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Abstract Formal concept analysis (FCA) is a mathemati-
cal framework for data analysis and processing tasks. Based
on the lattice and order theory, FCA derives the conceptual
hierarchies from the relational information systems. From
the crisp setting, FCA has been extended to fuzzy environ-
ment. This extension is aimed at handling the uncertain and
vague information represented in the form of a formal con-
text whose entries are the degrees from the scale [0, 1]. The
present study analyzes the fuzziness in a given many-valued
context which is transformed into a fuzzy formal context, to
provide an insight into generating the fuzzy formal concepts
from the fuzzy formal context. Furthermore, considering that
a major problem in FCA with fuzzy setting is to reduce the
number of fuzzy formal concepts thereby simplifying the cor-
responding fuzzy concept lattice structure, the current paper
solves the problem by linking an interval-valued fuzzy graph
to the fuzzy concept lattice. For this purpose, we propose
an algorithm for generating the interval-valued fuzzy formal
concepts. To measure the weight of fuzzy formal concepts,
an algorithm is proposed using Shannon entropy. The knowl-
edge represented by formal concepts using interval-valued
fuzzy graph is compared with entropy-based-weighted fuzzy
concepts at chosen threshold.
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1 Introduction

Formal concept analysis (FCA) was proposed by Wille
(1982) in the early eighties for analysis of tabular data in
the form of object–attribute relation (formal context). The
basic outputs of FCA are formal concepts, concept lattice
and attribute implications. Formal concept is a pair of object
and attribute cluster closed with Galois connection in a
given formal context. Concept lattice represents hierarchical
order between the formal concepts in form of specialization
and generalization. Specialization and generalization play a
major role in data analysis and processing tasks: generalized
concepts contain more objects while specialized concepts
contain more attributes (Wille 1982). Attribute implication
shows the dependencies among attributes in a given formal
context.

Initially, the mathematical foundation of FCA has been
introduced in crisp setting in which relation between objects
and attributes is bivalent (Ganter andWille 1999). In contrast
of binary attributes, many-valued context describes quanti-
tative attributes such as young, weight and age (Wolf 1998,
2002). FCA with crisp setting cannot represent these types
of linguistic words (like ‘young’, ‘age’) precisely because
the word ‘young’ is granular variable (Belohlavek 1988;
Formica 2010). Also, the linguistic variables are appended
with hedges like very, fairly. (Zadeh 1965). Fuzzy logic
(Zadeh 1975) computes with linguistic word of human
language precisely than crisp setting. Due to this prop-
erty of fuzzy logic, it was incorporated into FCA to rep-
resent the uncertainty and vagueness in the given context
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(Alcade et al. 2011; Burusco and Fuentes-Gonzales 1994).
Fuzzy logic avoids this restricted boundary and vagueness
through defining the degree of membership for the granular
variables (Zadeh 1965, 1975) and provides us another way to
process the formal context (containing membership value).
The incorporation of fuzzy logic into concept lattice extended
the the notion of FCA as fuzzy formal context (Belohlavek
1999), fuzzy formal concept (Belohlavek 2001), and fuzzy
concept lattice (Belohlavek and Vychodil 2005). Generat-
ing the fuzzy formal concepts, their hierarchical order visu-
alization in the fuzzy concept lattice and attribute impli-
cations is a major concern for knowledge-processing tasks
using FCA (Poelmans et al. 2013a, b). Hence, several algo-
rithmswere proposed for generating the fuzzy concept lattice
(Belohlavek andVychodil 2005; Belohlavek et al. 2007; Gaj-
dos and Snasel 2013) and attribute implication (Ayouni et al.
2011; Zhang et al. 2005). Very few researches have focused
on demonstrating fuzziness in given context, generation of
fuzzy formal concepts and its visualization in the fuzzy con-
cept lattice structure (Aswani Kumar and Singh 2014). In
this paper, we aimed at providing such an understanding to
the readers about fuzziness in a given context, step-by-step
generation of fuzzy formal concepts and its visualization to
fuzzy as well as interval-valued fuzzy concept lattice struc-
ture. For the analysis, we have considered a many-valued
context (Belohlavek and Konecny 2007) and transformed it
into a binary context with the help of scaling theory (Wolf
1998, 2002). Thereafter, we have demonstrated the genera-
tion of fuzzy formal concepts and its lattice structure.

Formal concepts generation and visualization of them
in a lattice structure is an important concern for practical
applications of FCA in several fields like knowledge discov-
ery (Aswani Kumar 2011), association rule mining(Aswani
Kumar 2012;Ayouni et al. 2011), health care (AswaniKumar
and Srinivas 2010b), information retrieval (Aswani Kumar
et al. 2012), data analysis (Carpineto and Romano 2004),
semantic web (Formica 2010; Maio et al. 2012) and math-
ematical search (Nguyen et al. 2012). The process of com-
puting all the formal concepts and their hierarchical order
visualization in the concept lattice is a complex task. The
reason is that the size of concept lattice constructed from
the large number of formal concepts becomes improper and
impractical. Hence, for reducing the size of concept lattice,
several approaches have been established based on fuzzy
K -means clustering (Aswani Kumar and Srinivas 2010a),
hedges (Belohlavek and Vychodil 2005), variable threshold
(Belohlavek 2007; Ma et al. 2006; Wu et al. 2009), trian-
gular decomposition (Belohlavek 2009), Lindig algorithm
(Belohlavek et al. 2007), factorization (Belohlavek et al.
2007), similarity (Belohlavek and Krupka 2009; Formica
2010), JBOS (Dias and Viera 2013), Lukasiewicz logic
(Elloumi et al. 2004), modular decomposition (Gely 2011;
Singh and Aswani Kumar 2012c), granularity (Kang et al.

2012; Singh andAswani Kumar 2012a;Wang and Liu 2008),
block relations (Konecny and Krupka 2011), T-implication
(Li and Jhang 2010), decision context (Li et al. 2012), dual
concept lattice (Ma et al. 2013;Mehdi et al. 2011;Medina and
Ojeda-Aciego 2012), axialities (Mi et al. 2010), projection
(Singh and Aswani Kumar 2012b), fuzzy homomorphism
(Singh and Aswani Kumar 2014b; Zhou 2011), composition
(Singh and Aswani Kumar 2015) and others (Zhang et al.
2007; Singh and Aswani Kumar 2014a, c). In this paper, we
reduce the size of fuzzy concept lattice using the proper-
ties of interval-valued fuzzy graph and its properties. The
reason is interval-valued fuzzy set provides more adequate
description of uncertainty than fuzzy set. In the same time,
interval-valued fuzzy graph representsmore adequate visual-
ization of fuzzy attributes as nodes when compared to fuzzy
(Ghosh et al. 2010) or crisp graph (Berry and Sigayret 2004).
With thismotivation, PremKumar andAswaniKumar (Singh
and Aswani Kumar 2012b) incorporated the link between
interval-valued fuzzy graph and concept lattice. Recently, the
properties of interval-valued fuzzy graph (Akram and Dudek
2011), fuzzy hypergraph (Akram and Dudek 2013), interval-
valued fuzzy formal context (Alcade et al. 2011; Burusco and
Fuentes-Gonzales 2001), interval-valued fuzzy Galois con-
nection (Djouadi 2011; Djouadi and Prade 2009), lattices
of interval-valued fuzzy set (Ranitovic and Petojevic 2013),
interval-valued fuzzy attribute implication (Zhai et al. 2012)
and its application (Zerarga and Djouadi 2012) have been
studied extensively. Extending upon the work (Singh and
Aswani Kumar 2012b), in this paper, we focus on introduc-
ing an algorithm for generating interval-valued fuzzy formal
concepts using the properties of interval-valued fuzzy graph
and Galois connection. We can observe that the contribution
of this paper is as follows:

(1) Analyze fuzziness in a given context, understanding of
step-by-step generation of fuzzy formal concepts and its
issues;

(2) Provide the link between interval-valued fuzzy graph and
concept lattice for simplifying the size of fuzzy concept
lattice;

(3) Propose an algorithm for generating interval-valued
fuzzy formal concepts using the properties of interval-
valued fuzzy set and Galois connection;

(4) One of the application of the proposed algorithm; and
(5) Introduce a method for computing the weight of given

fuzzy formal concepts using Shannon entropy.

We show that interval-valued fuzzy graph simplifies the size
of fuzzy concept lattice structurewhile preserving specializa-
tion and generalization. The importance of obtained interval-
valued fuzzy formal concepts is measured by entropy-based-
weighted method with comparison.
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Rest of the paper is organized as follows: Sect. 2 provides
a brief background about FCA in the fuzzy setting. Section
3 provides analysis of fuzzy attributes, step-by-step gener-
ation of fuzzy formal concepts and its problems. Section 4
provides interval-valued fuzzy graph representation of con-
cept lattice and its comparison with entropy-based-weighted
fuzzy concepts. Section 5 provides discussions followed by
conclusions, acknowledgement and references.

2 Formal concept analysis in the fuzzy setting

A fuzzy formal context is a triplet K = (O, P, R̃), where
O is a set of objects, P is a set of attributes and R̃ is an
L-relation between O and P i.e R̃: O × P→ L (Burusco
and Fuentes-Gonzales 1994; Burusco and Fuents-Gonzales
2000) where L is a support set of some complete residuated
latticeL defined below. Each R̃(o, p) represents themember-
ship value at which the object o ∈ O has the attribute p ∈ P
in [0, 1]. The objects, attributes and relation in a fuzzy for-
mal context are not restricted to be only crisp but also fuzzy
(interval) as discussed in Table 1. The condition complete
or incomplete discusses about availability, partial availabil-
ity and non-availability of objects, attributes and relation in
the given context studied extensively (Burmeister andHolzer
2005; Dubois and Prade 2012; Kai et al. 2011; Li et al. 2013;
Krupka and Lastovica 2012). In this study, first we consider
the condition ‘complete’ for demonstration of the propos-
als. Thereafter, we discuss the notion ‘incomplete’ in formal
context with its analysis using the proposed algorithm.

The notions residuated lattice, fuzzy Galois connection
and complete lattice are defined below in brief.

A residuated latticeL= (L ,∧,∨,⊗,→, 0, 1) is the basic
structure of truth degrees, where 0 and 1 represent least and
greatest elements, respectively. L is a complete residuated
lattice iff (Belohlavek 1999; Pollandt 1997):

(1) (L ,∧,∨, 0, 1) is a complete lattice.
(2) (L ,⊗, 1) is commutative monoid.

Table 1 Some possible conditions in a given fuzzy formal context

Conditions Objects Attributes Fuzzy relation

a Complete Complete Incomplete

b Incomplete Complete Complete

c Complete Incomplete Complete

d Incomplete Incomplete Complete

e Crisp Crisp Fuzzy (interval)

f Crisp Fuzzy Fuzzy (interval)

g Fuzzy Crisp Fuzzy (interval)

h Fuzzy Fuzzy Fuzzy (interval)

(3) ⊗ and → are adjoint operators and a ⊗ b ≤ c iff
a ≤ b → c,∀a, b, c ∈ L.
The operators ⊗ and → are defined distinctly by
Lukasiewicz, Godel, and Goguen t-norms and their
residua as described below (Belohlavek and Vychodil
2005):

Lukasiewicz:

• a ⊗ b = max (a+ b − 1, 0).
• a → b = min (1 − a + b, 1).

Godel:

• a ⊗ b = min (a,b).
• a → b = 1 if a ≤ b, otherwise b.

Goguen (product):

• a ⊗ b = a · b
• a → b = 1 if a ≤ b, otherwise b/a.

Classical logic is a special case of complete residuated lattice
which is represented as ({0, 1},∧,∨,⊗,→, 0, 1). For any
L-set A∈ LO of objects, and B∈ LP of attributes, we can
define an L-set A↑ ∈ LP of attributes and an L-set B↓ ∈ LO

of objects as follows (Belohlavek 1999):

(1) A↑(p) = ∧o∈O(A(o) → R̃(o, p));
(2) B↓(o) = ∧p∈P (B(p) → R̃(o, p)).

A↑(p) is interpreted as theL-set of all attributes p∈ P shared
by objects fromA. Similarly,B↓(o) is interpreted as theL-set
of all objects o ∈ O having the attributes from B in common.
The fuzzy formal concept is a pair of (A, B)∈ LO × LP

satisfying A↑ = B and B↓ = A, where fuzzy set of objects
A called as extent and fuzzy set of attributesB called as intent.

The pair (↑,↓) is known as a Galois connection
(Belohlavek 2001; Carpineto and Romano 2004; Ganter and
Wille 1999). Recently, the properties of galois connection
were extended with fuzzy (Pocs 2012), interval-valued fuzzy
set (Djouadi 2011; Djouadi and Prade 2009), possibility the-
ory (Dubois and Prade 2012) and variable threshold vari-
able threshold (Belohlavek 2007). When the operator (↑)
is applied on a fuzzy set of objects, it provides a fuzzy set
of attributes with its membership value being maximal with
respect to integrating the information from all the objects.
Consequently, when the operator (↓) is applied on the fuzzy
set constituted by these covered attributes resulting from inte-
grating the membership information between objects and
attributes. It takes a fuzzy set of objects with its membership
value being maximal with respect to integrating the infor-
mation from the attributes. Since, we consider the maximal
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membership value, we cannot find any fuzzy set of objects
(attributes) which can make the membership value of the
obtained fuzzy set of attributes (objects) bigger, if the pair
of the set of objects and the set constituted by its covered
attributes forms a fuzzy formal concept.

The set of fuzzy formal concepts FCK, generated from
a given fuzzy formal context K, defines the partial order-
ing principle of set, i.e., (A1,B1) ≤ (A2,B2) ⇐⇒ A1 ⊆
A2(⇐⇒ B2 ⊆ B1). Together with this ordering, in the com-
plete lattice there exist an infimum and a supremum for some
formal concepts (Belohlavek and Vychodil 2005; Carpineto
and Romano 2004; Ganter and Wille 1999):

• ∧ j∈J (A j , Bj ) = (
⋂

j∈J A j , (
⋃

j∈J B j )
↓↑),

• ∨ j∈J (A j , Bj ) = ((
⋃

j∈J A j )
↑↓,

⋂
j∈J B j ).

3 Analysis of fuzziness in a given many-valued context

3.1 FCA of data with fuzzy attributes

Definition 1 (Many-valued context) (Carpineto andRomano
2004; Ganter and Wille 1999) A many-valued context con-
sists of sets O, P, W and a ternary relation R, i.e., R ⊆
O × P × W between those three sets for which it holds
that, (o, p, w) ∈ R and (o, p, v) ∈ R always imply w = v.
Elements of o are called as objects. Elements of p are called
many-valued attributes. Elements of W are called attribute
values. Accordingly, (o, p, w) ∈ Rmeans the attribute p takes
value w for object o simply written as p (o) = w.

For the analysis, we have considered a many-valued con-
text (or a complete context) as shown in Table 2 (Bache and
Lichman 2013). These many-valued attributes can be repre-
sented as a binary context using following scaling:

Step1. Let us suppose for age:

• If age is between [0, 30] then young and shown by ay ,
• If age is between [31, 50] then medium and shown by am ,
• If age is between [51, 100] then old and shown by ao.

Step 2. Let us suppose for height:

• If height is between [0,160] then short and shown by hs ,

Table 2 A many-valued context

Object Age Height

Gita 43 159

Hari 24 155

Ram 64 175

Table 3 A scaled context of Table 2 in binary

ay am ao hs hm ht

Gita (o1) × ×
Hari (o2) × ×
Ram (o3) × ×

Table 4 A fuzzy formal context of Table 2

ay am ao hs hm ht

Gita (o1) 0.25 1.0 0.5 1.0 0.75 0.0

Hari (o2) 1.0 0.5 0.0 1.0 0.5 0.0

Ram (o3) 0.0 0.25 1.0 0.25 1.0 0.5

• If height is between [161, 180] then medium and shown
by hm ,

• If height is between [181, 250] then tall and shown by ht .

Step 3. If the relation between an object and an attribute
exists, then it is denoted as cross ‘×’; otherwise, Null, while
converting them into the binary. Table 3 shows the scaled
context of Table 2 computed via the above steps.

We can observe that the scaled binary context (shown in
Table 3) represents the objects with considering the boundary
of crisp set theory. The scaled binary context can be repre-
sented by a fuzzy formal context (Shown in Table 4) through
a defined membership function on the attributes—(ay , am ,
ao,..., etc.) as given below:

Definition 2 A fuzzy membership function is defined on the
scaled attribute age (ay , am , ao) as given below:

• 1.0 if a1 = a2,
• 0.75 if 0 < |a1 − a2| ≤ 5,
• 0.5 if 6 ≤ |a1 − a2| ≤ 11,
• 0.25 if 12 ≤ |a1 − a2| ≤ 17,
• 0.0 otherwise,

where a1 and a2 represent the difference between given
age and scaled attribute age, respectively. The membership
values of attribute (age) with their corresponding objects
are reflected as a fuzzy relation (R̃), shown in Table 4.
Similarly, for height (h) we can define the fuzzy relation
{0.0, 0.25, 0.5, 0.75, 1.0} between its corresponding objects.
This definition can also be extended for other membership
values between [0, 1] through dividing the interval. Further,
modifier may be used to enhance the ability to describe the
fuzzy set precisely.

Step 4. We can observe that Table 4 represents fuzziness in
the scaled binary context (shown in Table 3). The fuzzy con-
text shown in Table 4 represents {0.0, 0.25, 0.5, 0.75, 1.0}—
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fuzzy relation between the objects and the attributes depicted
in Table 2. Since Table 4 represents a fuzzy formal context
we can generate some fuzzy formal concepts and visualize
them in the corresponding fuzzy lattice structure. The step-
by-step generation of fuzzy formal concepts from Table 4 is
shown in Sect. 3.2.

Several algorithms have been proposed in literature for
finding formal concepts in FCA with crisp (Carpineto
and Romano 2004; Kuznetsov and Obiedkov 2002), fuzzy
(Alcade et al. 2011; Belohlavek and Vychodil 2005; Bur-
usco and Fuents-Gonzales 2000; Popescu 2004), possibil-
ity theory (Zhai et al. 2012; Yao 2004a), interval-valued
(Djouadi 2011; Djouadi and Prade 2009) as well as rough
setting (Wang and Liu 2008; Yao 2004a, b). In this paper,
we have considered object intersection and concept covering
algorithm for generating the fuzzy formal concepts and lattice
structure. This algorithm was first introduced by Carpineto
and Romano (2004). In this algorithm (Yang et al. 2008)
uses confidence threshold θ , which has an interval [θ1, θ2]
where 0 ≤ θ1 ≤ θ2 ≤ 1. The value of threshold θ can be set
by the user requirement for generating the fuzzy concepts
from a given fuzzy formal context. Also, this algorithm uses
min operator which satisfies the transitivity condition. These
properties help to eliminate some fuzzy relations which are
out of the interval [θ1, θ2] from a given fuzzy formal con-
text for knowledge discovery and representation (Belohlavek
2007). Another property of this algorithm is that it generates
fuzzy formal concepts and builds the fuzzy lattice structure
independently, which takes less time when user requirement
is only generating the fuzzy formal concepts.

3.2 Illustration of fuzzy formal concept generation

The steps of algorithm for formal concept generation and
constructing fuzzy concept lattice are shown in Tables 5
and 6, respectively (Yang et al. 2008).

We have considered confidence threshold T = [0.25, 1.0]
for generating the fuzzy concepts from Table 4 in this study.
Step-by-step demonstration of generating fuzzy formal con-
cepts from Table 4 is described below:

Step 1.With the help of algorithm step 2 shown inTable 5,we
can observe that first min = 0.0. Then, o.membership value
= 0.0, so p = (ay, am, ao, hs, hm, ht ). Then, applying fuzzy
concept forming operators (↑ and ↓) on these sets we can
get:

1. {�, 1.0/ay+1.0/am+1.0/ao+1.0/hs+1.0/hm+1.0/ht }
is a concept, where � represents null set.

Step 2. When we increase the min-value (o.membership) for
computing the next concepts (from the fuzzy context shown
in Table 4) as follows:

Table 5 Object intersection algorithm for concept generation

Input: K = (O, P, R̃) with a confidence threshold

Output: The set C of all fuzzy concepts of K

1. C = (P↓, P)
2. Set membership value (P↓, P)
3. for each o ∈ O

4. for each (o, p) ∈ C

5. Intersections = p ∩ o↑

6. if Intersection different from any concept intent in C

7. C = C ∪ ((Intersection)↑, Intersection)
8. Set membership value [(Intersection)↑, Intersection]
9. end if

10. end for

11. end for

Function Set membership value (o, p)

Input: A fuzzy formal concept (A, B)

1. for each o ∈ O

2. min = 0.0

3. for each p ∈ P

4. if [(o, p) < min]

5. min = (o, p)

6. o.membership value = min

7. end if

8. end for

9. end for

Table 6 Constructing fuzzy concept lattice using concept cover algo-
rithm

Input: set of all fuzzy formal concepts C = FCK

Output: Fuzzy concept lattice L = (C, E)

1. Find C with the help of Table 5 algorithm

2. o ∈ Covering edges(C,K)

3.for each (A, B)

4. Set count of any concept in C to 0

5. for each p ∈ B

6. Intersection = o ∩ (p↓)
7. Find (A1, B1) ∈ C such that o1 = Intersections

8. Count (A1, B1) = (A1, B1)+1

9. if (|B1| − |B|) = Count (A1, B1)

10. Add edges (A1, B1)→ (A, B)

11. end if

12. end for

13. end for

1. (1.0/ay)↓ = {0.25/o1 + 1.0/o2}
{0.25/o1 + 1.0/o2}↑ = {1.0/ay + 1.0/hs}.
Hence, {0.25/o1 + 1.0/o2, 1.0/ay + 1.0/hs} is a fuzzy
formal concept.
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2. (1.0/am)↓ = {1.0/o1 + 0.5/o2 + 0.25/o3}
{1.0/o1 + 0.5/o2 + 0.25/o3}↑ = {1.0/am + 1.0/hs}.
Hence, {1.0/o1 + 0.5/o2 + 0.25/o3, 1.0/am + 1.0/hs}
is a fuzzy formal concept.

3. (1.0/ao)↓ = {0.5/o1 + 1.0/o3}, {0.5/o1 + 1.0/o3}↑
= {1.0/ao + 1.0/hm}.
Hence, {0.5/o1 + 1.0/o3, 1.0/ao + 1.0/hm} is a fuzzy
formal concept.

4. (1.0/hs)↓ = {1.0/o1 + 1.0/o2 + 0.25/o3}
{1.0/o1 + 1.0/o2 + 0.25/o3}↑ = {1.0/hs}.
Hence, {1.0/o1 + 1.0/o2 + 0.25/o3, 1.0/hs} is a fuzzy
formal concept.

5. (1.0/hm)↓ = {0.75/o1 + 0.5/o2 + 1.0/o3}
{0.75/o1 + 0.5/o2 + 1.0/o3}↑ = {1.0/hm}.
Hence, {0.75/o1 + 0.5/o2 + 1.0/o3}, 1.0/hm} is a fuzzy
formal concept.

6. (1.0/ht )↓ = {0.5/o3}, {0.5/o3}↑ = {1.0/ao+1.0/hm +
1.0/ht }.
Hence, {0.5/o3, 1.0/ao + 1.0/hm + 1.0/ht } is a fuzzy
formal concept.

Step 3. With the help of algorithm Steps 4, 5 and 6 shown in
Table 5, we can find the intersection between these generated
concepts for generating next concepts (from the fuzzy context
shown in Table 4) as follows:

1. {1.0/ay + 1.0/hs}↓ = {0.25/o1 + 1.0/o2}, {0.25/o1 +
1.0/o2}↑ = {1.0/ay + 1.0/hs}.
Hence, {0.25/o1 + 1.0/o2, 1.0/ay + 1.0/hs} is a fuzzy
formal concept.

2. {1.0/ay + 1.0/am}↓ = {0.25/o1 + 0.5/o2}, {0.25/o1 +
0.5/o2}↑ = {1.0/ay + 1.0/am + 1.0/hs + 1.0/hm}.
Hence, {0.25/o1+0.5/o2, 1.0/ay +1.0/am +1.0/hs +
1.0/hm} is a fuzzy formal concept.

3. {1.0/ay + 1.0/hm}↓ = {0.25/o1 + 0.5/o2}, {0.25/o1 +
0.5/o2}↑ = {1.0/ay + 1.0/am + 1.0/hs + 1.0/hm}.
Hence, {0.25/o1+0.5/o2, 1.0/ay +1.0/am +1.0/hs +
1.0/hm} is a fuzzy formal concept.

4. {1.0/am + 1.0/ao}↓ = {0.5/o1 + 0.25/o3}, {0.5/o1 +
0.25/o3}↑ = {1.0/am + 1.0/ao + 1.0/hs + 1.0/hm}.
Hence, {0.5/o1+0.25/o3, 1.0/am +1.0/ao +1.0/hs +
1.0/hm} is a fuzzy formal concept.

5. {1.0/am + 1.0/hs}↓ = {1.0/o1 + 0.5/o2 + 0.25/o3},
{1.0/o1 + 0.5/o2 + 0.25/o3}↑ = {1.0/am + 1.0/hs}.
Hence, {1.0/o1 + 0.5/o2 + 0.25/o3, 1.0/am + 1.0/hs}

is a fuzzy formal concept.

6. {1.0/am + 1.0/hm}↓ = {0.75/o1 + 0.5/o2 + 0.25/o3},
{0.75/o1 +0.5/o2 +0.25/o3}↑ = {1.0/am +1.0/hm +
1.0/hs}.
Hence,{0.75/o1+0.5/o2+0.25/o3, 1.0/am+1.0/hm+
1.0/hs} is a fuzzy formal concept.

7. {1.0/ao + 1.0/hs}↓ = {0.5/o1 + 0.25/o3}, {0.5/o1 +
0.25/o3}↑ = {1.0/ao + 1.0/am + 1.0/hs + 1.0/hm}.
Hence, {0.5/o1+0.25/o3, 1.0/ao +1.0/am +1.0/hs +
1.0/hm} is a fuzzy formal concept.

8. {1.0/ao + 1.0/hm}↓ = {0.5/o1 + 1.0/o3}, {0.5/o1 +
0.25/o3}↑ = {1.0/ao + 1.0/hm}.
Hence, {0.5/o1 + 0.25/o3, 1.0/ao + 1.0/hm} is a fuzzy
formal concept.

9. {1.0/ao + 1.0/ht }↓= {0.5/o3}, {0.5/o3}↑ = {1.0/ao +
1.0/hm + 1.0/ht }.
Hence, {0.5/o3, 1.0/ao + 1.0/hm + 1.0/ht } is a fuzzy
formal concept.

10. {1.0/hs +1.0/hm}↓ = {0.75/o1+0.25/o2 +0.25/o3},
{0.75/o1+0.25/o2+0.25/o3}↑ = {1.0/am +1.0/hs +
1.0/hm}.
Hence, {0.75/o1+0.25/o2+0.25/o3, 1.0/am+1.0/hs+
1.0/hm} is a fuzzy formal concept.

11. {1.0/hs + 1.0/ht }↓ = {0.25/o3}, {0.25/o3}↑ =
{1.0/am + 1.0/ao + 1.0/hs + 1.0/hm + 1.0/ht }.
Hence, {0.25/o3, 1.0/ao+1.0/am+1.0/hs+1.0/hm+
1.0/ht } is a fuzzy formal concept.

12. {1.0/ao +1.0/hm +1.0/ht }↓ = {0.5/o3}, {0.5/o3}↑ =
{1.0/ao + 1.0/hm + 1.0/ht }.
Hence, {0.5/o3, 1.0/ao + 1.0/hm + 1.0/ht } is a fuzzy
formal concept.

13. {1.0/am + 1.0/ao + 1.0/hs + 1.0/hm}↓ = {0.5/o1 +
0.25/o3}, {0.5/o1 + 0.25/o3}↑ = {1.0/ao + 1.0/am +
1.0/hs + 1.0/hm}.
Hence, {0.5/o1+0.25/o3, 1.0/ao+1.0/am +1.0/hm +
1.0/ht } is a fuzzy formal concept.

14. {1.0/ay + 1.0/am + 1.0/hs + 1.0/hm}↓ = {0.25/o1 +
0.5/o2}, {0.25/o1 + 0.5/o2}↑ = {1.0/ay + 1.0/am +
1.0/hs + 1.0/hm}.
Hence, {0.5/o1+0.25/o3, 1.0/ay +1.0/am +1.0/hs +
1.0/hm} is a fuzzy formal concept.

15. {1.0/am + 1.0/ao + 1.0/hs + 1.0/hm + 1.0/ht }↓ =
{0.25/o3}, {0.25/o3}↑ = {1.0/am + 1.0/ao + 1.0/hs +
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1.0/hm + 1.0/ht }.
Hence, {0.25/o3, 1.0/am+1.0/ao+1.0/hs+1.0/hm+
1.0/ht } is a fuzzy formal concept.

16. {1.0/ay + 1.0/am + 1.0/ao + 1.0/hs + 1.0/hm}↓ =
{0.25/o1}, {0.25/o1}↑ = {1.0/ay + 1.0/am + 1.0/ao +
1.0/hs + 1.0/hm}.
Hence, {0.25/o1, 1.0/ay +1.0/am +1.0/ao+1.0/hs +
1.0/hm} is a fuzzy formal concept.

Step 4. Now there is no intersection between the intents.
Then, we have to find an attribute which covers all the objects
shown in the fuzzy context of Table 4 using the object inter-
section algorithm. We can find that there does not exist an
attribute in Table 4 which can cover all the objects. We can
consider � (for representing null set) at the place of intent.
The last fuzzy formal concept (i.e., the top concept) gen-
erated from the fuzzy formal context shown in Table 4 is
{1.0/o1 + 1.0/o2 + 1.0/o3, 0.25/am + 0.25/hs + 0.5/hm}.

All the generated fuzzy formal concepts serially (without
repetitions) from Table 4 are as follows:

1. {1.0/o1 + 1.0/o2 + 1.0/o3, 0.25/am + 0.25/hs +
0.5/hm}

2. {0.25/o1 + 1.0/o2, 1.0/ay + 1.0/hs}
3. {1.0/o1 + 0.5/o2 + 0.25/o3, 1.0/am + 1.0/hs}
4. {0.5/o1 + 1.0/o3, 1.0/ao + 1.0/hm}
5. {1.0/o1 + 1.0/o2 + 0.25/o3, 1.0/hs}
6. {0.75/o1 + 0.5/o2 + 1.0/o3, 1.0/hm}
7. {0.5/o3, 1.0/ao + 1.0/hm + 1.0/ht }
8. {0.25/o1+0.5/o2, 1.0/ay+1.0/am+1.0/hs+1.0/hm}.
9. {0.25/o1, 1.0/ay+1.0/am+1.0/ao+1.0/hs+1.0/hm}

10. {0.5/o1+0.25/o3, 1.0/am+1.0/ao+1.0/hs+1.0/hm}
11. {0.75/o1 + 0.5/o2 + 0.25/o3, 1.0/am + 1.0/hs +

1.0/hm}
12. {0.25/o3, 1.0/am+1.0/ao+1.0/hs+1.0/hm+1.0/ht }
13. {0.5/o2, 1.0/ay + 1.0/am + 1.0/hs + 1.0/hm}
14. {�, 1.0/ay + 1.0/am + 1.0/ao + 1.0/hs + 1.0/hm +

1.0/ht }

where � represents null set. The fuzzy concept lattice built
through the fuzzy formal concepts generated from Table 4 is
shown in Fig. 1.

We can observe that nine, twelve and thirteen concepts
are specialized concepts in Fig. 1. It represents o1, o2 and
o3 objects which cover maximal number of attributes with
membership values 0.25, 0.25 and 0.5, respectively. Sim-
ilarly, from concept 1, we can conclude that all the objects
having age (middle), height (short) and height (medium)with
membership values 0.25, 0.25, 0.5, respectively. From the
binary context shown in Table 3, the following concepts are
generated:

Fig. 1 Fuzzy concept lattice for the context of Table 4

Fig. 2 Concept lattice for the context of Table 3

1. {(o1, o2, o3),�}
2. {(o3), (ao, hm)}
3. {(o1), (am, hs)}
4. {(o1, o2), (hs)}
5. {(o2), (ay, hs)}
6. {�, (ay, am, ao, hs, hm, ht )}

where � represents null set.
All the above generated formal concepts from Table 3

are shown in Fig. 2, which reflects objects o1, o2 and o3 as
specialization. We can observe that the fuzzy concept lattice
shown in Fig. 1 reflects objects o1, o2 and o3 as special-
ization with precise membership value (also for its covering
attributes). This is one of the major advantages of fuzzy con-
cept lattice to the discovery of knowledge, precisely. In this
process, it generates more number of fuzzy formal concepts
with small variance ofmembership value. From above analy-
sis, we can conclude that:
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• A given many-valued context can be transformed into a
fuzzy formal context.

• Fuzzy concept lattice represents the vagueness in data (like
‘young’)more precisely, comparedwith the concept lattice
in crisp setting.

• The major problem with FCA in the fuzzy setting is that
it generates more number of fuzzy formal concepts with
small variance in membership value.

Todealwithmentionedproblemsmore adequately than fuzzy
setting in this paper, we try to link interval-valued fuzzy set,
interval-valued fuzzy graph to the concept lattice in the next
section.

4 Interval-valued fuzzy graph representation of concept
lattice

In this section, we discuss the hierarchical order representa-
tion of interval-valued fuzzy attribute in the concept lattice.
For this purpose, we propose an algorithm for generating
the interval-valued fuzzy formal concepts using the proper-
ties of interval-valued fuzzy graph and Galois connection. To
measure the knowledge represented by interval-valued fuzzy
formal concepts, we propose another method for computing
the weight of fuzzy formal concepts using Shannon entropy.
Further, we compare the knowledge represented by interval-
valued fuzzy formal concepts and Shannon entropy in the
given interval [0,1].

4.1 Interval-valued fuzzy graph

Reducing the size of fuzzy concept lattice is addressed as one
of the major issue in FCA with fuzzy setting. To encounter
this problem, we incorporate interval-valued fuzzy graph
into the concept lattice in this paper. For this purpose, we
need some facts like fuzzy graph representation of con-
cept lattice (Ghosh et al. 2010), interval-valued fuzzy con-
text (Alcade et al. 2011; Djouadi and Prade 2009), interval-
valued fuzzy Galois connection (Djouadi 2011; Zerarga and
Djouadi 2012). Other related notions like: interval-valued
fuzzy set, fuzzy graph, interval-valued fuzzy graph and its
properties are defined below:

Definition 3 An interval-valued fuzzy set is based on inter-
val number on [0, 1]. An interval number D is an interval
[a−, a+] with 0 ≤ a− ≤ a+ ≤ 1. The interval [a, a] is
identified with the number a ∈ [0,1]. D [0,1] denotes the set
of all interval numbers on [0, 1]. For the interval numbers
D1 = [a−

1 , b+
1 ] and D2 = [a−

2 , b+
2 ], we can define (Akram

and Dudek 2011, 2013):

1. min (D1, D2) =min([a−
1 , b+

1 ], [a−
2 , b+

2 ])= [min(a−
1 , a−

2 ),
min(b+

1 , b+
2 )]

2. max(D1, D2) =max([a−
1 , b+

1 ], [a−
2 , b+

2 ])= [max(a−
1 , a−

2 ),
max(b+

1 , b+
2 )]

3. (D1 ≤ D2) iff a
−
1 ≤ a−

2 and b+
1 ≤ b+

2 .
4. (D1 = D2) iff a

−
1 = a−

2 and b+
1 = b+

2 .
5. kD = [ka−

1 , kb+
1 ] where 0 ≤ k ≤1. Then, (D[0, 1],≤

,∨,∧) is a complete lattice with [0, 0] as the least ele-
ment and [1,1] as the greatest.

Definition 4 An interval-valued fuzzy set I on V is defined
as:
I = {

(x, [μ−
I (x), μ+

I (x)]) : x ∈ V
}
, where μ−

I (x) and
μ+
I (x) are fuzzy subsets of V such that μ−

I (x) ≤ μ+
I (x)

for all x ∈ V .
The union and intersection between any two interval-

valued fuzzy sets I = [μ−
I (x), μ+

I (x)] and J = [μ−
J (x), μ+

J
(x)] on V can be defined as (Akram and Dudek 2011, 2013):

• I
⋃

J = (x, max(μ−
I (x)), μ−

J (x)), max(μ+
I (x), μ+

J (x))),
where, x ∈ V ,

• I
⋂

J = (x, min(μ−
I (x)), μ−

J (x)), min(μ+
I (x), μ+

J (x))),
where, x ∈ V

The union and intersection of two interval-valued fuzzy sets
are also interval-valued fuzzy sets.

Definition 5 Fuzzy Graph (Ghosh et al. 2010): A fuzzy
graph T = (V, μ, ρ) is a non-empty set V together with a
pair of functions μ: V → [0,1] and ρ : V × V → [0,1] such
that for all x, y in V, ρ(x,y)≤ μ(x) ∧ μ(y), where μ is said
to be the fuzzy vertex set and ρ is the fuzzy edges set of T.

Definition 6 An interval-valued fuzzy graph of a graph T
= (V, E) is a pair (I, J) where I = [μ−

I , μ+
I ] is an interval-

valued fuzzy set on V and J = [μ−
J , μ+

J ] is an interval-valued
fuzzy relation on the setE such that (Akram andDudek 2011,
2013):

1. μ−
J (xy) ≤ min (μ−

I (x), μ−
I (y))

2. μ+
J (xy) ≤ min(μ+

I (x), μ+
I (y)) for all xy ∈ E .

Example 1 Suppose V = {x, y, z} and E = {xy, yz, zx} for
the interval-valued fuzzy graph of a graph T. Let I be an
interval-valued fuzzy set of V and J be an interval-valued
fuzzy set of E ⊆ V ×V defined by:

I = {(x/0.2, y/0.3, z/0.4), (x/0.4, y/0.5, z/0.6)} ,

J = {(xy/0.1, yz/0.2, zx/0.1), (xy/0.3, yz/0.4, zx/0.4)} .

We can observe that Fig. 3 represents an interval-valued
fuzzy graph of a graph T.
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Fig. 3 Interval-valued fuzzy graph

Definition 7 An interval-valued fuzzy graph G is complete
iff (Akram and Dudek 2011, 2013; Ranitovic and Petojevic
2013):

1. μ−
J (xy) = min(μ−

I (x), μ−
I (y)) and

2. μ+
J (xy) = min(μ+

I (x), μ+
I (y))

for all (xy) ∈ E .

Example 2 Consider a graph T = (V, E) such that V = (x,
y, z), E = (xy, yz, zx). If I and J are interval-valued fuzzy
subsets defined by:

I = [(x/0.2, y/0.3, z/0.4), (x/0.4, y/0.5, z/0.5)]
J = [(xy/0.2, yz/0.3, zx/0.2), (xy/0.4, yz/0.5, zx/0.4)]
Then, G = (I, J) is an interval-valued fuzzy complete graph
of T. Hence, we can conclude that concept lattice can be
represented through interval-valued fuzzy graph containing
interval-valued fuzzy formal concepts. In the next section,
we provide an illustrative example for the proposed link.

4.2 Proposed algorithm for generating interval-valued
fuzzy formal concepts

In this section, we discuss an algorithm for generating
interval-valued fuzzy formal concepts using the proper-
ties of interval-valued fuzzy set and Galois connection
as follows: Let a fuzzy formal context K = (O,P, R̃)

and subb(o) =
{
oi , [μ−

R̃
(o), μ+

R̃
(o)]

}
and subb(p) =

{
p j , [μ−

R̃
(p), μ+

R̃
(p)]

}
are two connected components in the

interval-valued fuzzy graph representation of concept lattice,
where subb is used for representing subset. Then, a pair–
[(oi , [μ

−
R̃
(o), μ+

R̃
(o)]), (p j , [μ

−
R̃
(p), μ+

R̃
(p)])] is called as

interval-valued fuzzy formal concept iff (oi , [μ
−
R̃
(o),μ+

R̃
(o)])

= (subb(p))↓ and (p j , [μ−
R̃
(p), μ+

R̃
(p)])=(subb(o))↑. The

membership value can be considered as [1.0, 1.0] for each
subset of attributes (P) to apply the Galois connection on
the subset of attributes (p j , [μ−

R̃
(p), μ+

R̃
(p)])↓ which pro-

vide the covering objects (oi , [μ−
R̃
(o), μ+

R̃
(o)]). The mem-

bership value of these obtained objects can be computed
using the properties of interval-valued fuzzy set and Godel
operator as min (oi , μ

−
R̃
(o)) and max (oi , μ

+
R̃
(o)). Subse-

Table 7 Proposed algorithm for generating interval-valued fuzzy
formal concepts

Input: A fuzzy formal context K = (O, P, R̃),

where |O| = n and |P| = m

Output: The set FCK of interval-valued fuzzy formal concepts

:[(oi , [μ
−
R̃
(o), μ+

R̃
(o)]), (p j ,[μ

−
R̃
(p), μ+

R̃
(p)])]

1. Find all the subsets of P and represents as p j .

2. for j = 1 to 2m .

3. Set the membership value of each subset(p j ) = max[1.0, 1.0].

4. FCK = ((p j , [μ−
R̃
(p), μ+

R̃
(p)])↓, (p j , [μ

−
R̃
(p), μ+

R̃
(p)]).

5. Compute the membership value for obtained objects:

min (oi , μ
−
R̃
(o)) and max (oi , μ

+
R̃
(o)).

6. if(oi , [μ−
R̃
(o), μ+

R̃
(o)])↑ = (p j , [μ−

R̃
(p), μ+

R̃
(p)]). // For intent

7. Represent in the set (FCK).

8. else

9. Any extra attribute z ∈ P covers the constituted objects.

10. p j = (z ∪ p j ).// To add the new attribute

11. FCK= FCK ∪[(p j )
↓, (p j )].// To add the new concept

12. Set the membership of attributes [1.0, 1.0].

13. end if

14. end for

quently, the Galois connection on these obtained objects
(oi , [μ−

R̃
(o), μ+

R̃
(o)])↑ integrate themaximumattributes cov-

ering these objects. i.e if any other extra attribute suppose z
∈ P covers the obtained objects (oi , [μ−

R̃
(o), μ+

R̃
(o)]) then

p j = (z ∪ p j ). Similarly, we can find the interval-valued
fuzzy formal concepts for each subset of attributes—p j ∈ P .
The generated interval-valued fuzzy formal concepts repre-
sent in (FCK). These steps can be formulated as an algorithm
shown in Table 7.

The proposed algorithm (shown in Table 7) starts investi-
gating the interval-valued concepts for each subsets of given
attributes in a fuzzy formal contextKwithmembership value
[1.0, 1.0] (using Steps 1 to 3). The covering objects for these
attributes are investigated using Galois connection (↓) (using
Step 4). The membership value of obtained objects (extent)
is computed by a defined min operator (for lower bound)
and a max operator (for upper bound) (using Step 5). Con-
sequently, the operator (↓) is applied on the fuzzy set con-
stituted by these covered objects resulting from integrating
the membership information between objects and attributes
(using Step 6). It provides a fuzzy set of attributes with its
membership value being maximal with respect to integrating
the information from the objects (Using steps 6 to 10)). These
steps are repeated for every subset of attributes. The gener-
ated interval-valued fuzzy formal concepts are stored in the
set (FCK) (using step 11). The proposed algorithm uses sub-
set of attributes for generating the inter-valued fuzzy formal
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concepts which helps in representing them in a hierarchical
order.

Complexity: Suppose, number of objects(|O|) = n and
number of attributes (|P|) =m in the given fuzzy formal con-
text. Finding the subset of attribute (P) takes 2m complexity.
To combine the covering objects with subset of attributes
takes total complexity O(2m ∗ n). The generated interval-
valued fuzzy formal concepts using proposed method con-
tain the fuzzy set of objects and attributes whose member-
ship values are in the computed interval [0, 1]. In this way,
the proposed algorithm reduces the number of fuzzy formal
concepts and its complexity when compared to the fuzzy set-
ting. We can observe that the proposed algorithm is based on
the power set of given attributes and it is computationally
expensive for medium or large databases. So, the proposed
algorithm only serves as a basis for many opportunities for
further development.

4.3 Concept lattice reduction using interval-valued fuzzy
graph

For the illustration, we have considered a fuzzy formal con-
text (or complete context) shown in Table 8 (Ghosh et al.
2010). First, we describe the fuzzy graph representation of
concept lattice to demonstrate its interval-valued fuzzy graph
representation.

The fuzzy formal concepts generated from the fuzzy for-
mal context shown in Table 8 are (Ghosh et al. 2010):

1. {�, 1.0/p1+1.0/p2+1.0/p3+1.0/p4+1.0/p5+1.0/p6}
2. {0.5/o1, 1.0/p2 + 1.0/p3 + 1.0/p4 + 1.0/p5}
3. {1.0/o2, 1.0/p1 + 1.0/p2 + 1.0/p3}
4. {0.5/o3, 1.0/p1 + 1.0/p2 + 1.0/p6}
5. {0.5/o1 + 0.5/o5, 1.0/p3 + 1.0/p4}
6. {0.5/o1 + 0.5/o4, 1.0/p4 + 1.0/p5}
7. {1.0/o1, 1.0/p2 + 0.5/p3 + 0.5/p4 + 1.0/p5}
8. {0.5/o1 + 1.0/o2, 1.0/p2 + 1.0/p3}
9. {1.0/o2 + 0.5/o3, 1.0/p1 + 1.0/p2}

10. {1.0/o3, 0.5/p1 + 0.5/p2 + 1.0/p6}
11. {0.5/o1 + 1.0/o5, 1.0/p3 + 0.5/p4}
12. {0.5/o1 + 1.0/o4, 1.0/p4 + 0.5/p5}

Table 8 A fuzzy formal context

p1 p2 p3 p4 p5 p6

o1 0.0 1.0 0.5 0.5 1.0 0.0

o2 1.0 1.0 1.0 0.0 0.0 0.0

o3 0.5 0.5 0.0 0.0 0.0 1.0

o4 0.0 0.0 0.0 1.0 0.5 0.0

o5 0.0 0.0 1.0 0.5 0.0 0.0

o6 0.5 0.0 0.0 0.0 0.0 0.0

Fig. 4 Fuzzy concept lattice for the context of Table 8

13. {1.0/o1 + 0.5/o4, 0.5/p4 + 1.0/p5}
14. {1.0/o1 + 1.0/o5, 0.5/p3 + 0.5/p4}
15. {0.5/o1 + 1.0/o2 + 1.0/o5, 1.0/p3}
16. {1.0/o1 + 1.0/o2, 1.0/p2 + 0.5/p3}
17. {1.0/o2 + 0.5/o3 + 0.5/o6, 1.0/p1}
18. {1.0/o2 + 1.0/o3, 0.5/p1 + 0.5/p2}
19. {0.5/o1 + 1.0/o4 + 0.5/o5, 1.0/p4}
20. {1.0/o1 + 1.0/o4, 0.5/p4 + 0.5/p5}
21. {1.0/o1 + 1.0/o2 + 1.0/o5, 0.5/p3}
22. {1.0/o1 + 1.0/o2 + 0.5/o3, 1.0/p2}
23. {1.0/o1 + 1.0/o4 + 1.0/o5, 0.5/p4}
24. {1.0/o1 + 1.0/o2 + 1.0/o3, 0.5/p2}
25. {1.0/o2 + 1.0/o3 + 1.0/o6, 0.5/p1}
26. {1.0/o1+1.0/o2+1.0/o3+1.0/o4+1.0/o5+1.0/o6,�}

where � represents null set.
The fuzzy concept lattice for the above generated concepts

is shown in Fig. 4, which represents that:

• Generalized concepts are 21, 23, 24, and 25 which reflect
attributes p3, p4, p2, and p1, respectively.

• Specialized concepts are 2, 3 and 4 which reflect objects
o1, o2, and o3, respectively.

Interval-valued fuzzy formal concepts of Table 8 as per the
proposed link:

1. {�, [1.0, 1.0]/p1 + [1.0, 1.0]/p2 + [1.0, 1.0]/p3 +
[1.0, 1.0]/p4 + [1.0, 1.0]/p5 + [1.0, 1.0]/p6}

2. {[0.5, 1.0]/o1, [1.0, 1.0]/p2 + [0.5, 1.0]/p3 + [0.5, 1.0]/
p4 + [1.0, 1.0]/p5}

3. {[1.0, 1.0]/o2, [1.0, 1.0]/p1 +[1.0, 1.0]/p2 +[1.0, 1.0]/p3}
4. {[0.5, 1.0]/o3, [0.5, 1.0]/p1 +[0.5, 1.0]/p2 +[0.1, 1.0]/p6}
5. {[0.5, 1.0]/o1 +[0.5, 1.0]/o2, [0.5, 1.0]/p2 +[0.5, 1.0]/p3}
6. {[0.5, 1.0]/o1 +[0.5, 1.0]/o4, [0.5, 1.0]/p4 +[0.5, 1.0]/p5}
7. {[0.5, 1.0]/o2 +[0.5, 1.0]/o3, [0.5, 1.0]/p1 +[0.5, 1.0]/p2}
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Fig. 5 Interval-valued fuzzy graph representation of concept lattice for
Fig. 4

8. {[0.5, 0.5]/o1 +[1.0, 1.0]/o5, [1.0, 1.0]/p3 +[0.5, 1.0]/p4}
9. {[0.5, 1.0]/o1 +[0.5, 1.0]/o5, [0.5, 1.0]/p3 +[0.5, 1.0]/p4}

10. {[0.5, 1.0]/o1 +[1.0, 1.0]/o2 +[1.0, 1.0]/o5, [0.5, 1.0]/p3}
11. {[0.5, 1.0]/o1 +[1.0, 1.0]/o4 +[0.5, 1.0]/o5, [0.5, 1.0]/p4}
12. {[1.0, 1.0]/o1 +[1.0, 1.0]/o2 +[0.5, 1.0]/o3, [0.5, 1.0]/p2}
13. {[1.0, 1.0]/o2 +[0.5, 1.0]/o3 +[0.5, 1.0]/o6, [0.5, 1.0]/p1}
14. {[1.0, 1.0]/o1+[1.0, 1.0]/o2+[1.0, 1.0]/o3+[1.0, 1.0]/o4+

[1.0, 1.0]/o5 + [1.0, 1.0]/o6,�}

The fuzzy concept lattice obtained from the above gener-
ated fuzzy formal concepts is shown in Fig. 5, which repre-
sents that:

• Generalized concepts are 10, 11, 12 and 13 which reflect
attributes p3, p4, p2 and p1, respectively.

• Specialized concepts are 2, 3 and 4 which reflect objects
o1, o2 and o3, respectively.

We can observe that the reduced lattice using interval-valued
fuzzy graph (shown in Fig. 5) preserves the specialization
and generalization as shown in its original lattice( shown in
Fig. 4).

We believe that incorporation of interval-valued fuzzy
graph to the concept lattice can be helpful for the researchers
in the various fields like information retrieval (Aswani
Kumar et al. 2012; Li et al. 2013), handling incomplete data
(Burmeister andHolzer 2005;Krupka andLastovica 2012; Li
et al. 2013), semantic web (Formica 2010; Maio et al. 2012)
and concept lattice reduction (Aswani Kumar and Srinivas
2010a; Dias and Viera 2013; Konecny and Krupka 2011).
In the next section, we provide one of the application of the
proposed method for handling incomplete data in the given
context with an illustrative example.

4.4 Application of the interval-valued fuzzy formal
concepts

To illustrate the need of interval-valued fuzzy set in FCA, we
have considered a binary context shown inTable 9 (Bache and
Lichman2013). Themark (?) shown inTable 9 represents that
information is not available or specially called as incomplete
formal context (Burmeister and Holzer 2005; Djouadi and
Prade 2009; Dubois and Prade 2012; Krupka and Lastovica
2012; Li et al. 2013). This context can be transformed into
a fuzzy formal context through a defined membership value
as shown in Table 10. Still this extension cannot be able to
represent incomplete information (ex. between (o2, p2) pre-
cisely. Recently, (Li et al. 2013) provided a thorough analysis
for handling the incomplete contexts. Another method is to
fuzzify the information between objects and attributes into
interval [0, 1] and represent them with the help of interval-
valued fuzzy set. This extension of fuzzy set theory provides
us a way to write the relation between objects and attributes
in the interval [0, 1] as well as for incomplete information
(shown in Table 11) and why it is necessary is discussed
by Djouadi and Prade (2009). Thereafter, our study starts
that how to analyze the interval-valued fuzzy formal context
through their basic notions like interval-valued fuzzy formal
concepts and their visualization in the concept lattice.

Table 9 A binary incomplete formal context

p1 p2 p3

o1 X X

o2 X ? X

o3 X X

o4 X

Table 10 A fuzzy incomplete formal context

p1 p2 p3

o1 0.9 0.7 0.2

o2 0.8 ? 0.5

o3 0.3 1 0.8

o4 0.4 0.6 0.1

Table 11 Example of an interval-valued fuzzy formal context

p1 p2 p3

o1 [0.9, 1.0] [0.5, 0.1] [0.0, 0.2]

o2 [0.8, 1.0] [0.0, 1.0] [0.5, 0.5]

o3 [0.3, 0.6] [1.0, 1.0] [0.8, 0.8]

o4 [0.2, 0.4] [0.6, 1.0] [0.0, 0.1]
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For the analysis of interval-valued fuzzy formal context
hierarchical order is needed. This can be achieved through
partition tree obtained by α-cut as described by Guh et al.
(2009). Another representation is through the concept lattice
in which formal concepts are represented through interval-
valued fuzzy set. This representation can be possible through
the help of interval-valued fuzzy graph and its properties
which have been recently discussed by Akram and Dudek
(Akram and Dudek 2011, 2013). In this study, we discussed
another representation of concept lattice through interval-
valued fuzzy graph.

The interval-valued fuzzy formal concepts generated from
Table 11 (as per the proposed algorithm shown in Table 7)
are:

1. {�, [1.0, 1.0]/p1 + [1.0, 1.0]/p2 + [1.0, 1.0]/p3},
2. {[0.9, 1.0]/o1 + [0.8, 1.0]/o2 + [0.3, 0.6]/o3 +

[0.2, 0.4]/o4, [1.0, 1.0]/p1},
3. {[0.5, 0.7]/o1+[0.0, 1.0]/o2+[1.0, 1.0]/o3+[0.6, 1.0]/

o4, [1.0, 1.0]/p2},
4. {[0.0, 0.2]/o1+[0.5, 0.5]/o2+[0.8, 0.8]/o3+[0.0, 0.1]/

o4, [1.0, 1.0]/p3},
5. {[0.5, 1.0]/o1+[0.0, 1.0]/o2+[0.3, 1.0]/o3+[0.2, 1.0]/

o4, [1.0, 1.0]/p1 + [1.0, 1.0]/p2},
6. {[0.0, 1.0]/o1+[0.5, 1.0]/o2+[0.3, 0.8]/o3+[0.0, 0.4]/

o4, [1.0, 1.0]/p1 + [1.0, 1.0]/p3},
7. {[0.0, 0.2]/o1+[0.0, 1.0]/o2+[0.8, 1.0]/o3+[0.0, 1.0]/

o4, [1.0, 1.0]/p2 + [1.0, 1.0]/p3},
8. {[1.0, 1.0]/o1+[1.0, 1.0]/o2+[1.0, 1.0]/o3+[1.0, 1.0]/

o4,�}.

For the above generated concepts, interval-valued fuzzy
graph representation of concept lattice is shown in Fig. 6,
which provides hierarchical order between the objects and
attributes. Thus, we can analyze that:

Fig. 6 Interval-valued fuzzy graph concept lattice for the context
shown in Table 11

(a) For masters course p1, object o1 satisfies 0.9 to 1.0 mem-
bership value, o2 satisfies 0.8 to 1.0 membership value,
o3 satisfies 0.3 to 0.6 membership value and o4 satisfies
0.2 to 0.4 membership value as shown by concept 2.

(b) For masters course p2, object o1 satisfies 0.5 to 0.7 mem-
bership value, o2 satisfies 0.0 to 1.0 membership value,
o3 satisfies 1.0 membership value and o4 satisfies 0.6 to
1.0 membership value as shown by concept 3.

Similar analysis can be derived from other interval-valued
fuzzy formal concepts and its lattice structure.

From the above analysis, we can conclude that:

• The proposed algorithm can be used for generating
interval-valued fuzzy formal concepts.

• Interval-valued fuzzy formal context represents the data
more adequate than fuzzy set.

• Interval-valued fuzzy graph can be used for simplifying
the size of concept lattice structure.

• Interval-valued fuzzy concept lattice can be used for
incomplete information systems and for other data min-
ing applications.

In future, the proposed method can be extended for handling
bipolar information in the concept lattice (Singh and Aswani
Kumar 2014c). To measure the importance of obtained
interval-valued fuzzy formal concepts in the next section,
we propose an algorithm based on Shannon entropy. After
that we have compared the knowledge discovered from both
the methods.

4.5 Entropy-based-weighted fuzzy concept lattice

Recently, entropy-based formula is used for weighted con-
cept lattice and its reduction (Li et al. 2013). In this section,
we are introducing it into fuzzy concept lattice. This method
reduces the fuzzy formal concepts at different threshold (θ )
for weight of intent in the interval [θ1, θ2] where 0 ≤ θ1 ≤
θ2 ≤ 1 as follows:

Let us consider any object oi ∈ O of given fuzzy formal
contextF. Then the probability (P) of i-th-object (oi ) possess-
ing the corresponding j-th-attribute (p j ) can be computed by
P(p j/oi ). The average information weight of object (O) can
be represented by E(pi ) followed by its total weight w j .
These notions can be computed as follows:

1. E(p j ) = −∑m
j=1 P(p j/oi ) log2(P(p j/oi )), where, m

represents the total number of attributes in the given
context F.

2. w j = E(p j )/
∑ j=1

m E(p j ).
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Table 12 Computed weight value for each attribute of Table 8

Attribute P(p) E(p) wi

0.5/p1 0.25 0.346 0.101

1.0/p1 0.5 0.346 0.101

0.5/p2 0.2 0.3218 0.0946

1.0/p2 0.4 0.366 0.107

0.5/p3 0.2 0.3218 0.0946

1.0/p3 0.4 0.366 0.107

0.5/p4 0.25 0.346 0.101

1.0/p4 0.5 0.346 0.101

0.5/p5 0.33 0.365 0.107

1.0/p5 0.66 0.274 0.0806

1.0/p6 1.0 0.0 0.0

3. Weight(B) = ∑
(w j )/m, where B is the intent.

To explore the deviation of w j from p j , we need to
evaluate D(p j ) as follows:

4. D(p j ) = √
(
∑

(w j − weight(p j )))/m, where D(p j )

denotes the deviation of the multi-attribute intent value.
The deviation of a formal concept provides absolute dif-
ference from computedweight of the formal concepts. It
provides us amaximum andminimum deviation of each
formal concepts to decide their importance. If m = 1
then

∑
(w j −weight(p j )) = 0. Similarly, we can com-

pute for other value of m also.

Table 12 shows the computed weight value for all the
attributes of given fuzzy context shown in Table 8. Table
13 shows the weight value for each intent of given node in
Fig. 4.We can observe that the concepts can be selected using
different threshold of interval as shown in Table 14.

We can observe that the entropy-based-weighted method
provides less number of fuzzy formal concepts at different
threshold as shown in Table 14.

The steps for the removal of formal concept at chosen
threshold are defined in Table 15. Proposed algorithm first
computes the weight of each attribute (through steps 1 to 5).
The weight of each formal concepts is computed by sum of
their intent (extent) to arrange them together based on their
computed weight (through steps 6 to 8). The weighted fuzzy
formal concept can be removed whose weight is out of the
chosen threshold 0 ≤ θ1 ≤ θ2 ≤ 1 (through steps 9 to 11).
The proposed algorithm selects the concepts having higher
weight than the chosen threshold and removes the remaining
fuzzy formal concepts.

Complexity: The proposed algorithm shown in Table 15
is based on average weight of intent or extent which takes
O (m ln(m)) or O (n ln(n)) complexity where m is num-
ber of attributes and n is number of objects in the formal
context.

Table 13 The intent weight value of each node of fuzzy concept lattice
shown in Fig. 4

Node Intent Average value w(p)

1 1.0/p1+1.0/p2+1.0/p3+
1.0/p4+1.0/p5+1.0/p6

1 1

2 1.0/p2 + 1.0/p3 +
1.0/p4 + 1.0/p5

0.0974 0.0974

3 1.0/p1 + 1.0/p2 + 1.0/p3 0.105 0.105

4 1.0/p1 + 1.0/p2 + 1.0/p6 0.104 0.104

5 1.0/p3 + 1.0/p4 0.104 0.104

6 1.0/p4 + 1.0/p5 0.0908 0.0908

7 1.0/p2 + 0.5/p3 +
0.5/p4 + 1.0/p5

0.0958 0.0958

8 1.0/p2 + 1.0/p3 0.107 0.107

9 1.0/p1 + 1.0/p2 0.104 0.104

10 0.5/p1 + 0.5/p2 + 1.0/p6 0.0652 0.0652

11 1.0/p3 + 0.5/p4 0.104 0.104

12 1.0/p4 + 0.5/p5 0.104 0.104

13 0.5/p4 + 1.0/p5 0.104 0.104

14 0.5/p3 + 0.5/p4 0.0978 0.0978

15 1.0/p3 0.0 0.0

16 1.0/p2 + 0.5/p3 0.058 0.058

17 1.0/p1 0.101 0.101

18 0.5/p1 + 0.5/p2 0.0978 0.0978

19 1.0/p4 0.101 0.101

20 0.5/p4 + 0.5/p5 0.104 0.104

21 0.5/p3 0.0946 0.0946

22 1.0/p2 0.0107 0.107

23 0.5/p4 0.101 0.101

24 0.5/p2 0.0946 0.0946

25 0.5/p1 0.101 0.101

26 � 1 1

Table 14 The reduced fuzzy formal concepts shown in Table 13 at
different weights

Weight for fuzzy
concepts(w(p))

Obtained concepts

0.101 < w ≤ 1 1, 3, 4, 5, 8, 9, 11, 12, 13, 17, 19, 20,
22, 23, 25, 26

0.0974 < w ≤ 0.101 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 17,

18, 19, 20, 22, 23, 25, 26

0.0946 < w ≤ 0.0974 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26

0.058 < w ≤ 0.0946 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26

0 < w ≤ 0.058 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26
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Table 15 Proposed algorithm for removing the (weighted) concepts at
threshold [0, 1]

Input: Array [1 : k] of formal concepts.
Outputs: Formal concepts W (k) at chosen threshold 0 ≤ θ1 ≤ θ2 ≤ 1

1. for j = 1, ...,m where m is number of attributes

2. Compute the probability of each attribute P(p j/oi )

3. E(p j ) = − ∑m
j=1 P(p j/oi )

log2(P(p j/oi ))//average information weight

4. w j = E(p j )/
∑m

j=1 E(p j ) // Computing weight

5. end for

6. for j = 1, ..., k where k is number of concepts

7. Weight of attributes (objects) in the intent (extent)=
∑m

j=1(w j )

8. Weight of the concept W (k) =
∑k

j=1(w j )/k

9. Set the threshold 0 ≤ θ1 ≤ θ2 ≤ 1

10. if (W (k) ≤ θ1 or W (k) ≥ θ2)

11. remove the concept

12. end if

13. end for

4.6 Comparison

In this study, we discussed that interval-valued fuzzy graph
representation of concept lattice reduces the size of given
fuzzy concept lattice in the given interval [0, 1]. However,
there are few methods being discussed for reducing the
size of fuzzy concept lattice based on hedges (Belohlavek
and Vychodil 2005), triangular decomposition (Belohlavek
2009), granulation (Kang et al. 2012; Singh and Aswani
Kumar 2012c), block relations (Konecny and Krupka 2011),
entropy-based (Li et al. 2013),Levenshtein distance (Maet al.
2013) and fuzzy homomorphism (Singh and Aswani Kumar
2014b). To compare the knowledge representation using
interval-valued fuzzy graph, we have considered entropy-
based-weighted concept lattice (Li et al. 2013) which pro-
vides the concepts in the user-defined interval [0, 1]. For this
purpose, we have introduced entropy-based method in FCA
with fuzzy setting for fuzzy concept lattice reduction in this
paper (as illustrated in Sect. 4.5). In this section, we show
the comparison of knowledge represented by entropy-based-
weighted fuzzy concepts and interval-valued fuzzy formal
concepts as given below:

We can observe that following concepts are obtained from
Fig. 4 at threshold 0.0946 < w ≤ 0.0974: 1, 2, 3, 4, 5, 8,
9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 as
given in Table 14. If we compare the knowledge (intent) rep-
resented by these concepts with interval-valued fuzzy for-
mal concepts, then we can be able to decide the importance
of concepts. Table 16 depicts the comparison between the
fuzzy concepts from both the proposed methods (shown in
Tables 7 and 15), where the first column represents concepts
intent extracted through entropy-based method and the sec-

Table 16 Intent obtained using interval-valued and entropy-based
approach

Intent of weighted concepts
in Fig. 4

Similar interval-valued intent in
Fig. 5

1. (p1, p2, p3, p4, p5, p6) 1. (p1, p2, p3, p4, p5, p6)

2. (p2, p3, p4, p5) 2. (p2, p3, p4, p5)

3. (p1, p2, p3) 3. (p1, p2, p3)

4. (p1, p2, p6) 4. (p1, p2, p6)

5. (p3, p4) 9. (p3, p4)

8. (p2, p3) 5. (p2, p3)

9. (p1, p2) 7. (p1, p2)

11. (p3, p4) 8. (p3, p4)

12. (p4, p5) 6. (p4, p5)

13. (p4, p5) 6. (p4, p5)

14. (p3, p4) 9. (p3, p4)

17. (p1) 13. (p1)

18. (p1) 13. (p1)

19. (p4) 11. (p4)

20. (p4, p5) 6. (p4, p5)

21. (p3) 10. (p3)

22. (p2) 12. (p2)

23. (p4) 11. (p4)

24. (p2) 12. (p2)

25. (p1) 13. (p1)

26. (�) 14. (�)

ond column its corresponding interval-valued fuzzy formal
concepts.

We can observe that the knowledge (intent) represented
by interval-valued fuzzy formal concepts and entropy-based-
weighted concepts is the same. However, interval-valued
fuzzy formal concepts represent less number of conceptswith
more adequate description and entropy-based concepts take
less complexity to compute the weight.

5 Discussions

FCA is a well-established mathematical model for knowl-
edge discovery and representation tasks (Poelmans et al.
2013a, b). For handling uncertainty and vagueness in data,
FCA was extended from crisp to fuzzy setting. Computing
all the fuzzy formal concepts and their hierarchical order
visualization in the concept lattice structure is an important
concern for practical applications of FCA. In this paper, we
focused on analysis of fuzziness in a givenmany-valued con-
text, step-by-step generation of fuzzy formal concepts and
their lattice structure using a many-valued context (shown in
Table 2) (Bache and Lichman 2013). We can observe that
the given many-valued context shown in Table 2 is repre-
sented precisely through the fuzzy formal context shown in
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Table 4. However, the crisp formal context shown in Table 3
is a special case of fuzzy formal context shown in Table 4 for
a defined threshold=1.0. We can observe that the fuzzy con-
cept lattice shown in Fig. 1 represents the knowledge (formal
concepts) precisely than crisp concept lattice shown in Fig.
2. In the process of fuzzy formal concept generation, we can
identify following problems:

• FCA with fuzzy setting generates huge number of fuzzy
formal concepts for small variance of membership value
and

• The size of concept lattice constructed froma large context
becomes impractical and complex. In this case, the prob-
lem is how to simplify the size of fuzzy concept lattice
visualization for knowledge-processing tasks.

To solve above-mentioned problems, several methods have
been introduced (Belohlavek and Vychodil 2005; Kang et al.
2012; Konecny and Krupka 2011; Shao et al. 2007). Aswani
Kumar and Srinivas (Aswani Kumar and Srinivas 2010a, b)
discussed about fuzzy K-means clustering and SVD decom-
position. Belohlavek (2007) has provided more attention to
the issue using hedges (Belohlavek andVychodil 2005), opti-
mal triangular decomposition (Belohlavek 2009), fast fac-
torization (Belohlavek et al. 2007), and similarity method
(Belohlavek and Krupka 2009). Dias and Viera (2013) pro-
posed JBOS reduction method for knowledge extraction. Li
and Jhang (2010) replaced Lukasiewicz implication using
T-implication for attribute reduction discussed by Elloumi
et al. (2004). Mi et al. (2010) has presented attribute reduc-
tion through axialities. (Singh and Aswani Kumar 2014a, b)
introduced a fuzzy homomorphism map and crisp order for
given fuzzy formal context.

To deal with the mentioned problems in this paper, we
have established the linkbetween interval-valued fuzzygraph
and concept lattice. Interval-valued fuzzy set is an exten-
sion of traditional fuzzy set which represents membership
degrees in the form of intervals [0, 1] (Akram and Dudek
2011). It provides more precise description of uncertainty
and vagueness than fuzzy setting. For this purpose, Singh and
Aswani Kumar (2012b) incorporated interval-valued fuzzy
graph into concept lattice. After that and recently Ranitovic
and Petojevic (2013) studied lattices of interval-valued fuzzy
sets. These studies provide us a motivation to establish the
interval-valued fuzzy graph representation of concept lattice
for simplifying the size of fuzzy concept lattice structure. The
current paper is different from any other available approaches
in the following aspects:

(1) Thepaper provides anunderstanding for fuzziness in given
context, its advantages and problems.

(2) The paper reduces the size of concept lattice using the
properties of interval-valued fuzzy graph.

(3) The proposed algorithm (shown in Table 7) generates the
interval-valued fuzzy formal concepts using the properties
of interval-valued fuzzy set and Galois connection.

(4) The proposed algorithm shown in Table 15 computes the
weight of the given fuzzy formal concepts using Shannon
entropy.

To understand the representation of concept lattice through
interval-valued fuzzy graph, we have considered a fuzzy for-
mal context shown in Table 8. We can observe that interval-
valued fuzzy graph simplifies the fuzzy concept lattice while
preserving specialized and generalized concepts. Now the
question arises that what is the necessity to incorporate
interval-valued fuzzy set into FCA.To elaborate this need,we
have considered a context shown in Table 9 (Bache and Lich-
man 2013) representing incomplete (?) information between
(o2, p2). The context shown in Table 9 can be transformed
into a fuzzy formal context shown in Table 10 using a mem-
bership value between [0, 1]. We can observe that extension
of FCA in the fuzzy setting is also unable to represent incom-
plete information. Very recently, Li et al. (2013) discussed
a method for handling incomplete information in decision
formal context whereas Krupka and Lastovicka (Krupka and
Lastovica 2012) in fuzzy formal context. Except these meth-
ods another approach is to use an interval-valued fuzzy set for
the representation of fuzzy attributes (as shown in Table 11)
(Djouadi and Prade 2009). Now, our analysis starts that how
to analyze the interval-valued fuzzy formal context shown in
Table 11 through its generated interval-valued fuzzy formal
concepts and lattice structure. For this purpose, we have pro-
posed an algorithm for generating the interval-valued fuzzy
formal concepts (as shown in Table 7). Some of the interval-
valued fuzzy formal concepts generated from Table 11 using
the proposed algorithmare comparedwithDjouadi andPrade
Djouadi and Prade (2009), we observe that they provide
similar analysis. Further, the proposed algorithm provides
remaining concepts and their hierarchical order of the gen-
erated interval-valued fuzzy formal concepts.

For the comparison of knowledge represented by interval-
valued fuzzy formal concepts, we have introduced a method
to compute theweight of formal concepts in the fuzzy setting.
The reason is that entropy-based-weighted fuzzy formal con-
cepts provide best possiblemeasurement of uncertainty in the
given concepts (in the interval [0, 1] as shown in Table 15).
Table 16 shows the comparative study of the knowledge rep-
resented by each formal concepts obtained by interval-valued
fuzzy graph and entropy-based-weightedmethod in the given
interval [0,1]. We can observe that the knowledge (intent)
represented by interval-valued fuzzy formal concepts and
obtained concepts through entropy-based-weighted method
provides good agreement. However, interval-valued fuzzy
formal concepts provide less number of concepts with their
lattice visualization. We can conclude that interval-valued

123



1500 P. K. Singh et al.

fuzzy graph can be used for adequate representation of fuzzy
formal concepts and reducing the size of concept lattice struc-
ture whereas entropy-based concepts can be used for finding
the interested concepts at defined threshold. In future, the
proposed method can be extended for handling bipolar infor-
mation and its representation in the concept lattice.

It is hoped that proposed approaches in this study will be
helpful for the researchers in the various fields such as associ-
ation rulemining (Aswani Kumar 2012; Li et al. 2013; Li and
Jhang 2010; Zhai et al. 2012), information retrieval (Aswani
Kumar et al. 2012; Guh et al. 2009), handling incomplete
data (Burmeister and Holzer 2005; Djouadi and Prade 2009;
Dubois and Prade 2012), semantic web (Formica 2010;Maio
et al. 2012; Nguyen et al. 2012) and concept lattice reduction
(Aswani Kumar and Srinivas 2010a; Dias and Viera 2013;
Gely 2011; Ma et al. 2013) for knowledge-processing tasks
(Poelmans et al. 2013a, b).

6 Conclusions

In this paper, we aimed at providing a better understanding
of fuzziness into the given many-valued formal context and
demonstrated the generation of fuzzy formal concepts. In
this process, the major issue is reducing the number of fuzzy
formal concepts and size of concept lattice. To overcome
it, we introduced interval-valued fuzzy graph representation
of concept lattice as well as entropy-based-weighted fuzzy
formal concepts. Summary of the study is as follows:

• An algorithm has been proposed for generating the
interval-valued fuzzy formal concepts using the proper-
ties of interval-valued fuzzygraph andGalois connection.

• An algorithm has been proposed for computing the
weight of fuzzy formal concepts using Shannon entropy.

• The knowledge represented by the reduced lattice using
interval-valued fuzzy graph and entropy-based-weighted
concepts is similar at some thresholds. Further, interval-
valued fuzzy graph provides adequate description of
fuzzy formal concepts with their hierarchical order visu-
alization in the concept lattice.

Acknowledgments Authors sincerely acknowledge the financial sup-
port from National Board of Higher Mathematics, Dept. of Atomic
Energy, Govt. of India under the grant number 2/48(11)/2010-R&D
II/10806. Authors thank the anonymous reviewer for their useful sug-
gestions and remarks to improve the quality of the paper.

References

Akram M, Dudek WA (2011) Interval-valued fuzzy graphs. Comput
Math Appl 61:289–299

Akram M, Dudek WA (2013) Intuitionistic fuzzy hypergraphs with
applications. Inf Sci 218:182–193

Alcade C, BuruscoA, Fuentes-Gonzales R (2011) The use of linguistics
variables and fuzzy propositions in the L-fuzzy concepts theory.
Comput Math Appl 62:3112–3122

Aswani Kumar C, Srinivas S (2010) Concept lattice reduction from
fuzzy K-means clustering. Expert Syst Appl 37(3):2696–2704

Aswani Kumar C, Srinivas S (2010) Mining associations in health care
data using formal concept analysis and singular value decomposi-
tion. J Biol Syst 18(4):787–807

Aswani Kumar C (2011) Knowledge discovery in data using formal
concept analysis and random projections. Int J Appl Math Comput
Sci 21(4):745–756

AswaniKumarC (2012)Fuzzy clustering based formal concept analysis
for association rules mining. Appl Artif Intell 26(3):274–301

Aswani Kumar C, Radavansky M, Annapurna J (2012) Analysis of
vector space model, latent semantic indexing and formal con-
cept analysis for information retrieval. Cybern Inf Technol 12(1):
34–48

Aswani Kumar C, Singh PK (2014) Knowledge representation using
formal concept analysis: a study on concept generation. IGIGlobal
Publishers, Global trends in knowledge representation and com-
putational intelligence, pp 306–336

Ayouni S, Yahia SB, Laurent A (2011) Extracting compact and infor-
mation lossless sets of fuzzy association rules. Fuzzy Sets Syst
183(1):1–25

Bache K, Lichman M (2013) UCI machine learning repository http://
archive.ics.uci.edu/ml. IrvineCA,University ofCalifornia, School
of information and computer science

Belohlavek R (2009) Optimal triangular decompositions of matri-
ces with entries from residuated lattices. Int J Approx Reason
50(8):1250–1258

Belohlavek R (1998) Lattice generated by binary fuzzy relations. In:
Proceedings of 4th international conference on fuzzy sets theory
and applications, Liptovsky Jan Slovakia, pp 11–19

Belohlavek R (1999) Fuzzy Galois connection. Math Logic Q
45(4):497–504

Belohlavek R (2001) Fuzzy closure operators. J Math Anal Appl
262(2):473–489

Belohlavek R (2007) A note on Variable threshold concept lattices:
threshold-based operators are reducible to classical-forming oper-
ators. Inf Sci 177(15):3186–3191

Belohlavek R, Dvorak J, Outrata J (2007) Fast factorization in formal
concept analysis of data with fuzzy attribute. J Comput Syst Sci
73(6):1012–1022

Belohlavek R, Krupka M (2009) Grouping fuzzy sets by similarity. Inf
Sci 179(15):2656–2661

Belohlavek R, Baets BD, Outrata J, Vychodil V (2007) Lindig’s algo-
rithm for concept lattices over graded attributes. In: Torra V,
Narukawa Y, Yoshda Y (eds) MDAI, Springer, LNAI 4617, pp
156–167

Belohlavek R, Konecny J (2007) Scaling, granulation and fuzzy
attributes in formal concept analysis. In: Proceedings of IEEE
international conference on fuzzy systems, pp 1–6

Belohlavek R, Vychodil V (2005) Reducing the size of fuzzy concept
lattice by hedges. In: Proceedings of 14th IEEE international con-
ference on fuzzy systems, pp 663–668

Belohlavek R, Vychodil V (2005) What is fuzzy concept lattice. In:
Proceedings of CLAV Olomuc, Czech Republic, pp 34–45

Berry A, Sigayret A (2004) Representing concept lattice by a graph.
Discret Appl Math 144:27–42

Burmeister P,HolzerR (2005)Treating incomplete knowledge in formal
concept analysis. In: Formal concept analysis. Ganter B, Stumme
G, Wille R (eds) Berlin, Springer 3626:11–26

Burusco A, Fuentes-Gonzales R (1994) The study of L-fuzzy concept
lattice. Math Soft Comput 3:209–218

123

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Knowledge representation using fuzzy concept lattice 1501

Burusco A, Fuents-Gonzales R (2000) Concept lattices defined from
implication operators. Fuzzy Sets Syst 114(3):431–436

Burusco A, Fuentes-Gonzales R (2001) The study on interval-valued
contexts. Fuzzy Sets Syst 121(3):439–452

Carpineto C (2004) Concept data analysis: theory and application.
Wiley, England

Dias SM, Viera NJ (2013) Applying the JBOS reductionmethod for rel-
evant knowledge extraction. Experts Syst Appl 40(5):1880–1887

Djouadi Y (2011) Extended Galois derivation operators for informa-
tion retrieval based on fuzzy formal concept lattice. In: Ben-
ferhal S, Goant J (eds) SUM 2011, Springer, LNAI 6929, pp
346–358

Djouadi Y, Prade H (2009) Interval-valued fuzzy formal concept analy-
sis. In: Rauch et al. (ed) ISMIS, Springer, Berlin, LNAI 5722, pp
592–601

Dubois D, Prade H (2012) Possibility theory and formal concept
analysis: characterizing independent sub-contexts. Fuzzy Sets Syst
196(1):4–16

Elloumi S, Jaam J, Hasnah A, Jaoua A (2004) A multi-level conceptual
data reduction approach based on the Lukasiewicz implication. Inf
Sci 163(4):253–262

Formica A (2010) Concept similarity in fuzzy formal concept analysis
for semantic web. Int J Uncertain Fuzziness Knowl Based Syst
18:153–167

Gajdos P, Snasel V (2013) A new FCA algorithm enabling analyzing
of complex and dynamic data sets. Soft Comput 18(4):683–694

Ganter B, Wille R (1999) Formal concept analysis: mathematical foun-
dation. Springer, Berlin

Gely A (2011) Links between modular decomposition of concept lat-
tices and bimodular decomposition of a context. In: Napoli A,
Vychodil V (eds) Proceedings of the concept lattices and their
applications, pp 393–403

Ghosh P, Kundu K, Sarkar D (2010) Fuzzy graph representation of a
fuzzy concept lattice. Fuzzy Sets Syst 161(12):1669–1675

Guh YY, Yang MS, Po RW, Lee ES (2009) Interval-valued fuzzy
relation-based clustering with its application to performance eval-
uation. Comput Math Appl 57:841–849

KaiW, Shao-Wen L, You-Hua Z, Shao L (2011) Research on the theory
and methods for similarity calculation of rough formal concept in
missing-value context. In: Li D, Liu Y, Chen Y (eds) Proceedings
of international federation for information processing, pp 425–433

Kang X, Li D, Wang S, Qu K (2012) Formal concept analysis based on
fuzzy granularity base for different granulation. Fuzzy Sets Syst
203:33–48

Konecny J, Krupka M (2011) Block relations in fuzzy settings. In:
Napoli A, Vychodil V (eds) Proceedings of the concept lattices
and their applications, pp 115–130

Krupka M, Lastovica J (2012) Fuzzy concept lattice with incomplete
knowledge. In: Greco et al. (ed) 14th International conference on
information processing management of uncertainty 2012, CCIS
299, Springer, pp 171–180

Kuznetsov SO, Obiedkov SA (2002) Comparing performance of algo-
rithms for generating concept lattices. J Exp Theor Artif Intell
14(2–3):189–216

Li L, Jhang J (2010) Attribute reduction in fuzzy concept lattices based
on the T-Implication. Knowl Based Syst 23:497–503

Li J, Mei C, Lv Y (2012) Knowledge reduction in real decision formal
contexts. Inf Sci 189:191–207

Li J, Mei C, Lv Y (2013) Incomplete decision contexts: approximate
concept construction, rule acquisition and knowledge reduction.
Int J Approx Reason 54(1):149–165

Li J, Mei C, Zhang X (2013) On rule acquisition in decision formal
contexts. Int J Mach Learn Cybern 4(6):721–731

Li J, He Z, Zhu Q (2013) An Entropy-based weighted concept lattice
for merging multi-source geo-ontologies. Entropy 15:2303–2318

Ma JM, ZhangWX, Cai S (2006) Variable threshold concept lattice and
dependence space. In: Proceedings of international conference on
fuzzy systems and knowledge discovery. Springer, LNAI 4223, pp
109–118

Ma JM, ZhangWX (2013) Axiomatic characterizations of dual concept
lattices. Int J Approx Reason 54:690–697

Maio CD, Fenza G, Loia V, Senatore S (2012) Hierarchical web
resources retrieval by exploiting fuzzy formal concept analysis.
Inf Process Manag 48(3):399–418

Martin TP, Rahim NHA, Mazidian A, (2013) A general approach to
the measurement of change in fuzzy concept lattices. Soft Comput
17(12):2223–2234

Medina J, Ojeda-Aciego M (2012) On multi-adjoint concept lattice
based on heterogeneous conjunctors. Fuzzy Sets Syst 208:95–
110

Mehdi K, Kuznetsov SO, Napoli A, Duplesis S (2011) Mining gene
expression data with pattern structures in formal concept analysis.
Inf Sci 181:1989–2001

Mi JS, Leung Y, Wu WZ (2010) Approaches to attributes reduction in
concept lattices induced by axialities. Knowl Based Syst 23:504–
511

Nguyen TT, Hui S, Chang K (2012) A lattice based approach for math-
ematical search using formal concept analysis. Expert Syst Appl
39(5):5820–5828

Pocs J (2012) Note on generating fuzzy concept lattices via Galois
connections. Inf Sci 185(1):128–136

Poelmans J, Kuznetsov SO, Ignatov DI, Dedene G (2013) Formal con-
cept analysis in knowledge processing: a survey on applications.
Expert Syst Appl 40(16):6538–6560

Poelmans J, Ignatov DI, Kuznetsov SO, Dedene G (2013) Formal con-
cept analysis in knowledge processing : a survey on models and
techniques. Expert Syst Appl 40(16):6601–6623

Pollandt S (1997) Fuzzy Begriffe. Springer, Berlin
Popescu A (2004) A general approach to fuzzy concepts. Math Logic

Q 50(3):265–280
Singh PK, Aswani Kumar C (2012) A method for reduction of fuzzy

relation in fuzzy formal context. In: Balasubramaniam P, Uthaya
Kumar R (eds) Proceedings of international conference of mathe-
maticalmodelling and scientific computation, CCIS 283. Springer,
pp 343–350

Singh PK, Aswani Kumar C (2012) Interval-valued fuzzy graph rep-
resentation of concept lattice. In: Proceedings of twelfth interna-
tional conference on intelligent system design and application. pp
604–609

Singh PK, Aswani Kumar C (2014) A note on computing crisp order
context of a given fuzzy formal context for knowledge reduction.
J Inf Process Syst. doi:10.3745/JIPS.04.2009

Singh PK, Aswani Kumar C (2015) Analysis of composed contexts
through projection. Int J Data Anal Tech Strateg Inder Sci (In
Press)

Ranitovic MG, Petojevic A (2013) Lattice representations of interval-
valued fuzzy sets. Fuzzy Sets Syst 236(1):50–57

ShaoMW,LiuM,ZhangWX(2007)Set approximations in fuzzy formal
concept analysis. Fuzzy Sets Syst 158:2627–2640

Singh PK, Aswani Kumar C (2012) A method for decomposition of
fuzzy formal context. Proc Int Conf Modell Optim Comput Proc
Eng 38:1852–1857

Singh PK,Aswani Kumar C (2014) A note on constructing fuzzy homo-
morphismmap for a given fuzzy formal context. In: Proceedings of
the third international conference on soft computing for problem
solving. Adv Intell Syst Comput 258:845–855

Singh PK, Aswani Kumar C (2014) Bipolar fuzzy graph representation
of concept lattice. Inf Sci 288:437–448

Wang LD, Liu XD (2008) Concept analysis via rough set and AFS
algebra. Inf Sci 178:4125–4137

123

http://dx.doi.org/10.3745/JIPS.04.2009


1502 P. K. Singh et al.

Wille R (1982) Restructuring lattice theory: an approach based on hier-
archies of concepts. In: Sets O (ed) Rival I. Reidel, Dordrect, pp
445–470

Wolf KE (1998) Conceptual interpretation of fuzzy theory. In: Zimmer-
man HJ (ed) Proceedings of 6th EUFIT 1998, Aachen, 1:555–562

WolfKE (2002)Concepts in fuzzy scaling theory: order and granularity.
Fuzzy Sets Syst 132(1):63–75

Wu WZ, Leung Y, Mi JS (2009) Granular computing and knowl-
edge reduction in formal context. IEEE Trans Knowl Data Eng
21(10):1461–1474

YangKM,KimEH,Hwang SH, Choi SH (2008) Fuzzy Concept mining
based on formal concept analysis. Int J Comput 2(3):279–290

Yao YY (2004) A comparative study of formal concept analysis and
rough set theory in data analysis. Proceedings of 4th international
conference on rough sets and current trends in computing.Uppsala,
Sweden, pp 59–68

Yao YY (2004) Concept lattices in rough set theory. Proceedings of
2004 annual meeting of the North American fuzzy information
processing society. IEEE Computer Society, Washington D.C., pp
796–801

Zadeh LA (1965) Fuzzy sets. J Inf Control 8(3):338–353
Zadeh LA (1975) The concepts of a linguistics and application to

approximate reasoning. Inf Sci 8:199–249
Zerarga L, Djouadi Y (2012) Interval-valued fuzzy extension of formal

concept analysis for information retrieval. In: Huang et al. (ed)
ICONIP 2012, part 1, Springer, LNCS 7663, pp 608–615

Zhai Y, Li D, Qu D (2012) Probability fuzzy attribute implications for
interval-valued fuzzy set. Int J Database Theory Appl 5:95–108

Zhang WZ, Wei L, Qi JJ (2005) Attribute reduction in concept lat-
tice based on discernibility matrix. In: Slezak D, Yao J, Peters JF
(eds) Proceedings of international conference onRSFDGrC, LNAI
3642, Springer, pp 157–165

ZhangWX, Ma JM, Fan SQ (2007) Variable threshold concept lattices.
Inf Sci 177(22):4883–4892

Zhou L (2011) On equivalence of fuzzy concept lattice. In: Proceedings
of 8th international conference on fuzzy system and knowledge
discovery 3:1475–1489

123


	Knowledge representation using interval-valued fuzzy formal concept lattice
	Abstract 
	1 Introduction
	2 Formal concept analysis in the fuzzy setting
	3 Analysis of fuzziness in a given many-valued context
	3.1 FCA of data with fuzzy attributes
	3.2 Illustration of fuzzy formal concept generation

	4 Interval-valued fuzzy graph representation of concept lattice
	4.1 Interval-valued fuzzy graph
	4.2 Proposed algorithm for generating interval-valued fuzzy formal concepts
	4.3 Concept lattice reduction using interval-valued fuzzy graph
	4.4 Application of the interval-valued fuzzy formal concepts
	4.5 Entropy-based-weighted fuzzy concept lattice
	4.6 Comparison

	5 Discussions
	6 Conclusions
	Acknowledgments
	References




