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Abstract Resource-constrained project scheduling prob-
lem (RCPSP) is an important, but computationally hard prob-
lem. Particle swarm optimization (PSO) is a well-known and
highly used meta-heuristics to solve such problems. In this
work, a simple, effective and improved version of PSO i.e.
adaptive-PSO (A-PSO) is proposed to solve theRCPSP.Con-
ventional canonical PSO is improved at two points; during
the particle’s position and velocity updation, due to depen-
dent activities in RCPSP, a high possibility arises for the
particle to become invalid. To overcome this, an important
operator named valid particle generator (VPG) is proposed
and embedded into the PSO which converts an invalid par-
ticle into a valid particle effectively with the knowledge of
the in-degree and out-degree of the activities depicted by the
directed acyclic graph. Second, inertia weight (ω) that plays
a significant role in the quick convergence of the PSO is
adaptively tuned by considering the effects of fitness value,
previous value of ω and iteration counter. Performance of
the model is evaluated on the standard benchmark data of
the RCPSP problem. Results show the effectiveness of the
proposed model in comparison to other existing state of the
art model that uses heuristics/meta-heuristics. The proposed
model has the potential to be applied to other similar prob-
lems.
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1 Introduction

Resource-constrained project scheduling problem (RCPSP)
is an important, but NP-hard problem in project planning
research Blazewicz et al. (1983). Though, in the past, a num-
ber of methods using linear programming, heuristics and
meta-heuristics have been proposed to solve the RCPSP,
these methods do not often produce good results and take
substantial amount of time to converge. In recent times,
researchers have intensified their interest towards optimal
solution for RCPSP using evolved heuristics and meta-
heuristics (Chen and Huang 2007; Valls et al. 2005) making
this an active research area.

RCPSP contains a set of activities with deterministic exe-
cution time, precedence relation among activities, accumu-
lative resources availability constraints and its consumption
by the activities. The objectives in RCPSP is to find a feasible
schedule with some quality characteristics such as optimal
makespan and computation time, response time and through-
put, such that all the constraints are satisfied.

In literature, many exact scheduling algorithms to solve
the RCPSP problem that uses linear programming approach
(Pritsker et al. 1969; Kaplan 1996; Klein 2006; Mingozzi
et al. 1998; Kone et al. 2011) are available. Out of these, the
algorithms proposed by Brucker et al. (1998) and Mingozzi
et al. (1998) seem to be the most effective and comprehen-
sive. The drawback of their algorithms is that it solves the
problem of small instances only (60 activities) in a satisfac-
tory manner. Their method succumbs to higher convergence
time for large instances as the solution search space increases
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drastically, leaving the space for heuristic and meta-heuristic
to solve the RCPSP problem in an efficient and satisfac-
tory manner (Bean 1994). Researchers have proposed many
scheduling algorithms based on the variants of heuristics and
meta-heuristics that include branch and bound (BB) (Dorn-
dorf et al. 2000; Brucker et al. 1998; Demeulemeester and
Herroelen 1995; Heilmann 2003), Tabu search (TS) (Nonobe
and Ibaraki 2002), genetic algorithm (GA) (Hartmann 1998,
2002;Alcaraz et al. 2003;Valls et al. 2005), simulated anneal-
ing (SA) (Bouleimen andLecocq2003), adaptive search (AS)
(Schirmer 2000), Ant colony optimization (ACO) (Merkle
et al. 2002; Herbots et al. 2004), artificial bee colony (ABC)
(Shi et al. 2010;Akbari et al. 2011; Ziaratia et al. 2011;Qiong
andYoonho 2013), particle swarmoptimization (PSO) (Chen
et al. 2010; Kolisch and Hartmann 2006; Zhang et al. 2005,
2006; Jarboui et al. 2008; Lu et al. 2008; Qiong and Yoonho
2013) etc., to produce efficient and satisfactory results for
RCPSP.

Particle swarm optimization, an emerging meta-heuristic,
has been applied to solve a number of optimization prob-
lems because of its distinguishing characteristics (Bai 2010;
Jones 2005; Singh et al. 2014) such as (1) simple and easy
enumeration, (2) being free from derivation, (3) robustness to
control parameters, (4) having limited number of parameters,
(5) sensitivity towards the objective function and parameters,
(6) less dependency on initial particles, (7) relatively quick
convergence and (8) good quality solution. Apart from the
mentioned benefits, PSO has been found to be extremely effi-
cient for solving the RCPSP applications (Zhang et al. 2005).

Initially, Zhang et al. (2006) proposed PSO to solve
the RCPSP problem with good individual conjunction of
priority-based and permutation-based representation and
observed that the permutation-based representation scheme
performed better. In their proposal, a general framework of
PSO was used and a direction to successive use of PSO for
RCPSP was mentioned as future research work. Later, Jar-
boui et al. (2008) proposed a combinatorial PSO (CPSO)
with multiple execution modes to solve the RCPSP prob-
lem. In their work, modes to each activity were assigned
and local search optimization was used to better prioritize
the sequence of associated activities. Results indicate that
CPSO performs better than SA andwas close to the PSO pro-
posed by Zhang et al. (2006). Lu et al. (2008) analyzed the
resource-constrained critical path and proposed a PSO-based
approach in the generation of resource-constrained sched-
ule for the shortest makespan. Chen et al. (2010) proposed
an algorithm for solving RCPSP using delay local search
(Zhang et al. 2005) andbidirectional scheduling inPSO.Con-
clusively, the above proposed methods are practically good
to solve the RCPSP problem. Recently, Qiong and Yoonho
(2013) proposed an improved PSO to solve the RCPSP using
rank priority-based representation, double justification oper-
ator and move operator along with the greedy search. Results

indicate better performance of the model over other contem-
porary PSO approaches. The operators used in the above
discussed model (e.g. double justification and move opera-
tor) are time consuming as these are applied in addition to
the normal PSOprocedures for the refinement of their results.
Further, it uses an obsolete inertia weight selection procedure
which requires extra preprocessing time.

Though the above discussed models use PSO and its vari-
ants, these often lack efficiency in terms of convergence and
computational time. Nevertheless, it gives a direction for fur-
ther exploration of PSOwith introduction of newer and faster
operators/parameters and integration of external knowledge
to solve the RCPSP problem with improved quality of the
solutions and faster convergence.

This paper proposes a PSO variant, an adaptive PSO (A-
PSO) to solve the RCPSP problem. The proposed A-PSO
is easy and simple (similar to standard PSO), but at the
same time effective and faster in producing good results.
It is observed that many a times particles become invalid
due to the updation of velocity and position in PSO. An
operator named valid particle generator (VPG) is proposed
and embedded into PSO. By applying VPG, the invalid
particles are converted into valid particles in an effective
way. Further, an adaptive inertia weight tuner is proposed,
which tunes the inertia weight by considering three parti-
cles’ parameters: fitness value, previous inertia weight and
iteration counter. These three parameters are highly respon-
sible for the effective convergence of the PSO. Fitness
of the solution is evaluated in terms of makespan by the
assignment of the RCPSP activity to the best processing
unit (core) at the moment. To test the effectiveness of the
model, a number of experiments were designed on standard
instance sets of J30, J60 and J120 from well-known project
scheduling Problem Library (PSPLIB) (http://www.om-db.
wi.tum.de/psplib/data.html). The result shows that themodel
works efficiently over 25, 17 and 23 existing state-of-the-art
heuristics/meta-heuristics for the instance sets of J30, J60
and J120, respectively.

The outline of this paper is as follows. After an introduc-
tion in Sect. 1, the RCPSP problem is described in Sect. 2.
Section 3 briefs the standard PSO, whereas the proposed
model is fully described in Sect. 4. Experimental studies for
the performance of the proposed model along with the com-
parative experimental results are given in Sect. 5. Finally, the
work is concluded in Sect. 6.

2 The RCPSP problem

A classical RCPSP problem with specified availabilities of
multiple renewable resources (Kolisch and Hartmann 2006,
1999) is as follows. A project includes a set of activities
V = 0, 1, 2 . . . N , N + 1, each with K renewable resource
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types. The duration of an activity i in V is denoted by di ,
and Rk is the availability (depicted in time period) of each
resource type k ∈ K in each time period. An activity i
requires rik units of k type of resources during each time
period in its total duration. The activities 0and N + 1i.e. the
beginning and the end of the project are dummy activities,
where d0 = dN+1 = 0 and r0k = rN+1k = 0. The parame-
ters di ,Rk and rik are assumed to have non-negative integer
values. Activities are interconnected with two types of con-
straints: one is the precedence constraint of an activity which
prevents the start of the execution of that activity while its
parent activities parenti are yet to finish, and the other is that
sum of all the required resources of a resource type k at any
time period that cannot exceed Rk . The objective of the clas-
sical RCPSP problem is to find a feasible schedule with the
given precedence constraint among the activities, so that the
makespan is minimized (Schirmer 2000). Figure 1a shows an
example of the classical RCPSP problem with six (N = 6)
activities to be scheduled on K = 1 renewable resource of
Rk = 6 units. One of the feasible schedules for 1(a) is shown
in Fig. 1b. ton X-axis and R on Y -axis of Fig. 1b represent
the time and resource instance, respectively. The example has
six maximum available instances of resource type R1.

Let us assume that the completion time of an activity i is
denoted as Ci and the completion times for the schedule S,
consisting of various activities, is denoted asC1;C2;…;CN .
The mathematical formulation for the classical RCPSP is as
follows (Alba and Chicano 2007; Christofides et al. 1987):

Minimize CN+1, (1)

Subject to Ci ≤ C j − d j for i = 1, 2, . . . N + 1;
and j ∈ parenti , (2)

∑

i∈A(t)

ri,k ≤ Rk, k ∈ K ; t ≥ 0 (3)

and Ci ≥ 0, i = 1, 2, . . . ..N + 1. (4)

Equation1 shows theobjective functionwhich ismakespan
minimization of the schedule. Equation 2 represents the
precedence relationship between activities and Eq. 3 depicts
the resource limitation constraint. Finally, the constraint of
the decision variables is described in Eq. 4.

3 Overview of PSO

Kennedy et al. (2001) proposed PSO as an optimization tech-
nique thatmimics the behaviour of social creatures (particles)
in food searching (Badawi and Shatnawi 2013; Tasgetiren
et al. 2004). In this technique, all the particles search for the
food in multidimensional search space based on their two

important characteristics: position (referred to as the sug-
gested solution) and velocity (rate of change of particle posi-
tion). If any particle finds a better path to the food location,
it attracts other particles to follow its path. The optimal path
is evaluated based on its fitness. All particles move slowly
towards the obtained solution updating their personal best
and the global best solution. At the end, all particles reach
the same position following the most probable optimal path.
The standard canonical PSO is shown below as mentioned
in (Mendes et al. 2004; Sevkli et al. 2004).

Canonical PSO
{ 

Initialize number of particles by generating random velocity and position vector 

For each particle do 

{  Evaluate the fitness  

 Update the personal best 

} 

Update global best 

While termination conditions are not met do 

{ For each particle do 

Update velocity and position 

Evaluate the fitness 

  Update personnel best if it is better than previous  

} 

Update global best if it is better than previous 

} 

Canonical PSO starts with a set of particles with their
corresponding random position and velocity vector and is
referred to as initial population. To know the relevance of
the particle towards the solution, a fitness function is used.
Personal best and global best solutions are updated. Initially,
each particle’s personal best is considered as its initial solu-
tion and the solution with optimum fitness value of all the
particles is considered as global best. With each iteration, the
position and the velocity vector of each particle is updated
using some rules by evaluating the fitness of each particle.
The particle with the best fitness value is compared with the
global best solution; if it is better, the global best is updated.
This procedure is repeated until the predefined termination
condition is satisfied.

4 The proposed A-PSO for RCPSP

This section presents the detailed description of the proposed
A-PSO to solve the RCPSP problem.

4.1 The proposed model

The model is initiated by random initial population of the
particles. The random particles are in the form of random
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Fig. 1 a A project example. b A feasible schedule corresponding to the problem 1(a)

position and velocity values which are evaluated using the
fitness function. Now, the termination conditions are veri-
fied; if the termination criteria are met, then exit; otherwise,
the inertia weight is adaptively tuned to update velocities and
positions of each particle. Smallest position value (SPV) rule
(sec. 4.3) is applied to convert a continuous value vector into
a discrete vector. Some of the produced discrete sequence
vectors, corresponding to the particles, may be an invalid

sequence. A VPG operator is applied to convert them into a
valid sequence. Now, the fitness of each particle is evaluated
and based on the fitness value pbest and gbest solutions are
initialized. The same procedure is repeated until a termina-
tion criterion is met. The flowchart of the proposed model is
given in Fig. 2.

The pseudo-code of the proposed A-PSO model for
RCPSP is as follows.
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The proposed A-PSO begins with the predefined number
of random particles where Xd

i (k) and V d
i (k) are the posi-

tion and velocity of the i th particle at the kth iteration in
the dth dimension. To convert a continuous value vector of
PSO particles into a discrete value vector, the SPV rule is
applied to the Xi (k) and a sequence vector Si (k) is produced.

The sequence vector may have an invalid sequence; to verify
and convert it into a valid sequence, a valid particle genera-
tor, i.e. V PG(Si (k), Xi (k), Vi (k)), is appliedwhich changes
an invalid sequence Si (k) to a valid sequence S′

i (k). This
sequence is evaluated using a fitness function F(S′

i (k)). On
the basis of the fitness values, the pbesti (0) and gbest are
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Fig. 2 The flowchart of the
proposed model Start

Randomly initialize position and velocity of the particles and evaluate 
their fitness

Is termination 
condition met? End

Update the velocity and position of the particles  

Apply SPV rule 

Apply VPG operator 

Evaluate the fitness of each particle

Update the pbest of each particle

Update the gbest of the swarm

Yes

No

Adaptively tune the inertia weight

initialized. This procedure is iterated until the termination
condition is met. In each next iteration, the values corre-
sponding to ω, V d

i (k) and Xd
i (k) are updated using Eqs. 10,

11 and 12, respectively. Using the same procedure the values
of pbesti (k) and gbest are updated. Finally, gbest is obtained.

4.2 Particle initialization

Initially, a predefined number of random particles are gen-
erated by assigning an initial position and velocity for each
particle. For this, the following equations have been used.

Position vector
−→
Xd
i depicts the position vector for the i th

particle corresponding to the dth dimension at the 0th itera-
tion (initially) and is generated by Eq. 5.

Xd
i (o) = Xmin + (Xmax − Xmin) ∗ r, (5)

where Xmin and Xmax have values 0.0 and 4.0, respectively,
to make the procedure random and r takes uniform random
values between 0 and 1.

The velocity vector
−→
V d
i is for the i th particle corresponding

to the dth dimension at the 0th iteration (initially) and is
generated by Eq. 6.
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Table 1 Particle encoding representation

D 1 6 4 3 5 2 7

Xd
i (0) 2.12 0.54 1.56 2.42 0.94 0.34 3.3

V d
i (0) 0.34 −0.84 −1.83 1.34 3.83 −3.2 0.92,

V d
i (0) = Vmin + (Vmax − Vmin) ∗ r, (6)

where Vmin and Vmax have values−4.0 and 4.0, respectively,
to make the procedure random and r takes uniform random
value between 0 and 1.

The input range of values for the experiment correspond-
ing to the random position and velocity of the particles have
been taken from Badawi and Shatnawi (2013). By taking
the modulus of the maximum value after each updation, the
scope of the particle’s position and velocities are controlled.

The encoding of the i th particle with seven dimensions
(D) (i.e. activities) is shown in Table 1.

where an activity of the problem represents a value in the
corresponding dimension. In Table 1, values corresponding
to the first row represent activities of the problem and the
values in the second and third rows, i.e. Xd

i (0) and V d
i (0)

represent the random position and velocity of the i th particle
at the 0th iteration of the dth dimension, respectively.

4.3 Smallest position value (SPV)

Smallest position value (SPV) is a heuristic proposed by Tas-
getiren et al. (2004) to convert a continuous value vector of
PSO into a discrete value vector so that it can be applied to all
sequencing problems. This concept is similar to the random
key concept proposed by Bean (1994) for genetic algorithm.
With this heuristic, a continuous position value vector ofwan-
dering particles is easily converted into discrete activity vec-
tor. Conclusively, this heuristic produces the discrete value
sequence vector

−→
S by sorting the particle’s continuous value

position vector X ′′ in ascending order. The detailed descrip-
tion is given in Badawi and Shatnawi (2013), Tasgetiren et al.
(2004), whereas the pseudo-code for SPV is given as follows.

( ))

{ 

Sort ( ) in ascending order 

Enumerate ( ) with discrete values where ( ) ( )

} 

Table 2 Particle encoding representation

D 1 6 4 3 5 2 7

Xd
i (0) 2.12 0.54 1.56 2.42 0.94 0.34 3.3

V d
i (0) 0.34 −0.84 −1.83 1.34 3.83 −3.2 0.92

Sdi (0) 6 2 5 3 1 4 7

A demonstration of the SPV rule is given in Table 2.
In Table 2, the values corresponding to Sdi (0) represent

the ascending order of the activities of the i th particle at 0th
iteration in dth dimension corresponding to their position
values Xd

i (0).

4.4 The proposed valid particle generator

PSO is one of the best population-based optimization tech-
niques that operates in multidimensional search space (Tas-
getiren et al. 2004). The initial population in PSO is the
collection of randomly generated particles (Tasgetiren et al.
2004) covering multidimensional search space. Particles
are the set of activities along with their associated posi-
tion and velocity values updated with each iteration. It
works smoothly if all the activities of the optimization
problem are independent. When the activities of the opti-
mization problem are constrained or dependent in some
manner (e.g. activities in RCPSP), a possibility exists that
updated particle may become invalid (violating precedence
constraint). Normally, a huge amount of computation (in
updating the position and velocity vector) and number of
iteration are involved in dealing with an invalid particle.
Further, in an optimization problem of the order of 1,000
or higher activities, there is a possibility of huge com-
putational energy wastage to the tune of many hours or
days in reaching to a valid particle. Since RCPSP is a
precedence-constrained optimization problem, it suffers the
same. To overcome this problem of PSO, a valid parti-
cle generator is proposed. This checks only those sus-
pected activities of the particle that results in the creation
of an invalid particle and converts it into a valid parti-
cle by swapping the suspected activities. In other words,
VPG changes the direction of the particle if it is going
in the wrong direction. The pseudo-code for VPG is as
follows.
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The sequence vector Si (k) along with its Xi (k) and Vi (k)
passes through the VPG operator to verify its correctness
and making it a valid particle. The VPG operator begins
with the calculation of in-degree of each activity (using
indegree(α)) in the particle and stores in φd

i (k). The activ-
ities with the zero in-degree are contained in λ, which repre-
sents the activities ready to be scheduledwithout violating the
dependency constraint (i.e. their parents have already been
scheduled). Further, the out-degree of each activity (using
outdegree(α)) which belongs to λ is calculated and stored
in τ . Now, each activity in the sequence vector Sdi (k) is
checked for its belonging to λ. If it belongs, it does nothing.
Otherwise, if the out-degree of all the activities in τ is dif-
ferent, an activity is selected with the maximum out-degree
(a maximum out-degree activity is preferred to increase the
degree of parallelism) and swap it with the activity. In case
the out-degrees of the activities in τ are the same, a random
activity is selected from λ and swapped with the activity.
Random activity is selected using the random() function
and swapping is done using the swap(y1, y2) function. All
activities are verified in a similar manner and finally a valid
sequence of activities along with the corresponding position
and velocity, i.e. S′

i (k), X
′
i (k), V

′
i (k), is returned.

4.5 Fitness function

Once a particle passes through the valid particle genera-
tor, it is confirmed to be a valid particle. This confirma-
tion allows us to use a simple fitness function to evaluate
the makespan of the schedule. Hence, the fitness function
evaluates particles with input such as sequence vector (dis-
crete sequence corresponding to continuous position values),
number of cores, available resource instances and required
resource instances of the respective activity represented as
S′(k), P, RA andRR, respectively. Fitness function, shown
in Eq. 7, is the makespan on P homogeneous cores such that
the resource constraint (Eq. 8) is satisfied.

F(S(k)) = maxi=1,2,...,D
{
max j=1,2,....,P {FT(Si (k), j)}

}

Such that RR ≤ RA (7)

{r1 ≤ r1a} , {r2 ≤ r2a} , . . . ..

{rm ≤ rma} , where (r1, r2 . . . ..rm) ∈ RR and

(r1a, r2a . . . ..rma) ∈ RA, (8)

where FT(α, j) represents the finish time of activity α on
the best suitable core j ∈ P at the time and the resource
constraint for each activity, i.e. RR ≤ RA is represented in
Eq. 8.

4.6 Tuning of inertia weight (ω)

Before discussing the proposed adaptive tuning of ω, it is
necessary to understand the impact ofω on the particlemove-
ment and its role in fast convergence of the PSO algorithm.
Initially, all randomly generated particles are widely spread
over the search space of the potential solution. It is less likely
that particles, in the initial iteration itself, visit optimal search
space. After a number of iterations, a possibility arises that
at least some particles have visited the optimal search space
orbit. At this point, attention is required for the tuning of ω

as it plays a vital role in the convergence. For large ω values
between 0.9 and 1, the algorithm works as a global search
algorithm. With the decrease in ω value, it slightly moves
towards the optimal/local search space. To handle ω, the fol-
lowing two rules may be considered.

1. During initial iterations of the algorithm, the value of ω

should be kept large (between 0.9 and 1), so that parti-
cles can navigate the search space globally in multidi-
mensional space.

2. As particles approach the optimal multidimensional
search space orbit, the value of ω should be tuned in
a way that it provides effective and optimal local search.

To achieve effective convergence in the A-PSO, ω is adap-
tively tuned. Three important factors are taken into account
to tune the value of ω used in the A-PSO: first, a normalized
fitness value of the swarm, as it provides a good direction to
the particles towards the optimal solution; second, the iter-
ation counter and finally the previous value of ω (ωK−1) to
keep track of the movement of the particles from their pre-
vious position. Normalized fitness value is calculated using
Eq. 9.

Normalized FitnessValue (NFV)

= FitnessCurrent − Fitnessmin

Fitnessmax − Fitnessmin
, (9)

where FitnessCurrent represents the global best and Fitnessmax

represents the maximum personal best of the particle at the
current iteration. Fitnessmin is taken as optimal makespan or
critical path lower bound value (as per availability).
ω is calculated using Eq. 10:

ωk = ωmax −
⎛

⎝
ωmax −

(
NFV+ωK−1

2

)

Kmax

⎞

⎠ × K . (10)

Generally, when the value of ω is high it works as global
search, and when it slowly becomes low it turns in to local
search. Further, it is observed that if the global best solution
of the current iteration is better than the previous one, it indi-
cates that the particles are moving in a good direction, i.e.
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the value of ω should be low for the next iteration. On the
other side, if the global best solution of the current iteration
is poorer than the previous one, it indicates that the parti-
cles are not moving in a good direction, i.e. a global search
is further required and the value of ω should be high rela-
tively to the previous iteration value. Hence, the proposed
tuner (Eq. 10) works by considering the above-mentioned
facts with a good combination ofωK−1, NFV and iteration
counter. The effectiveness of the tuner is proved in Sect. 5.

4.7 Rules for velocity and position update

Two important rules for updating velocity and position of the
particles are as follows:

Velocity vector updating rule The velocity at the kth iter-
ation is updated using Eq. 11.
−→
Vk = ω ∗ −−→

Vk−1 + c1r1(
−−−−−→
pbestk−1 − −−→

Xk−1)

+c2r2(
−−−→
gbest − −−→

Xk−1), (11)

Where c1 and c2 are self-recognition and social constants,
respectively, and r1, r2 are uniform random numbers between
0 and 1.

Position vector updating rule The position of the particle
is updated at the kth iteration using Eq. 12.

−→
Xk = −−→

Xk−1 + −→
Vk . (12)

4.8 Critical path (CP) length

CP length is the longest path from the source to the sink
node (Badawi and Shatnawi 2013; Tasgetiren et al. 2004) as
represented by Eq. 13. The motive of CP length is to provide
a bound to the optimal solution (Badawi and Shatnawi 2013):

CP length =
∑

Wj . (13)

where Wj is the processing time of task j belonging to the
critical path, j ∈ N and N is the number of tasks in the
directed acyclic graph (DAG). To parallelize this DAG, min-
imumM number of cores is required, which is obtained using
Eq. 14.

M =
∑

Wi

CP length
1 ≤ i ≤ N . (14)

According toEqs. 13 and 14,CP length is equal to the optimal
schedule if there is minimum M number of cores available
and the communication cost is negligible.

4.9 Termination condition

Three termination conditions have been used in the proposed
PSO model: first, the specified number of iterations passed;

second, the length of gbest equal to CP length; third, when
all the particles reach the same position (i.e. pbest of all the
particles become same).

5 Experimental analysis

The proposed A-PSO model is applied to the standard
data sets of J30, J60 and J120 generated by a stan-
dard problem generator as given in Kolisch and Sprecher
(Kolisch and Sprecher 1997). J30 and J60 have a set of
480 instances each with 30 and 60 activities, respectively,
and J120 has a set of 600 instances each with 120 activ-
ities. These sets of instances are publicly available at the
well-known PSBLIB (http://www.om-db.wi.tum.de/psplib/
data.html) with known optimum or best-known solutions as
obtained by various researchers over the years. The opti-
mum solutions are known only for J30 instances and the
upper bounds (current best value of the solution) and lower
bounds are provided for J60 and J120 set of instances. In this
experimental work, two lower bounds are considered best
lower bound (LB f ) and critical path lower bound (LBo)with
resource relaxation in RCPSP, same as in Qiong and Yoonho
(2013). For fair comparison of the proposedmodel with other
state-of-the-art models, 1,000 and 5,000 schedules are gener-
ated. The solution quality of the model is measured by three
performance parameters, i.e. average deviation (Avg_dev)
(Eq. 15), optimal rate (Optimal) (Eq. 16) and average com-
putational time (Hartmann 1998; Alcaraz et al. 2003; Hart-
mann 2002; Valls et al. 2005; Bouleimen and Lecocq 2003;
Schirmer 2000; Chen et al. 2010;Merkle et al. 2002; Herbots
et al. 2004; Shi et al. 2010; Akbari et al. 2011; Ziaratia et al.
2011; Qiong and Yoonho 2013; Zhang et al. 2005; Kolisch
and Hartmann 2006; Mendes et al. 2004; Sevkli et al. 2004;
Zhang et al. 2006). Avg_dev shows the deviation between the
solution given by the proposed model and the best solution,
Optimal accounts for the percentage of solutions reaching the
optimal value, and the average computation time represents
the average time taken by an instance while computing in its
execution unit.

Avg_dev =
�instances

(
Obtained-Best

Best × 100%
)

instances
, (15)

Optimal = Optimal instances

instances
× 100%. (16)

5.1 Parameter setting

The model starts by random initialization of the particles in
which the position vector of all the particles are initialized
with random continuous values between 0 and 4 as given in
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Fig. 3 Relation among NFV, ω and the iterations

Badawi andShatnawi (2013) andTasgetiren et al. (2004). The
velocity vectors of all the particles are initialized by random
continuous values between −4 and 4 as in Badawi and Shat-
nawi (2013) and Tasgetiren et al. (2004). The self-learning
factorC1 and social learning factorC2 are set to 2 (suggested
value 2.05 in “standard” PSO) (Bratton and Kennedy 2007).
The inertia weight ω is adaptively tuned using Eq. 10 with
its initial (maximum) value as 0.9 (good enough for global
search in general). The iteration-wise tuning behaviour of
values of ω, generated by the proposed tuner with respect to
NFV, are shown in Fig. 3. It is observed that the tuned value
of ω slightly increases when the value of NFV moves away

from the optimal value of the solution, which means it needs
more global search. The tuned value of ω goes down when
the number of iterations is increased, and when the value of
NFV slightly moves towards the optimal value, it means that
the particles move globally to local search. Further, to test the
effectiveness of the adaptive tuner (in Eq. 10), a comparison
with F-race approach (Birattari et al. 2010; Montes de Oca
et al. 2011) is done. Totally, 16 treatments are done and for
each treatment 48 instances out of 480 from J30 and J60, and
60 instances out of 600 from J120 are randomly selected.
For each experiment, 1,000 schedules with 100 maximum
numbers of iterations are run. The results corresponding to
each treatment in the formofAvg_Dev.opt (average deviation
from optimal makespan for J30) and Avg_Dev.LB0(average
deviation from the lower bound of the critical path for J60
and J120) are shown in Table 3.

Figure 4 shows the comparative study of the average of
average deviation resulting from the F-race approach and the
proposed adaptive tuner of inertia weight (ω) corresponding
to 16 treatments done in Table 3. From the results, it is easy to
analyze that the proposed adaptive tuner performs effectively
over the F-race approach. Hence, the adaptive tuner is used
for further experimentation to perform effective global to
local search.

In all the experiments, A-PSO is evaluated for 480
instances of J30 and J60, and 600 instances of J120, and
the average deviation is calculated. The maximum number
of iterations used is 100.

Table 3 Average deviation on
training instances by F-race
(Birattari et al. 2010) and the
proposed adaptive tuner

Exp. No. Average deviation (Avg_Dev)

J30 (Avg_Dev.opt) J60(Avg_Dev.LB0 ) J120(Avg_Dev.LB0 )

F-race (ω) Adaptive (ω) F-race (ω) Adaptive (ω) F-race (ω) Adaptive (ω)

1 0.75 0.4 3.44 3.63 8.76 8.68

2 0.93 0.84 4.28 4.08 8.32 7.93

3 0.58 0.45 3.98 3.22 7.89 8.48

4 0.62 0.34 4.20 3.76 8.45 7.86

5 0.22 0.56 3.87 3.27 8.49 7.38

6 0.31 0.44 3.82 3.53 8.24 7.88

7 0.58 0.18 4.48 4.24 8.39 7.95

8 0.42 0.94 3.48 3.65 8.95 8.06

9 1.35 0.55 3.39 3.37 8.95 8.46

10 0.66 0.23 3.76 3.67 8.45 7.98

11 0.63 0.42 3.46 3.98 8.36 8.58

12 0.25 0.36 4.38 3.55 7.98 7.90

13 1.23 1.15 4.22 3.86 8.47 8.57

14 0.73 0.28 3.74 3.24 8.54 8.58

15 0.3 0.38 4.38 3.74 8.93 8.12

16 0.23 0.24 3.46 3.86 8.64 7.78
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5.2 Experimental results

Acomparative studyof the proposedmodelwith other heuris-
tics, discussed in literature (Hartmann 1998; Alcaraz et al.

2003; Hartmann 2002; Valls et al. 2005; Bouleimen and
Lecocq 2003; Schirmer 2000; Chen et al. 2010; Merkle et al.
2002; Herbots et al. 2004; Shi et al. 2010; Akbari et al.
2011; Ziaratia et al. 2011), is done on 1,000 and 5,000 ran-
domly generated schedules. The compared heuristics/meta-
heuristics are branch and bound (BB), Tabu search (TS),
genetic algorithm (GA), simulated annealing (SA), adaptive
search (AS), ant colony optimization (ACO), artificial bee
colony (ABC), particle swarm optimization (PSO), etc.

Table 4 shows the percentage of average deviation and
optimally solved instances with respect to optimal makespan
for J30 instances. Themodel is evaluated for 1,000 and 5,000
number of schedules. The average deviation of the model is
calculated as 0.28 and 0.06 % for 1,000 and 5,000 sched-
ules, respectively, and the proposed model solved 88.92 and
97.48 % instances optimally for both the set of schedules,
respectively. As obvious from Table 4, the model performs
better over 25 other heuristics and meta-heuristics.

Tables 5 and 6 show the comparative results for the
instances of J60 and J120 sets, respectively. For these

Table 4 Results of algorithms corresponding to the J30 case study (%)

Algorithm References Avg_Dev.opt Optimal

1,000 5,000 1,000 5,000

A-PSO Present work 0.28 0.06 88.92 97.48

PSO Qiong and Yoonho (2013) 0.49 – – –

PSO+ Chen et al. (2010) 0.54 – – –

PSO Ziaratia et al. (2011) 0.69 0.42 – –

PSO-Bidirectional Chen et al. (2010) 0.84 – – –

PSO Zhang et al. (2005) 0.98 – – –

PSO-Delay Chen et al. (2010) 1.03 – – –

PSO Chen et al. (2010) 1.33 – – –

GA Alcaraz et al. (2003) 0.33 0.12 – –

PABC Qiong and Yoonho (2013) 0.34 0.17 86.60 91.74

ABC Shi et al. (2010) 0.35 0.12 – –

GA-DJ Valls et al. (2005) 0.34 0.20 – –

GA Hartmann (2002) 0.38 0.22 – –

SA Bouleimen and Lecocq (2003) 0.38 0.23 – –

BA-DJ Ziaratia et al. (2011) 0.42 0.19 83.96 91.05

BSO-DJ Ziaratia et al. (2011) 0.45 0.22 83.55 90.21

TS Nonobe and Ibaraki (2002) 0.46 0.16 – –

ABC-DJ Ziaratia et al. (2011) 0.47 0.28 82.50 90.00

GA Hartmann (1998) 0.54 0.25 81.50 –

BA Ziaratia et al. (2011) 0.63 0.33 78.54 86.25

BSO Ziaratia et al. (2011) 0.65 0.36 77.30 85.63

AS Schirmer (2000) 0.65 0.44 – –

ABC Ziaratia et al. (2011) 0.98 0.57 72.71 83.84

GA Hartmann (1998) 1.38 1.22 70.60 –

AS Kolisch and Hartmann (2006) 1.44 – – –

ACO Chen et al. (2010) 1.57 – – –
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Table 5 Results of algorithms corresponding to the J60 case study (%)

Algorithm References Avg_Dev.LB f Avg_Dev.LB0 Optimal

1,000 5,000 1,000 5,000 1,000 50,000

A-PSO Present work 3.02 2.76 11.94 11.12 73.02 75.58

PSO Qiong and Yoonho (2013) – 3.11 12.12 – – –

PSO+ Chen et al. (2010) – 3.71 – – – –

PSO-Bidirectional Chen et al. (2010) – 3.80 – – – –

PSO Chen et al. (2010) – 4.23 – – – –

PSO-Delay Chen et al. (2010) – 4.40 – – – –

GA Hartmann (2002) 3.26 2.88 12.21 11.70 – –

PABC Qiong and Yoonho (2013) 3.35 3.02 12.35 11.96 72.50 74.03

B&B Dorndorf et al. (2000) 3.40 – 12.50 – – 76.20

GA Alcaraz et al. (2003) – – 12.57 11.86 – –

BSO-DJ Ziaratia et al. (2011) – – 12.58 12.29 72.08 73.34

ABC-DJ Ziaratia et al. (2011) – – 12.61 12.24 71.67 73.34

GA Hartmann (1998) 4.16 – 12.68 11.89 – –

ABC Shi et al. (2010) 12.75 11.48

SA Bouleimen and Lecocq (2003) – – 12.75 11.90 – –

AS Schirmer (2000) – – 12.94 12.58 – –

TS Nonobe and Ibaraki (2002) – – 12.97 12.18 – –

GA Hartmann (1998) 4.96 – 13.30 12.74 – –

BA Ziaratia et al. (2011) – – 13.35 12.83 66.25 68.34

BSO Ziaratia et al. (2011) – – 13.67 12.70 64.34 70.63

ABC Ziaratia et al. (2011) – – 14.57 13.12 61.88 67.09

AS Kolisch and Hartmann (2006) – – 15.94 – – –

instances, the proposed model is compared on percentage
average deviation from the best lower bound and critical path
lower bound of makespan, because optimal solutions for J60
and J120 sets of instances are not available. Again, the model
is evaluated for two sets of numbers of schedules, i.e. 1,000
and 5,000. The average deviations of the model with respect
to the best lower bound and critical path lower bound are
obtained as 11.94 and 11.12 % and the A-PSO solves 73.02
and 75.58 % optimal instances of the J60 set of instances
for both the set of schedules, respectively. The average devi-
ations on the J120 set of instances with respect to the best
lower bound and critical path lower bound are obtained as
34.935 and 32.49 % by solving 30.75 and 32.96 % optimal
instances for both the set of schedules, respectively. So, with
the same number of schedules, it gives better results over
21 other heuristics/meta-heuristics on J60 set of instances
and over 27 other heuristics/meta-heuristics on J120 set of
instances, respectively.

Table 7 shows the average computational time and used
CPU core’s frequency by A-PSO to evaluate the experimen-
tal results for the respective instance sets. The average CPU
time taken by A-PSO is very low, which is possible with the
significant contribution ofVPGand adaptive tuning of inertia
weight.

Furthermore, Table 8 presents the comparative study with
other heuristics for average computational time. The aver-
age commutation time, average deviation and the used clock
cycles of cores are shown in the third, fourth and fifth
columns of Table 8, respectively. The performance of the
reported heuristics/meta-heuristics was obtained from sur-
vey and original papers (Kolisch and Hartmann 2006; Chen
et al. 2010; Birattari et al. 2010). The performance of A-PSO,
shown in Table 8, is limited to 5,000 evaluated schedules.
From Table 8, it is easy to see that A-PSO has significant
lower average computation time for J30, J60 and J120 over
other heuristics along with economic and acceptable average
deviation.

Analysing the computational results, it is observed that
the proposed A-PSO algorithm gives much better results for
the same number of RCPSP schedules in comparison to other
algorithms/heuristics. The reasons for this are: theVPGoper-
ator which continuously changes invalid particles into valid
particles effectively (saving huge amount of computation)
and inertia weight tuner which controls particle’s movement
effectively from global to local (or vice versa) search in large
multidimensional search space. In other words, the direc-
tion of the particles changes smoothly from the infeasible
region towards the feasible region. Hence, in each iteration of
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Table 6 Results of algorithms corresponding to the J120 case study (%)

Algorithm References Avg_Dev.LB f Avg_Dev.LB0 Optimal

1,000 5,000 1,000 5,000 1,000 50,000

A-PSO Present work 8.02 7.24 34.93 32.49 30.75 32.96

PSO Qiong and Yoonho (2013) – 8.40 37.22 – – –

PSO+ Chen et al. (2010) – 9.38 – – – –

PSO-Bidirectional Chen et al. (2010) – 9.38 – – – –

PSO-Delay Chen et al. (2010) – 11.39 – – – –

PSO Chen et al. (2010) – 12.17 – – – –

GA-DJ Valls et al. (2005) – – 35.39 33.24 – –

PABC Qiong and Yoonho (2013) 8.18 7.42 36.84 35.79 29.50 31.20

ABC Shi et al. (2010) – – 36.29 34.18 – –

GA Hartmann (2002) – – 37.19 35.39 – –

p-ACO Herbots et al. (2004) – – – 36.01 – 19.00

BA-DJ Ziaratia et al. (2011) – – 37.72 36.76 29.84 31.17

BSO-DJ Ziaratia et al. (2011) – – 37.84 36.51 29.17 30.84

ABC-DJ Ziaratia et al. (2011) – – 37.85 36.82 29.34 30.34

GA Alcaraz et al. (2003) – – 39.36 36.57 – –

GA Hartmann (1998) – – 39.37 36.74 – –

B&B(a) Dorndorf et al. (2000) 9.20 – – 37.10 33.30 –

ACO Herbots et al. (2004) – 9.92 – 37.85 – 29.33

B&B(b) Dorndorf et al. (2000) 9.50 – – 38.0 32.20 –

AS Schirmer (2000) – – 39.85 38.70 – –

GA Ziaratia et al. (2011) – – 39.93 38.49 – –

BA Ziaratia et al. (2011) – – 40.38 38.12 17.84 20.84

TS Nonobe and Ibaraki (2002) – – 40.86 37.88 – –

BSO Ziaratia et al. (2011) – – 41.18 37.86 17.00 22.50

SA Bouleimen and Lecocq (2003) – – 42.81 37.68 – –

ACO Merkle et al. (2002) – 10.16 – 38.02 – 26.50

s-ACO Merkle et al. (2002) – 11.38 – 39.82 – 26.70

ABC Bai (2010) – – 43.24 39.87 15.34 18.17

Table 7 A-PSO average computation time for various schedules of J3,
J60 and J120

Instance set Number of sched-
ules

Average compu-
tation time (s)

Core

J30 1,000 0.031 Intel(R)
Core(TM)
i-5@ 3.20GHz,
4-gb RAM

J30 5,000 0.092

J60 1,000 0.067

J60 5,000 0.35

J120 1,000 0.57

J120 5,000 1.97

the procedure, all the particles survive with effective fitness.
Both VPG and adaptive tuning of inertia weight contribute
substantively to the PSO to get a better and time-efficient
solution.

6 Conclusion

This work proposes a variant of the PSO algorithm called
adaptive PSO or A-PSO. A-PSO has been applied and tested
for the RCPSP problem. A new operator, called a valid par-
ticle generator (VPG), has been proposed and inertia weight
ω is adaptively tuned. The proposed VPG operator and ω

play a significant role in the quick convergence of the PSO,
saving a huge amount of computation. The proposed A-PSO
offers low average deviation and its computation time for the
experimentation is also low in comparison to other similar
models. The VPG operator may prove to be important for
many other variants of PSO to solve similar types of opti-
mization problems.

Themodel has been simulated to study its performance on
different sizes of RCPSP problem instances, e.g. J30, J60 and
J120. A comparative study is done in terms of standard devi-
ation and computation time. The results show that the model
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Table 8 Comparative study of
average computation time for
J3, J60 and J120

Bold results show the best result
obtained by proposed work

Algorithm References Average computation time (s) Avg_dev Core

(a) J = 30

Present work 0.092 0.06 3.2 GHz

ANGEL Tseng and Chen (2006) 0.11 0.09 1 GHz

ACOSS Chen et al. (2010) 0.13 0.06 1.86 GHz

PSO-HH Koulinas et al. (2014) 1.15 0.04 3.0 GHz

Population-based Valls et al. (2004) 1.16 0.10 400 MHz

Local search-critical Valls et al. (2003) 1.61 0.6 400 MHz

Decompos. and local opt. Palpant et al. (2004) 10.26 0.00 2.3 GHz

(b) J = 60

Present work 0.35 11.12 3.2 GHz

ACOSS Chen et al. (2010) 0.72 10.98 1.86 GHz

ANGEL Tseng and Chen (2006) 0.76 11.27 1 GHz

PSO-HH Koulinas et al. (2014) 2.0 11.13 3.0 GHz

Local search-critical Valls et al. (2003) 2.8 11.45 400 MHz

Tabu search Artigues et al. (2003) 3.2 12.45 450 MHz

Population-based Valls et al. (2004) 3.7 10.89 400 MHz

Decompos. and local opt. Palpant et al. (2004) 38.81 10.8 2.3 GHz

(c) J = 120

Present work 1.97 32.49 3.2 GHz

ACOSS Chen et al. (2010) 3.8 32.48 1.86 GHz

ANGEL Tseng and Chen (2006) 4.79 34.49 1 GHz

PSO-HH Koulinas et al. (2014) 7.99 32.59 3.0 GHz

Local search-critical Valls et al. (2003) 17 34.53 400 MHz

Tabu search Artigues et al. (2003) 67 36.16 450 MHz

Population-based Valls et al. (2004) 59.4 31.58 400 MHz

Decompos. and local opt. Palpant et al. (2004) 207.9 32.41 2.3 GHz

offers competitive results, as the average deviations are 0.06,
11.12 and 32.49 % for J30, J60 and J120, respectively, and
it takes 0.091, 0.32 and 1.9 % s average computation time
for the schedule of J30, J60 and J120, respectively. Further-
more, the model performs better over 25, 21 and 27 other
existing heuristics/meta-heuristics for a set of instances cor-
responding to J30, J60 and J120, respectively. The advantage
of the model is faster convergence in comparison to other
models for the same purpose. The proposed model can be
used for solving other combinatorial optimization problems
efficiently.
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