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Abstract In this work, we present an evolutionary
omputation-based solution to the circle packing problem
(ECPP). The circle packing problem consists of placing a
set of circles into a larger containing circle without overlaps:
a problem known to be NP-hard. Given the impossibility to
solve this problem efficiently, traditional and heuristic meth-
ods have been proposed to solve it. A naïve representation
for chromosomes in a population-based heuristic search leads
to high probabilities of violation of the problem constraints,
i.e., overlapping. To convert solutions that violate constraints
into ones that do not (i.e., feasible solutions), in this paper
we propose two repair mechanisms. The first one considers
every circle as an elastic ring and overlaps create repulsion
forces that lead the circles to positions where the overlaps
are resolved. The second one forms a Delaunay triangulation
with the circle centers and repairs the circles in each triangle
at a time, making sure repaired triangles are not modified
later on. Based on the proposed repair heuristics, we present
the results of the solution to the CPP problem to a set of unit
circle problems (whose exact optimal solutions are known).
These benchmark problems are solved using genetic algo-
rithms, evolutionary strategies, particle swarm optimization,
and differential evolution. The performance of the solutions
is compared to those known solutions based on the packing
density.We then performa series of experiments to determine
the performance of ECPP with non-unitary circles. First, we
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compare ECPP’s results to those of a public competition,
which stand as the world record for that particular instance
of the non-unitary CPP. On a second set of experiments, we
control the variance of the size of the circles. In all experi-
ments, ECPP yields satisfactory near-optimal solutions.
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computation · Genetic algorithms · Evolutionary strategies ·
Particle swarm optimization · Differential evolution

1 Introduction

Given N circles, of given radii, the circle packing problem
(CPP) is concerned with how to pack those circles into a cir-
cular container, without overlapping. CPP has a wide spec-
trum of applications; it is encountered in a variety of real-
world applications, including production and packing for
the textile, apparel, naval, automobile, aerospace, and food
industries (Castillo et al. 2008).

Many optional features exist on this problem; e.g., the
container can be a circle, rectangle, or polygon, and the
objects can be a circular, rectangular, or irregular. This paper
addresses CPP, where the objects and container are circles.
This problem has been proven to be NP-hard (Demaine et al.
2010). So, heuristic search methods are generally proposed
to solve this problem.

Packing circular objects is a challenge in discrete and com-
putational geometry (Szabó et al. 2006).With a large number
of circular objects to pack, the optimal solution is very diffi-
cult to find. An optimal solution may be rotated, reflected, or
the circular objects reordered; hence, the number of equiv-
alent optimal solutions blows up as the number of circular
objects increases (Hifi and M’Hallah 2009). In addition, one
ormore of the circular objectsmay bemoved slightlywithout
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affecting the optimal solution. In fact, there exists a contin-
uum of optimal solutions (Hifi and M’Hallah 2009).

Circle packing problem has many important applications
in manufacturing, logistics, networks, facility layout, and
materials science (Castillo et al. 2008). For example, in the
automobile industry, design engineers have to estimate the
size of the hole to be drilled on the body of the car and through
which they plan to pass a bundle of wires that connect car’s
sensors to the display board (Sugihara et al. 2004). The hole
has to be large enough to allow all wires to pass, but as small
as possible to avoid unnecessarily weakening the body (Sug-
ihara et al. 2004). CPP is also encountered in the manufac-
turing of sprockets for the motorcycle industry (Dowsland
et al. 2007). Similarly, it is of interest to the telecommunica-
tion, electrical, oil companies, and refineries, which have to
pass bundles of different types of cables, pipes, and insulated
pipes through cylindrical shapes over very long distances.
The smaller the diameters of the cylinders, the cheaper is the
cost. Finally, CPP emerges in material science where it is
used to interpret topological relationships encountered when
analyzing the normal grain growth in two dimensions (Nord-
bakke et al. 2004) and to model certain absorption patterns
of molecules (Harary et al. 1996).

Last, there is the issue of computational accuracy. The
goal is to search for the best packing of the N circles inside
the container c0, where the best packing minimizes unused
space.

In this article, we are presenting an approach to get a
feasible solution through evolutionary computation. This
approach is called EC-CPP (for evolutionary computation
CPP). Perhaps the first chromosome representation that
comes to mind is a vector containing the coordinates of
the center of each circle. Most evolutionary computation
methods start with a random population, and then succes-
sively apply perturbations (i.e., genetic operators) to mem-
bers of the population, until the best possible solution is
reached. When generating new solutions, both randomly or
by perturbations, the probability of generating overlaps is
high.

Two methods have been extensively explored and used
to enable metaheuristic optimization to produce solutions to
constrained problems. One is to apply a penalty function to
individuals that violate constraints. A penalty function is nor-
mally expressed as a term or coefficient in the fitness func-
tion that makes violating individuals the least fit, so they are
discarded in the evolutionary process. This approach has two
main drawbacks. The first one is that the design of the penalty
function is domain dependent and non-trivial, and the second
one is the time spent in processing a very large number of
violating individuals which end up being discarded. The sec-
ond approach to deal with constrained optimization, known
as repairing, uses a function that takes an individual that vio-
lates the constraints and returns a different individual that

does not violate the constraints (the closer to the original, the
better). This is the approach we use in this paper.

EC-CPP implements two repair heuristics and use them in
conjunction with several metaheuristic search methods. We
evaluate the results that EC-CPP produces in terms of the
obtained density; i.e., the relationship between the area of
the circumcircle and the sum of the areas of the circles inside
it. We compare those results with the existing benchmarks
(Specht 1999). Experimental results show that our approach
has a good performance in terms of the solutions’ densities.
CPP can be divided into two variations of the same prob-
lem. The first one known as the unit circle packing problem
(UCPP) considers all circles of the same size. The second and
more general one considers all circles of arbitrary sizes. We
have empirically tested EC-CPPwith many instances of both
variations of the CPP. Nevertheless, our evaluations focus on
the UCPP, given that there are theoretical solutions for the
problem up to 1,104 circles.

The rest of the paper is organized as follows. In Sect. 2,
we present the problem definition and formulation of the
circle packing problem. In Sect. 3, we give a literature survey
of work related to the circle packing problem. In Sect. 4,
we describe the proposed algorithms. Computational results
are presented in Sect. 5. Finally, in Sect. 7, we present our
conclusions.

2 Problem definition

2.1 The circle packing problem

Consider the set C of N circles; each circle ci ∈ C ,
i ∈ [1, 2, . . . , N ] and has the structure (Pi , ri ) where Pi =
(xi , yi ) ∈ R

2 and ri ∈ R.
CPP consists of providing the locations of the circles’

centers (x1, y1), (x2, y2), . . . , (xN , yN ), that minimize the
radius r0 of the containing circle c0, subject to:

(x0−xi )
2+(y0−yi )

2≤(r0 − ri )
2, i ∈{1, 2, . . . , N } (1)

(xi − x j )
2 + (yi − y j )

2 ≥ (ri + r j )
2,

i �= j,∀(i, j) ∈ {1, 2, . . . , N }2 (2)

where constraint (1) establishes that all circles must be inside
the container circle c0 and constraint (2) establishes that cir-
cles must not overlap.

It is important to note that the smaller the radius of the con-
tainer circle, the less unused space, therefore, the greater is
the packing density. Although the problem has been stated as
a minimization one, where the objective function is directly
the radius of the enclosing circle, it could be formulated as
a maximization problem, where the objective function is the
packing density. Both optimization problems are equivalent.

123



Evolutionary computation solutions 1523

2.2 Levels of abstraction

When solving CPP using a population-based metaheuristic,
individuals are produced either at random or by perturbations
generated by (random) combination of information encoded
in other individuals. Under those circumstances, the proba-
bility of generating individuals that do not comply with the
constraints (i.e., at least a pair of circles overlap) is very high.
We distinguish two types of individuals: those that do not
violate the constraints form the feasible search space, or fea-
sible space. The set of all possible individuals, regardless of
whether or not they violate the constraints, forms the general
search space, or search space.

To solve CPP using a population-based metaheuristic, we
need to explore the search space and determine an individual
that does not violate the constraints and produces the smallest
possible radius of the enclosing circle (the fitness or objective
function).

There are two general approaches to deal with individu-
als that represent unfeasible solutions: penalty functions and
repair functions.

Apenaltymethod discourages unfeasible solutions by giv-
ing penalties so that feasible solutions are preferred to unfea-
sible solutions. Michalewicz (1996) demonstrated a good
summary on constraint handling methods for evolutionary
algorithms, and most of the existing methods are based on
penalty functions. Each method is different in the amount of
penalty assigned to unfeasible individuals. These variations
become problem dependent for better performance.

Repair functions modify unfeasible solutions to produce
feasible ones. This mapping preferably has to find the closest
feasible solution to the individual to be repaired: a repaired
solution substitutes the unfeasible solution and can be used
for the searchprocess. There are nogeneral guidelines onhow
to repair unfeasible solutions. Most of the repair heuristics
are problem dependent.

At the feasible space, metaheuristics from the field of evo-
lutionary computation such as genetic algorithms (GA), evo-
lutionary strategies (ES), differential evolution (DE), andpar-
ticle swarm optimization (PSO) can be applied to optimize
the objective function, i.e., find the smallest possible con-
tainer circle. These metaheuristics do not always guarantee
an optimal solution. However, in most cases they give a near
optimal solution with less effort and time than the mathemat-
ical methods.

In this paper, we propose the use of two different repair
functions. Repair functions allow us to view the search
process at two levels of abstraction. At the lower level, we
have the search space; at the higher level, we have the feasible
space (see Fig. 1). Some individuals in the search space can
be mapped to the feasible space, not all of them. The initial
populationwill be composed, in its great majority, of individ-
uals that do not comply to the non-overlapping constraints.

Fig. 1 Feasible space

Those individuals are repaired, so that the process starts with
a population of individuals that can be mapped to the fea-
sible space. The application of perturbations (a.k.a. genetic
operators) to feasible individuals will most likely produce
unfeasible individuals. Offsprings are also repaired.

2.3 CPP definition revisited

Given the above, we can view the evolutionary process as
occurring at the feasible space as an unconstrained optimiza-
tion problem. Now, from the feasible space level of abstrac-
tion, CPP can be formally stated as follows:

Given a set of circlesC, determine these circles’ positions
(x, y), such that minimize the objective function

r∗
0 = min

r0
f (C) (3)

where r0, the radius of the container circle c0, is computed
using Algorithm 4 of Sect. 4.4.

3 Related work

Circle packing problem is concerned with the arrangement
of a finite number of circles inside a circular container with-
out overlap. The mathematical model that represents CPP
consists mainly of two types of constraints: the container
boundary and the non-overlapping constraints. The container
boundary constraint ensures that all circles lie inside the con-
tainer and the non-overlapping constraint ensures that for
any two given circles, the distance between their centers is
at least the sum of their radii. When both sets of constraints
are satisfied, we have a feasible configuration for the pack-
ing problem. This section distinguishes between two main
approaches to solve this problem: traditional optimization
and evolutionary computation.
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3.1 Traditional optimization

Mladenovic et al. (2005) apply a general reformulation
descent heuristic (RD) to the problem of identifying the
largest radius of identical circles that can be packed into a unit
containing circle. RD iterates switching from solving CPP
expressed in Cartesian coordinates to solving it expressed in
polar coordinates and viceversa until no further improvement
is obtained.

Wenqi andYan (2004) formulateCPP as a potential energy
function by simulating a system of elastic solids. They posi-
tion all circles randomly inside the containing circle. If this
configuration has no overlapping circles, a feasible solution
is at hand. Otherwise, the elastic repulsion forces generated
by the overlaps drive the overlapping circles to restore their
shape and size. The circles move along straight lines, col-
liding with each other and with the containing circle until
the composition of elastic forces is decreased to zero. If the
amount of overlap is also decreased to zero, then the process
stopswith a feasible solution. Otherwise, the process restarts.

Zhang and Deng (2005) adopt the model of Wang et al.
(2002), and use a hybrid approach consisting of simulated
annealing to explore the neighborhood of the current solu-
tion, and tabu search to implement the jumps. When explor-
ing the neighborhood of the current solution, one of the cir-
cles whose position is infeasible is translated and the degree
of infeasibility of the neighbor is computed. A neighbor-
ing solution that reduces the degree of infeasibility becomes
the incumbent solution whereas a non-improving solution
is accepted with a given probability, which decreases as the
search becomes more selective.

Pintér and Kampas (2006) present numerical results
obtained using Lipschitz global optimizer (LGO). Castillo
et al. (2008) applies various off-the-shelf generic global opti-
mization techniques, and compare their performance. They
further improve the results of the generic solvers by imple-
menting a posteriori strategy that, given a near-optimal initial
arrangement, swaps all pairs of adjacent-sized circles until
no possible improvement exists.

Addis et al. (2008) present a strategy for optimally placing
circles in a smallest circle. Theymix standard local optimiza-
tion routines with local moves between minima, while rein-
forcing solution dissimilarity but reducing the solution space.
The resulting approach obtains the best-known solution for
problems of up to 50 circles and ri = i , i = 1, . . . , N .

Al-Modahka et al. (2011) present an adaptive hybrid algo-
rithm that addresses the combinatorial structure of CPP via a
Tabu search (TS), and its continuous optimization aspects via
a combination of nested partitioning (NP) and nonlinear opti-
mization. The hybrid TS/NP algorithm exploits the advan-
tages of TS to undertake a local search aimed at identifying
a good permutation of the circles, whereas NP undertakes a
global search to identify their respective best positions. The

provided results are further modified/improved using some
diversification strategies.

Francesco et al. (2014) propose an algorithm that, by
applying a strength along a selected direction on each cir-
cle, simulates the shifting of circles on the plane and tries to
reduce the radius of the circular container during this move-
ment. The algorithm is based on amultistart technique where
the starting solutions are produced by a tabu search heuristic
that uses also the current best solution.

3.2 Evolutionary computation

Evolutionary computation for circle packing problem
(ECCPP) relies on the parameter values that encode solu-
tions, which are initially randomly distributed between lower
and upper bounds. Non-overlapping constraints are easily
broken; it is not easy to avoid producing unfeasible solu-
tions during the initialization process. The modifications of
valid solutions through crossover and mutation in genetic
algorithms, for example, may produce unfeasible solutions
as well as feasible.

Zhi-Qin et al. (2001) propose a human–computer interac-
tive genetic algorithm for solving the two-dimensional con-
strained layout optimization problem. The algorithm com-
poses chromosomes with artificial individuals (AIs) and
divides thepopulation into subgroups.Each subgrouphas dif-
ferent values of crossover and mutation probabilities. After
copy, crossover, and mutation, the best individual in each
subgroup is transferred to adjacent subgroups. New AIs are
determined based on the value of the fitness function. These
new AIs are copied to ensure they play an important role in
chromosome population. Then, they are placed into the chro-
mosome population to replace the worse individuals. The
steps mentioned above are repeated until the human expert
finds a satisfactory solution.

Xu et al. (2007) present a novel order-based positioning
technique for the layout optimization problem. A permuta-
tion (1, 2, . . . , N ) can yield a layout by specifying the order
in which circles are placed. As there exist N ! possible per-
mutations for N circles, the GA is an appropriate technique
to use to search such a large space. The GA is used to evolve
the placement order of each circle.

Shi et al. (2010) propose an improved evolution strategy
with crossover operator (ESCO) to tackle the constrained cir-
cle packing problem. The proposed ESCO extends a canoni-
cal ES to deal with combinatorial optimization by employing
the crossover operator from genetic algorithms, aiming to
exchange the location of circles for obtaining a better pack-
ing scheme. They aim to solve the general CPP; theymeasure
the quality of the packing by the size of the container and the
weighted average pair-wise distance between circles.

Yan-Jun et al. (2012) present a layout pattern-based par-
ticle swarm optimization algorithm (LPPSO) for solving the
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two-dimensional packing problem with constraints. In the
optimizing process of LPPSO, some individuals are con-
structed according to non-isomorphic layout patterns and
these individuals are added into the current population of the
PSO algorithm to replace the worst individuals; the new pop-
ulation is created as a result. A non-isomorphic layout pat-
tern is constructed based on an exact boundary-line approach
(the distance between two circles) to avoid premature con-
vergence and improve the computational efficiency.

To the best of the knowledge of the authors, there does
not exist a satisfactory E.C. approach to solving CPP. There
are not even previous publications available to compare our
results with other approaches.

4 Population-based solution

A population is a set of individuals where each individual
represents a prospect solution to the problem. A population-
based solution spreads through a good search region, instead
of only a good point, in the search space. In addition to repre-
senting a potentially good search region, the variance in the
population members provides information about the extent
of the potential search region. If new solutions are created
in proportion to the variance of an existing population of
points, a self-adaptive search procedure can be developed. In
the start of such an algorithm with a randomly picked ini-
tial population of solutions, the variance in the population
members is expected to be large, thereby ensuring a thor-
ough exploration of the entire search space. On the other
hand, during later iterations when the population of points
have covered near the optimum, the variance in population
members is expected to be small, thereby ensuring a focused
search near the optimum.Without an external guidance, such
a population-based algorithm can widen or narrow down its
search power adaptively (Deb 2004).

These algorithms are typically applied to hard problems
with a large search space, where the presence of multiple
solutions is exploited to find better search regions. The pres-
ence ofmultiple solutions in a search process allows diversity
to be maintained and this can be beneficial in handling con-
strained optimization problems. A population-based solution
usually yields the best values of the variables or the best sce-
narios which are an approximation to the optimum solution.
A solution is considered optimum with respect to the best
performance or best fitness in terms of the objective function.

4.1 A general evolutionary computation algorithm

Evolutionary computation or population-based algorithms
are direct search methods, which use only objective function
values to drive the search and employ more than one solution
at each iteration. These algorithms work on an encoding of

the parameters set, search from a population of individuals,
use an objective function, use probabilistic transition rules,
and can provide a number of potential solutions to a given
problem. Population-based algorithms allow direct genera-
tion of possible solutions in a single run.

Evolutionary computation is an ambitious name for a sim-
ple idea: use the theory of evolution as an algorithm. Any
program that uses the fundamental structure shown in Algo-
rithm 1 could be termed Evolutionary Computation. In an
evolutionary algorithm, the first step is to create a popula-
tion of individuals. The structures that describe those indi-
viduals are filled in at random. An objective function (fit-
ness function for EAs) is used to decide which solutions
deserve further attention. In the main loop of the algorithm,
we pick solutions so that on average better solutions are cho-
sen. This process is known as selection. The selected solu-
tions are then subjected to variation. This variation can be in
the form of random tweaks to a single structure or exchange
of genetic material between structures. Changing a single
structure is called unary variation or mutation. Exchanging
material between structures is called an n-ary variation or
crossover.

The main loop iterates the process of population updat-
ing via selection and variation. In accordance with the gen-
eral theory of evolution, this should move the population
toward fitter structures. This continues until you reach an
optimum in the space of solutions, defined by your fitness
function, or until a specified number of generations has been
reached. This optimum may be the best possible place in
the entire fitness space, or it may merely be better than
all structures nearby in the search space. Adopting the lan-
guage of optimization, we call these two possibilities global
and local optima. Unlike many other types of optimizers,
an evolutionary algorithm can jump from one optimum to
another.

Algorithm 1 shows the basic structure of an evolutionary
algorithm; in our case, we add a step that tests the feasibility
of each individual. Tomaintain our perspective of a high level
of abstraction (i.e., working at the feasible space), after an
individual is generated (steps 1 and 5) we apply a repairing
process. This process repeats until computes the fitness of
each individual (i.e., determines the radius of the enclosing
circle) reaching an specified number of generations.

Algorithm 1 GenericEA
1: Generate a random population of individuals
2: repeat
3: Test the individuals for quality
4: Select individuals to be perturbed
5: Produce new variations of selected individuals
6: Replace old individuals with new ones
7: until termination criterion is satisfied
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4.2 Repulsion-based repair

A configuration P = ((x1, y1), (x2, y2), . . . , (xN , yN )) rep-
resents fixedpositions for the N circles. The repairingprocess
can be stated as finding coordinates (xi , yi ) of every circle
ci so that the whole configuration does not violate the non-
overlapping constraint.

In this section, we propose an algorithm inspired on a
physical analogy. We imagine the set of circles as elas-
tic rings. Under this metaphor, circles that are too close
together (i.e., overlapping circles) start deforming and exert-
ing a restoring force that pushes them apart. We allow these
forces to push circles to the point where they touch, which is
the point where the overlap disappears. Where first is neces-
sary, calculate the center of gravity Pg of the given circles to
sort them by proximity to this center.

Given two circles ci and c j where i �= j in the given
configuration. If (xi − x j )2+ (yi − y j )2 < (ri +r j )2, then ci
and c j overlap, then the overlapping depth di j between them
is

di j = ri + r j −
√

(xi − x j )2 + (yi − y j )2,

(i, j) ∈ {1, . . . , N }2 (4)

di j

⎧
⎨
⎩

<0 distant circles
=0 tangent circles
>0 overlapping circles

(5)

Since the initial configuration is generated randomly, there
most likely exist overlaps among the circles. According to the
physical analogy, these circles are considered as elastic rings.
If there exists overlap between objects, theymust have elastic
forces acting on them, so they will move with the action of
those forces.

Figure 2 shows two circles ci and c j that overlap; c j will
move along the direction from i to j by the reaction of elastic
forces. How far it moves depends on its embedding depth di j
(Eq. 4), c j moves away from ci a distance di j until it does
not overlap with ci . According to the following equations,
the coordinates of c j are modified.

dx j = x j − xi
Di j

di j (6)

dy j = y j − yi
Di j

di j (7)

where Di j denotes the distance from the centers of ci and c j ,
di j is the same as the previous definition, dx j is the projection
of di j in the horizontal axis x and dy j is the projection of di j
in the vertical axis y. Therefore, new position is

x ′
j = x j + dx j (8)

y′
j = y j + dy j (9)

Equations (4) to (9) solve the overlapping problem for
two circles. If we have more than two circles, we need to

Fig. 2 Two overlapping circles

define the order in which their positions are corrected, so
that it guarantees that, at the end, no overlaps exist and that
corrected circles are not moved in subsequent corrections
(otherwise the algorithm could fall into an infinite cycle of
corrections).

Algorithm 2 proposes such an order, guaranteeing both
propertiesmentioned in the previous paragraph. Let us define
Pg as the center of gravity of the set of circles. Pg = {x, y},
where x and y are the means of the coordinates of the centers
of all circles. Themain idea is to compute the center of gravity
of the set of circles, and correct all possible overlaps from
Pg , outwards.

If the previous configuration is P = ((x1, y1), (x2, y2), . . . ,
(xN , yN )), then the new configuration is P ′ = ((x1, y1),
(x ′

2, y
′
2), . . . , (x

′
N , y′

N )) represents the center coordinates of
circles without overlapping. Note that c1 is the closest circle
to Pg , therefore, it does not change with the execution of
Algorithm 2.

It is easy to prove that the computational complexity of
Algorithm 2 is O(N 2). Since Algorithm 2 does not have the
means to find the closest neighbors of each circle, it compares
every circle with every other remaining one. Therefore, it is
important to seek the implementation of repairs that are faster
and consume less computational resources. An alternative
approach is proposed in the next section.

Algorithm 2 RBRepair (C)

1: C : set of Circles
2: Pg = (xg, yg) = Center of Gravi t y o f Circles
3: Sort C by proximity to Pg
4: for i = 1 to |C | − 1 do
5: for j = i + 1 to |C | do
6: if c j overlaps ci then
7: c j ← Repair c j to avoid overlapping, according to Eqs. 6 –

9
8: end if
9: end for
10: end for
11: return C (without overlapping)
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4.3 Delaunay triangulation-based repair

A configuration P represents fixed positions of the centers of
the N circles. The repairing process can be stated as finding
coordinates P ′

i of every circle ci so that constraint (2) is not
violated.

The set T = {T1, . . . , TNt } represents the Delaunay trian-
gulation formed by P . Each triangle Tk = (Pk1 , Pk2 , Pk3) of
T is a triplet of circle identifiers.

The repairing process described in this subsection consists
on removing all overlaps using the Delaunay triangulation.
The Delaunay triangulation is a triangulation such that the
circumcircle of each triangle does not contain another point
in its interior.

Consider a set P of points in the Euclidean plane, where
Pi = (xi , yi ) and |P| ≥ 3. Assume that these points are
not all collinear, and that no four points are cocircular. Let
d(Pi , Pj ) denote the Euclidean distance between points Pi
and Pj . In Lee and Schachter (1980), a T triangulation of a
set of N points P is considered Delaunay triangulation of P
if either of the following lemmas hold:

Lemma 1 Given a set P of N points, any triangulation
T (P) has the same number of triangles,

Nt = 2(N − 1) − Nh (10)

and the same number of edges,

Ne = 3(N − 1) − Nh (11)

where Nh is the number of points on the convex hull of P.

Lemma 2 Given a set P of points, any edge (Pi , Pj ) is a
Delaunay edge of DT(P) if and only if there exists a point
x such that the circle centered at x and passing through Pi
and Pj does not contain in its interior any other point of P.

Lemma 3 Given a set P of points, a triangle Tk =
(Pk1 , Pk2 , Pk3) ∈ DT (P) if and only if its circumcircle does
not contain any other point of P in its interior.

Among the possible triangulations of a set of points,
Delaunay Triangulations are an interesting alternative as they
tend to generate triangles that maximize the minimum angle
of all the triangles in the triangulation. Additionally, the per-
formance of Delaunay triangulations is acceptable in prac-
tice; the algorithm has a complexity time of O(N log N ).
The repulsion-based repair algorithm does not use informa-
tion about neighborhood of circle. The DT-based repulsion
algorithm uses the neighborhood information provided by
the DT to repair triplets of triangles at once, not having to
verify overlaps with any other circle.

For CPP the set P of Eq. 12 is formed by the coordinates
(x, y) of the centers of the circles.

P = {P1, . . . , PN }, Pi = (xi , yi ), i ∈ [1, 2, . . . , N ] (12)

Constraint 13 represents the conditions to apply by the
repair process based on the Delaunay triangulation, i.e., the
three circles after the repair processmust be as close as possi-
ble to each other, and at last one of the three must be tangent
with the other two.

√
(xk1 − xk3)

2 + (yk1 − yk3)
2 = rk1 + rk3,√

(xk2 − xk3)
2 + (yk2 − yk3)

2 = rk2 + rk3,

k1 �= k2 �= k3, k1, k2, k3 ∈ [1, 2, . . . , N ] (13)

The repair process starts with k = 1 for Tk =
(Pk1 , Pk2 , Pk3), the first triangle in T , where Pki , corresponds
to circle cki of Tk , for 1 ≤ i ≤ 3. Circle cki has coordinates
Pki . The Delaunay triangulation-based repair process first
repairs Pk1 and Pk2 of Tk . We establish that Pk1 will not be
moved and Pk2 is attracted to or repelled from Pk1 to make
their circles tangent. P ′

k2
is the repaired position of Pk2 . Cir-

cle ck2 is moved along the line that connects Pk1 with Pk2 to
a place where Eq. (14) is satisfied

√
(xk1 − x ′

k2)
2 + (yk1 − y′

k2)
2 = rk1 + rk2 (14)

Similarly proceed to repair circle ck3 , until Eq. (15) is satisfied

√
(xk1 − x ′

k3)
2 + (yk1 − y′

k3)
2 = rk1 + rk3 ,√

(x ′
k2 − x ′

k3)
2 + (y′

k2 − y′
k3)

2 = rk2 + rk3 . (15)

I.e., given three circles ck1 , ck2 , and ck3 , ck2 is attracted to or
repelled from ck1 , x

′
k2

and y′
k2

are calculated with Eqs. 6–9.
The third circle ck3 is attracted to or repelled from ck1 and
c′
k2
, its new coordinates x ′

k3
and y′

k3
are calculated solving the

system of quadratic equations (16).

x ′
k3(x

′
k3 − 2xk1) + y′

k3(y
′
k3 − 2yk1) = (rk1 + rk3)

2

−x2k1 − y2k1 ,

x ′
k3(x

′
k3 − 2x ′

k2) + y′
k3(y

′
k3 − 2y′

k2) = (rk2 + rk3)
2

−x ′2
k2 − y′2

k2 . (16)

The remaining triangles will be repaired in an order such that
every triangle being repaired is adjacent to a repaired trian-
gle, according to the Delaunay triangulation. Under those
circumstances, two of the circles of Tk (the triangle under
repair) have already been fixed and will not be moved again.
Assume Tk = (Pk1 , Pk2 , Pk3), where Pk1 and Pk2 have been
fixed; that leaves the only option of moving the remaining
Pk3 , to repair triangle Tk . Pk3 will be moved to a place where
it satisfiesEq. (17).
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√
(x ′

k1 − x ′
k3)

2 + (y′
k1 − y′

k3)
2 = rk1 + rk3 ,√

(x ′
k2 − x ′

k3)
2 + (y′

k2 − y′
k3)

2 = rk2 + rk3 .

k ∈ [2, 3, . . . , Nt ] (17)

The order in which circles are repaired is important. We
need to produce an efficient algorithm that repairs every circle
only once, and once it is fixed it will not be moved again. On
the other hand, if the order is arbitrary, the repair process
can get to a point where overlaps exist and no circles can
be moved to resolve the situation. To avoid these problems
and guarantee convergence of the repair process, we compute
the center of gravity for the set of circles, then sort them by
ascending distance to the center of gravity. Once we have
the circles sorted, we compute the Delaunay triangulation,
which yields the neighbors of each circle in triplets. We will
repair these triplets attracting circles to the center of gravity.
Algorithm 3, DTRepair, implements this process. DTRepair
takes as input a set of circles and returns a set of repaired
circles.

4.4 Enclosing

Once a configuration contains no overlaps, we need to deter-
mine the size of the smallest circle that contains all circles
in the configuration. Enclosing finds the coordinates {x0, y0}
that minimize r0, the radius of the containing circle c0.

To compute the enclosing circle, Algorithm 4 sorts the
circles by descending distance from their center of gravity.
It takes the farthest circle as the starting enclosing circle,
and takes each circle at a time, checking whether or not it
is contained in the previous enclosing circle. If it is not, it
computes the new enclosing circle.

Assume at a given iteration i , circle ci has center coordi-
nates (xi , yi ), and container circle c0 has coordinates (x0, y0).
If

√
(x0 − xi )2 + (y0 − yi )2 + ri < r0, then c0 completely

contains ci , and there is nothing to do. Otherwise, we need
to compute a new c0 that encloses all of them. In that case,
the radius of the new enclosing circle r ′

0 is

r ′
0 =

√
(x0 − xi )2 + (y0 − yi )2 + r0 + ri

2
(18)

Algorithm 3 DTRepair (C)

1: C : set of Circles
2: Pg = (xg, yg) = Center of Gravity of C
3: Sort C by ascending distance to Pg
4: T ← Delaunay Triangulation of the centers in Sorted C
5: Coordinates of C(T1) ← Repair C(T1), according to Eqs. 14, 15

6: for k = 2 to |T | do
7: Coordinates of C(Tk) ← Repair C(Tk), according to Eq. 17
8: end for
9: return C (without overlapping)

Algorithm 4 Enclosing (C)

1: C : set of Circles
2: Pg = (xg, yg) = Center of Gravity of C
3: Sort C by descending distance to Pg
4: c0 ← c1
5: for i = 2 to |C | do
6: if c0 does not enclose ci then
7: Generate a new Container c0, according to Eqs. 18 – 23
8: end if
9: end for
10: return c0

Once we know the new radius, we compute the changes
in the x and y coordinates of c0’s center.

θ0i = ArcTan
x0 − xi
y0 − yi

(19)

dx0 = (r ′
0 − r0)Cos(θ0i ) (20)

dy0 = (r ′
0 − r0)Sin(θ0i ) (21)

where dx0 and dy0 are the changes to c0’s coordinates.
Finally, the new position of c0 is given by Eqs. 22 and 23.

x ′
0 = x0 + dx0 (22)

y′
0 = y0 + dy0 (23)

Note that as Algorithm 4 proceeds towards the center
of gravity, the likelihood to modifying the container circle
decreases. When have revised that all circles are inside of
the enclosing circle c0, the process has finished and the con-
tainer circle c0 is returned.

4.5 Time complexity

It is well known that sorting and computing the Delau-
nay triangulation take time O(N log N ) (Lee and Schachter
1980). The loop in lines 6–8 of Algorithm 4 repeats O(Nt )

times, and repair can be done in constant time, and since
Nt = O(N ). The total times complexity of DTRepair is
O(N log N ).

Enclosing also sorts the sets of circles, taking O(N log N )

time. The loop in lines 5–9 of Enclosing repeats O(N ) times,
and verification of enclosure andmodifying the container can
be done in constant time.

The total time complexity of Enclosing is O(N log N ).
In conclusion, given the chromosome of an individual in
the evolutionary process, repairing it and measuring its fit-
ness (i.e. determining the enclosing circle) can be done in
O(N log N ) time.

5 Results

ECPP was tested under different conditions, and the results
were compared to known solutions (either exact or approxi-
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mate) known in the field. The problem of packing circles in a
circle has two known variants, the case where all circle sizes
are equal (known as unit circle packing), and the case where
the circles have different sizes (Castillo et al. 2008). ECPP
was tested following this distinction.

The first set of experiments tests ECPP’s performance
on unit-circle problems. These tests were conducted in two
orthogonal directions; we compare the performance of two
metaheuristic search algorithms (namely,GAandDE)1 using
the repulsion based and the Delaunay triangulation repair
heuristics. These results can be compared against the proven
optimal analytical solutions.

The second set of experiments tests ECPP’s performance
on uneven circle problems. Since there are no known optimal
results for these problems, we performed two experiments to
test ECPP’s performance: the first one compares our results
with those published at Mathrec (Zimmermann 2006), the
second one analyzes ECPP’s performance for different val-
ues of variance of the radii of the circles. We analyze the
algorithm’s performance with respect to the solutions’ pack-
ing density; when the variance of the circles’ radii in a prob-
lem instance increases, large circles produce holes that can
be occupied by small circles, thus increasing the density of
the produced solution.

Those tests are reported in the following two subsections.
ECPP was implemented in Mathematica 9. We ran our

experiments using a Mac computer with an Intel Core i7,
2 GHz, four cores, and 4 GB of RAM.

5.1 Unit circle tests

To measure the performance of the two repair mechanisms,
we compare the numerical performance of four metaheuris-
tics (genetic algorithms, evolutionary strategies, differential
evolution, and PSO) applied to the circle packing problem.
The most recent solutions to the circle packing problem are
reported at thewebsite Packomania (Specht 1999). Thisweb-
site started in 1999 reporting proven optimal solutions from 1
to 1,500 unit circles and some cases of uneven circles. Unfor-
tunately, they do not provide computational time. To illus-
trate the effectiveness of our approaches, we tested problems
of different sizes, from 3 circles to 100 circles. Only some
of them are reported for the sake of brevity. We compare
the results produced by our algorithms with the benchmarks
presented in the Packomania web site (Specht 1999).

The metrics used in the comparison of results are radius
and density. Radius is the best-known solution proven math-
ematically for a particular problem and density describes the

1 Although all experiments were also performed using genetic algo-
rithms (GA), evolutionary strategies (ES), differential evolution (DE),
and PSO, for the sake of brevity, only the GA and DE were included in
the reports, since they were the ones that performed the best.

ratio of total area occupied by the circles to container area,
i.e., the relationship between the area of the container cir-
cle and the sum of areas of the circles that are inside it.
Benchmarks are registered on Tables 1 and 2 in the col-
umn labeled Optimal, with their corresponding radii and
densities.

The results of the two repairmechanisms (repulsion-based
repair and DT-based repair) are presented in Sect. 5.1 and
5.2, respectively. These tables compare our approaches with
the benchmarks. The results are shown for the size of the
instances, the radius of the container circle and the density
corresponding to the container circle of the mean solution
obtained with genetic algorithms (GA) and differential evo-
lution (DE).

5.1.1 Results using repulsion-based repair

Table 1 is composed of eight columns: the first column
refers to the number of unit circles to be packed; the
second and third columns refer to the radius and den-
sity, respectively, of the optimal solution; the fourth and
fifth columns show the mean radius and density obtained
applying GA, the sixth and seventh columns show the
mean radius and density obtained applying DE, the eighth
column shows the mean time required. The results dis-
played in Table 1 represent a series of instances that
take values for n = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65,
70, 75, 80, 85, 90, 95, 100. The results produced by our
approach were obtained by 30 independent executions with
random initial populations. The table shows the mean of the
30 executions. The values highlighted in each row represent
the best mean obtained.

From Table 1, we can see that DE outperforms the other
metaheuristics. This result was at all expected; it is vox pop-
uli in the Evolutionary Computation community, that DE is
one of the best metaheuristics for real-valued optimization
problems. Table 1 also shows, in the last column, the com-
putational time required to solve each problem size. Since
both GA and DE were run with the same population size and
number of generations, their computational times are basi-
cally the same.

Even though the mean results not seem to show clear
superiority in most cases, we decided to perform a statis-
tical comparison of the result for selected cases. For size 30,
we compared the performance of GA andDE, for a statistical
difference in means, for a significance level α = 0.05, prov-
ing that indeed performance is superior to DE. For n = 55,
we performed the same test, resulting in DE’s performance
proving superior to GA.

Figure 3 illustrates the plot formed by the mean values
obtained for the solution for the four metaheuristics and the
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Table 1 Performance using repulsion-based repair

N Optimal GA DE Time (s)

r0 Density r0 Density r0 Density

2 2.000000 0.500000 2.000000 0.500000 2.000000 0.500000 34

3 2.154700 0.646171 2.159630 0.643222 2.159420 0.643347 792

4 2.414213 0.686294 2.459890 0.661043 2.415430 0.685601 1,760

5 2.701301 0.685211 2.949650 0.574686 2.831360 0.623705 2,528

6 3.000000 0.666667 3.076380 0.633975 3.000000 0.666667 4,240

7 3.000000 0.777778 3.265700 0.656367 3.108350 0.724498 5,472

8 3.304764 0.732504 3.543870 0.636993 3.430100 0.679950 11,024

9 3.613125 0.689406 3.872370 0.600190 3.777500 0.630714 14,720

10 3.813025 0.687796 4.089480 0.597948 3.941590 0.643660 14,816

11 3.923804 0.714462 4.218920 0.618003 4.132690 0.644062 14,940

12 4.029601 0.739022 4.434350 0.610269 4.285840 0.653294 14,976

13 4.236067 0.724464 4.614080 0.610622 4.433790 0.661291 15,068

14 4.328428 0.747252 4.837260 0.598314 4.678800 0.639528 15,276

15 4.521356 0.733758 4.992760 0.601740 4.900330 0.624656 15,400

16 4.615425 0.751096 5.185520 0.595024 5.037030 0.630624 15,408

17 4.792033 0.740304 5.316410 0.601468 5.193660 0.630235 15,520

18 4.863703 0.760920 5.491150 0.596961 5.293990 0.642254 15,696

19 4.863703 0.803193 5.586120 0.608883 5.432230 0.643869 15,972

20 5.122320 0.762249 5.738290 0.607387 5.591260 0.639749 16,596

25 5.752824 0.755408 6.385920 0.613046 6.312330 0.627423 17,516

30 6.197741 0.781016 6.998590 0.612491 6.959850 0.619328 18,468

35 6.697170 0.780343 7.621730 0.602505 7.483660 0.624942 19,128

40 7.123850 0.788190 8.126000 0.605768 8.000540 0.624916 20,728

45 7.572910 0.784669 8.559630 0.614189 8.478760 0.625962 23,992

50 7.947515 0.791604 9.011700 0.615682 8.948360 0.624430 29,264

55 8.211100 0.815755 9.440760 0.617090 9.333180 0.631399 55,460

60 8.646220 0.802599 9.870930 0.615794 9.865880 0.616425 78,848

65 9.017400 0.799376 10.342000 0.607721 10.179400 0.627294 98,532

70 9.345650 0.801454 10.665700 0.615343 10.492600 0.635815 117,804

75 9.672029 0.801728 10.943500 0.626257 10.939800 0.626674 122,044

80 9.968150 0.805120 11.352900 0.620693 11.274100 0.629403 128,716

85 10.163100 0.822935 11.683800 0.622654 11.543200 0.637923 139,332

90 10.546100 0.809210 11.992200 0.625815 11.953100 0.629918 142,992

95 10.840200 0.808442 12.244100 0.633680 12.195400 0.638755 157,080

100 11.082149 0.814241 12.612100 0.628675 12.506500 0.639337 190,244

benchmarks corresponding to eachproblemsize (i.e., number
of circles). Figure 4 illustrates the plot formed by the Density
obtained by the mean values of the fitness function for the
four metaheuristics and the benchmarks corresponding to
each problem size (i.e., number of circles). From Figs. 3 and
4, we can see that the best densities were obtained by DE
for most cases. Those figures show the distance of ECPP’s
solutions with respect to the optimal ones.

5.1.2 Results using DT-based repair

Table 2 has the same structure as Table 1. The results dis-
played in Table 2 represent a series of instances that take val-
ues for n = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,
85, 90, 95, 100. The results produced by our approach were
obtained by 30 independent executions with random initial
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Fig. 3 Radius of the enclosing circle using repulsion-based repair

Fig. 4 Density of the enclosing circle using repulsion-based repair

solutions. The table shows the mean of the 30 executions.
The values highlighted in each row represent the best result
obtained.

From Table 2, we can see that GA outperforms the other
metaheuristics. This result was not at all expected; it is vox
populi in the evolutionary computation community that DE
is one of the best metaheuristics for real-valued optimization
problems. The best metaheuristic was GA. As of today, the
reason remains unknown to the authors of this paper.

Figure 5 illustrates the plot formed by the mean values
obtained for the solution for the four metaheuristics and the
benchmarks corresponding to eachproblemsize (i.e., number
of circles). From Fig. 5, we can see that the best solutions
were obtained by GA.

Figure 6 illustrates the plot formedby theDensity obtained
by the mean values of the fitness function for the four meta-
heuristics and the benchmarks corresponding to each prob-
lem size (i.e., number of circles). From Fig. 6, we can see
that the best densities were obtained by GA.

5.2 Non-unit circle tests

Although the unit circle version of CPP has been solved ana-
lytically for as many as 1,014 circles (Specht 1999), there is

an infinite number of instance problems for each number of
circles in the non-unit circle case, and there is no analytical
solution for any of these problems.

In the absence of analytical solutions, to assess the per-
formance of ECPP with non-unit circle problem instances,
we performed two sets of experiments. First, we compared
ECPP’s performance on the benchmark problems presented
at Zimmermann (2006). The problem presented in those web
pages is to solve CPP for a set of circles where their radii
ri = i , i = 1, . . . , N . Figure 7 shows a plot of the radii of
the enclosing circles of solutions obtained using Delaunay
triangulation-based repair with genetic algorithms for prob-
lem sizes from 1 to 50. GA was executed with a population
of 50 individuals and 500 generations.

The interpretation of these results has to take into account
the following facts. The plot labeled as MathRec is the world
records for these problems; no single algorithm provides the
best solution to all problem instances. Even more, not all
participants provided solutions to all problem instances. In
general, algorithms are best at a single solution or at most
at a range of them. None of the solutions presented in the
MathRec contest was based on evolutionary computation.
ECPP is the first attempt to solve CPP using metaheuristics
of this kind.

In the second experiment to assess ECPP’s performance
on non-unit CPP, we control the variance of the circle sizes
and observe ECPPs performance (based on packing density)
as the relative sizes of the circles vary. These experiments
were conducted using only the best metaheuristic search and
repair mechanisms found in the previous tests, i.e., genetic
algorithms, using the Delaunay triangulation repair. For the
sake of brevity, we only present experiments conducted to a
set of 20 circles, which represent a considerably large search
space of 40 dimensions.

We allow circle sizes to diverge from unity in such a
way that we have control over the variance of their sizes.
If the variance is zero, we have the unit-circle version of the
problem, which was tested extensively and the results were
reported in the previous section. As the variance increases,
intuition leads us to suspect that smaller circles way fill in the
gaps between larger circles, therefore, increasing the density
of the solutions.

For each problem size (i.e., number of circles), we gen-
erate the circle sizes according to the following probability
distribution function:

U [1 − �, 1 + �] (24)

where � represents the allowed amount of variation. It is
well known that the variance of this distribution is

σ 2 = 1

12
((1 + �) − (1 − �))2 = �2

3
(25)
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Table 2 Performance using Delaunay triangulation-based repair

N Optimal GA DE Time (s)

r0 Density r0 Density r0 Density

2 2.000000 0.500000 2.000000 0.500000 2.000000 0.500000 34

3 2.154700 0.646170 2.154700 0.646171 2.154700 0.646171 204

4 2.414213 0.686291 2.732050 0.535898 2.732050 0.535898 408

5 2.701301 0.685210 3.000000 0.555556 3.000000 0.555556 680

6 3.000000 0.666666 3.000000 0.666667 3.000000 0.666667 1,054

7 3.000000 0.777777 3.000000 0.777778 3.000000 0.777778 1,190

8 3.304764 0.732502 3.645750 0.601888 3.645750 0.601888 2,380

9 3.613125 0.689407 3.800000 0.623269 3.800000 0.623269 2,958

10 3.813025 0.687797 4.000000 0.625000 4.000000 0.625000 3,162

11 3.923804 0.714460 4.055050 0.668960 4.055050 0.668960 3,808

12 4.029601 0.739021 4.055050 0.729775 4.055050 0.729775 4,216

13 4.236067 0.724465 4.550800 0.627724 4.573610 0.621477 4,556

14 4.328428 0.747252 4.605550 0.660032 4.605550 0.660032 4,896

15 4.521356 0.733759 4.752780 0.664043 4.752780 0.664043 5,508

16 4.615425 0.751097 4.815756 0.689908 4.815760 0.689908 5,984

17 4.792033 0.740302 5.000000 0.680000 5.000000 0.680000 6,290

18 4.863703 0.760918 5.000000 0.720000 5.000000 0.720000 6,766

19 4.863703 0.803192 5.187680 0.706005 5.187680 0.706005 7,480

20 5.122320 0.762248 5.467710 0.668990 5.455490 0.671990 7,786

25 5.752824 0.755401 6.023700 0.688991 6.003700 0.693588 9,860

30 6.197741 0.781006 6.465700 0.717612 6.434870 0.724505 10,302

35 6.697170 0.780343 7.206830 0.673875 7.056770 0.702840 10,472

40 7.123850 0.788190 7.599570 0.692600 7.600690 0.692396 12,920

45 7.572910 0.784669 8.000000 0.703125 8.062160 0.692325 14,212

50 7.947515 0.791602 8.550590 0.683877 8.453270 0.699715 16,796

55 8.211100 0.815755 8.825820 0.706078 8.899030 0.694509 17,850

60 8.646220 0.802599 9.120590 0.721282 9.264870 0.698992 21,590

65 9.017400 0.799376 9.568860 0.709893 9.728280 0.686817 21,760

70 9.345650 0.801454 9.888930 0.715813 10.051700 0.692814 23,834

75 9.672029 0.801726 10.379800 0.696120 10.613000 0.665866 26,690

80 9.968150 0.805120 10.718000 0.696408 10.861600 0.678115 28,798

85 10.163100 0.822935 11.057300 0.695221 11.113700 0.688183 30,396

90 10.546100 0.809210 11.574400 0.671812 11.582900 0.670823 32,708

95 10.840200 0.808442 11.748100 0.688311 11.927700 0.667744 33,626

100 11.082149 0.814239 12.067400 0.686704 12.433700 0.646843 36,176

so, by varying �we are controlling the variance of the circle
sizes of the randomly generated problem instances.

We generated random problem instances for 20 circles
varying � in the interval from 0 to 1, increasing delta by
0.1 for each experiment. For each setup, we performed 30
independent executions. This number of executions allows
us to achieve statistical stability and draw conclusions about
ECPP’s performance on this type of problems. Figure 8
shows a plot of the density of the solutions as � varies for
the described experiments.

6 Discussion

Comparing the four meta-heuristics using Delaunay
triangulation-based repair, we can see that genetic algorithms
perform best, followed closely by differential evolution, evo-
lutionary strategies being further back, and in last place PSO.

As we can see in Fig. 5, the difference between genetic
algorithms and differential evolution is minimal and perhaps
one might think that these results do not show obvious differ-
ences. However, statistical tests were performed for 55 to 100
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Fig. 5 Radius of the enclosing circle using Delaunay triangulation-
based repair
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Fig. 6 Density of the enclosing circle using Delaunay triangulation-
based repair
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Fig. 7 Performance comparison: ECPP vs MathRec

circles, and there are indeed statistically significant differ-
ences between their respective means. For example for n =
55,we conducted a hypothesis testwith a level of significance
of 95 %, where the null hypothesis was H0:μGA = μDE and
the alternative hypothesis is H1:μGA �= μDE. The calculated
valuewas p = 0.074016, which indicates that there is indeed
a difference. Therefore, if there is a statistically significant
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Fig. 8 Mean density of the enclosing circle with uneven circles
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Fig. 9 Comparison between repulsion-based repair and Delaunay
triangulation-based repair by genetic algorithms

difference between genetic algorithms and differential evo-
lution which were the closest ones, there is also a statistically
significant difference between genetic algorithms and evolu-
tionary strategies or PSO, whose means are more distant.

To date, the authors have no explanationwhy genetic algo-
rithms outperform differential evolution when applying the
Delaunay triangulation-based repair, even thoughmost of the
published literature mention that differential evolution per-
forms better than genetic algorithms in real-coded problems.

To compare the results obtained by the repulsion and
Delaunay triangulation-based repair processes, we plot the
mean of size of the enclosing circle for the different prob-
lem sizes. Figure 9 shows that the Delaunay triangulation
repair performs better than the repulsion-based repair. Also,
the repairing process by Delaunay triangulation requires less
time that means less evaluations are needed to obtain a result
closer to the optimum than by the repulsion heuristic.

In very few cases, where the optimal configuration is
a configuration that cannot be obtained by the Delaunay
triangulation-based repair, this repair method has trouble
approaching the optimum. This situation occurswhen the cir-
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cles in the optimal configuration form holes involving more
than three circles, and sometimes with one or two circles in
the hole, i.e. some circles are isolated. This repairing process
forces the circles to be tangent, so it is impossible to approach
the optimum. In those cases, the repulsion-based repair is
more feasible to obtain a closer result to the optimum.

In the last test cases, dealing with uneven circles, the
expected results were achieved. Starting with no variation,
the results depart from the densities reached by the unit-
circle problem. As the variance of the circle sizes increases,
the density of the solutions increases. The density of the solu-
tions seems to tend asymptotically to a limit which remains
to be determined in future experiments.

7 Conclusions

In this paper, we propose an evolutionary computation-based
solution to the circle packing problem, called ECPP. These
solutions are based on two repair mechanisms: repulsion
based and Delaunay triangulation based. We combine these
repair heuristics with GA, ES, DE, and PSO (although only
GA and DE are reported in this paper). The solution space
of the circle packing problem is enormous and increases
rapidly with the problem size, i.e., the number of circles to
be allocated. Since these packing problems areNP-complete,
heuristic search procedures are used.

The strength of evolutionary algorithms lies in the abil-
ity to search large and complex solution spaces in a sys-
tematic and efficient way. Evolutionary search strategies are
not dependent on a particular problem structure and allow
the user to use different methods for the encoding of the
genotype. The performance of the search process is strongly
related to the representation of the circle packing prob-
lem. The particular feature of our evolutionary algorithm
developed for the circle packing problem is their two-stage
approach. ECPP is used to explore and manipulate the solu-
tion space, and a second procedure is used to evaluate the
solutions. The genotype needs to be repaired to check the
quality and feasibility of the packing solution: the pheno-
type.

The operation on the layout rather than an encoded data
structure raises a number of other issues, such as overlap.
Overlapping configurations are invalid solutions and need to
be resolved by rejecting, correcting, or temporarily accepting
them. Rejection wastes precious computation time and may
result in less dense layouts for highly uneven radii, since the
slightest change in position or rotation could lead to invalid
configurations, which will no longer contribute to the search
process; after the repair process is applied to a prospect solu-
tion, it results in a valid solution. Correcting invalid config-
urations seems a better option, since often only minor repo-
sitioning is necessary to obtain a valid solution.

The acceptance of an invalid layout requires a penalty
term in the evaluation function, as mentioned in the solutions
presented in the literature. The penalty expression needs to
be carefully designed balancing between layout compaction
and overlap generation. Penalty functions are a less efficient
guide to the search than a repair algorithm that avoids pro-
ducing constraint violating configurations.

When the search process operates on an encoding, the
packing rules applied by the decoding algorithm guarantee
that all solutions considered in the search process are valid.
There has been much speculation on whether this is bene-
ficial with respect to the transmission of specific layout to
the next generation and the next state in the neighborhood,
respectively. We have not been able to find a satisfactory
answer to this problem in the literature. The different solution
approaches have not been compared with each other. Since
much of their performance strongly depends on radii and the
number of circles involved with respect to the formulation
of the objective function, it is not sufficient to judge their
performance purely on the basis of benchmarks achieved.
This emphasizes the need for including density in the rela-
tive evaluation of the solutions presented in this paper.

The numerical results show that all methods can find
acceptable solutions and their performances will be very
close if theDelaunay triangulation repair is used.We can also
observe that differential evolution performs better than the
other three metaheuristics when a repulsion-based repair is
applied and genetic algorithms perform better when a Delau-
nay triangulation-based repair is applied.

Our findings clearly show that ES and PSO provide the
worst results of the four metaheuristics with the two repair
mechanisms on most of the problem instances. GA and DE
got better results, using either of the repair mechanisms. In
some cases, the repulsion-based repair gives us better results
than the DT-based repair. This occurs particularly because
the configuration of the best-known solution is not formed
by triplets of circles tangent to each other. Nonetheless, in
general terms, the performance of DT-based repair is better,
specifically given that this repair process forces the circles to
be tangent with at least two other circles. Probably, a hybrid
algorithm composed with the two repair mechanism could
give us better results than those obtained with each heuristic
separately, specifically if we apply the repulsion-based repair
followed by the DT-based repair.

Finally, the last set of experiments shows that ECPP is able
to handle problem instances with circles of different sizes,
as effectively as for the unit circle instances. This result was
expected, since the solution was designed without any size-
related constraint. ECPP was compared with the results pub-
lished at MathRec. Those results represent the state of the art
in solving that specific problem instance, and no single algo-
rithm provides the best solution to all problem sizes. Even
more, not all participants provided solutions to all problem
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instances. In general, algorithms are best at a single solu-
tion or at most at a range of them. Furthermore, none of the
solutions presented in the MathRec contest was based on
evolutionary computation; to the authors’ knowledge, ECPP
is the first attempt to solve CPP using metaheuristics of these
kind.

Future work will focus on the packing of polygons on rec-
tangles and strips. So far, we have not found any evolutionary
computation-based solution to the CPP that had been previ-
ously published; therefore, we cannot objectively compare
with other results of metaheuristic search methods applied to
solve CPP.

A compendium of the experiments with detailed results
can be found at http://dep.fie.umich.mx/CPP.
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