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Abstract This article presents a distributed random search
optimization method, the trust region probability collectives
(TRPC) method, for unconstrained optimization problems
without closed forms. Through analyzing the framework
of the original probability collectives (PC) algorithm, three
potential requirements on solving the original PC model are
first identified. Then an interior point trust region method for
bound constrained minimization is adopted to satisfy these
requirements. Besides, the temperature annealing schedule
is also redesigned to improve the algorithmic performance.
Since the new annealing schedule is linked to the gradient,
it is much more flexible and efficient than the original one.
Ten benchmark functions are used to test the modified algo-
rithm. Numerical results show that TRPC is superior to the
PC algorithm in iteration times, accuracy, and robustness.

Keywords Random search optimization · Probability
collectives · Trust region

1 Introduction

Probability collectives (PC) algorithm is a distributed ran-
dom search optimization method. It is an extension and for-
malization of the collective intelligence (COIN) framework
with deep connections to game theory, statistical physics, and
optimizations for modeling and controlling of the distributed
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multi-agents system (MAS) (Bieniawski and Stefan Richard
2005; Wolpert 2006; Kulkarni et al. 2008; Lee et al. 2004).

Insights of PCmainly focus on two points. The first one is
that PC is a distributed algorithm. It means each agent inde-
pendently improves the local objective and updates its own
actions according to rewards from the previous round. This
process will continue until no further increase in rewards
could be made for an individual agent, which, from the per-
spective of game theory, is exactly theNash Equilibrium. The
second point is that PC algorithm allocates probability val-
ues among the possible strategy set instead of operating on
variable values. The strategies with higher probability will
have more opportunities to show up in the next round, and
those with lower values are abandoned in terms of proba-
bility. So PC algorithm will ultimately converge to a dis-
tribution which has a high probability value (≈1) near the
optimal strategy, while assigning the other feasible regions
a relatively low probability value (≈0). In addition, besides
the optimal solution, PC also provides a ‘slice’ of the mul-
tidimensional objective function, which describes the vari-
ation trend of the function. These main features make PC
algorithm quite different from the other random search algo-
rithms such as genetic algorithm (GA), simulated annealing
(SA) and swarm optimization and allow it to solve problems
with discrete, continuous andmixed variables (Kulkarni et al.
2009).

PC process shares the same spirit with various meth-
ods such as mutual-information-maximizing input cluster-
ing (MIMIC), population-based increased learning (PBIL)
and distributed reinforcement learning (DRL). The similarity
among these methods is that they all take learning processes
and use probability distributions to guide the optimizing pro-
cedure instead of operating directly on the variable values.
However, eachmethod still maintains its own characteristics.
PC uses gradient-based optimization methods and function
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values to adjust the probability distribution. In comparison,
MIMIC directly uses truncated samples and PBIL adopts the
idea of GA which simulates the evolution of a population to
find the final solution. Besides, PC pays more attention on
how individual can influence system’s performance with the
presence of the other agents than the DRL does and thus is
particularly suitable for distributed problems (Kulkarni and
Tai 2010a; Kulkarni et al. 2010b; Autry and Brian 2008;
Busoniu et al. 2008).

The PC algorithm is first presented byWolpert and Bieni-
awski (2004). Since then, lots of modifications and applica-
tions have already been developed. Lee et al. (2004) replace
the world utility (called Team Game) with private utility
(called Aristocrat Utility) to cut down the sample size used in
the original algorithm with no bias and low variance. Bieni-
awski and Stefan Richard (2005) show that the data aging
technique can be used to reduce the sample size effectively.
Kulkarni and Kang modify the sampling rule on original
MontE−Carlo by narrowing the sampling region around the
current optimal points (Kulkarni et al. 2008; Lee et al. 2004).
Some updating strategies, such as steepest decent method,
nearest Newton method and Brower fixed point method have
also been developed (Wolpert et al. 2011). TheBFGSmethod
is used to optimize the model by Kulkarni et al. (2011).
Besides these,Wolpert et al. (2011) classify the original PCas
‘delayed sampling PC’ and put forward another ‘immediate
sampling PC’ using the importance sampling and parametric
machine learning technique.

There are also some applications of the PC algorithm.
Numerical results on a set of benchmark functions show
that PC method outperforms the traditional GA algorithm
in the rate of descent (Huang et al. 2005). PC is also used
to improve the Metropolis-Hastings sampling and mecha-
nism design work (Wolpert and Tumer 1999, 2001, 2002).
More widely, it has also been used in some combinatorial
problems such as multi-depot multiple traveling salesmen
problem (MTSP) (Kulkarni and Tai 2010a; Kulkarni et al.
2010b), the singlE−depot MTSP (Kulkarni and Tai 2010a;
Kulkarni et al. 2010b), the fleet assignment problem (Antoine
et al. 2004), school table scheduling problems (Autry and
Brian 2008) and vehicle routing problems (Kulkarni and Tai
2010a; Kulkarni et al. 2010b).

However, following Wolpert’s PC algorithm which is
based on the random sampling, some potential improvements
still could be figured out. First of all, it is noticed that the gra-
dient derived from the ‘Maxent Lagrangian’ model directly
influences the effect of the original algorithm. In fact, since
the gradient contains both the expectation (E(G)) and con-
ditional expectation (E(G|x)) of the function value, which
are estimated through MontE−Carlo Sampling, the original
algorithmmay not always guarantee a satisfying result due to
the estimation error. For example, if the authentic value of the
expectation (E(G)) is 1,000 and the nearest Newton method

is used to update the probability, one percent estimation error
from this numbermay generate an unbearable outcome, since
the errorwill hugely change the descent direction and destroy
the basis of the iteration. Second, the calculation of step size
along the descent direction can also be a big challenge for
the PC model, because choosing the best step size needs to
update the probability and use MC sampling to evaluate the
function value repeatedly. Finally, the temperature T is vital
to the PC algorithm, so a fixed proportional decrease may
not be a satisfying schedule.

With respect to the above analysis, a mixed PC algorithm
is presented in this paper, which combines the trust region
(TR)method and thePCalgorithm.Anewadaptive annealing
schedule is also adopted to replace the original one. Numer-
ical experiments show that the performance of the proposed
algorithm outperforms the original PC algorithm.

The article is organized as follows: in Sect. 2, the original
PC algorithm is first reviewed. Then the proposed PC algo-
rithm is elaborated in Sect. 3. And in Sect. 4, the performance
of the new algorithm is illustrated by the results of 10 bench-
mark functions and comparisons with another modified PC
algorithm are also made. Finally, conclusions are given in
Sect. 5 and future researches are also discussed.

2 The original PC algorithm

2.1 The framework

Different from the conventional ‘black box’ optimization
methods, PC algorithm focuses on the distribution over a
strategy set of each variable instead of the variable val-
ues. Through adapting distributions, the original problem is
inverted to a new problem over a convex space of probabil-
ity distributions with variables taking real values (probability
values) on their feasible regions. Thus powerful deterministic
optimization tools could be involved to resolve this problem.

In PC algorithm, variables can be viewed as intelligent
agents. Every agent independently selects actions from its
own particular intervals, gets local rewards based on the
objective function per iteration and decides its next round
of action according to the previous rewards. The actions that
make greater contributions to the global optimizationwill get
higher probability values and could be more likely to appear
in the next round while those making little or no contribu-
tions will have lower probability and finally disappear from
the optimal strategy set in terms of probability. As this iter-
ative process continues, the system will ultimately reach an
equilibrium which means the objective function can not be
further improved through allocating the probability among
strategies and the probability distribution has already con-
verged to the optimal one. At this time, the optimal solution
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is the combination of actions with the highest probability in
each agent.

Another way to interpret this PC theory is through Game
Theory. If the final equilibrium is viewed as a direct choice
of a group of fully rational agents, then the whole PC process
could be viewed as a bounded rational game: through a
learning process, each agent explores both possible moves
and payoff matrix and then gradually converges towards the
Nash Equilibrium. It is worth noting that during this process,
actualmoves of every agent are independent and all couplings
between the agents occur indirectly; it is not their moves but
the separate distributions of the agents that are coupled.

2.2 The original models

Consider the following unconstrained optimization problem:

min
x

G(x), (1)

whereG(x) is the objective function and x = (x1, x2, . . . , xn)
is the variable/agent vector.

Let qi be a distribution over the i th agent’s strategy set.
The optimization problem can be seen as a non-cooperative
game with n independent players. Each player has its own
strategy set in the game and the goal is to reach the Nash
equilibrium, so the problem can also be described as

min
q

Eq [G] =
∫

G(x)
∏

i
qi (xi )dx (2)

The subscript in the expectation suggests its value depends
on the distribution q = ∏

qi.
However, as mentioned above, the full rationality assump-

tion in game theory usually cannot be satisfied. It means the
optimal probability distribution cannot be found directly but
can only be approximated step by step. In other words, the
uncertainty of the final distribution is decreased gradually
during the game. So if the Shannon entropy is employed here
to measure the uncertainty of the distribution q, it satisfies

S(q) = −q(x) ln q(x) (3)

and the entropy should gradually decrease as the objective
function approximates the minimum. Note that according to
the maximum entropy principle, distribution q should keep
the minimal amount of extra information beyond the prior
knowledge; thus the entropy should be the largest and equal-
ity is used instead of inequality.

So the original problem can also be described as follows:

min
q

Eq [G] = ∫
G(x)

∏
i qi (xi )dx

s.t. S(q) = s∫
qi (xi )dxi = 1

qi (xi ) ≥ 0

(4)

where s is the prior knowledge about the distribution.

The last two constraints are to keep the distribution nor-
malized and will be satisfied through iterations. Using the
Lagrange multiplication operator, we can get

min
q

L(q, T ) =
∫

G(x)
∏

i
qi (xi )dx − T (S(q) − s), (5)

where T is a Lagrange parameter, also referred to as the tem-
perature, which is fixed during one iteration and decreases
as this iteration finishes. The objective function (5) is called
Maxent Lagrangian and widely used in statistical physics,
where it is referred to as free energy.

Since q is a product joint distribution, the entropy could be
written as a summation form. Sominimizing the local/private
objective function for each agent will simultaneously mini-
mize the global problem. Thus the objective function could
be further written as

min
qi

L(qi , Ti ) =
∫

G(x)
∏

j
q j (x j )dx − Ti (S(qi ) − si ),

i = 1, 2, . . . , n (6)

Here the private objective functions are set to equal the global
objective function, which is called Team Game (TG). A nat-
ural thought of solving this problem is to gradually decrease
si and find a certain distribution that matches S(qi ) = si in
each time. Then the distribution will automatically approx-
imate the optimal solution. When si becomes sufficiently
small, the unique distribution thatminimizes the problem can
also be found. However, in Wolpert and Lee (2004), temper-
ature T is shown to be non-decreasing with si , which means
si decreases as T decreases. Besides, the process of decreas-
ing temperature is much easier than the one decreasing si .
So objective (6) can be equally shown as the formula below:

min
qi

L(qi , Ti ) =
∫

G(x)
∏

j
q j (x j )dx − Ti S(qi ),

i = 1, 2, . . . , n (7)

In statistical physics, equations above are also called Boltz-
mann equations and solutions to them are

qi (xi ) ∝ exp

(
− E(qi )(G(x)|xi )

T

)
, i = 1, 2, . . . , n,

which is called the Boltzmann distribution. The subscript
in the conditional expectation means its value depends on a
joint distribution without qi. It reflects that the probability of
agent i choosing pure strategy xi depends on the effect of
that choice on the utilities of the other agents.

3 Trust region PC method (TRPC)

The establishment of the Maxent Lagrangian is excellent,
since it successfully converts the primal problem into the
probability space and the rest of the work is to solve formula
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(7). However, not all gradient-based optimization methods
are suitable to this model and some potential requirements
should be satisfied. So, in this section, these requirements are
first identified and then the new PC algorithm is presented.

3.1 Potential requirements

Consider formula (7), we can get

∂L

∂qi (xi = j)
= E[G|xi = j] + Ti [1 + ln qi ( j)] (8)

So gradient-based methods could be used to find the optimal
q* if a fixed temperature T is given. Since the closed form
of G(x) is not known, here MontE−Carlo sampling is used
to estimate the conditional expectation value (E[G|xi = j])
in Eq. (8).

However, the adoption of MontE−Carlo sampling will
bring some critical problems that should be considered.
First of all, the optimization method should be an inte-
rior point method, because in each iteration the values we
update are probability values and they are used to per-
form MontE−Carlo sampling and calculate the entropy. So,
the optimization method should automatically guarantee the
probability value within [0, 1]. (Standardization may not be
necessary, it will be discussed later.) Second, the calculation
of the step size should be avoided, which can be extremely
costly in this model. For example, if a descent direction is
given and two step sizes are compared, we need to use them
to update probability distributions, sample under the new
distributions and evaluate the new function values. When
the step size is a real number, this whole method becomes
unpractical. Third, since the gradient of L contains condi-
tional expectation (E[G|xi = j]) which may have random
errors in practice, the algorithm should not only guarantee
an effective descent in each iteration but should also show
tolerance to the randomness and estimation error.

Former PC algorithms did not fully solve all of these prob-
lems. In the most widely used Nearest Newton Method, the
interior point requirement is satisfied through the iterative
step

qi( j) ← qi( j) − αqi( j) × {E(gi|xi = j)

−E(G) + T [S(qi) + ln qi( j)]} (9)

It can be easily checked that
∑

j qi( j)× {E(gi|xi = j) E(G)

+ T [S(qi) + ln qi( j)]} = 0. So it seems that the summa-
tion of the probability should always equal to one in every
iteration if the algorithm starts from a distribution like the
uniform distribution. However, this iterative step works well
only when the error of estimation E(G|xi = j) is small,
which can hardly be guaranteed in iterations especially in
the very beginning. Besides that this equation also can not
guarantee every new qi( j) to be strictly positive during iter-
ation. Though the negative qi( j) can be set to zero, in an

extremely bad situation there exists possibilities that all of
qi( j)s become negative through this updating.What isworse,
the directly setting method could also make the summation
of probability smaller than 1, which could influence both
the MC sampling and the entropy. Finally, it seems that the
parameter α plays a role like step size to ease the error of
estimation and keep the iteration on its track. But a small α

will also shrink the effect of descent along a correct direction.
Given all of these problems, here a Trust Region method

is used to solve the Maxent Lagragian. Before introducing
details, a slight modification of model is needed. Note that
the equation constraint∫

qi (xi )dxi = 1 , i = 1, 2, . . . , n

may not be necessary, since the purpose is to set one or a
few probability values to be large (≈1) while the others to be
zero and this equation is needed only when theMC sampling
is performed or the entropy is calculated. So the probability
can be standardized just before these two calculations and
kept within (0,1) at the other time. In other words, we only
need to keep each probability value between 0 and 1 when
solving the Maxent Lagragian but standardize it just for MC
sampling and entropy calculation. Thus this constraint can
be loosened and the model can be changed to

min
qi

L(qi , Ti ) =
∫

G(x)
∏

j
q j (x j )dx − Ti S(qi ),

i = 1, 2, . . . , n

s.t. 0 < qi (xi ) < 1 (10)

3.2 The trust region probability collectives (TRPC)

Now the original problem has been transformed into a min-
imization problem subject to bounds and the new algorithm
can be discussed in detail. Considering all of the require-
ments, we redesign the updating rule of T and introduce
a modified trust region (TR) method dealing with bounded
variables, whichwas first presented byColeman et al. (1996),
to solve the Maxent Lagragian.

First, a vector v(x) and an affine scaling matrix D(x) are
defined as follows:

Definition 1 Let v(qi ) = (vi1, vi2, . . . , vin) be a vector for
qi , and then

vi j =
{
qi j − 1, if ∇Li j < 0
qi j , if ∇Li j ≥ 0

where qij is the probability value of the j th strategy.

Definition 2 For all v(qi ), let

D(qi ) = diag(|v(qi )|−1/2),

where diag(·) denotes a diagonal matrix.
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Based on these two definitions, the quadratic sub-problem
in TR can be defined as follows. Here the result is given
directly and more details are presented in Appendix A.

mk(s) = gTk s + 1

2
sT Mks, (11)

where

gk = D−1
k ∇Lk = diag(|v(qi )|− 1

2 )

Mk = D−1
k Bk D

−1
k + diag(∇Lk)Jk

Jk plays a role of the Jacobian matrix of |v(qi )| to allow for
a second-order Newton process (Coleman et al. 1994). We
set Jk = diag(sign(∇(Lk)).

Following (11), it can be easily checked that the statements
below hold.

(a) gk = 0 iff the first-order necessary conditions for
form (10) are satisfied.

(b) Mk is positive definite and gk = 0 iff the second-
order sufficiency conditions are satisfied.

(c) Mk is positive semi-definite and gk = 0 iff the
second-order necessary conditions are satisfied.

So qi will be a local minimum of model (10) iff s = 0 is
a solution to the quadratic sub-problem

min
s

{
mk(s) = gTk s + 1

2
sT Mks : ‖s‖ ≤ �k

}
(12)

Hence solving the sub-problem (12) is a reasonable step to
attempt when qi is not a local minimizer.

Here, a so-called dog-legmethod is used to approximately
solve the problem and it can be checked that solutions under
this method satisfy the assumptions for sufficient reductions
which can guarantee the convergence of the algorithm. Still,
the result is directly given here and more details are shown
in Appendix B.

Here, three cases are considered:
(a) If the trust region radius is sufficiently large (

∥∥sB∥∥ =∥∥∥−M−1
k gk

∥∥∥ ≤ �k), sB is exactly the solution.

(b) If the trust region radius is rather small (
∥∥sU∥∥ =∥∥∥∥ − gTk gk

gTk Mkgk
gk

∥∥∥∥ ≥ �k), ||αsU || = �k could be the solution.

(c) Otherwise, the solution should be a combination of
sBand sU , namely sU+(τ -1)(sB −sU ), and τ could be solved
by ||sU+(τ -1)(sB − sU )|| = �k.

So thewhole TRPCalgorithmcan be described as follows:

Step 1 Check the stop criteria. If
∑

j ||qkij − qk−1
ij || ≤ η, then

stop the algorithm and the current distribution is the optimal
solution. Otherwise, execute the next step.

Step 2 Use MontE−Carlo sampling method to sample from
current distribution qk in the kth iteration and estimate the
expectation value E(G(x)) and E(G|xi).

Step 3 According to E(G|xi ), calculate T by the annealing
schedule for each agent, and calculate the gradient.

Step 4 Use BFGS method to update Bk as an approxima-
tion to the Hessian matrix and obtain sk by (approximately)
solving the sub problem (12). rk can be evaluated from

rk = Lk − L(qk + sk)

mk(sk)

Then,
If rk < ε, set �k+1 = ||sk ||/4;
if rk > 0.75 and ||sk || = �k , set �k+1 = 2||sk ||;
otherwise, set �k+1 = �k .
To get an approximation of the exact s∗

k in the sub-problem
by dog-leg method, define

sB = −M−1
k gk, sU = − gTk gk

gTk Mkgk
gk

and choose sB as s* if ||sB || ≤ �k . Otherwise, we replace
s* with the following form:

s̃k(τ ) =
{

τ sU 0 ≤ τ ≤ 1
sU + (τ − 1)(sB − sU ) 1 ≤ τ ≤ 2,

where τ is solved through ‖s̃k(τ )‖ = �k .
Note that, it is necessary to generate another sample set to

evaluate L(qk + sk).

Step 5 If rk >0, then qk+1 = qk + sk . Otherwise, let qk+1 =
qk , and go to Step 1.

3.3 Annealing

Temperature T plays an important role in the performance
of PC for balancing the full rational (the expectation) and
irrational (the entropy) parts in the Maxent Lagrangian. Like
in SA, it is also necessary to gradually decrease T in PC to
reach the optimal point. Since a quickly decreasing T may
lead to local optimum while a relatively slow reduction may
cause too many samplings and iterations, a proper annealing
schedule is quite significant.

Traditional annealing schedule is a geometric schedule
that decreases T proportionally by multiplying a fixed para-
meter. However, the temperature T used here is quite differ-
ent from T used in the simulated annealing algorithm. Since
the gradient contains T , it is possible to further describe rela-
tionships among the temperature, search scope and accuracy
of the algorithm. Thus a much more flexible and efficient
schedule can be presented.

Considering the structure of the gradient (8),

∂L

∂qi (xi = j)
= E[G|xi = j] + Ti [1 + ln qi ( j)]

for the i th agent; the conditional expectation describes the
payoff of its every strategy given the moves of the other
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Fig. 1 E(G|x) of function f (x) = x2 with 50 samples

agents. In other words, E(G|xi = j) tells us what the
expected objective value we will get when we choose strat-
egy j for agent i under other variables’ current probability
distributions. And the picture of the conditional expectation
E(G|xi = j) reflects how the objective value varies accord-
ing to the different strategies of agent i . It looks just like a
‘slice cut’ of the objective function. So the optimization of
the Maxent Lagrangian can also be interpreted as increas-
ing the probability of strategy with low conditional expec-
tation while decreasing the probability of those with high
conditional expectation. Thus, the whole second term in gra-
dient (8) can be treated as a controller, through which the
negative gradient value can be assigned to the strategy with
smaller conditional expectation and positive gradient values
are assigned to the larger ones at the same time. And since
the optimal direction in TR is roughly along the opposite
direction of the gradient, the strategies with negative gradi-
ent value can get a higher probability in the next round and
strategies with positive gradient value will lower its proba-
bility value. So, through controlling T, we can control the
positivity and negativity of the gradient and thus control the
increase and decrease of the probability value. In practice,
the temperature T can be adjusted according to the corre-
sponding probability.

For example, Fig. 1 shows the conditional expectation of
quadratic function f (x) = x2, x ∈ (−2, 2) with 50 samples
per iteration. Here [−2, 2] is equally dividedwith 200 points.

Line (a) in Fig. 1 is exactly the second term of the gradient,
namely we chooseTij[1 + ln(qij)] = −1. Note that gij =
E(G|xi = j) + Tij[1 + ln(qij)], so the gradient value gij is
positive in the intervals −2 ≤ xi j ≤ −1 and 1≤ xi j ≤ 2 and
negative in the interval (−1 ≤ xi j ≤1). Since xi j ∈ (−2,−1)
∪(1, 2) can generate a larger objective function value than
those from the interval (−1, 1), the probability corresponding
to the former regions should decrease while the probability
to the latter region should increase in the next iteration. Thus
the gradient can be used to generate the descent direction
needed. Based on this interpretation, the annealing process
can be viewed as both lowering line (a) and narrowing the

Fig. 2 Function f (x) = sin(2x) + sin(x) with 50 samples

probability increasing region on the x-axis. The closer of the
controller decreases to 0, the closer of the region narrows to
the optimal point. Finally, there will be only one point left
that should increase its probability.Besides, as the probability
value gradually concentrates on a narrow area, so does the
sampling. For example, in Fig. 1, the algorithm will finally
assign a high probability (≈1) around x = 0, so samples
generated by MontE−Carlo samplings will be around x =
0. Thus E(G(x)) will finally approximate a certain value
through these iterations.

The new annealing schedule will also give us another
insight into the optimization process. Considering the func-
tion f (x) = sin(2x) + sin(x) for x ∈ [0, 6], the corre-
sponding E(G|x) is shown in Fig. 2. It is clear that there
is a local minimum and a global minimum in this function.
At the beginning of the algorithm, the controller is set to be
a relatively high value (the upper line (a) in Fig. 2). Obvi-
ously, the probability of any xi = j that has E(G|xi = j)
above the line (a) will decrease in the next iteration and the
probability values of points near the local and global opti-
mal solution will be increased. In other words, when using
line (a), MC sampling will mainly focus on the areas round
the local minimum and the global minimum. However as we
gradually lower the controller from line (a) to line (b), since
the conditional expectation of the local minimal (i.e. E(G|xi
= local minimum)) is now above the line (b) and its gradient
value changes from negative to positive, the corresponding
probability will begin to decrease. Sowhen using line (b), the
probability-increasing region will only be the areas around
the global optimal point. And as the process continues, it will
ultimately be picked out.

Besides that, note that the optimal solution of the Maxent
Lagrangian is on the boundary of the feasible region, which
means the probability is either close to 1 or 0 with negative
and positive gradient, respectively. So the final solution sat-
isfies the first-order necessary conditions of the local optimal
point.

The estimation of E(G|x) is another important part in our
algorithm. If the conditional expectation is known at the first
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Stop

N

Convergence ? Y

Evaluation values: 
    Evaluate E(G(x)) & E(G|xi)
    Evaluate Bk using BFGS
    Update T

TR method: 
    Solve sub problem to get new qk
    Monte-Carlo sampling

        Initialization: 
            Parameter setting
            Initial sampling

Fig. 3 Procedure of TRPC algorithm

iteration, the optimal point can be directly found. However,
E(G|x)may not be as precise as being expected in the begin-
ning or even in the end of the algorithm, especially when
the sample size is small. And the randomness in the estima-
tion can hardly be eliminated. So, even though TR method is
used, the newPCalgorithm still has characteristics of random
searchmethods. In general, the estimation can be viewed as a
process that graduallymakes E(G|x) clear under the guide of
probability. At first, the algorithm equally pays its attention
to every point of the space and gets a rough description of
the objective function. However, in the following rounds, as
the probability concentrating, the algorithm can focus only
on a narrower area and describe E(G|x) more accurately
than previous rounds did. As this process continues, TRPC
gradually narrows the areas which may include the global
optimal and finally pick out an interval that indeed contains
the optimal point.

In practice, the gradually shrinking controller is a good
choice, but here a much easier strategy is used. In each itera-
tion, the minimal E(G|x) is figured out and the largest value
in its neighborhood is chosen as the controller. As the algo-
rithm goes on, if the distribution keeps unchanged for sev-
eral iterations, we sharply narrow our controller to be min
E(G|x)+ε. This strategy can be called the two-phase sched-
ule. The selections of the width of neighborhood and value
of ε all depend on the objective functions. To deal with this,
several TRPC iterations (say 1000) could be ran with very
large width and ε to observe the trend of objective function
through E(G|x). For functions changing sharply, numerical
experiments show that the width and ε with small values can
find the global minimum more efficient than large ones.

So far the new TRPC algorithm has been discussed in
detail. The whole procedure is described in Fig. 3. It is worth
noting that qi may not be updated in every iteration. If qi+1 =
qi in the kth iteration, samples generated in two iterations can
be incorporated.

4 Experimental results

To compare arithmetic performance of TRPCwith that of the
original PC algorithm, the same benchmark functions used
in (Huang et al. 2005) are also adopted here. The four bench-
mark functions areRosenbrockFunctionwith 10dimensions,
Ackley Function with 10 dimensions, Schaffer’s 7 Function
with 2dimensions andMichalewicz’sEpistaticFunctionwith
10 dimensions. Besides, another 6 functions are also used.
In total, the new algorithm is tested by ten benchmark func-
tions, within which 6 of them are of 10 dimensions and 4 are
of two dimensions.

As mentioned in Huang et al. (2005), the performance
of the original PC algorithm has no difference under the
sample size 25 and 50. But in TRPC, it does make sense to
increase sample size, so we use 40–50 samples per iteration
in our algorithm. Besides, since the original PC algorithm
usually needs thousands of iterations while our TRPC algo-
rithm acquires satisfying results within 2,000 iterations, it
is inconvenient to show their convergence processes in one
figure. So here we show the performance of the original PC
and TRPC separately.

In this section, wemainly focus on the first four functions.
The results generated by the TRPC algorithm are explicitly
explained and comparisons are also made with that of the
original PC algorithm. For the other six functions, since the
results are very similar, their results are only listed in the
table.

The numerical experiments were implemented usingMat-
lab 2010b in Vista operating system and run on a personal
computer with Intel(R) Core(TM) 2 2.00GHzCPU and 2GB
of RAM.

4.1 Comparison with the original PC

(1) The Rosenbrock function
The Rosenbrock function is one particular case discussed

in Huang et al. (2005). Its definition is

f (x) =
N−1∑
i=1

[100(x2i − xi+1)
2 + (1 − xi )

2],

where x = (x1, x2,... , xN ,), -5� xi �5 and N = 10. The
optimal point is (1, 1,…,1) and the corresponding function
value is 0.

Figure 4a shows the results obtained by the original PC.
The x-axis shows iteration times and the y-axis is the value
of E(G). Figure 4b just displayed a detailed view from the
range of the E(G) on the interval [0,1,000]. In the figure,
one can see that the function value is still near 100 after
1,000 iterations by using the original PC. However, for the
same function, a satisfactory result is acquired within 1,200
times of iteration by our new TRPC algorithm. The results
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Fig. 4 Performance of the original PC on Rosenbrock function

are shown in Figs. 5, 6. Although TRPC method needs more
samples in this case, it sharply decreases the value of objec-
tive function from 4,000 to 10 within 10 iterations and the
algorithm accurately finds the global optimum.

It should be noted that E(G) is used here for the con-
venience of comparing with Huang’s numerical results, but
it is not the final objective value. The final optimal value
comes from G(x∗) with setting x∗ the point with the high-
est probability value in each agent. In addition, the accuracy
of the result is closely related to the range of intervals and
discretization.

Other outputs of the new algorithm are shown in Fig. 6.
Figure 6a presents the curve of E(G|x), and Fig. 6b shows the
probability values of xi j . Here, [−2, 2] is equally divided into
200 intervals to discretize the continuous function. So x-axis
ranges from 0 to 200 in both figures. In Fig. 6a, the curve x1
depictsE(G|x1), the×10depictsE(G|x10), and the other vari-
ables share the same unlabeled curve. Since the closed form

of the objective function is not known, Figure 6a provides
some useful information about it. First, (−1, 1, 1, . . ., 1) is
a local optimal point since the curve x1 is close to the x-
axis at x1 = −1 when the other variables have values 1.
Second, a slight change of x10 will not cause big changes
in the objective value because the curve x10 is relatively flat
around its optimal solution. Third, the variables x2, …, x9
are symmetric because their curves overlap. The final prob-
ability concentrates on point (1,1,…,1) and the exact values
are shown in Table 1. It is clear that f ∗ = 0.

(2) The Ackley function
The Ackley function is another case discussed in Huang

et al. (2005). The definition of the function is

f (x) = −ae−b(
∑

i x
2

N )1/2 − e
∑

i cos(cxi )
N + a + e,

where a = 20, b = 0.2, c = 2π , N = 10, −3 � xi �3. The
optimal point is (0,0,…,0) and f (0, 0, . . ., 0) = 0.
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Fig. 5 E(G) by TRPC in Rosenbrock function

Figure 7a, b show the results of TRPC and Fig. 8 displays
the results of the original PC. This experiment may be more
persuasive than the Rosenbrock function, because we only
use 40 samples per iteration for our TRPC in this case and
obtain the satisfying result within 1,500 iterations. However,
in contrast, the original PC algorithm needs more than 8,000
iterations. The result once again shows that TRPC method
outperforms the original PC algorithm.

Similar to the Rosenbrock function, Fig. 9a provides
us with information about the objective function through
E(G|x) and Fig. 9b shows the optimal point should be
x = (0, 0, . . ., 0). It is clear that this function only has one
global optimum and all xi are symmetric. The final probabil-
ity is shown below (Table 2).

In this case, it is worth noting that the f ∗ is 0.0427 since x3
deviates from 0 by one unit (0.03 in this case). The reason for
this deviation is the two phase schedule. The ε we use in min

E(G|x)+ε is too small, so even TRPC finds the right candi-
date area in the first phase, the probability concentrates too
fast on the false optimum without exploring other potential
points around it. This problem could be solved using more
phases in the annealing schedule.

(3) The Schaffer’s function F7
The third benchmark function used in the literature is

Schaffer’s function F7. The function is defined as

f (x) = (x21 + x22 )
0.25[sin2(50(x21 + x22 )

0.1) + 1],
where −2 � xi � 2 for i = 1, 2. The optimal point is (0,0)
and the function value at this point is 0.

Figure 10a was obtained by TRPC using one point every
ten iterations to compare with the result of the original PC
algorithm, which is shown in Fig. 10b. At first glance, these
two figures above seemingly make no difference between
TRPC and PC. But if we look at the probability, it is obvious
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Fig. 6 E(G|x) and P in Rosenbrock function

Table 1 Probability values in Rosenbrock function

P Prob Agt 146 147 148 149 150 151 152 153 154

q1 2.56E−08 2.56E−08 2.56E−08 2.56E−08 0.999995 2.56E−08 2.56E−08 2.56E−08 2.56E−08

q2 5.29E−08 5.29E−08 5.29E−08 5.29E−08 0.999989 5.29E−08 5.29E−08 5.29E−08 5.29E−08

q3 1.24E−08 1.24E−08 1.24E−08 1.24E−08 0.999998 1.24E−08 1.24E−08 1.24E−08 1.24E−08

q4 1.37E−08 1.37E−08 1.37E−08 1.37E−08 0.999997 1.37E−08 1.37E−08 1.37E−08 1.37E−08

q5 4.87E−08 4.87E−E−08 4.87E−08 4.87E−08 0.999990 4.87E−08 4.87E−08 4.87E−08 4.87E−08

q6 6.71E−08 6.71E−08 6.71E−08 6.71E−08 0.999987 6.71E−08 6.71E−08 6.71E−08 6.71E−08

q7 1.01E−07 1.01E−07 1.01E−07 1.01E−07 0.999980 1.01E−07 1.01E−07 1.01E−07 1.01E−07

q8 5.50E−08 5.50E−08 5.50E−08 5.50E−08 0.997517 0.002473 5.50E−08 5.50E−08 5.50E−08

q9 7.19E−08 7.19E−08 7.19E−08 7.19E−08 0.999986 7.19E−08 7.19E−08 7.19E−08 7.19E−08

q10 1.60E−08 1.60E−08 1.60E−08 0.000801 0.999196 1.60E−08 1.60E−08 1.60E−08 1.60E−08

that the optimal point has already been found within 2,000
iterations by TRPC. The gap between the E(G) and the opti-
mal value 0 is due to the randomness and discretization.

From Fig. 11a, it is clear that there are many local mini-
mums in interval [−2, 2], and TRPC is not trapped in any of
them and successfully find the global optimum. The optimal
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Fig. 7 E(G) by TRPC

function value f ∗ is 0 in this case. Table 3 below gives the
final probability.

(4) The Michalewicz’s epistatic Function
The final test function used in the literature is the

Michalewicz’s epistatic function, which has the following
form:

f (x) = −
N∑
i=1

sin(yi ) sin
2m

(
iy2i
π

)
,

where

yi = xi cos
π

6
− xi+1 sin

π

6
if i mod 2 = 1 and i �= N ;

yi = xi−1 sin
π

6
+ xi cos

π

6
if i mod 2 = 0 and i �= N ;

yN = xN ;

0 � xi � π for i = 1, 2, . . ., N .

m = 10;

The optimal function value is −9.66 when N = 10.
Figure 12a shows the E(G) generated by TRPC while

Fig. 12b shows the results of original PC. The advantage
of the TRPC method is even more obvious in this exper-
iment. Though fluctuating sharply before 1,800 iterations,
E(G) finally keeps stable at −9.5526 in TRPC. However, in
the original PC algorithm, the objective value is larger than
−9 even after 10,000 iterations. The gap between −9.662
and −9.552 is due to the discretization.

Here we pick out E(G|xi ) of x1, x4, x8 and x10. It is inter-
esting to note that xi has i local minimums in this function.
It should be pointed out that for the convenience of coding,
Fig. 13 shifts theminimum E(G|xi ) to the point zero, but this
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Fig. 8 Performance of the original PC on Ackley function

does not influence the other parts of the algorithm. And the
figure below shows probability values. The actual probability
value table is omitted since the optimal points are separated
fromeach other and can hardly be put into one table (Fig. 14).

4.2 Other numerical experiments

Besides the functions used in Huang et al. (2005), here
another 6 test problems are chosen and the results are listed in
Table 4. The fifth column of Table 4 are solutions fromTRPC
and the last column is the analytical optimal solutions.

4.3 Comparison with another PC modification

AnotherPCmodificationhere refers to themethodmentioned
inKulkarni et al. (2009). For convenience, we call it modified
PC (MPC) below. Its main process is shown in the following
figure:

The main character of the MPC is that it indeed shrinks
the sampling space per iteration. According to the current
best solution (or ‘Favorable Strategy’ in the literature), it
artificially sets upper and lower bounds (Favorable Strategy
±(0.5 or 0.1)*Favorable strategy) for the sampling space.
The advantage of this setting is that it improves the accuracy
of the final solution. However, since it still uses the Nearest
NewtonMethod to update the probability, the problemsmen-
tioned in Sect. 3.1 still exist and it clearly shows in Fig 15 that
a large number of probability updating (k*n times) is needed
to ‘sharpen’ the probability of the current best solution per
iteration. So, theMPC does not change the updating equation
of the original PC; instead, it redesigns the whole process to
increase the number of probability updating in each iteration

and limits the sampling space to compensate for the potential
ineffectiveness of the iterative step.

In contrast, TRPC totally changes the iterative step and
thus can make the probability very close to 0 and 1, which
means it can shrink the sampling space in terms of probabil-
ity but does not actually change its interval. In other words,
MPC directly limits the sampling space around the current
best solution but TRPC uses temperature T to manipulate
the gradient and then controls the increase and decrease of
the probability and thus finally locks on the best solution.
So, TRPC has more efficient probability updating than that
of MPC. But the discretization will have more impacts on
TRPC’s final solution than on the MPC’s, since it does not
actually reduce the search interval. This could be the major
disadvantage of the TRPC method.

Although the Rosenbrock function in Kulkarni and Tai
2009 is 5 dimensions and the range for each variable is differ-
ent, this will not influence the comparison between these two
methods. The reasons for this are as following: First, TRPC
could find the optimal solution within 1,200 times function
evaluations even in a harder problem (10 dimensions), while
MPC needs 2.047×105–3.591×105 iterations. This clearly
shows TRPC needs less function evaluations. Second, the
actual search interval in both methods is not related to the
dimension. In TRPC, it is [−2, 2] for each variable from
the beginning to the end. The discretization is also on the
same interval. But inMPC, the actual search interval is deter-
mined by the lower and upper bounds (favorable strategy
±0.1*favorable strategy) and the final discretized intervals
are [−1,−0.9] for x1, [1, 1.1] for x5 and [0.9, 1.1] for the
other variables. Since the final search interval in MPC is
much smaller than that of TRPC, the variation of the optimal
solution in MPC (±10−3) is also less than TRPC’s (±10−2).
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Fig. 9 E(G|x) and P in Ackley function

Table 2 Probability values in the Ackley function

P Prob Agt 96 97 98 99 100 101 102 103 104

q1 6.30E−05 6.30E−05 6.30E−05 6.30E−05 0.983253 4.28E−03 6.30E−05 6.30E−05 6.30E−05

q2 8.49E−09 8.49E−09 8.49E−09 8.49E−09 0.556417 4.44E−01 8.49E−09 8.49E−09 8.49E−09

q3 2.00E−08 2.00E−08 2.00E−08 2.00E−08 2.04E−08 1.00E+00 2.00E−08 2.00E−08 2.00E−08

q4 9.80E−05 9.80E−05 9.80E−05 9.80E−05 0.979586 1.02E−03 9.80E−05 9.80E−05 9.80E−05

q5 4.31E−05 4.31E−05 4.31E−05 4.31E−05 0.99143 4.31E−05 4.31E−05 4.31E−05 4.31E−05

q6 1.11E−05 1.11E−05 1.11E−05 1.11E−05 0.997797 1.11E−05 1.11E−05 1.11E−05 1.11E−05

q7 8.67E−05 8.67E−05 8.67E−05 8.67E−05 0.9395 4.33E−02 8.67E−05 8.67E−05 8.67E−05

q8 8.46E−05 8.46E−05 8.46E−05 8.46E−05 0.941093 4.22E−02 8.46E−05 8.46E−05 8.46E−05

q9 3.38E−08 3.38E−08 3.38E−08 3.38E−08 0.999993 3.38E−08 3.38E−08 3.38E−08 3.38E−08

q10 4.57E−08 4.57E−08 4.57E−08 4.57E−08 0.999991 4.57E−08 4.57E−08 4.57E−08 4.57E−08
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Fig. 10 E(G) by TRPC and PC in Schaffer’s function F7

Third, since both TRPC andMPCdo not change the structure
of the Maxent Lagragian, the range for each variable in these
two methods could be different.

5 Conclusions

In this paper, a modified PC algorithm is presented by com-
bining the TR and a new annealing schedule. The original
probability collectives (PC) algorithm is a kind of heuristic
algorithm, which focuses on adapting the distribution over
the strategy set of each variable. In order to improve its
performance, potential requirements of solving the Maxent
Lagrangian are first identified. It is found that the gradient-
based optimization should not only be an interior point
method but also can tolerate randomness and at the same time
avoid computation of the step size. So an interior point TR

method is used to meet all these demands. Another improve-
ment is the adaptation of a new annealing schedule which
replaces the geometrically decreasing one. For checking the
performance, ten benchmark functions are used and numeri-
cal results show that the new TRPC method outperforms the
original PC algorithm significantly.

Analysis in this article shows that the TRPC method
still has improvement potentials and future researches could
focus on the following points. First, PC algorithm is inher-
ently designed as a distributed algorithm, so parallel com-
puting could be used to redesign the whole algorithm. Sec-
ond, the annealing schedule used here is a basic form. Other
much more efficient schedules could be developed on this
basis and the algorithm could be even more powerful. Third,
since PC algorithm could solve both discrete and continuous
problems, there are huge potentials to solve real problems
with it.
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Fig. 11 E(G|x) and P in Schaffer’s function F7

Table 3 Probability values in the Schaffer’s function F7

P ProbAgt 96 97 98 99 100 101 102 103 104

q1 2.57E−09 2.57E−09 2.57E−09 2.57E−09 0.999999 2.57E−09 2.57E−09 2.57E−09 2.57E−09

q2 1.05E−10 1.05E−10 1.05E−10 1.05E−10 1 1.05E−10 1.05E−10 1.05E−10 1.05E−10
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Fig. 12 E(G) by TRPC and PC in Michalewicz epistatic function
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Fig. 13 E(G|x) in Michalewicz epistatic function

Fig. 14 P in Michalewicz epistatic function

Table 4 Other test functions and results

Function Dimensions Sample size Iterations TRPC_X* Opt_points

Rastrigin function 10 40 1,000 X(8) = 0, X8 = 0.05 [0,…,0]

Shuber function 2 40 2,000 [−1.432,−0.82] [−1.425,−0.8]

Griewank function 10 40 1,000 X1 = 0.044; X10 = 0.088; Xi = 0 [0,…,0]

Sum squares function 10 40 1,000 X5 = 0.05; X(5) = 0 [0,…,0]

Easom function 2 40 1,400 [0,0] [0,0]

Schaffer2 function 2 40 1,000 [0,0.025] [0,0]
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Fig. 15 MPC process
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Appendix A

This appendix provides more detailed explanations about the
interior TR method we use in Sect. 3. However, the proof
of the convergence is still omitted here. Readers who are
interested in this could check (Coleman et al. 1996) for more
information.

The method we consider is mainly for the problem with
a smooth nonlinear objective function subject to bounds on
variables:

min
x∈Rn

f (x), l ≤ x ≤ u, (13)

The feasible region is F
def= {x : l ≤ x ≤ u} and the strict

interior is inf(F)
def={x : l < x < u}. It can be easily checked

that model (10) follows this form with l = 0 and u = 1.
The main idea of this interior TR method is to transform

the problem above into a corresponding TR sub-problem
which has the same form with the TR sub-problem of an
unconstrained problem. To implement this, first we define a
vector v(x) and an affine scaling matrix D(x) as follows:

Definition 3 Let v(xi ) = (vi1, vi2, . . . , vin) be a vector for
xi ; then

vi =
{
xi − ui , if ∇ f (x)i < 0
xi − li , if ∇ f (x)i ≥ 0

Note that vi measures each component’s distance from the
current point x = (x1, x2, . . . , xn) to the bound l and u.

Definition 4 For all v(xi ), let

D(x) = diag(|v(xi )|−1/2),

where diag(·) denotes a diagonal matrix.

Assume x* is a local minimizer for (13), so the first-order
necessary conditions for x* should be

first order :
⎧⎨
⎩

∇ f (x∗)i = 0, if li < (x∗)i < ui ,
∇ f (x∗)i ≤ 0, if (x∗)i = ui ,
∇ f (x∗)i ≥ 0, if (x∗)i = li ,

It is worth noting that these first-order conditions to (13) are
equivalent to

D−2∗ ∇ f (x∗) = 0 (14)

(14) has the form of the first-order conditions for uncon-
strained problems and this is exactly why we use the scaling
transformation.

So, a Newton stop for (14) satisfies

(D−2
k Hk + diag(∇ f (xk))J

v
k )dk = −D−2

k ∇ f (xk),

where J v
k is the Jacobian matrix of |v(xi )|; we set Jk = diag

(sign(∇ f )). The term diag(∇ f (xk))J v
k on the left side is

to make the scaled Hessian matrix D−2
k Hk positive semi-

definite.

Based on this Newton step, we could define our quadratic
model for the TR method:

ψk(s) = sT∇ fk + 1
2 s

T Mks
s.t. ‖s‖ ≤ δk,

(15)

where

C(x) = D(x)diag(∇ f (x))J v(x)D(x),

M(x) = B(x) + C(x).

And a slight modification of the quadratic model above is
exactly (11) we used in Sect. 3.2 where ∇ fk = ∇Lk . It’s
also obvious that the statements a∼c in Sect. 3.2 hold.

Appendix B

This appendix describes the dog-legmethod we used to solve
the quadratic sub-problem in TR. Still, we omit the conver-
gence proof of this method and only present the results.More
information could be found in Gill et al. (1981).

The quadratic sub-problem we consider is

minmc(xc + s) = f (xc) + ∇ f (xc)T s + 1
2 s

T Hcs,
subject to ‖s‖2 ≤ δc.

(16)

Note if we define ψ(s) = mc(xc + s) − f (xc), (16) has the
same form of (15).

Thedog-leg method does not find the optimal solution s*
to (16). Instead, it uses two directions to approximate s*. The
first direction is the steepest descent direction and the second
is the Newton direction. According to the trust region radius,

Fig. 16 TR method
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different s is chosen as an approximate solution to (16). This
idea could be illustrated by the figure below (Fig. 16).

Point C.P. is the Cauchy Point, the minimizer of (16) in
the steepest descent direction.Obviously,weneed to consider
three cases:

Case 1 if δc ≤ ∥∥sC.P.
∥∥
2

In this case, we choose s = αsC.P., 0 < α < 1 as the final
solution.

Case 2 if
∥∥sC.P.

∥∥
2 ≤ δc ≤ ∥∥sN∥∥

2
In this case, we choose s = sC.P. + α(sN − sC.P.), 0 <

α < 1 as the final solution.

Case 3 if δc ≥ ∥∥sN∥∥
2

In this case, we choose s = sN as the final solution
It has been proved that alone the curve xc →C.P. → xN ,

mc decreases monotonically and there is always
∥∥sC.P.

∥∥
2 ≤∥∥sN∥∥

2. So every solution generated by the dog-leg method
to the quadratic sub-problem is a sufficient descent and the
methodultimately converges. InSect. 3.2,weuse the notation
sB and sU instead of sN and sC.P..
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