing different types of topologies. The conclusion
that PSO with a small neighborhood might perform better
on complex problems, while PSO with a large neighbor-
hood would perform better on simple problems is drawn by
Kennedy andMendes (2002), Suganthan (1999). A PSOwith
dynamically adjusted neighborhoods is proposed by Sugan-
than (1999), in this method, the neighborhood of a particle
gradually increases until it includes all particles. A unified
particle swarmoptimizer (UPSO) is introducedwith combin-
ing the global version and local version together (Parsopoulos
and Vrahatis 2004). Peram and Veeramachaneni developed
the fitness-distance-ratio-based PSO (FDR-PSO) with near
neighbor interactions (Peram et al. 2003). Liang et al. (2006)
proposed a comprehensive learning particle swarm optimizer
(CLPSO), all other particles’ historical best information is
used to update the velocity of a particle. Self-learning par-
ticles swarm optimizer (SLPSO), in which each particle has
a set of four strategies to cope with different situations in
the search space, and the cooperation of the four strategies is

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-015-1613-9&domain=pdf


1922 D. Chen et al.

implemented by an adaptive learning framework at the indi-
vidual level, is proposed in Li et al. (2012). In addition, PSOs
with several swarms are also studied for improving the per-
formance of PSO algorithms. Cooperative particle swarm
optimizer (CPSO) using multiple swarms to optimize dif-
ferent components of the solution vector cooperatively is
introduced in Bergh and Engelbrecht (2004). Multi-swarm
cooperative particle swarm optimizer (MCCPSO) based on
master–slave model is presented in Niu et al. (2007); in the
method, the slave swarms execute a single PSO and the mas-
ter swarmevolves basedon its ownknowledge and the knowl-
edge of the slave swarms. Amulti-swarm PSO using charged
particles in a partitioned search space is introduced in Dor
et al. (2012), two kinds of swarms are used in this algo-
rithm, the main swarm gathers the best particles of auxiliary
ones and initialized several times. The auxiliary swarm is
initialized in different areas, and an electrostatic repulsion
heuristic is applied in each area to increase its diversity. A
multi-swarm self-adaptive and cooperative particle swarm
optimization (MSCPSO) using four sub-swarms to avoid the
algorithm fall into local optimum is introduced in Zhang and
Ding (2011). Moreover, some other EAs such as jDE (Brest
et al. 2006), CMA-ES (Arnold and Hansen 2012) and JADE
(Zhang and Sanderson 2009) are also used for solving global
optimization problems.

In recent years, a new meta-heuristic algorithm, which
is called teaching–learning-based optimization (TLBO), is
proposed for global optimization problem (Rao et al. 2012).
The algorithm simulates the teaching–learning process in
a classroom, and each student represents a possible solu-
tion of the optimization problems. Details of the concep-
tual basis of TLBO were given by Waghmare (2013). Some
results indicate that TLBOoutperforms somemeta-heuristics
for constrained benchmark functions and non-linear numer-
ical optimization problems (Rao et al. 2011, 2012). It has
been extended to engineering optimization (Yu et al. 2014),
such as constrained mechanical design optimization prob-
lems (Rao et al. 2011), engineering structure optimization
problems (Vedat 2012), job-shop scheduling problem (Adil
et al. 2014; Xu et al. 2015). It is also used for solving multi-
objective optimization (Niknam et al. 2012; Rao and Patel
2011, 2013; Rao and Waghmare 2014; Zou et al. 2013),
clustering problems (Naik et al. 2012; Suresh and Anima
2011), etc. Several variants of TLBO algorithm have started
to improve the performance of TLBO (Hossein et al. 2011;
Rao and Patel 2012). Similar to other natural computation
methods, TLBO alsomight trap in local optimumwhen solv-
ing complex problems with multiple local optimal solutions.

To improve the performance of TLBO algorithm for solv-
ing global optimization problems, a multi-class cooperative
teaching–learning-based optimization algorithm with sim-
ulated annealing operator (SAMCCTLBO) is proposed in
this paper. A class is divided into several sub-classes, the

students in each sub-class update their positions according
to the teacher and the mean of their sub-classes in teacher
phase, and they also learn knowledge from other students in
their sub-classes. To improve the diversity of sub-classes, all
individuals should be regrouped to form the new sub-classes
after some evolutionary generations. The simulated anneal-
ing method is used to select some worse gens for the new
population to increase the diversity of the whole class. The
proposed algorithm is tested on some benchmark functions,
and the results are compared with those of some other algo-
rithms.

The rest of the paper is organized as follows: in Sect.
2, original TLBO algorithm is simply introduced. SAMC-
CTLBO is proposed in Sect. 3. Section 4 presents the test
functions and the discussion of the experimental results.
Some conclusions and the future research works are given
in Sect. 5.

2 Teaching–learning-based optimization (TLBO)
algorithm

Teaching–learning-based optimization (TLBO) algorithm is
originally developed by Rao et al. (2012). It is based on the
influence of a teacher on the output of learners in a class in
terms of results or grades. It is also a population-based algo-
rithm which simulates the teaching–learning process in the
classroom. The teacher of the class is generally considered as
a highly learned personwho shares his or her knowledgewith
the learners. Generally, a good teacher benefits for improv-
ing the marks or grades of the students in his or her class.
Moreover, learners also learn knowledge from others in their
class to improve their marks and grades. For optimization,
the solutions of the problem are represented by learners. The
learner with the best fitness in current generation is chosen
as the current teacher of the class. The learning process of
TLBO is divided into two stages. The first stage is called
the teacher phase and the second stage is called the learner
phase. In teacher phase of TLBO, learners learn knowledge
from the teacher to improve the average score of the class.
In learner phase, learners learn knowledge from another ran-
dom learner to improve their performance. The main stages
of original TLBO are simply introduced as follows.

2.1 Teacher phase

In the teacher phase, all students learn knowledge from the
teacher. The learner with the best fitness is chosen as the
current teacher, which is represented by X teacher. Suppose
an objective function f (x)with n-dimensional variables, the
learner i can be represented as Xi = [xi1, xi2, . . . , xin]. At
any iteration g, the mean position of all learners in current
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iteration is calculated as Xgmean = 1
m

[∑m
i=1 xi1,

∑m
i=1 xi2,

. . . ,
∑m

i=1 xin
]
, m is the number of learners in a class. For

the i th learner, it updates its position as follows.

Xi,new = Xi + r1(X teacher − TF Xgmean) (1)

where Xi,new and Xi are the new and the old positions of the
i th learner, r1 is a random number, uniformly distributed in
[0, 1]. Value of TF = round[1+ rand(0, 1){2 − 1}] can be
either 1 or 2 which is shown in Eq. (2). If the new solution of
the i th learner is better than the old one, the old position of
the student will be replaced by the new one, or the position
of the i th learner is not changed.

2.2 Learner phase

In the learner phase, learners lean knowledge from others. A
learner randomly selects a learnerwhich is different fromhim
or her as the learning object. For j th learner X j , it randomly
selects the kth learner Xk which is different from him or her,
the process of X j learning knowledge from Xk is shown as
follows.

If the fitness of X j is better than that of Xk , then

X j,new = X j + r j (X j − Xk) (2)

Else

X j,new = X j + r j (Xk − X j ) (3)

If the new position X j,new is better than the old one X j , the
old position X j will be replaced by the new position X j,new,
otherwise, the position of j th learner is not changed. r j is a
random number, uniformly distributed in [0, 1]. The detailed
algorithm can be found in Parsopoulos and Vrahatis (2004).

3 Multi-class cooperative TLBO with simulated
annealing operator (SAMCCTLBO)

3.1 The main framework of SAMCCTLBO

Just like other population-based algorithms, due to the intrin-
sic randomness, TLBO suffers from premature convergence
when solving complex optimization problems. A proper
tradeoff between exploration and exploitation is necessary
for the efficient and effective operation of a population-based
stochastic optimization algorithm. The main motivation of
our method is using cooperation of multi-swarms and sim-
ulated annealing method to prevent the whole population
from getting trapped in a local optimum and improve the
global performance of TLBO. Themain framework of SAM-
CCTLBO is given as follows.

Step 1. Initialize the population of the classroom and ran-
domly group the population into different sub-classes. Set
the initial parameters of the algorithm.

Step 2. Calculates the mean position of different sub-
classes and chooses the best learner among all sub-classes
as the teacher.

Step 3.Executes the teacher phase of SAMCCTLBOwith
simulated annealing operator.

Step 4. Executes the learner phase of SAMCCTLBOwith
simulated annealing operator.

Step 5. Randomly regroups the population to form the
new sub-classes.

Step 6. If the terminal condition is not satisfied, go to step
2, otherwise, output the best solution.

Themain parts of the framework are introduced as follows.

3.2 The need for using multi-class cooperation and SA
operator

In the teaching–learningprocess of a real classroom, a teacher
can go to any place of the classroom to impart his or her
knowledge, for example, solving the problem of any learner,
mentoring the individuals in the class. The smaller size
of class will benefit for quickly sharing the knowledge of
the teacher, the average grade of the small class might be
improved quicker than the big class. Microteaching might
increase the convergence speed of the algorithm. Moreover,
for a learner, he or she easily learns knowledge from other
learners around himself or herself, and the good diversity of
the local domain will benefit for local searching. Based on
this idea, a multi-swarm TLBO is designed in our algorithm,
the population in a class is divided into some sub-classes.
In the teacher phase, the positions of learners in different
sub-classes are renewed by the mean positions of the sub-
classes and the position of the teacher of current generation.
In the learner phase, the learners learn knowledge from other
learners in their sub-classes.

According to the basic operator of TLBO, the good
learners always maintained in the population whatever in
teacher phase and learner phase, the searching process of it
is greedy. These operators might make the diversity of the
class decrease quickly with the development of evolution.
When all learners are almost similar to the teacher, it is diffi-
cult to renew their position. The algorithm is easily trapped
into local convergence. The regroup operator can change the
diversity of the sub-classes, it cannot change the diversity of
the whole class. Simulated annealingmethod is a very simple
method to change the diversity of the population with intro-
ducing someworse learners according to a certain possibility.
It is easily realized. In the paper, it is chosen to change the
diversity of the population. The average position the popu-
lation makes large effect for the original TLBO, the serve
change of it might make large oscillation for the algorithm.
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To maintain the stable performance of the algorithm, only
some bits of the worse learner are introduced in the new pop-
ulation.

3.3 Teacher phase of SAMCCTLBO

During teacher phase of SAMCCTLBO, the individual with
the best fitness is chosen as the teacher (X teacher) of cur-
rent generation. The learners in different sub-classes improve
their performance bymoving their positions towards the posi-
tion of the teacher (X teacher) with taking into account the
current mean position XCmean of the learners in different
sub-classes. Equation (4) shows how the learners in different
sub-classes renew their positions.

Xi,new = Xi + r1(X teacher − TF XCmean) (4)

where Xi,new and Xi are the new and old positions of i th
learner, respectively. r1 is a random number, uniformly dis-
tributed in [0, 1]. X teacher is the best position of the current
generation, XCmean is the mean position ofC th sub-class. TF
is defined as shown in Eq. (2). If the new position Xi,new is
better than the old one Xi , Xi,new is accepted, otherwise, if
Xi,new should be accepted according to the possibility which
is determined by simulated annealing operator, a bit of the
new position Xi will be randomly selected to take the place
of the corresponding bit of Xi,new, and Xi,new with the old bit
is made to flow to the next phase. This operation can prevent
the population from severe damaged. This operation is not
adopted for the teacher in current generation.

3.4 Learner phase of SAMCCTLBO

In the learner phase of SAMCCTLBO, a learner often learns
knowledge fromother learners around themeasily. The learn-
ers learn knowledge from other students in their sub-classes
in SAMCCTLBO. For i th learner XCi in the Cth class, ran-
domly select kth individual XCk in Cth sub-class which is
different from XCi , XCi updates its position as follows.

If XCi is better than XCk according to their fitness, then

XCi,new = XCi + ri (XCi − XCk) (5)

Else

XCi,new = XCi + ri (XCk − XCi ) (6)

where ri is random number, uniformly distributed in [0, 1].
If the new position XCi,Cnew is better than XCi , the new
position XCi,Cnew will be accepted, otherwise, the similar
method with SA operator in teacher phase is also used to
increase the diversity of the whole class.
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period
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period

Fig. 1 The regroup process of SAMCCTLBO

3.5 Produce the new sub-classes (regroup)

When all learners complete the teacher and learner process,
the new sub-classes of next generation should be generated.
To improve the diversity of the sub-classes, the regroup oper-
ator is used in the given algorithm. In the real class, the posi-
tions of students are often changed after a period time to
improve the effectiveness of teaching. Simulating this phe-
nomenon, the learners in the class are regrouped after a given
generation. This operator benefits for improving the diversi-
ties of the sub-classes, and the process of it is simple. A
classroom with nine learners who are divided into three sub-
classes is shown in Fig. 1 to interpret the process of forming
the new sub-classes.

In Fig. 1, the initial population is composed by nine learn-
ers; in the first generation, the learners are grouped randomly;
the first group contains learner 1, learner 3 and learner 5; the
second group contains learner 2, learner 4 and learner 7,
and the third group contains learner 6, learner 8 and learner
9. After some generations, the learners in the different sub-
classes are integrated as awhole, and it is randomly regrouped
again. As shown in Fig. 1, in the second generation, the
learner 1, the learner 4 and the learner 7 are grouped in the
first sub-class, the learner 2, the learner 5 and the learner 8
are grouped in the second sub-class, and the learner 3, the
learner 6 and the learner 9 are grouped in the third sub-class.
The diversity of the sub-classes is changed with change of
the learners around them.

3.6 Simulated annealing operator

The detailed process of it can be found in Dekkers and Aarts
(1991). In our method, to prevent the individual seriously
damaged, a random bit chosenmethod is designed. The oper-
ator is simple, introduced as follows.

123



SAMCCTLBO 1925

For the teacher, accept the better solution. For other learn-
ers, if the new solutions are better than the old ones, accept the
new solutions.When the fitness value of the new learner is not
better than the old one, calculate the possibility p according
to Eq. (7).

p = exp(−(fitness(Xnew) − fitness(Xold))/Tk) (7)

where f i tness(Xnew) and f i tness(Xold) are the fitness of
the new and the old positions of the individuals, respectively.
Tk is the temperature of kth simulated annealing operator.
If rand(.) < p, a bit will be randomly selected from the
old learner, and the correspondence bit of the new learner is
replaced by it, the new learner with the old bit is made to
flow to the next phase.

3.7 The steps of SAMCCTLBO algorithm

The detailed steps of SAMCCTLBO algorithm is described
as follows.

Step 1: Set the maximal value Xmax and minimal value
Xmin of variables, the maximal evolution generation gen-
max, the population size popsize, the class size C , the initial
temperature T0, the number of simulated annealing opera-
tor K , the temperature reduction coefficient λ. Initialize the
initial population pop as follows.

pop = Xmin + r × (Xmax − Xmin) (8)

where r is a random number, uniformly distributed in [0, 1].
Step 2: Calculate the fitness value of all learners, and

choose the best learner as the teacher of current generation.
Step 3: Divide the population into some sub-classes, the

number of learners in each sub-class is shown in Eq. (9).

Csize = popsize/c (9)

In general, popsize is the integer times of C . The size of
all sub-classes is the same.

Step 4: Calculate the mean value XCmean of each sub-
class and the learners in each sub-class implement teacher
phase in different sub-classes according to Eq. (4). For the
teacher, accept the better solution, and for other learners,
execute simulated annealing operator according to part 3.6.

Step 5: For learners in each sub-class, randomly select
a different learner in the same sub-class and implement the
learner phase according to Eqs. (5, 6). The method of accept-
ing new individual is the same as used in Step 4.

Step 6:when the generation satisfied the follow condition,
the learners in the class will be regrouped.

mod (gen/M) = 0 (10)

where gen is the current evolutionary generation, and M is
the set period.

Step 7: If the number of simulated annealing operator is
not arrived, Tk = λ × Tk−1, if the terminal condition of the
algorithm is not satisfied, the algorithm will go back to Step
4, or it is ended, output the best solutions.

3.8 The analysis of diversity and the number of class size

In the paper, two methods are designed to improve the diver-
sity of the algorithm. The regrouping method is utilized
to improve the diversity of the sub-classes. The simulated
annealing operator is used to improve the diversity of the
whole class. To show the efficiency of them, Rosenbrock
function is simulated in this part. In the example, the size
of the class is 4, the maximal evolutionary generation is
500, λ is 0.9, the initial temperature is 1,000, the popu-
lation size is 20, the dimension of the function is 30, the
period of regrouping is 10. The first example is the compari-
son of SAMCCTLBO with and without regrouping operator
for the first sub-class. The second example is the compari-
son of multi-class cooperative teaching–learning-based opti-
mization algorithm (MCCTLBO)with andwithout simulated
annealing operator. A simple method with absolute distance
is used in the paper to express the diversity of the population.
It is shown in Eq. (11).

Div(gen) = m×(m−1)/2
m−1∑
i=1

m∑
j=I+1

D∑
l=1

|X (i, l) − X ( j, l)|

(11)

where Div(gen) is the diversity function of gen generation,m
is the population size, D is the dimension of the individuals,
X (i , l) and X ( j , l) are the lth dimensional variables of the
i th and the j th individuals, respectively. The diversity of the
first and the second examples is shown in Fig. 2.

The Fig. 2a displays that the diversity of SAMCCTLBO
with regrouping operator is better than it without regroup-
ing operator for the first class most of the time. Figure 2b
shows that the diversity of SAMCCTLBO is better than
MCCTLBO. The Fig. 2 also shows that the diversity of the
improved algorithm is frequently changed.

The number of class size is also an important parameter
for the proposed algorithm. The size of class should be larger
than 2 and it is should satisfy Eq. (9). To show the influence
of the size of sub-class for the algorithm, Rosenbrock func-
tion is also simulated with different sizes of sub-class. In the
example, the population is 30, the other parameters of it is the
same as those used in the above examples except themaximal
evolutionary generation is 10,000. The results with different
sizes (2, 3, 5, 6, 10, 15) of sub-class are shown in Table 1.

Table 1 shows that the fitness value decreases when the
size is smaller than 5, and then increases when the size of
sub-class is larger then 6. In our experiments, the median
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(a) (b)

Fig. 2 The diversity examples for Rosenbrock function with different operator. a The result of SAMCCTLBO with and without regrouping
operator, b the result of MCCTLBO and SAMCCTLBO

Table 1 The fitness value of Rosenbrock function with different size
of class

Size 2 3 5 6 10 15

Fitness 8.78057 8.40195 6.43309 10.01520 15.09041 25.08271

value is chosen. For example, if the size of population is 30,
the size of sub-classes is 5. If the size of population is 20, the
size of sub-classes is 4.

3.9 The computation cost of algorithm

The fitness evaluation (FEs) often affects the computation
cost of the algorithm, for large parts of EAs, the function
is often evaluated once in a generation. But in TLBO, the
function should be evaluated two times in a generation. For
example, if the size of population is m, the maximal gener-
ation is genmax, the FEs of TLBO is 2 × m × genmax. For
SAMCCTLBO algorithm, there are some worse individu-
als according to possibility p should be evaluated, the FEs is
2×m×genmax+2× p×m×genmax. The complexity of the
proposed algorithm is larger than original TLBO if the size of
population of them is the same. To balance the comparison, in
our experiments, the size of population in SAMCCTLBO is
smaller than that used in TLBO, it is smaller than half the size
of population in other EAswith only one FEs in a generation.

4 Simulation results and discussions

Twenty-four of the well-known benchmark functions are
used to evaluate the performance of SAMCCTLBO in this
paper. The benchmark functionswere also used in some other
references (Liang et al. 2006; Sabat et al. 2011; Tang et al.
2007; Yao et al. 1999). To compare the performance of SAM-

CCTLBOwith some othermethods, UPSO (Parsopoulos and
Vrahatis 2004), jDE (Brest et al. 2006), CMA_ES (Arnold
and Hansen 2012; Wang et al. 2011), JADE (Zhang and
Sanderson 2009) SaDE (Qin et al. 2009) fully informed par-
ticle swarm (FIPS) (Mendes et al. 2004) FDR-PSO (Peram
et al. 2003) CLPSO (Liang et al. 2006) and TLBO (Rao et al.
2012) ETLBO (Rao and Patel 2012) are also simulated.

4.1 Parameter settings

For the purpose of reducing statistical errors, each function is
independently simulated 50 runs, and their mean results are
used in the comparison. The value of the function is defined as
the fitness function. All the experiments are carried out on the
samemachinewith a Celeron 2.26GHzCPU, 512-MBmem-
ory systemwithMatlab software. All functions are simulated
in 10 and 30 dimensions. The 24 functions are summarized in
Table 2. “Range” is the lower and upper bounds for the vari-
ables. “Optima” is the theoretical global minimum solution.
“Acceptance” is the acceptable solutions of the functions.
For all PSOs and DEs, the evolutionary parameters are same
as they are used in the references except that the population
size is 50. Because the FEs of TLBO is more than 2 times
of PSOs and DEs in a generation, the size of population of
TLBO is 25; the size of population of SAMCCTLBO is 20.
For ten-dimensional functions, the maximal fitness evalua-
tions are 50,000 and 100,000 for 10- and 30-D functions,
respectively. The size of class with SAMCCTLBO is 4.

4.2 Experimental results and comparisons

4.2.1 The results and the analysis of ten-dimensional
functions

Table 3 displays the best solutions, the mean solutions, the
standard deviations of the 50 independent runs of the ten
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Table 2 24 Benchmark functions

Function Formula Range Optima Acceptance

Sphere F1(x) = ∑D
i=1 x

2
i [−100,100] 0 1.0e−6

Quadric F2(x) = ∑D
i=1

(∑i
j=1 x j

)2
[−100,100] 0 1.0e−6

Sum square F3(x) = ∑D
i=1 i x

2
i [−10,10] 0 1.0e−6

Zakharov F4(x) = ∑D
i=1 x

2
i +

(∑D
i=1 0.5i xi

)2 +
(∑D

i=1 0.5i xi
)4

[−10,10] 0 1.0e−6

Rosenbrock F5(x) = ∑D−1
i=1

[
100(x2i − xi+1)

2 + (xi − 1)2
]

[−2.048,2.048] 0 1.0e−1

Ackley
F6(x) = 20 − 20 exp

(
− 1

5

√
1
D

∑D
i=1 x

2
i

)

− exp
(

1
D

∑D
i=1 cos(2πxi )

)
+ e

[−32.768,32.768] 0 1.0e−6

Rastrigin F7(x) = ∑D
i=1 (x2i − 10 cos(2πxi ) + 10) [−5.12,5.12] 0 2.5e+0

Weierstrass
F8(x) = ∑D

i=1

(∑kmax
k=0

[
ak cos(2πbk(xi + 0.5))

])

−D
∑kmax

k=0

[
ak cos(2πbk × 0.5)

]
a = 0.5 b = 3 kmax = 20

[−0.5,0.5] 0 1.0e−6

Griewank F9(x) = ∑D
i=1

x2i
4000 − ∏n

i=1 cos
(

xi√
i

)
+ 1 [−600,600] 0 1.0e−1

Schwefel F10(x) = 418.9829D + ∑D
i=1 ( − xi sin

√
abs(xi )) [−500,500] 0 5.0e+2

Rotated sum square F11(x) = ∑D
i=1 iy

2
i y = M × x [−10,10] 0 1.0e−6

Rotated Zakharov F12(x) = ∑D
i=1 x

2
i +

(∑D
i=1 0.5iyi

)2 +
(∑D

i=1 0.5iyi
)4

y = M × x
[−10,10] 0 1.0e−6

Rotated Rosenbrock F13(x) = ∑D−1
i=1

[
100(y2i − yi+1)

2 + (yi − 1)2
]

y = M × x
[−2.048,2.048] 0 1.5e+0

Rotated ackley
F14(x) = 20 − 20 exp

(
− 1

5

√
1
D

∑D
i=1 y

2
i

)

− exp
(

1
D

∑D
i=1 cos(2πyi )

)
+ e y = M × x

[−32.768,32.768] 0 1.0e−6

Rotated Rastrigin F15(x) = ∑D
i=1 (y2i − 10 cos(2πyi ) + 10)

y = M × x
[−5.12,5.12] 0 5.0e+1

Rotated Weierstrass
F16(x) = ∑D

i=1

(∑kmax
k=0

[
ak cos(2πbk(yi + 0.5))

])

−D
∑kmax

k=0

[
ak cos(2πbk × 0.5)

]
a = 0.5 b = 3 kmax = 20 y = M × x

[−0.5,0.5] 0 1.0e−6

Rotated Griewank F17(x) = ∑D
i=1

y2i
4000 − ∏n

i=1 cos
(

yi√
i

)
+ 1 y = M × x [−600,600] 0 1.0e−2

Rotated Schwefel F18(x) = 418.9829D + ∑D
i=1 (−yi sin

√
abs(yi ))

y = M × x
[−500,500] 0 2.4e+2

Shifted sphere F19(x) = ∑D
i=1 z

2
i − 450

z = x − o o : the shifted global optimum
[−100,100] o −450.1

Shifted Schwefel’s Problem 2.21
F20(x) = max

i
{|zi | , 1 ≤ i ≤ D} − 450

z = x − o + 1 o : the shifted global optimum
[−100,100] o −450

Shifted Rosenbrock F21(x) = ∑D−1
i=1

[
100(z2i − zi+1)

2 + (zi − 1)2
] + 390

z = x − o + 1 o : the shifted global optimum
[−100,100] o 393

Shifted Rastrigin F22(x) = ∑D
i=1 (z2i − 10 cos(2π zi ) + 10) − 330

z = x − o o : the shifted global optimum
[−5,5] o −319

Shifted Griewank F23(x) = ∑D
i=1

z2i
4000 − ∏n

i=1 cos
(

zi√
i

)
+ 1 − 180

z = x − o o : the shifted global optimum
[−600,600] o 179.9

Shifted ackley
F24(x) = 20 − 20 exp(− 1

5

√
1
D

∑D
i=1 z

2
i )−

exp
(

1
D

∑D
i=1 cos(2π zi )

)
+ e − 140

z = x − o o : the shifted global optimum

[−32,32] o −139.2
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algorithms on the 24 test functions. The best results among
ten algorithms are shown in bold words.

Table 3 displays CMA_ES has the smallest best solutions,
the smallest means and the smallest standard deviations for
10-D functions f1, f2, f3, f4. The performance in terms of
the best solutions, the means and the standard deviations of
SAMCCTLBO for functions f1, f2, f3 are better than those
of other algorithms except thosewith CMA_ES. For function
f4, the performance of TLBO in terms of three solutions is
better than those of other algorithms except with CMA_ES.
For function f5, JADE has the smallest solutions, followed
by it are CMA_ES, jDE, ETLBO and some other algorithms.
For functions f6, f7, f8, f9, the solutions of SAMCCTLBO
converge to theoretical optima. For function f7, three DEs
have the same solutions as it is with SAMCCTLBO. The
performances of three TLBOs, SaDE and PSOFDR are the
same. For function f9, jDE and SAMCCTLBO have the
same performance. Three DEs have the best performance
and the solutions of them are the same. The solutions of
SAMCCTLBO are better than those of other two TLBOs.
For functions f11 and f12, the solutions of CMA_ES are the
best, and SAMCCTLBO ranked the second. CMA_ES has
the best performance for function f13 and that of JADE fol-
lowed by it. For functions f14 and f15, the performance in
terms of the three merits of SAMCCTLBO is the best among
all ten algorithms. Three TLBOs and SaDE have the same
best solutions and they all converge to theoretical optima
for function f16. CMA_ES and SaDE express the best per-
formance for functions f17 and f18, respectively. For func-
tions f19 and f20, all algorithms can converge to theoretical
optima except the functions tested with PSOFDR. For func-
tion f21, the best solutions of large parts of algorithms equal
to theoretical optima, but the means of them cannot arrive
the theoretical optima. jDE has the smallest standard devia-
tions. For functions f22 and f24, threeDEs have the same best
performances. All algorithms almost converge to theoretical
optima for function f23. Table 3 also shows that the perfor-
mances of CMA_ES outperform those of other algorithms
for 12 functions among the 24 test functions. The three mer-
its of SAMCCTLBOgenerally outperform those of large part
of algorithms except those with CMA_ES. The results also
show that the performance of TLBO is globally improved by
the improved methods.

To compare the computation cost and robustness of dif-
ferent algorithms, the average fitness evaluations (mFEs) and
the successful ratios of the algorithms are shown in the Table
4. “mFEs” is the average FEs when the algorithm can con-
verge to the acceptable solutions in all runs. If the algorithm
is not convergent in all runs, the “mFEs” is expressed by
“NaN”.

Table 4 displays that CMA_ES has the smallest mFEs for
large part of functions except for functions f7, f8, f10 and
f18. For functions f7, f8 and f10, SAMCCTLBO has the

smallest mFEs. JADE has the smallest solution in terms of
mFEs for function f18. Except for CMA_ES, the mFEs of
SAMCCTLBO are smaller than those of other algorithms
for 17 functions. For function f4 and f24, the mFEs of
TLBO is smaller than those of SAMCCTLBO. For functions
f5, f13, f18, f21, the mFEs of JADE are less than those of
SAMCCTLBO. For functions f22 and f23, jDE and ETLBO
algorithm have better performance in terms of mFEs than
SAMCCTLBO. Table 4 also indicates that the successful
ratios of SAMCCTLBO for 15 functions are 100%. The suc-
cessful ratios of SAMCCTLBO for nine functions are lower
than some other algorithms. Three DEs have the higher suc-
cessful ratios for five shift functions. The best solutions are
shown in Table 4 with bold words.

To determine whether the results obtained by SAMC-
CTLBO are statistically different from the results gener-
ated by other algorithms, the nonparametric t tests are con-
ducted between the best results of SAMCCTLBO and those
achieved by the other algorithms for all functions. The t val-
ues and p values on every function of this two-tailed test
with a significant level of 0.05 are shown in Table 5. Rows
“Better”, “Same”, and “worse” represent the number of func-
tions that SAMCCTLBO performs significantly better than,
almost the same as, and significantly worse than the com-
pared algorithm, respectively. The “better” are shown with
bold words in the table. Table 5 indicates that the average

excellent ratio
(∑9

i=1 better(i)/24 × 9
)
of SAMCCTLBO

is 51.39% for ten-dimensional functions. The Table 5 also
shows the number of “better” is less than that of “worse”
between and SAMCCTLBO and CMA_ES.

4.2.2 The results and analysis of 30−dimensional functions

The experiments conducted on ten-dimensional functions are
repeated on the 30-dimensional functions, the best solutions,
the mean solutions, the standard deviations of the 50 inde-
pendent runs of the ten algorithms for the 24 test functions
are shown in Table 6. The mean FEs (mFEs) and the success-
ful ratios are shown in Table 7. The t tests results are shown
in Table 8. To display the convergence process of different
algorithms, the results of the front four functions are given
in Fig. 3. Figure 3 shows the convergent process of ten algo-
rithms for functions f1, f2, f3 and f4. The figures are only
used to show the convergent process of the ten algorithms,
the detailed solutions can be found in the tables. Figure 3 dis-
plays that SAMCCTLBO has the fast convergence speed for
the functions f1 and f3. CMA_ES has the fast convergence
speed for the functions f2 and f4.

Table 6 displays that SAMCCTLBO can find the theoret-
ical optima for 12 functions f1, f3, f6, f7, f8, f9, f11, f14,
f15, f16, f17 and f19. For functions f1, f3, f8, f9, f16 and
f17, the merits in terms of the best solutions, the mean solu-
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Fig. 3 The representative convergence curves of the ten algorithms

tions, the standard deviations of three TLBOs are the same.
The solutions of them are better than those of other algo-
rithms. CMA_ES has the best performance in terms of the
three merits for functions f2, f4, f5, f12 and f13. For func-
tions f10, f22, f23 and f24, three DEs almost have the same
performance except that the standard deviations of SaDE is
larger than the other DEs for function f22, and smaller than
the others for function f23 and f24. For function f18, all algo-
rithms cannot converge to the acceptable solution, the perfor-
mances of JADE are better than that of other algorithms. The
table also indicates that the performances of DEs for shift
functions are generally better than those of other algorithms
which are used in the paper.

Table 7 shows the mFEs and the successful ratios of dif-
ferent algorithms in the paper. The table indicates that the
mFEs of SAMCCTLBO are less than those of other algo-
rithms for functions f1, f2, f3, f6, f7, f8, f11, f14, f15, f16
and f17. The performance in terms of mFEs of CMA_ES
is better than those of some other algorithms for functions
f4, f5, f9, f12, f13, f19, f21. JADE has the smallest mFEs
for functions f10, f22 and f23. For function f20, SaDE has
the smallest mFEs. SAMCCTLBO and CMA_ES can con-
verge to acceptable solutionswith 100% successful ratios for
15 functions among the 24 test functions. JADE can reach

the acceptable solutions with 100% successful ratios for 17
functions. The performance in terms of successful ratios for
other algorithms is relative lower than these three algorithms.
Table 8 displays that the average excellent ratio of SAMC-
CTLBO is 55.99% for 30-dimensional functions.

4.2.3 The results and the analysis of 200−dimensional
functions

To test the performance of the proposed algorithm in dealing
with higher dimensional problems, some 200−dimensional
functions f2, f4, f5, f12 and f13 are simulated in this section.
The training parameters of these experiments are same as
those for 30-dimensional functions. Because the algorithms
cannot converge to acceptable solutions for large part of func-
tions, only the average solutions, the standard deviations of
the 50 independent runs are listed in Table 9.

Table 9 displays that SAMCCTLBO has better perfor-
mance in terms of the mean and the standard deviations than
those of other algorithms for functions f2, f4, f5 and f12.
The performance of CMA_ES is better than those of other
algorithms for function f13, and the performances of TLBOs
are worse than those of DEs.
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Table 9 Search result comparisons (the average best solutions, standard deviation) among ten algorithms on 5 functions with 200 dimensions

F jDE JADE SaDE CMA_ES PSOFDR PSOwFIPS UPSO TLBO ETLBO SAMCCTLBO

f2 Mean 7.05E+04 1.34E+04 1.62E+04 1.04E+01 1.63E+05 2.18E+05 2.54E+05 3.41E−38 6.92E−34 1.31E−51

SD 3.38E+04 9.76E+03 1.48E+04 6.54E+00 1.07E+05 1.24E+05 1.37E+05 1.05E−38 4.78E−34 1.22E−51

f4 Mean 2.32E+03 1.85E+03 1.58E+03 3.82E+01 1.93E+03 1.38E+03 5.07E+03 2.12E+02 1.31E+02 1.42E−03

SD 1.71E+03 1.06E+03 9.27E+02 1.04E+01 1.53E+03 1.11E+03 2.35E+03 1.05E+02 9.77E+01 1.08E−03

f5 Mean 2.44E+02 1.94E+02 1.95E+02 2.06E+02 2.02E+02 7.22E+02 1.96E+02 1.96E+02 1.95E+02 1.93E+02

SD 1.22E+02 1.03E+02 1.15E+02 1.12E+02 1.07E+02 2.48E+02 1.14E+02 1.07E+02 1.36E+02 1.93E+02

f12 Mean 1.84E+03 3.04E+03 1.76E+03 5.56E+01 1.68E+03 1.87E+03 6.16E+03 1.40E+02 1.82E+02 4.04E−01

SD 1.02E+03 2.17E+03 1.32E+03 3.36E+01 9.75E+02 1.03E+03 3.27E+03 1.01E+02 1.37E+02 2.16E−01

f13 Mean 6.21E+02 5.67E+02 5.58E+02 8.11E+00 2.05E+03 1.22E+03 6.50E+02 3.58E+03 3.34E+03 6.91E+03

SD 2.33E+02 1.98E+02 2.47E+02 3.74E+00 1.23E+03 1.07E+03 3.42E+02 2.17E+03 1.54E+03 4.27E+03

To take full advantage of microteaching, the population
of the SAMCCTLBO algorithm is divided into several sub-
classes, the learning of each learner is now restricted within a
certain sub-classes area and might make the mean solutions
improved quickly so as to fully utilize the whole sub-classes
space and avoid over-congestion around local optima. With
considering the limitation of learning ability of learner of the
same sub-classes, all learners are regrouped randomly after a
certain generation to improve the diversity of the sub-classes
by simulated annealing operator. By analyzing the results of
different algorithms for 24 benchmark functions considered,
one may conclude that SAMCCTLBO has some advantages
compared with some other algorithms. First, for 10-, 30- and
200-dimensional functions, the solution accuracies of SAM-
CCTLBO are generally superior, at least not worse to those
of all variants of TLBO; at the same time, they outperform
those of the largest part of someother algorithms except those
with CMA_ES. Second, the convergence speeds of SAMC-
CTLBO are smaller than those of other algorithms for 17
functions among 10-dimensional functions and 11 functions
among 30-dimensional functions. Third, the successful ratios
of SAMCCTLBO are 100 % for 15 functions among the
24 test functions, and are lower than the part of some other
algorithms for other nine functions, when the algorithm can
converge to the acceptable solutions in all runs for 10- and
30-dimensional functions. Finally, statistical analysis indi-
cates that SAMCCTLBO performs significantly better than
the compared algorithm for the largest functions among the
24 test functions and especially for 30-dimensional functions.
Although the proposed SAMCCTLBO algorithm has good
performance onmost of the functions, it does not perform the
best for all benchmark functions in all different dimensions.
According to the theorem of “no free lunch” (Wolpert and
Macready 1997) one algorithm cannot offer better perfor-
mance than all the others on every aspect or on every kind of
problem. This is also observed in our experimental results.
For example, some algorithms have good performance in

terms of themean and the standard deviations for large part of
functions, but the mFEs or the successful ratios are worse. In
summary, the proposed SAMCCTLBO algorithm has good
performance, and are especially superior, at least not worse
to all variants of TLBO for rotated benchmark functions and
high-dimensional benchmark functions.

5 Conclusions

This paper presents a multi-class TLBO algorithmwith com-
bining the operator of simulated annealing algorithm; the
mean value of sub-class is used in teacher phase to update
the position of student in each sub-class. All learners also
learn knowledge from others in their sub-class. Compare
to original TLBO, there is no removing duplicate process
in SAMCCTLBO, the diversity of different sub-classes is
maintained by regrouped of learners, and the diversity of
whole population is improved by simulated annealing opera-
tor. The results of experiments indicate that the performance
of SAMCCTLBO is not the best for all benchmark func-
tions, but it has good performance of solution accuracy and
convergence speed for rotatedbenchmark functions andhigh-
dimensional benchmark functions.BecauseTLBO is a young
algorithm, it is not widely used in many practical problems.
Future work will emphasize on extensive study of the appli-
cations in more complex practical optimization problems to
fully investigate the properties and evaluate the performance
of SAMCCTLBO.
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