
Soft Comput (2016) 20:1231–1248
DOI 10.1007/s00500-014-1585-1

METHODOLOGIES AND APPLICATION

Genetic programming for edge detection: a Gaussian-based
approach

Wenlong Fu · Mark Johnston · Mengjie Zhang

Published online: 10 January 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Gaussian-based filtering techniques have been
popularly applied to edge detection. However, how to effec-
tively tune parameters of Gaussian filters and how to effec-
tively combine different Gaussian filters are still open issues.
In this study, a new genetic programming (GP) approach is
proposed to automatically tune parameters ofGaussian filters
and automatically combine different types of Gaussian filters
to extract edge features. In general, it is time-consuming for
GP to evolve edge detectors using a large training image
dataset. To efficiently evolve edge detectors from a large
training image dataset, we propose sampling techniques (ran-
domly selecting training images) to evolve Gaussian-based
edge detectors. A sampling technique only using part of a
set of images obtains similar performance to the training
data using all of these images. The evolved edge detectors
from the proposed sampling technique perform better than
the Gaussian gradient and rotation invariant surround sup-
pression. Based on the analysis of GP evolving edge detec-
tors, it is suggested that combining Gaussian filters should be
based on different types of Gaussian filters, and the Gaussian
gradient should be considered as a major filter in these com-
binations.

Keywords Edge detection · Genetic programming ·
Sampling · Feature extraction

Communicated by V. Loia.

W. Fu (B) · M. Johnston
School of Mathematics, Statistics and Operations Research,
Victoria University of Wellington, PO Box 600,
Wellington, New Zealand
e-mail: wenlong.fu@msor.vuw.ac.nz

M. Zhang
School of Engineering and Computer Science, Victoria University
of Wellington, PO Box 600, Wellington, New Zealand

1 Introduction

Edge detection is a well developed area of image analy-
sis (Kunt 1982; Papari and Petkov 2011). Edge detection
generally aims at finding discontinuities between different
regions or between objects and background. In order to detect
discontinuous changes in an image, manymethods have been
proposed (Basu 2002; Ganesan and Bhattacharyya 1997;
Papari and Petkov 2011). However, since edge detection is
a subjective task, there are usually several different solu-
tions for one natural image based on human observation. It is
appealing to automatically construct edge detectors for spe-
cial tasks.

Gaussian filters are useful for image processing (Basu
2002; Papari and Petkov 2011). Gaussian-based edge detec-
tion techniques have been developed for many years, and
some advantages regarding filtering noise exist in these tech-
niques (Basu 2002). Different Gaussian-based approaches
have been investigated based on a single Gaussian filter,
such as Laplacian of Gaussian (LoG) (Marr and Hildreth
1980) and Canny edge detectors (Canny 1986), or multiple
Gaussian filters, such as multi-scale edge detection (Papari
and Petkov 2011) and surround suppression (SS) (Grig-
orescu et al. 2004). Techniques based on multiple Gaussian
filters can improve detection accuracy (Papari and Petkov
2011).

However, there are problems in Gaussian-based app-
roaches. First, it is difficult to manually set the parameters
(scales) of Gaussian filters. Gaussian filters at different scales
are often combined to detect edges. Inmulti-scale edge detec-
tion (Basu 2002; Song and Li 1998), the scales of Gaussian
filters and the window size affect the detection performance,
but the literature does not address how to effectively and auto-
matically tune parameters of Gaussian filters. Existing work
has addressed automatic setting of filter scales, but these

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-014-1585-1&domain=pdf

1232 W. Fu et al.

techniques are dependent on specific images (Basu 2002;
Lindeberg 1996). The window size problem (blurring edges
in a large window and noise influence in a small window)
still exists in Gaussian-based edge detection. It is desirable
to develop automatic techniques for setting parameters of
Gaussian filters.

Second, it is not clear how to effectively combineGaussian
filters. When multi-scale Gaussian filters are combined in a
fixed order, the detection performance is often dominated
by the first processed Gaussian filter. SS combines dif-
ferent filters without any fixed order to improve detection
accuracy (Grigorescu et al. 2003, 2004). In SS, an opera-
tion, called inhibition, is used to suppress texture responses.
In general, the response from a Difference of Gaussians
(DoG) (Basu 2002) is used in the inhibited term, and the
response on the gradient of a Gaussian filter is the inhibited
context. In SS, Gabor filters are usually used (Grigorescu et
al. 2004). Since a two-dimensional Gabor filter is the prod-
uct of a Gaussian kernel function and a sinusoidal function
and Gaussian filters can replace Gabor filters in SS, SS can
still be considered as a kind of Gaussian-based edge detec-
tion. The main benefit of SS is to filter noise caused by tex-
tures (Papari and Petkov 2011). From SS, effectively com-
bining Gaussian filters can improve detection performance.
However, it is difficult to reduce the influence on irregular
textures by SS. Therefore, it is desirable to investigate new
ways of effectively combining Gaussian filters.

Genetic programming (GP) has been employed for edge
detection since at least 1996 (Harris and Buxton 1996; Poli
1996). The existing work for constructing edge detectors
mainly focuses on low-level edge detectors via choosing raw
pixels (Fu et al. 2011, 2012d; Zhang and Rockett 2005), or
a combination of image operators (Kadar et al. 2009). These
works show that GP can evolve good edge detectors (Fu et
al. 2012c; Kadar et al. 2009; Zhang and Rockett 2005), but
most of these approaches used a small training dataset.When
all individual images in a large dataset are used as the train-
ing data, the computational cost in the training stage is high.
Kadar et al. (2009) randomly selected images from a large
image dataset as training data to evolve a feature using GP.
Although only one feature was used to combine with other
existing features to train a logistic regression classifier in
their work, efficiently selecting a small set of images from
a large dataset seems promising to train GP edge detectors
alone (without combination with other existing edge detec-
tion approaches). In our previous work (Fu et al. 2013a), 20
images were employed to effectively evolve Gaussian-based
edge detectors by GP. However, the computational cost is
heavy when all 20 training images are used. Therefore, in
order to reduce the computational cost in the training stage,
this paper further investigate how to effectively select train-
ing images to evolve edge detectors. Based on the proposed
GP system (Fu et al. 2013a), we also investigate the influence

of using different types of Gaussian filters for GP evolving
Gaussian-based edge detectors.

The goal of this paper is to investigate how to effec-
tively use prior Gaussian-based knowledge in GP for edge
detection. Some Gaussian-based filters are utilised by GP
to construct Gaussian-based edge detectors for performance
improvement. A function (Fu et al. 2013a) is proposed for
combining different Gaussian filters. Since the Gaussian-
based techniques are given as prior knowledge, this inves-
tigation mainly focuses on how to effectively and efficiently
evolve Gaussian-based edge detectors.

GP is a time-consuming algorithm to evolve programs
when a large image dataset is used for training. In order to
reduce the computational cost from a full-image dataset in
the training phase, an initial investigation on the relation-
ship between the detection performance and training images
is conducted. In machine learning, one-shot learning algo-
rithms (Fink 2004; Li et al. 2006; Miller et al. 2000) have
utilised prior domain knowledge (such as distributions on the
images selected from their raw datasets) to reduce the num-
ber of training images. Different from the one-shot learning
algorithms, the raw training data used in this paper is con-
sidered as being unseen and the structures of evolved edge
detectors can be very different. Specifically, the following
research objectives will be investigated: (1) whether a small
set of images can be used to train good Gaussian-based pro-
grams; and (2) whether using different types of Gaussian
filters is better than using a single type of Gaussian filter
only to evolve Gaussian-based programs.

In the remainder of the paper, Sect. 2 briefly describes
relevant background on edge detection and using GP for
edge detection. Section 3 proposes a GP system to evolve
Gaussian-based edge detectors. After presenting the experi-
ment design in Sect. 4 and the related results in Sects. 5, 6
provides the further discussions. Finally, Sect. 7 draws con-
clusions and suggests future work directions.

2 Background

This section briefly describes relevant background on
Gaussian-based edge detection and existing work on edge
detection using GP.

2.1 Gaussian-based edge detection

From human visual systems, Gaussian filters play an impor-
tant role to recognize edges (Basu 2002). Gaussian-based
filters have been developed to extract edge features (Marr
and Hildreth 1980; Schunck 1987). To filter noise and
detect edges, Gaussian filters and differentiation have been
used for edge detection, such as the Difference of Gaus-

123

Genetic programming for edge detection: a Gaussian-based approach 1233

sians (DoG) (Marr and Hildreth 1980) and Gaussian gra-
dients (Canny 1986).

Equation (1) describes a one-dimensional Gaussian filter
gσ (x) with a scale parameter σ . Using scale parameters σ1,
σ2, DoG is defined in Eq. (2). As a second derivative filter,
DoG approximates LoG well (Song and Li 1998). Although
DoG decreases overall image contrast, it suppresses noise
usually having a high spatial frequency (Marr and Hildreth
1980).

gσ (x) = 1√
2πσ 2

exp

(
− x2

2σ 2

)
(1)

DoGσ1,σ2(x) = gσ1(x) − gσ2(x) (2)

Cannydetectors (Canny1986) are derived fromanoptimal
filter based on the local maxima resulting from the convo-
lution of a filter with the signal affected by white noise in
one dimension, which is approximated by the derivative of
a Gaussian function (Basu 2002). For the step edge (in one
dimension), the derived optimal filter can be approximated
by the first derivative of a Gaussian function with the scale
parameter σ (see Eq. (3)) (Basu 2002). Canny edge detectors
use adaptive thresholding with hysteresis to eliminate break-
ing of edge contours, but they are slightly sensitive to weak
edges and susceptible to spurious and unstable boundaries
with non-significant change in intensity (Papari and Petkov
2011; Basu 2002).

∂gσ (x)

∂x
≈ − x

σ 2 exp

(
− x2

σ 2

)
(3)

Using obvious response changes from Gaussian filters
with various scales, edges could be detected. A specific filter
can be used to smooth a relevant subregion of an image. Since
an image may include different types of edges and noise, fil-
ters are combined to detect edges. In multi-scale techniques,
there are three directions to employ Gaussian filters with
different scales. The first, called edge focusing (Bergholm
1987), proceeds from a coarse solution to a fine solution.
A large scale (high σ) Gaussian filter is utilised for find-
ing edges; then locations of edges are determined by a next
smaller scale. It is hard to set small and large scales of fil-
ters, although the aim of using multi-scale filters is to avoid
blurred edges from large scale Gaussian filters. It is hard to
choose a threshold to obtain binary edges from a filter, too.
The quality of the detected edges is usually determined by the
threshold used in a large scale filter. The second is from fine
to coarse (Lacroix 1990). The problem of localisation error
still exists when coarse solutions are used to detect edges.
Again, it is not clear to choose scales in filters. The third is
to use adaptive Gaussian filters to detect edges (Bennamoun
et al. 1995). Assuming that noise is a Gaussian distribution
with a known variance, this method smooths areas using a
large scale to filter out noise. However, the noise variance in
real images has to be estimated.

Multi-scale Gaussian filter techniques are based on spe-
cific orders of using different scale filters. Different from
multi-scaleGaussianfilters techniques, onepopular approach
(without considering the special orders) combines indepen-
dent filters together, such as SS (Grigorescu et al. 2003,
2004). SS is used to effectively filter noise caused by some
regular textures (Papari and Petkov 2011). In summary, mul-
tiple Gaussian filters are utilised to filter noise and improve
detection accuracy because a single filter is not generally suf-
ficient to filter noise and detect edges. However, considering
automatic of feature extraction, it is required to further inves-
tigate how to automatically combine filters and automatically
tune the parameters of filters.

2.2 Related work for edge detection using GP

In our previouswork, we have done somework in edge detec-
tion using GP with different degrees of prior domain edge
knowledge (Fu et al. 2011, 2012a, c, d, 2013a, b, c). Based on
the fitness functions, the methods using GP for edge detec-
tion can be categorised as methods for minimising the mean
square error (MSE) and methods for maximising the detec-
tion accuracy.

2.2.1 Minimising the MSE

When a fitness function is based on minimising the MSE,
the aim is to evolve a detector whose outputs are close to the
outputs from a desired detector or a model whose outputs are
close to ideal outputs (responses). Similar to symbolic regres-
sion problems, GP is used to approximate the ideal outputs
(not detected results) in edge detection. In order to get opti-
mal filters for one-dimensional step signals, GP evolved pro-
gramswith good responses in step signals (Harris andBuxton
1996), and then these programswere used to approximate fil-
ters. In (Harris and Buxton 1996), one-dimensional step edge
signals were manually designed. The position of the signal
was considered as a terminal, and normal arithmetic opera-
tors, such as addition, subtraction, multiplication and divi-
sion, were used as the set of functions. The performance of
the evolved edge detectors are dependent on the understand-
ing of edges when edges are considered as one-dimensional
signals. Since edges are very subjective, it is hard to repre-
sent most edges by one-dimensional signals. Another way
to approximate detectors is to learn outputs from existing
detectors. The outputs from one detector are considered as
the targets, and then GP is used to find similar detectors.
An approximation of the Sobel detector with the terminal
set containing nine pixels in a shifting window was used to
design a hardware detector (Hollingworth et al. 1999). A ter-
minal set containing pixels from a 3 × 3 shifting window
was used to approximate the Sobel detector with Cartesian
GP (CGP) (Harding and Banzhaf 2008). Based on one whole

123

1234 W. Fu et al.

image, four shifting functions introduced by Poli (Poli 1996)
were used to approximate a Canny detector (Ebner 1997).
However, since these evolved edge detectors only approxi-
mate a target detector, it is difficult for them to outperform
the target detector.

An advantage of using the MSE is that the outputs of an
evolved edge detector are similar to the desired responses for
edge points and non-edge points, but the desired responses
are hard to obtain. The desired outputs normally come from
an existing edge detector, therefore, the performance of
evolved edge detectors is dependent on the existing desired
edge detector.

2.2.2 Maximising the detection accuracy

To obtain good detection accuracy such as the overall detec-
tion accuracy for the edge points and non-edge points, recall
is often used for finding edge points and precision for pre-
dicting edge points. Here recall is the number of pixels on the
edges correctly detected as a proportion of the total number
of pixels on the edges, and precision is the number of pixels
on the edges correctly detected as a proportion of the total
number of pixels detected as edge points. GP has been used
as a binary classification problem. In (Quintana et al. 2006;
Wang and Tan 2010), morphological operators erosion and
dilation were used as the terminal set and the evolved detec-
tors classify pixels as edge points or non-edge points with
the fitness functions based on a combination of recall and
the specificity (the proportion of non-edge points which are
correctly identified). Zhang and Rockett (2005) used 13×13
windows as patterns to extract features via multi-objective
GP, with objectives of Bayesian error, classification error and
the number of nodes.

In (Golonek et al. 2006), a digital circuit as an edge detec-
tor was evolved by GP with the fitness function based on
minimising errors from wrong classifications. For detecting
boundaries, a GP individual as candidate boundary cue was
combined with a texture gradient cue into a single detec-
tor on a trained logistic regression classifier (Kadar et al.
2009) based on the F-measure. The terminal set in (Kadar
et al. (2009) only included input images, and the function
set included matrix addition, matrix subtraction, convolu-
tion with symmetric kernels, and etc. The symmetric ker-
nels were predefined by the texture gradients from Mar-
tin et al. (2004). Only one evolved program was reported
in Kadar et al. (2009). Since the task in Kadar et al. (2009)
was to detect boundaries, rather than edges, some degrees of
specific edge domain knowledge were employed. Note that
edge features could be further processed for boundary detec-
tion using knowledge on boundaries, such as linking broken
edges, removing short edges (not true edges) and thinning
edges (Martin et al. 2004; Papari and Petkov 2011).

In (Bolis et al. 2001), the number of true edge points cor-
rectly found was used as one part of the fitness function to
evolve an ant to find contours. In our previous work, the
fitness function based on the combination of recall and pre-
cision was proposed to balance training images to evolve
low-level edge detectors (Fu et al. 2012d). Also, we utilised
detection accuracy to evolve low-level edge detectors based
on full imageswith proposed search operators (Fu et al. 2011,
2012c, d) and composite features from a set of predefined
basic features (Fu et al. 2013b, c). The evolved composite
features are better than the predefined basic features, in terms
of detection accuracy.

In both categories of methods, the size of training dataset
is small. However, when the size of the training dataset
becomes large, the computational cost is greatly increased.
A real image dataset usually contains a lot of images, and
each image might contain a large number of pixels. In (Fu
et al. 2013b, c), the training data is sampled based on the
predefined proportions of true edge points and true non-edge
points in each training image. Since the Gaussian-based GP
system is based on full images, rather than using a set of
predefined basic features, how to efficiently reduce the com-
putational cost in the GP system based on full images needs
to be investigated.

3 The approach

The proposed Gaussian-based GP system is introduced in
this section. In this GP system, the parameters of Gaussian
filters and the operations between different Gaussian filters
will be automatically evolved.

3.1 Terminals based on Gaussian models

To rapidly find a Gaussian-based edge detector, the termi-
nal set in the proposed GP system includes three types of
Gaussian filters: the Gaussian gradient, LoG, and DoG. The
Gaussian gradient filter dgσ (u, v) is shown in Eq. (4), where
σ is the scale parameter, and (u, v) is an offset (horizontal
and vertical directions) from each discriminated pixel. The
LoG filter ddgσ (u, v) is defined in Eq. (5). The DoG filter
dogσ (u, v) is shown in Eq. (6).

gσ (u, v) = 1

2πσ 2 exp

(
−u2 + v2

2σ 2

)

∂g(u, v)

∂u
= − u

2πσ 4 exp

(
−u2 + v2

2σ 2

)

∂g(u, v)

∂v
= − v

2πσ 4 exp

(
−u2 + v2

2σ 2

)

dgσ (u, v) =
√(

∂g(u, v)

∂u

)2

+
(

∂g(u, v)

∂v

)2

(4)

123

Genetic programming for edge detection: a Gaussian-based approach 1235

ddgσ (u, v) = u2 + v2 − 2σ 2

2πσ 6 exp

(
−u2 + v2

2σ 2

)
(5)

dogσ (u, v) = gσ (u, v) − g2σ (u, v) (6)

The terminal set also includes random constants rnd (real
numbers) in the range from−10 to 10 based on initial exper-
iments. In this terminal set, the scales σ (real numbers) of
all Gaussian filters are randomly generated in the continuous
range from 1 to 5. Let the large scale in the DoG be double
the small one, so the scale range of all Gaussian filters is from
1 to 10. Therefore, the coarsest scale (from 2 to 10) covers
the range from 3 to 6 as suggested in Bergholm (1987) so
that it is possible to find more Gaussian filters.

3.2 Function set

In the multi-scale edge detection technique, it is quite com-
plex to use a function to describe the operation for detecting
edges from a coarse solution to a fine solution or from a
fine solution to a coarse solution. However, SS uses an oper-
ation to easily present a combination of different Gaussian
filters to detect edges (Grigorescu et al. 2004). Therefore, the
operation is used here to construct new Gaussian-based edge
detectors.

Since Gaussian filters in the terminal set can be con-
sidered as edge detectors, a simple function set, namely
{+,−, ∗,÷,C} is chosen. Here,÷ is protected division, pro-
ducing a result of 1 for a 0 divisor; and C is a combination
function from SS, which takes two arguments. Let f1(x, y)
and f2(x, y) be image intensities or outputs from subtrees for
a pixel with position (x, y), f1(x, y)C f2(x, y) represents the
operation of the combination function. There are two steps
in f1(x, y)C f2(x, y). In the first step, for each pixel, the first
argument f1(x, y) provides the neighbours of the pixel with
position (x, y) in a local 7×7 window. The second argument
f2(x, y) provides the values of the relative neighbours (in the
7× 7 window) transformed by Eqs. (7) and (8). Here, u and
v (u′ and v′) are horizontal and vertical offsets, and

∑
u′,v′

is the sum of positiveN (u′, v′, f (x, y)) based on the 7 × 7
window. Note that normN (u, v, f (x, y)) will be 0 if

∑
u′,v′

is equal to 0. In the second step, convolution of the values
(7 × 7 window) from f1(x, y) and f2(x, y) is performed to
return a value for f1(x, y)C f2(x, y).

positiveN (u, v, f (x, y)) = max{ f (x + u, v + y), 0} (7)

normN (u, v, f (x, y)) = positiveN (u, v, f (x, y))∑
u′,v′ positiveN (u′, v′, f (x, y))

(8)

An existing surround suppression technique (Grigorescu
et al. 2004) can be expressed by the Gaussian-based GP sys-
tem as GGSS in Eq. (9), where σ1 and σ2 are scaling parame-
ters, dgσ1 and dogσ2 are the results after applying Gaussian

filters dgσ1 and dogσ2 to an image, and A and B are con-
stants. For a pixel, dgσ1Cdogσ2 returns the convolution of
dgσ1 with normN (u, v, dogσ2) in the 7×7window. If a pixel
is located in a flat area (such as within which the responses
dogσ2 of its neighbours are 0), the operation dgσ1Cdogσ2

will return 0 and GGSS only depends on dgσ1 and B. For a
texture pixel with a non-zero response, its neighbours have
similar responses or edge responses. In the 7 × 7 window,
the number of edge points is typically small, the influence
from the edge responses is not obvious. The return value of
dgσ1Cdogσ2 is almost the same as the dgσ1 value of the pixel.
Therefore, GGSS will suppress the responses from textures.
When a pixel is on a true edge and its neighbours have tex-
ture responses, most of the neighbours normally have weaker
responses dgσ1 than the pixel. Therefore, the return value of
dgσ1Cdogσ2 is obviously lower than the responsedgσ1 .GGSS

has slightly lower response contrast than dgσ1 .

GGSS = dgσ1 − A × dgσ1Cdogσ2 − B (9)

3.3 Fitness function

In our previous work (Fu et al. 2012d), the F-measure was
used as the fitness function. However, the F-measure is a
time-consuming evaluation system if a limited offset dis-
tance for detecting pixels to true edge points is allowed. That
is because an optimal matching operation is required (Martin
et al. 2004). We also investigated fitness functions based on
the localisation accuracy, namely Figure ofMerit (FOM) (Fu
et al. 2012b). FOM as a fitness function can evolve low-
level edge detectors, so we choose FOM based on each train-
ing image as the fitness function in this GP system. FOM
is defined in Eq. (10), where M is the number of training
images, Ni,T is the number of true edge points in image i ,
Ni,P is the number of predicted edge points in image i , Seti,P
is the set of all predicted edgepoints for image i ,α is aweight-
ing factor for detection localisation, and d(j) is the distance
from a predicted edge point j to the nearest true edge point in
a ground truth edge map. Considering the overlap of a 3× 3
window, α is usually set to 1

9 .

FOM = 1

M

M∑
i=1

⎛
⎝ 1

max{Ni,T , Ni,P }
∑

j∈Seti,P

1

1 + αd2(j)

⎞
⎠
(10)

3.4 Sampling techniques

To use the original images as the training set and reduce the
computational cost during the training stage, two different
sampling techniques based on original images as the training
data are proposed here. The first technique is to randomly

123

1236 W. Fu et al.

Algorithm 1 Sampling Technique
1: Initialise the number of training images M = Mmin and generation

g = 0.
2: Randomly select a set of images (from 1 to M) as the evaluation

data, evaluate all individuals, update population, and g = g + 1.
3: If Mod(g, gperiod) = 0, then M = M + 1, otherwise go to step 5.
4: If M = Mmax + 1, then M = Mrestart .
5: If the terminate criteria are satisfied, go to step 6, otherwise go to

step 2.
6: Output the best program as the solution.

select one image as the evaluation data at each generation;
and the second technique is to randomly select a set of images
as the training data at each generation.

In the second technique, at the beginning, the number of
the training images is a small number Mmin, and after every
gperiod generations, the number is increased by 1. When the
number of images is equal to Mmax, the number of training
images will return to a fixed value Mrestart. Mrestart is used
to reset the number of training images. It is possible that
Mmin training images can distinguish the detection perfor-
mance of initialised edge detectors. After some generations,
these training images may not be good enough to distinguish
edge detectors’ performance, so more images are required
for evaluating evolved edge detectors. When Mmax training
images are used, some evolved edge detectors might be obvi-
ously better than the others in the population. Again, Mrestart

training images could distinguish the detection performance
of these edge detectors. The second sampling technique is
described in Algorithm 1, where Mod(g, gperiod) means that
g modulo gperiod. Note that the first random sampling tech-
nique can be described by Algorithm 1 after using the fixed
M = 1 and removing steps 3 and 4.

In summary, the main framework of the proposed GP
approach is shown in Fig. 1. Gaussian filters and random
constants are used as terminals in the proposed GP system.
At each generation, the training images are obtained by a
sampling technique.

Fig. 1 The main framework of the proposed GP approach

4 Experiment design

We now describe the benchmark image dataset used in this
paper. From the benchmark image dataset, we will select
several (sub) sets of images as the training data.

4.1 Image datasets

The Berkeley Segmentation Dataset (BSD) (Martin et al.
2004) is popular for edge detection (Dollar et al. 2006),
boundary detection (Kokkinos 2010) and image segmen-
tation (Arbeláez et al. 2011). The BSD consists of natural
images (of size 481 × 321 pixels) with ground truth pro-
vided. All images are independent and are taken from dif-
ferent places. The training dataset contains 200 images and
the test dataset has 100 images. The ground truth on each
image is combined from five to ten persons as a graylevel
image for fairness of judgement of edges. Figure 2 shows
six images from the training dataset and their ground truth.
Note that the ground truth images are combined from several
observations, therefore some edges are not one pixel wide
only. The pixels with graylevel 0 (dark) in the ground truth
are non-edge points, and the others are edge points.

(a) 42078 (b) 106020 (c) 23025

(d) 68077 (e) 23080 (f) 216053

Fig. 2 Six example training images from the BSD dataset and their
ground truth

123

Genetic programming for edge detection: a Gaussian-based approach 1237

In general, the performance evaluation of edge detection
results is a challenging problem. The BSDdataset is based on
segmentation results, and is not exact for true edges. How-
ever, edge detection is useful for boundary detection, and
the results from edge detection affect the boundary detection
results. Song et al. (2006) proposed to evaluate edge detection
through boundary detection. In this paper, the evaluation for
edge detectors evolved by GP is only related to the desired
outputs, so we directly use the ground truth as the desired
outputs to do the performance evaluation.

4.2 Experiment settings

Any Gaussian filter in the terminal set can be used to detect
edges, therefore a new GP edge detector including Gaussian
filters is expected to have some ability to perform edge detec-
tion. Since we use the fixed threshold 0 for all GP edge detec-
tors, several images are employed to check whether a GP
edge detector (with threshold 0) can detect true edge points.
If all images are poorly detected, the GP edge detector usu-
ally performs poorly on other images. Therefore, we do not
need to require a large number of images as training data.
Howmany images are required and how to choose images as
training data are investigated as follows, based on different
images as training data.

4.2.1 Training data

To investigate the minimum number of training images
required by GP, different sets of images are used as the
training data. The first setting of the training data is to only
employ a single full image. Each of the six images in Fig. 2
is selected as the training data respectively. These six images
are selected based on different edge information, such as
the single object in image 42078, irregular textures in image
106020 and many edges in image 23080. In terms of their
evolved edge detectors’ performance, the six images will be
divided into three levels, namely the worst, middle and best
levels. One-shot learning shows that a few of single train-
ing images can be used to learn new classifiers after com-
bining prior knowledge from predefined features in train-
ing datasets (Li et al. 2006). Note that there are no fixed
predefined features in the proposed GP system. Different
from one-shot learning algorithms, this GP system does not
use prior knowledge from training data. Without any prior
edge domain knowledge, it is usually not sufficient to train
edge detectors with a small set of training images. However,
the Gaussian-based filters could be considered as prior edge
knowledge here.A small set of training images isworth being
investigated.

Second, in order to improve performance of the edge
detectors evolved by a single training image, two images

from the six images are selected to combine as the training
data. It is possible that the training images in the best level
are sufficient to train edge detectors, and the performance
improvement mainly focuses on the edge detectors evolved
from the worst and middle levels. The combinations of two
images mainly come from the worst andmiddle levels. There
are 15 combinations in total, but only four combinations are
chosen. The four combinations are a combination of two
images from the worst level, two combinations of one image
from the worst level and one image from the middle level,
a combination of one image from the middle level and one
image from the best level.

We consider that 20 images are sufficient to train GP
Gaussian-based edge detectors. In Fig. 2, all images, except
for image 23025, are included in the 20 images. The other 15
images in the 20 images are images 61060, 41004, 113044,
134008, 161062, 163014, 189011, 207056, 236017, 249061,
253036, 271031, 299091,311081, 385028. S20 now is used
for the whole 20 images. The reason to select image 23025 is
that different edge information, such as the boundarybetween
the girl and the background with different graylevels, exists
in the image. Image 23025 is used to compare with S20 for
training GP edge detectors.

Our previous work (Fu et al. 2012d) sampled 5 subimages
(of size 51×51 pixels) from original images. Here, 5 subim-
ages from each original image (of size 481 × 321 pixels) in
S20 is also used as the training data. Ssub nowwill indicate the
subimages sampling technique. Note that Srnd now will indi-
cate the first sampling technique based on the 20 full images
S20, Sada now will indicate the second sampling technique
based on S20, and S20 represents the whole 20 images as the
training data.

4.2.2 Parameter settings

The parameter values for GP are: population size 500; max-
imum generations 200; maximum depth (of a program)
7; and probabilities for mutation 0.15, crossover 0.80 and
elitism (reproduction) 0.05. For the sampling technique Sada,
Mrestart = Mmin = 4, Mmax = 8, and gperiod = 10 are used.
These values are chosen based on common settings and ini-
tial experiments (Espejo et al. 2010; Fu et al. 2011, 2012c,
2013a). There are 30 independent runs for each experiment.

The test performance evaluation is directly based on the
binary outputs of GP edge detectors using the fixed thresh-
old 0, without non-maximum suppression post-processing.
All GP edge detectors are tested on the same 100 BSD test
images. To measure the performance of GP edge detectors,
the F-measure is used in the testing phase (Dollar et al. 2006;
Martin et al. 2004). The F-measure (used in Dollar et al.
2006; Martin et al. 2004 as F = 2recall×precision

recall+precision) is a combi-
nation of recall and precision.

123

1238 W. Fu et al.

5 Results

The test results are separated into three parts: single images,
two images, and a set of images. Since there aremultiple com-
parisons among different small training datasets, a multiple
comparison based on one-way ANOVA is employed to com-
paremultiple results in this paper, andHolm’smethod (Holm
1979) is used for p value adjustmentwith overall significance
level of 0.05. Table 1 shows the means and standard devia-
tions of F , and means of reall and precision of GP Gaussian-
based edge detectors evolved by each single image from the
six images. To easily read images,we use Ta−T f to represent
the training images 42078, 106020, 23025, 68077, 23080 and
216053, respectively. As can be seen, the evolved detectors
from Ta and Tb have low performance on the 100 BSD test
images, however the evolved detectors from Tc and Te present
good detection performance (compared with the Sobel edge
detector with F = 0.48, Martin et al. 2004). An interesting
observation is that the low performing edge detectors have a
low recall. The average recall of the evolved edge detectors
from Tc or Tb is lower than 0.5. Most of the edge detectors
from the six images have precision around 0.5.

Table 2 gives a statistical comparison between all edge
detectors evolved by the six images respectively. Note that
all comparisons are basedon F values in this paper. For a pair-
wise comparison, the first group is from a setting in the first
column, and the second group is from a setting in the first row.
Here, ↑ indicates that the first group is significantly better
than the second group; and ↓ indicates that the first group is

Table 1 Test performance F values (mean ± standard deviation, SD),
and means of recall and precision of GP Gaussian-based edge detectors
from each of the six images as training data respectively

Image F (mean ± SD) Recall Precision

42078 (Ta) 0.4072 ± 0.0500 0.3213 0.5741

106020 (Tb) 0.4353 ± 0.0342 0.4634 0.4158

23025 (Tc) 0.5402 ± 0.0077 0.5851 0.5029

68077 (Td) 0.5006 ± 0.0220 0.5431 0.4812

23080 (Te) 0.5267 ± 0.0128 0.5913 0.4767

216053 (T f) 0.5146 ± 0.0139 0.5130 0.5205

Table 2 One-way ANOVA (row vs column) for GP Gaussian-based
edge detectors from the six images as training data, respectively

Tb Tc Td Te T f

Ta ↓ ↓ ↓ ↓ ↓
Tb ↓ ↓ ↓ ↓
Tc ↑ − ↑
Td ↓ −
Te ↑

significantlyworse than the second group; otherwise,— indi-
cates no significant difference between the first and second
groups. Since there are no direction influences on the com-
parison of two groups, some redundant comparison results
are removed from the table. From the comparison results,
the six groups of results can be divided into three sets. The
first set is the worst performing edge detectors, namely the
edge detectors from images Ta and Tb which are significantly
worse than the edge detectors from the other four images. The
second set is the middle level for the edge detectors from Td
and T f . These edge detectors are significantly better than the
worst edge detectors from Ta and Tb, but significantly worse
than the edge detectors from Tc and Te. The third set is the
best level for these edge detectors from Tc and Te. In each
level, there are no significant differences between the edge
detectors from different images, except for the worst level.

Training images Ta and Tb only contain a single object,
and the contrast between the object and the background is
high. The edge information in the two images is not rich. For
Td and T f , the edge information from the two images is richer
than the edge information from Ta and Tb. The two images
in the middle level contain different objects and different
graylevel gaps between different regions. Training images Tc
and Te contain the richest edge information, compared with
the other four images. In Te, there is rich edge information
from the building and the person. In Tc, the edges at the
boundary of the person are different, such as the person’s
boundary between the body and the wall and between the
leg and the step, and the boundary of the basket. It seems
that images including different edges are good to evolve GP
Gaussian-based edge detectors.

5.1 Two images as training data

From Table 1, it is known that Ta obtains the lowest perfor-
mance of the evolved edge detectors, therefore, Ta is mainly
used to combine with other images as training data. Four
new training datasets (groups) are used, and they are training
data C1 including Ta and Td , C2 including Te and T f , C3
including Ta and T f , and C4 including Ta and Tb.

Table 3 gives the means of F , recall and precision values
of the GP Gaussian-based edge detectors evolved by training
datasets C1, C2, C3 and C4. First of all, from the table, the
means of F values of the evolved edge detectors from all
training data with two images are higher than 0.5. Although
images Ta and Tb get the worst performance when they are
individually used to train edge detectors, the combination of
the two images C4 obtains good performance. Second, two
images as the training data can obtain high recall, such as C1
and C2. However, the evolved edge detectors from C3 and
C4 have low recall, but high precision.

Table 4 gives a comparison between each training data
group using two images and each training data group using a

123

Genetic programming for edge detection: a Gaussian-based approach 1239

Table 3 Test performance F values (mean ± standard deviation(SD)),
andmeans of recall and precision of GP edge detectors from two images
as training data, respectively

Pair F (mean ± SD) Recall Precision

C1 0.5349 ± 0.0213 0.6112 0.4869

C2 0.5328 ± 0.0117 0.6087 0.4753

C3 0.5028 ± 0.0181 0.4651 0.5512

C4 0.5011 ± 0.0205 0.4622 0.5540

Table 4 One-wayANOVA (rowvs column) forGP edge detectors from
two images and single image as training data

Ta Tb Tc Td Te T f

C1 ↑ ↑ − ↑ − −
C2 ↑ ↑ − ↑ − −
C3 ↑ ↑ ↓ − ↓ −
C4 ↑ ↑ ↓ − ↓ −
Srnd ↑ ↑ − ↑ − −

single image. First, from the comparisons among all results
from all single image training data and each training data
with two images, the evolved edge detectors from C4 are
significantly better than the evolved edge detectors from Ta
and Td when they are individually used to train edge detec-
tors respectively. Second, the training data using an image
from the worst level (of a single image as the training data)
and an image from the middle level, namely C1 and C3,
obtain results which are significantly better than the results
from the worst level, but not significantly different from the
results from the middle level. Third, the training data using
an image from the best level and an image from the middle
level, namely C2, obtain the results which are significantly
better than the results from the worst level and the middle
level. Fourth, the evolved edge detectors from all four train-
ing datasets using two images are significantly better than
the two worst level individual images as training data respec-
tively. From these comparisons, it seems that the combination
of two images as training data can improve the performance
of evolved detectors. When an image is randomly selected
as training data, the evolved edge detectors might have low
performance. If two images are randomly chosen as training
data, the evolved edge detectors at least do not have too low
performance. For a single image as training data, the compar-
ison between Srnd and a single fixed image will be discussed
in Sect. 5.2.

Table 5 shows the comparisons among the different com-
binations based on two images. The table reveals that the
evolved edge detectors from the combinations C1 and C2
are significantly better than the evolved edge detectors from
the combinations C3 and C4. There are no significant dif-
ferences between C1 and C2, and between C3 and C4. The

Table 5 One-wayANOVA (rowvs column) forGP edge detectors from
two images as training data respectively

C2 C3 C4

C1 − ↑ ↑
C2 ↑ ↑
C3 −

Table 6 F values (mean ± standard deviation(SD)), and means of
recall and precision of GP edge detectors from sampling techniques on
20 images

Training F (Mean ± SD) Recall Precision

Ssub 0.4940 ± 0.0260 0.8403 0.3517

Srnd 0.5279 ± 0.0383 0.6989 0.4485

Sada 0.5521 ± 0.0290 0.6716 0.4869

S20 0.5628 ± 0.0131 0.6681 0.4893

combinations with one image from the worst level and one
image from the middle level might have similar performance
to the combination with both images from the middle level,
and might be the same as the combination with both images
from the worst level as well.

Comparing the details of the four combinations of two
images from the six images in Fig. 2, some interesting obser-
vations on edge characteristics in these images are found.
First, in C1, although image Ta only has a very obvious
object, the graylevels of the boat and hill in image Td are
close to the graylevels of background. Second, in C3, most
of the graylevels of the building and person can be clearly dis-
tinguished from the background, which is similar to the dif-
ference between the object and background in image 42078.
Last, high contrast exists in Ta and Tb (C4), but the edges
at two different regions in Tb are totally different from the
edges existing in Ta , which enriches edge information in C4.
From the different combinations of two images, it seems that
a combination with different edge information can improve
the evolved edge detectors’ performances.

5.2 Sampling

Table 6 gives the test results from the different sampling tech-
niques and the training data using all 20 images. Comparing
with the training data using a single image and using two
images, it is found that recalls of the evolved edge detectors
from different sampling techniques or 20 images are very
high.Although Ssub has the highest recall average in the table,
its precision average is the lowest. The lowest average of F
values for evolved edge detectors is from Ssub. The highest
average of F values for evolved edge detectors is from S20,
and the mean of F values of the edge detectors from Sada is
close to the mean of F values of the edge detectors from S20.

123

1240 W. Fu et al.

Table 7 One-way ANOVA (row vs column) for GP Gaussian-based
edge detectors from sampling techniques on 20 images

Srnd Sada S20

Ssub ↓ ↓ ↓
Srnd ↓ ↓
Sada −

Table 7 presents the comparison results among Ssub, Srnd,
Sada and S20. The evolved edge detectors from the sampling
technique using subimages Ssub are significantly worse than
the sampling techniques using original full images.

Although the evolved edge detectors from Srnd are sig-
nificantly worse than the evolved edge detectors from Sada
and S20, the difference between the mean of F values from
the sampling technique Srnd and that of S20 is less than 0.04.
Therefore, even though only one image is randomly selected
as evaluation data at each generation, the varying training
data can still lead to good edge detectors, compared with the
training data using all 20 images. Also, from Table 4, the
evolved edge detectors from Srnd are significantly better than
the evolved edge detectors from Ta , Tb and Td , but not sig-
nificantly different from the evolved edge detectors from the
other three images in the table. It shows that a random image
at a generation as the evaluation data is generally better than
a fixed image in thewhole evolution process as the evaluation
data.

Compared with Ssub and Srnd, Sada obtains evolved edge
detectors which are significantly better. The increasing num-
ber of images selected at each generation possibly makes
GP select good Gaussian-based edge detector candidates at
each generation. Since there are no significant differences
between the evolved edge detectors from Sada and S20, the
sampling technique with varying images in a set is efficient
to train edge detectors which have similar performance to
the edge detectors evolved with all images in the set. Since
the number of training images is from four to eight, the aver-
age number of training images in all generations is six in the
worst case. From the test performance for the edge detec-
tors evolved by Sada, it seems that only using several training
images from a set can train edge detectors performing sim-
ilarly to the edge detectors evolved by all images in the set.
This sampling technique considerably reduces the compu-
tational cost over using the 20 images, while maintaining a
similar performance.

5.3 GP edge detectors vs existing Gaussian-based edge
detectors

In order to validate the performance of GP Gaussian-based
edge detectors, the Gaussian gradient (GG) and the sur-
round suppression (SS expressed by GGSS) are selected as

existing Gaussian-based edge detectors to compare with the
evolved edge detectors. The Canny edge detector (Canny
1986) employs theGaussian gradient in the feature extraction
stage and non-maximum suppression and hysteresis thresh-
olding in the post-processing stage. Since this paper mainly
focuses on feature extraction, specific post-processing tech-
niques, such as non-maximum suppression, are not consid-
ered. After filtering noise in the pre-processing stage and
using non-maximum suppression and hysteresis threshold-
ing in the post-processing stage, the Sobel and Prewitt edge
detectors can be approximated to the Canny edge detec-
tor (Papari and Petkov 2011). Rather than comparing the
final results from the Canny edge detector, we compare the
GP edge detectorswith the results from theGaussian gradient
(used in the Canny edge detector) and SS.

From the outputs of GG and SS, different thresholds are
used to choose the maximum F on the BSD test images
as test performance for GG and SS, and Fmax is employed
for their test performance. Based on 52 different thresholds
k
52 (k = 0, 1, . . . , 51), it is found that the Fmax for GG
is 0.5153, and SS is 0.5381. Note that the edge responses
from GG and SS are mapped to the range from 0 to 1. Here
σ ∈ {1.0, 2.0, 5.0} is used to choose the best Fmax for GG,
and for the suppression based on the DoG in SS, the best
test performance is chosen from the three sets of the σ pairs
(1.0, 2.0), (1.0, 3.0) and (0.8, 3.0). Note that σ = 1.0 is a
very common setting (Basu 2002), and the other values are
used for different detection results. The evolved Gaussian-
based edge detectors are rotation invariant, so only the invari-
ant version of surround suppression is chosen, and different
directions are not considered.

Note that we only select the Gaussian gradient as an edge
detector using a single Gaussian filter for the comparison.
From the existing report (Arbeláez et al. 2011), the Sobel and
Prewitt edge detectors have similar detection performance
(F = 0.48), and the DoG edge detector has F = 0.50. Since
GG (F = 0.5153) has higher detection performance than the
three edge detectors, the other three edge detectors are not
chosen for the comparison.

Table 8 shows the comparisons among GG, SS, image Tc,
C1, Sada and S20. Here, the highest mean of F values is cho-
sen from training data using a single image, two images, one
of the three sampling techniques (Ssub, Srnd and Sada), and the
20 images. From the table, only a single Gaussian filter (GG)
has the lowest performance in these compared results. In gen-
eral, the evolved Gaussian-based edge detectors include sev-
eral Gaussian filters, and SS contains three Gaussian filters.
The evolved edge detectors from image Tc and C1 have no
significant differences from SS, but the evolved edge detec-
tors from Sada and S20 are significantly better than SS.

In general, only using a single image as the training data
is not sufficient to train edge detectors. However, the evolved
edge detectors from the single training image Tc are notworse

123

Genetic programming for edge detection: a Gaussian-based approach 1241

Table 8 One-way ANOVA (row vs column) comparing F values from
someGPedge detectorswith Fmax values fromGaussian gradients (GG)
and surround suppression (SS) on the BSD test images

SS Tc C1 Sada S20

GG ↓ ↓ ↓ ↓ ↓
SS − − ↓ ↓
Tc − − ↓
C1 − ↓ ↓
Sada −

Table 9 Comparison between Gaussian-based GP edge detectors and
GPedge detectors using blocks of pixels (GPblock) fromFu et al. (2012c)

F Recall Precision

GPblock 0.5248 ± 0.0190 0.5705 0.4890

Sada 0.5521 ± 0.0290 ↑ 0.6716 0.4869

S20 0.5628 ± 0.0131 ↑ 0.6681 0.4893

than the other results in Table 8, except for the results from
S20. It seems that it is possible to use a single image as training
data to evolve good edge detectors as long as it includes rich
enough edge information.

The small set C1 is included in S20, and the evolved
edge detectors are significantly better than GG and SS, but
these edge detectors from C1 are significantly worse than the
evolved edge detectors from Sada and S20. It seems that two
images as trainingdata canbeused to evolve good edgedetec-
tors. Also, using a set of images including the two images
is better than using the two images to train Gaussian-based
edge detectors, evenwhen the evaluation data at each genera-
tion does not use all images in the set (the number of selected
images is more than 3).

5.4 Gaussian-based GP edge detectors vs GP edge
detectors using blocks of pixels

Table 9 shows the comparisons between the Gaussian-based
GP edge detectors and the GP edge detectors using blocks
of pixels from Fu et al. (2012c). Since the edge detectors
evolved byGP using single raw pixels are significantly worse
than the edge detectors evolved by GP using blocks of pix-
els (GPblock) Fu et al. (2012c), we only employ the GP
edge detectors using blocks of pixels to compare with the
Gaussian-based edge detectors. In Table 9, ↑ indicates that
the Gaussian-based edge detectors are significantly better
than GPblock based on the t-tests with significance level 0.05,
in terms of F . Although their detection precisions are simi-
lar, the Gaussian-based GP edge detectors have higher recall
than the GP edge detectors using blocks of pixels. It seems
that the Gaussian-based GP system, employing prior domain
knowledge (Gaussian-based filtering techniques), has ability

to improve detection performance, compared to the method
of search blocks of pixels.

5.5 Detected visual results from the best GP edge detectors

Figure 3 shows five example images from theBSD test image
dataset and their ground truth (GT). Also, the detected results
from GG and SS are shown in Fig. 3. The results detected
by GG and SS are based on their own best threshold in the
overall view of the BSD 100 test images. The best threshold
means that F is maximumwhen the threshold from the set of
thresholds (k

52) is used. The overall best thresholds for GG
and SS are 0.2793 and 0.0392, respectively. These selected
images in Fig. 3 have different textures, and their edges are
not easily detected by a normal Gaussian filter, except for
image 42049, when the task is very easy.

To visually compare the detected results, Fig. 4 shows
these four images detected by the best evolved edge detec-
tor from Tc (F = 0.5531), C1 (F = 0.5699), Ssub (F =
0.5607), Srnd (F = 0.5750), Sada (F = 0.5998) and S20
(F = 0.5879).

First, from the detected results for image 42049, all edge
detectors give a good detection result. Only noise from the
branch slightly affects the Gaussian-based edge detectors
from Tc, Ssub, Sada and S20 to perform detection. From the
detected results on the 100 BSD test images, it seems that
evolved Gaussian-based edge detectors can perform detec-
tion well on simple (non-texture) images.

Second, the detected results on the other four different
imageswith textures show the different performance on these
edge detectors. For the four images, GG is strongly affected
by the different textures in these images. SS can reduce the
influence from textures, but is still affected by some textures,
such as the irregular background in image 175032 (sticks
being out of order) and the heavy texture on the wall in image
385039. Also, SS fails to detect edges in low contrast, such
as the body of the object in image 69020.

From the detected results by the evolved Gaussian-based
edge detectors, the best edge detector from Ssub detects most
of the edges, but it is strongly affected by textures, com-
paredwith the other evolved edge detectors. The best evolved
edge detector from Tc detects images 69020 and 385039
with very slight influence from textures, but it is still hard
to detect the top boundary of the object in image 69020.
For image 175032, it is strongly affected by the irregular
background, compared to the detection from C1, Srnd, Sada
and S20. The best evolved edge detector from C1 has similar
detection for image 69020 to the edge detector from Tc, but
it has stronger influence from the wall in image 386039 and
weaker influence from the irregular background in image
175032, compared with the latter. The best edge detector
from Sada is not affected by the animal skin texture in image
87046, whereas the other edge detectors are heavily affected

123

1242 W. Fu et al.

Image

GT

GG

SS
42049 69020 87046 175032 385039

Fig. 3 Five example BSD test images detected by Gaussian gradient (GG) and surround suppression (SS)

by it. Note that some of the evolved Gaussian-based edge
detectors have clear responses on the boundaries among the
stones in the background, but are not as affected by the skin
texture as GG and SS. Also, the edge detector from Sada
has good detection results for the other images. Based on
the BSD test images, the edge detector from Sada is the best
edge detector among all evolved Gaussian-based edge detec-
tors in Fig. 4. From the visually detected results, the GP
Gaussian-based edge detectors have good ability to suppress
textures.

A potential reason for GP evolving good Gaussian-based
edge detectors is that the GP system automatically constructs
composite filterswith different types ofGaussianfilters based
on different parameters. Since the tree-based GP system has
flexible presentations, there is a large space for combining

Gaussian filters. Note that each Gaussian filter automati-
cally generated in GP has some ability to extract edges, so
almost all combinations of Gaussian filters from GP have
some ability to extract edges. The GP system almost only
focuses on the searching for good combinations of Gaussian
filters.

5.6 Example evolved GP Gaussian-based edge detector

In order to directly present a GP Gaussian-based edge detec-
tor, an evolved program is selected from using Tc, which
is shown in Fig. 5, where “C” is combination function C.
Equation (11) describes this GP Gaussian-based edge detec-
tor GGP .

123

Genetic programming for edge detection: a Gaussian-based approach 1243

Tc

C1

Ssub

Srnd

Sada

S20
42049 69020 87046 175032 385039

Fig. 4 Five example BSD test images detected by the GP Gaussian-based edge detectors

123

1244 W. Fu et al.

Fig. 5 One example GP Gaussian-based edge detector (GGP)

GGP = dog1.53 × dg4.55 − ddg1.97 ∗ ddg4.08 − 9.90

− 2ddg1.06Cddg1.75C
ddg4.08+dg2.90
1.86ddg4.09

−
ddg1.90
dg4.47

+ddg4.08
dg4.47

5.87 + dg2.90 − ddg1.45Cddg1.97
(11)

From this equation, it can be seen that the evolved solution
includes different combinations of Gaussian filters, namely
multiplication, division, convolution and difference of dif-
ferent combinations. For the parameter σ , GGP includes
both fine and coarse solutions for detecting images. Also,
this solution includes the three types of Gaussian filters from
the terminal set. It seems that the combination of using the
three types of Gaussian filters is good to detect edges, rather
than using only one alone.Note thatC can be used to suppress
texture gradients. For example, “dg2.90 − ddg1.45Cddg1.97”
is similar to the suppression technique. The divisionmight be
potentially used to suppress noise, and the difference of dif-
ferent combinations and the multiplication possibly enhance
the response from the true edges. However, the edge detec-
tor is very complicated; further experiments and analyses are
required in the future.

Additionally, it is hard to analyse the influence of each
parameter because of the complicated structure of GGP .
We have investigated soft edge maps in GP low-level edge
detectors (Fu et al. 2012e), and there might be two problems
from the outputs of GP edge detectors before binarization.
The first problem is that the outputs of a GP edge detector
(before binarization) spread largely. The second problem is
that some of outputs are very closed to the fixed threshold
used in GP. When GGP is applied to a BSD test image,
the outputs of GGP (before binarization) spread largely. For
example, to test image 101085, the maximum output value is
1.37 × 109 and the minimum output value is −2.69 × 1033.
When the linear transformation fromFu et al. (2012e) is used,
most of pixels are mapped to the highest scale level. In future
work, we will get suitable soft edgemaps fromGPGaussian-
based edge detectors based on our previous work (Fu et al.
2012e), then analyse the parameters in GP Gaussian-based
edge detectors.

6 Further discussions

This section discusses the computational cost, thickness of
detected edges existing inGPGaussian-based edge detectors,
and contributions of Gaussian filters, and the combination
function C.

6.1 Computational cost

The time for a GP run evolving a Gaussian-based edge detec-
tor with 200 generations is around 4.5 days on a single
machine with CPU 3.1GHz when S20 (20 images) is used
as the training data. So this is a time-consuming algorithm,
but this can be sped up by a computational grid. There are
two reasons for the heavy computational cost. First, the max-
imum tree depth for the GP Gaussian-based programs is
seven, so it is possible that a GP program includes more
than ten Gaussian filters. In the training stage, the weights
of a Gaussian filter in a new program need to be calculated.
The time for calculating responses on all Gaussian filters in
a program will take most of the execution time. Second, the
training data have 3088020 (20×481×321) pixels, and a GP
program needs to take some time to discriminate all pixels.

However, the training time for only using a single image
as the training data is around five and half hours in a run.
When the training data uses two images, the training time
for each run is about 11 h. For the sampling techniques, the
training time for using Srnd as the training data is very close
to the training time for using a single image as the training
data. It costs about 33 h to use Sada to evolve a GP Gaussian-
based edge detector. The sampling technique Sada reduces
more than two-thirds of the training time cost in S20. There-
fore, efficiently selecting images can remarkably reduce the
computational cost in theGP system,whilemaintaining good
performance.

All GP evolved edge detectors only take less than half a
second to detect a BSD image (in the test stage). The depth
of the solution in Fig. 5 is seven (the maximum depth), and
the solution includes 17 Gaussian filters and three function
operatorsC, whichmakes the solution detect one BSD image
in slightly longer than 0.1 s. However, simplification of the
evolved detector can make this detection time even shorter.
From Eq. (11), the Gaussian filters ddg1.06 and dg4.47 can be
only calculated once, not twice in the tree-based program in
Fig. 5. It is possible to replace ddg1.97, ddg1.75 and ddg1.45
with an approximate LoG. Also, ddg4.08 and ddg4.09 might
be replaced by another approximate LoG. How to automat-
ically and efficiently simplify evolved GP Gaussian-based
edge detectors would be investigated in the future. In addi-
tion, a restriction on the number of Gaussian filters in a GP
edge detector needs to be investigated so that an evolved GP
edge detector can perform edge detection in less than 0.1 s.

123

Genetic programming for edge detection: a Gaussian-based approach 1245

Before Thinning After Thinning

Fig. 6 Two example images detected by a Gaussian-based edge detec-
tor before and after thinning operations (Lam et al. 1992)

6.2 Thickness of detected edges

The edges detected by the GP edge detectors (see Fig. 3)
often have thick responses on edges. A potential reason is
that large scaleGaussian filters exist in theGP edge detectors.
For instance, Eq. (11) includes ddg4.08, ddg4.09 and dg4.47.
Another potential reason is that the ground truth images in
the training data (see Fig. 2) are combined with different
observations, so thewidth of a true edge is possiblymore than
one pixel. The overlap in prediction for a true edge point is
allowed to havemore than one response in the fitness function
FOM. Figure 6 shows two example detected edge maps from
Sada in Fig. 3 simply thinned by a thinning operation (Lam
et al. 1992). Non-maximum suppression (Canny 1986) could
easily be used to thin the detection results, which is not the
focus of this paper, but can be investigated in the future.

6.3 Contributions on different Gaussian filters

Influence of using different types of Gaussian filters is now
investigated. In order to check whether using different types
of Gaussian filters is better than using a single type of
Gaussian filter only, the terminal set now only chooses a
single type of filter to evolve programs. The combination
function Cmight influence the performance of evolved edge
detectors, so C is removed from the function set. The influ-
ence of C will be discussed in the next subsection. Since Tc
can be used to obtain good evolved edge detectors, the single
image is employed as the training data for analysis of using
different types of filters to evolve edge detectors.

Table 10 shows the results from only using dgσ , dogσ

and ddgσ respectively. Here, the best evolved edge detector
(Max) and the worst evolved edge detector (Min) for using
each single type of filter are given. The p values are obtained
by the two-sample t-tests between the relevant results and

Table 10 Results (F values,mean± standard deviation, SD) of evolved
edge detectors from single type of filter without combination function
C (with Tc) on the BSD test images

Setting Mean ± SD Max Min p value

dgσ 0.5258 ± 0.0029 0.5308 0.5206 0.0000 ↓
dogσ 0.5004 ± 0.0074 0.5208 0.4809 0.0000 ↓
ddgσ 0.4921 ± 0.0046 0.5004 0.4823 0.0000 ↓

Table 11 One-way ANOVA (row vs column) comparisons (F) among
single Gaussian filters used in GP on the BSD test images

dogσ ddgσ

dgσ ↑ ↑
dogσ ↑

the results using all functions when only Tc is used as the
training data.

From the tests (p values), only using a single type of filter
is not sufficient to evolve good edge detectors. All of the
results from using a single type of filter obviously decrease
the test performance, and they are significantly worse than
using the three types of filters. Therefore, only combining
the same type of Gaussian filter is not as good as combining
different types ofGaussianfilters for extracting edge features,
which is similar to the surround suppression technique using
different types of filters to improve detection performance.

Table 11 reveals the comparison among the results from
the three types of filters. It is interesting that the results from
only using dogσ are significantly better than the results from
only using ddgσ , although dogσ is considered as approxi-
mation of ddgσ (Basu 2002). A potential reason is that each
dogσ filter includes two different Gaussian filters, but a ddgσ

filter onlyuses a singleGaussianfilter.After combiningfilters
with different parameters, the responses from the combina-
tion of dogσ are richer than the responses from the combina-
tion of ddgσ . Therefore, it is possible to obtain better results
from only using dogσ than only using ddgσ .

Also, the results from using dgσ filters are significantly
better than the results from using dogσ and ddgσ , respec-
tively. The mean of F values from using dgσ filters is 0.0144
less than the mean of F values from using all functions in the
GP system (see Table 1) when Tc is used. It seems that the
imageGaussian gradient is important for extracting edge fea-
tures. However, only combining dgσ filters is not sufficient to
improvedetectionperformance. From the comparison among
the three types of filters, it seems that dogσ and ddgσ help
dgσ to improve detection performance. In surround suppres-
sion, the major responses come from the image gradient. The
GP Gaussian-based edge detectors also show similar behav-
iour.

123

1246 W. Fu et al.

Table 12 Results (F values,mean± standard deviation, SD) of evolved
edge detectors by using single filters and combination function C (with
Tc) on the BSD test images

Setting Mean ± SD Max Min p value

{dgσ ,C} 0.5156 ± 0.0135 0.5379 0.4789 0.0002 ↓
{dogσ ,C} 0.4856 ± 0.0334 0.5355 0.4203 0.0247 ↓
{ddgσ ,C} 0.4786 ± 0.0376 0.5387 0.3512 0.0592

6.4 Combination function C

The combination function C is not used for the experiments
in Table 10. It is possible that the difference between using
a single type of filter and the results using the three types of
filters are affected by the function C. In order to investigate
the influence from function C, the function is added into
each single type of filter to evolve edge detectors. Table 12
shows the results for the three single types of filters after using
functionC. Here the p values are obtained by the two-sample
t-tests between without functionC and using functionC. It is
surprising that the test performances from respectively using
dgσ and dogσ are decreased after using function C.

There are some interesting observations in Table 12. First,
using each type of filter combined with functionC decreases
the detection performance of the evolved edge detectors, in
terms of the mean of F values. Second, the standard devia-
tions of the evolved edge detectors become larger after using
function C. This indicates that the performance of evolved
edge detectors becomes less stable. Third, from the compar-
isons of the best edge detectors and the worst edge detec-
tors in each type of filter with and without function C, the
range of the performance of the evolved edge detectors after
using functionCbecomes large. The best evolved edge detec-
tor from each setting with function C has a higher F value
than the best edge detector without functionC. However, the
worst edge detector fromeach setting inTable 12 is obviously
worse than the worst edge detector from the relevant setting
in Table 10. In particular, there is very obvious influence on
ddgσ after using function C, in terms of the performance on
the best and worst evolved edge detectors. There is no signif-
icant difference between the results from using and without
function C when only ddgσ is used. However, the relevant
worst evolved edge detector (in {ddgσ ,C}) has very low F ,
and the relevant best evolved edge detector has a higher F
than the best evolved edge detector from ddgσ in Table 10.

From the three interesting observations, the function C

certainly influences the evolved edge detectors. It seems that
usingCmight increase the ability to find good edge detectors
from an overview. However, after adding function C in the
function set, the worst evolved edge detector in each setting
becomes worse. There are at least two possible reasons for
this phenomenon. The first one is that good combinations of

Table 13 One-way ANOVA (row vs column) comparisons (F) among
single Gaussian filters used in GP (including function C) on the BSD
test images

{dogσ ,C} {ddgσ ,C}
{dgσ ,C} ↑ ↑
{dogσ ,C} −

a single type of filter and functionC are very hard to find. The
other potential reason is that overfitting occurs when only a
single type of filter and function C are employed in the GP
system.

In addition, the best edge detector for each setting in
Table 12 has a lower F than the mean of the evolved edge
detectors from Table 1 when Tc is used. It also shows that
using a single type of filter is not good to evolve Gaussian-
based edge detectors.

Table 13 gives the comparisons among only using a single
type of filter with functionC. It also shows that the Gaussian
gradient is better than theGaussian second-order derivative to
extract edge features.When adding functionC in the function
set, there is no significant differencebetweenonlyusingdogσ

and only using ddgσ .

7 Conclusions

The goal of this paper was to investigate evolving Gaussian-
based edge detectors using GP. From the different training
data, the goal was successfully achieved by using a proposed
Gaussian-based GP system to evolve edge detectors. From
the results, the GP evolved programs performed better than
theGaussian gradient and the invariant surround suppression.
A single image with rich edge information could be used
to evolve good edge detectors. The proposed sampling tech-
nique of choosing several images from a set of images at each
generation was effectively used for evolving edge detectors.
Therefore, a small set of images has potential to evolve good
Gaussian-based programs. In addition, from the investigation
on each type of filter for constructing Gaussian-based edge
detectors, the Gaussian gradient should be the main filter in
a combination; the combination function C should choose
different types of Gaussian filters as its inputs so that edge
detectors with good generalisation ability could be obtained.

In terms of running time, the methods proposed in this
paper require a relatively long evolutionary training time, but
the evolved detectors can detect edges in new/unseen images
in a very short time. Accordingly, this approach can be used
to detect edges in the scenarios that allow a long learning
time.

For future work, we will focus on the following three
aspects: (1) the estimated distribution for the characteris-

123

Genetic programming for edge detection: a Gaussian-based approach 1247

tics in different images so that a GP system can automati-
cally choose images to efficiently train Gaussian-based edge
detectors; (2) investigation of a dynamic threshold technique
for the GP system so that the system mainly focuses on the
selection of good structures; and (3) the restriction of the
number of Gaussian filters in a GP edge detector so that the
GP evolved edge detector can rapidly give detection results.

References

Arbeláez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and
hierarchical image segmentation. IEEE Trans Pattern Anal Mach
Intell 33(5):898–916

BasuM (2002)Gaussian-based edge-detectionmethods: a survey. IEEE
Trans Syst Man Cybern Part C Appl Rev 32(3):252–260

BennamounM, Boashash B, Koo J (1995) Optimal parameters for edge
detection. Proc IEEE Int Conf Syst Man Cybern 2:1482–1488

Bergholm F (1987) Edge focusing. IEEE Trans Image Process 9:726–
741

Bolis E, Zerbi C, Collet P, Louchet J, Lutton E (2001) A GP artificial
ant for image processing: preliminary experiments with EASEA.
In: Proceedings of the 4th European conference on genetic pro-
gramming, pp 246–255

Canny J (1986) A computational approach to edge detection. IEEE
Trans Pattern Anal Mach Intell 8(6):679–698

Dollar P, Tu Z, Belongie S (2006) Supervised learning of edges and
object boundaries. Proc IEEE Comput Soc Conf Comput Vis Pat-
tern Recognit 2:1964–1971

Ebner M (1997) On the edge detectors for robot vision using genetic
programming. In: Proceedings of Horst-Michael Groβ. Work-
shop SOAVE 97—Selbstorganisation von Adaptivem Verhalten,
pp 127–134

Espejo PG, Ventura S, Herrera F (2010) A survey on the application
of genetic programming to classification. IEEE Trans Syst Man
Cybern Part C Appl Rev 40:121–144

Fink M (2004) Object classification from a single example utilizing
class relevance metrics. In: Proceedings of the neural information
processing systems

Fu W, Johnston M, Zhang M (2011) Genetic programming for edge
detection: a global approach. In: Proceedings of the 2011 IEEE
congress on evolutionary computation, pp 254–261

FuW, Johnston M, Zhang M (2012a) Automatic construction of invari-
ant features using genetic programming for edge detection. In:
Proceedings of the Australasian joint conference on artificial intel-
ligence, pp 144–155

Fu W, Johnston M, Zhang M (2012b) Genetic programming for edge
detection based on figure of merit. In: Proceedings of the genetic
and evolutionary computation conference, pp 1483–1484

Fu W, Johnston M, Zhang M (2012c) Genetic programming for edge
detection using blocks to extract features. In: Proceedings of the
genetic and evolutionary computation conference, pp 855–862

Fu W, Johnston M, Zhang M (2012d) Genetic programming for edge
detection via balancing individual training images. In: Proceedings
of the IEEE congress on evolutionary computation, pp 2597–2604

Fu W, Johnston M, Zhang M (2012e) Soft edge maps from edge detec-
tors evolved by genetic programming. In: Proceedings of the IEEE
congress on evolutionary computation, pp 24–31

Fu W, Johnston M, Zhang M (2013a) Automatic construction of
gaussian-based edge detectors using genetic programming. In:
Proceedings of the European conference on applications of evolu-
tionary computation, pp 365–375

Fu W, Johnston M, Zhang M (2013b) Genetic programming for edge
detection usingmultivariate density. In: Proceedings of the genetic
and evolutionary computation conference, pp 917–924

FuW, JohnstonM, ZhangM (2013c) Triangular-distribution-based fea-
ture construction using genetic programming for edge detection.
In: Proceedings of the IEEE congress on evolutionary computa-
tion, pp 1732–1739

Ganesan L, Bhattacharyya P (1997) Edge detection in untextured and
textured images: a common computational framework. IEEETrans
Syst Man Cybern Part B Cybern 27(5):823–834

Golonek T, Grzechca D, Rutkowski J (2006) Application of genetic
programming to edge detector design. In: Proceedings of the inter-
national symposium on circuits and systems, pp 4683–4686

Grigorescu C, Petkov N, Westenberg M (2003) Contour detection
based on nonclassical receptive field inhibition. IEEE Trans Image
Process 12(7):729–739

Grigorescu C, Petkov N, Westenberg MA (2004) Contour and bound-
ary detection improved by surround suppression of texture edges.
Image Vis Comput 22(8):609–622

HardingS,BanzhafW (2008)Genetic programming onGPUs for image
processing. Int J High Perform Syst Architect 1(4):231–240

Harris C, Buxton B (1996) Evolving edge detectors with genetic
programming. In: Proceedings of the first annual conference on
genetic programming, pp 309–314

Hollingworth G, Smith S, Tyrrell A (1999) Design of highly parallel
edge detection nodes using evolutionary techniques. In: Proceed-
ings of the seventh euromicro workshop on parallel and distributed
processing, pp 35–42

Holm S (1979) A simple sequentially rejective multiple test procedure.
Scand J Stat 6(2):65–70

Kadar I, Ben-Shahar O, Sipper M (2009) Evolution of a local boundary
detector for natural images via genetic programming and texture
cues. In: Proceedings of the 11th annual conference on genetic and
evolutionary computation, pp 1887–1888

Kokkinos I (2010) Boundary detection using F-measure-, filter- and
feature- (F3) boost. In: Proceedings of the 11th European confer-
ence on computer vision: part II, pp 650–663

Kunt M (1982) Edge detection: a tutorial review. Proc IEEE Int Conf
Acoust Speech Signal Process 7:1172–1175

Lacroix V (1990) The primary raster: a multiresolution image descrip-
tion. In: Proceedings of the 10th international conference on pat-
tern recognition, vol I, pp 903–907

Lam L, Lee SW, Suen C (1992) Thinning methodologies—a compre-
hensive survey. IEEE Trans Pattern Anal Mach Intell 14(9):869–
885

Li FF, FergusR, Perona P (2006)One-shot learning of object categories.
IEEE Trans Pattern Anal Mach Intell 28(4):594–611

Lindeberg T (1996) Edge detection and ridge detection with automatic
scale selection. In: Proceedings of 1996 IEEE computer society
conference on computer vision and pattern recognition, pp 465–
470

Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc Lond
Ser B Biol Sci 207(1167):187–217

Martin D, Fowlkes C, Malik J (2004) Learning to detect natural image
boundaries using local brightness, color, and texture cues. IEEE
Trans Pattern Anal Mach Intell 26(5):530–549

Miller E, Matsakis N, Viola P (2000) Learning from one example
through shared densities on transforms. Proc IEEE Conf Comput
Vis Pattern Recognit 1:464–471

Papari G, Petkov N (2011) Edge and line oriented contour detection:
state of the art. Image Vis Comput 29:79–103

Poli R (1996) Genetic programming for image analysis. In: Proceedings
of the first annual conference on genetic programming, pp 363–368

QuintanaMI, PoliR,ClaridgeE (2006)Morphological algorithmdesign
for binary images using genetic programming. Genet Program
Evol Mach 7:81–102

123

1248 W. Fu et al.

Schunck B (1987) Edge detection with Gaussian filters at multiple
scales. In: Proceedings of the IEEE workshop on computer vision,
representation and control, pp 208–210

Song DM, Li B (1998) Derivative computation by multiscale filters.
Image Vis Comput 16(1):43–53

SongW, Feng G, Tiecheng L (2006) Evaluating edge detection through
boundary detection. EURASIP J Appl Signal Process 2006:1–15

Wang J, Tan Y (2010) A novel genetic programming based morpholog-
ical image analysis algorithm. In: Proceedings of the 12th annual
conference on genetic and evolutionary computation, pp 979–980

Zhang Y, Rockett PI (2005) Evolving optimal feature extraction using
multi-objective genetic programming: a methodology and prelim-
inary study on edge detection. In: Proceedings of the genetic and
evolutionary computation conference, pp 795–802

123

	Genetic programming for edge detection: a Gaussian-based approach
	Abstract
	1 Introduction
	2 Background
	2.1 Gaussian-based edge detection
	2.2 Related work for edge detection using GP
	2.2.1 Minimising the MSE
	2.2.2 Maximising the detection accuracy

	3 The approach
	3.1 Terminals based on Gaussian models
	3.2 Function set
	3.3 Fitness function
	3.4 Sampling techniques

	4 Experiment design
	4.1 Image datasets
	4.2 Experiment settings
	4.2.1 Training data
	4.2.2 Parameter settings

	5 Results
	5.1 Two images as training data
	5.2 Sampling
	5.3 GP edge detectors vs existing Gaussian-based edge detectors
	5.4 Gaussian-based GP edge detectors vs GP edge detectors using blocks of pixels
	5.5 Detected visual results from the best GP edge detectors
	5.6 Example evolved GP Gaussian-based edge detector

	6 Further discussions
	6.1 Computational cost
	6.2 Thickness of detected edges
	6.3 Contributions on different Gaussian filters
	6.4 Combination function mathbbC

	7 Conclusions
	References

