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Abstract Interval number is a kind of special fuzzy num-
ber and the interval approach is a good method to deal with
some uncertainty. An interval mean–average absolute devia-
tionmodel for multiperiod portfolio selection is presented by
taking risk control, transaction costs, borrowing constraints,
threshold constraints and cardinality constraints into account,
which an optimal investment policy can be generated to help
investors not only achieve an optimal return, but also have a
good risk control. In the proposed model, the return and risk
are characterized by the interval mean and interval average
absolute deviation of return, respectively. Cardinality con-
straints limit the number of assets to be held in an efficient
portfolio. Threshold constraints limit the amount of capital to
be invested in each stock and prevent very small investments
in any stock. Based on interval theories, the model is con-
verted to a dynamic optimization problem. Because of the
transaction costs, the model is a dynamic optimization prob-
lemwith path dependence. A forward dynamic programming
method is designed to obtain the optimal portfolio strategy.
Finally, the comparison analysis of the different desired num-
ber is provided by a numerical example to illustrate the effi-
ciency of the proposed approach and the designed algorithm.
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1 Introduction

Portfolio selection discusses the problem of how to allo-
cate a certain amount of investor’s wealth among different
assets and form a satisfying portfolio. The mean–variance
(M–V)model proposed byMarkowitz (1952) provides a fun-
damental basis for modern portfolio selection theory. The
main goal of the M–V model is to maximize the expected
return for a given level of risk or minimize the risk for a
given level of expected return. However, the M–V model
is not used extensively to construct large-scale portfolios.
Konno and Yamazaki (1991) used the absolute deviation risk
function to replace variance to formulate a mean absolute
deviation portfolio optimization model. It turns out that the
mean absolute deviation model maintains the nice proper-
ties of the M–V model and removes most of the main diffi-
culties in solving M–V model. Speranza (1993) proposed a
mean semi-absolute deviation portfolio selection model. A
mean–average absolute deviation portfolio selection model
was proposed by Feinstein and Thapa (1993).

Though probability theory is a major tool used for ana-
lyzing uncertainty in finance, it cannot describe the uncer-
tainty completely since there aremanyother uncertain factors
that differ from the random ones found in financial markets.
Some other techniques can be applied to handle uncertainty
of financial markets. Carlsson and Fullér (2001) introduced
the notions of lower and upper possibilistic mean values of
a fuzzy number, viewing them as possibility distributions.
Carlsson et al. (2002) introduced a possibilistic approach to
select portfolios with highest utility score under the assump-
tions that the returns of assets are trapezoidal fuzzy numbers
and short sales are not allowed on all risky assets. León et
al. (2002) discussed portfolio selection using fuzzy decision
theory. Zhang et al. (2007) proposed the portfolio selection
models based on the lower and upper possibilistic means and
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possibilistic variances of fuzzy numbers. Huang (2008) pro-
posed mean risk curve portfolio selection models. Dubois
and Prade (1988) defined an interval-valued expectation of
fuzzy numbers, viewing them as consonant random sets. Lai
et al. (2002), Giove et al. (2006), Li and Xu (2007), and
Zhang et al. (2009) constructed interval programming mod-
els of portfolio selection.

Among many improvements proposed to make the
Markowitz’s mean–variance portfolio selection model more
realistic are limiting the number of assets to be held in an
efficient portfolio (cardinality constraints) and also prescrib-
ing lower and upper bounds on the fraction of the capital
invested in each asset (threshold constraints). These require-
ments come from real-world practice where the adminis-
tration of a portfolio made up of a large number of assets
is clearly not desirable because of transaction costs, com-
plexity of management, or policy of the asset management
companies. Because of its practical relevance, this model
(often called cardinality constrained Markowitz model), and
somevariations have been fairly intensively studied in the last
decade. Especially from the computational viewpoint, some
researchers proposed exact solution methods, ie., Bienstock
(1996) proposed a branch-and-cut algorithm; Bertsimas and
Shioda (2009) extended the algorithm of Bienstock (1996)
presenting a tailored procedure, based on Lemke’s pivoting
algorithm; Li et al. (2006) proposed a convergent Lagrangian
method as an exact solution scheme for a problem slightly
more general than the LAM (Limited Asset Markowitz)
model, and they describe some computational results for
problems with at most 30 assets. Another Lagrangian relax-
ation method was proposed in Shaw et al. (2008) with appli-
cation to some undisclosed real-life problems with up to
500 assets; Murray and Shek (2012) presented a local relax-
ation method; Cesarone et al. (2013) propose increasing set
algorithm; Cui et al. (2013), and Sun et al. (2013) used the
Lagrangian decomposition technique to construct tight con-
vex relaxations to solve the LAMmodel; Le Thi et al. (2009),
Le Thi and Moeini (2014), presented convex functions algo-
rithms (DCA). Since exact solutionmethods are able to solve
only a fraction of practically useful LAM models, many
heuristic algorithms have also been proposed, ie., Fernán-
dez and Gómez (2007) presented neural networks algorithm;
Ruiz-Torrubiano and Suarez (2010) provided solutions to the
LAMmodel using different heuristics, ie., genetic algorithm,
simulated annealing and various estimation of distribution
algorithms; Anagnostopoulos andMamanis (2011) proposed
multiobjective evolutionary algorithm; Woodside-Oriakhi et
al. (2011) examined the application of genetic algorithm,
tabu search and simulated annealing for finding the cardi-
nality constrained efficient frontier; Deng et al. (2012) pro-
posed improved particle swarm algorithm. In these studies, it
appears that the computational complexity for the solution of
the LAMmodel is much greater than the one required by the

classical Markowitz model or by several other of its refine-
ments. Indeed, the standard Markowitz model is a convex
quadratic programming problem, while the LAM model is a
mixed integer quadratic programming problem that falls into
the class of considerably more difficult NP-hard problems.

For those models above, it is assumed that the invest-
ment horizon is single period. But, in real world, the port-
folio strategies are usually multiperiod, since the investor
can reallocate his wealth from time to time. So, it is nat-
ural to extend the single-period portfolio selections to multi-
period portfolio selections. Mossin (1968) presented optimal
multiperiod portfolio selection policies using dynamic pro-
gramming approach. Li and Ng (2000) employed the idea
of embedding the problem in a tractable auxiliary prob-
lem to investigate the mean–variance formulation in mul-
tiperiod portfolio selection and obtained the corresponding
mean–variance efficient frontier. Zhu et al. (2004) proposed a
dynamic mean–variance portfolio selection model with risk
control over bankruptcy. Güpinar and Rustem (2007) con-
structed a multiperiod mean–variance optimization frame-
work for the stochastic aspects of the scenario tree. Çlikyurt
and Öekici (2007) introduced several multiperiod portfolio
optimization models in stochastic markets using the mean–
variance approach. Calafiore (2008) concerned with multi-
period sequential decision problems for financial asset allo-
cation and presented a multiperiod optimization with linear
control policies. Yu et al. (2010, 2012), respectively, pro-
posed a dynamic portfolio selection optimization with bank-
ruptcy control for absolute deviation model and maximum
absolute deviation. Wu and Li (2012) proposed a non-self-
financing portfolio optimization problem under the frame-
work of multiperiod mean–variance with Markov regime
switching and a stochastic cash flow. Li and Li (2012)
proposed a multiperiod portfolio optimization problem for
asset–liability management of an investor who intends to
control the probability of bankruptcy before reaching the end
of an investment horizon. Considering the linear transaction
costs, diversificationdegree of portfolio and skewness,Zhang
et al. (2012, 2014) and Liu et al. (2012, 2013) proposed sev-
eral multiperiod fuzzy portfolio selection models. Zhang and
Zhang (2014) proposed a multiperiod mean absolute devia-
tion fuzzy portfolio selection model with transaction cost,
borrowing constraints, threshold constraints and cardinality
constraints.

In this paper, we propose an interval mean–average
absolute deviation model for multiperiod portfolio selection
with risk control where the return of securities is treated as
interval numbers. Risk control is crucial to a multiperiod
portfolio selection. An integration of risk control and mul-
tiperiod portfolio selection is evidently needed. In this note,
we propose a model for which an optimal investment policy
can be generated to help investors not only achieve an opti-
mal return, but also have a good risk control. This paper is
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organized as follows. In Sect. 2, the definitions of the inter-
val mean, the interval average absolute deviation, and some
properties are, respectively, introduced. In Sect. 3, the bor-
rowing constraints, transaction costs, threshold constraints
and cardinality constraints are formulated into the multi-
period portfolio.Anewmultiperiod portfolio selectionmodel
is constructed and a forward dynamic programming method
is proposed to solve it in Sect. 4. In Sect. 5, the compari-
son analysis of differently desired number of assets in the
portfolio is given to illustrate the idea of our model and the
effectiveness of the designed algorithm. Finally, some con-
clusions are given in Sect. 6.

2 Preliminaries

In this section, we will briefly review some concepts and
results on interval numbers, which we will need in the fol-
lowing sections. Denote the set of all the real number as R.
Let a be an interval number. And a can be expressed as the
following form

a = [aL, aR] = {x : aL ≤ x ≤ aR, x ∈ R} (1)

where aL and aR are the lower bound and the upper bound
of interval a, respectively. If aL = aR , then a is reduced to
a real number. The center and width of a are, respectively,
defined as

m(a) = aL + aR

2
and ω(a) = aR − aL

2

Then, a can also be denoted by its center and width as

a = 〈m(a), ω(a)〉 = {x : m(a) − ω(a) ≤ x

≤ m(a) + ω(a), x ∈ R}.

Definition 1 (Alefeld and Herzberger 1983) Let ◦ ∈ {+,−,

×,÷} be a binary operation on R. For any given two interval
numbers a and b, the binary operation of them is defined as

a ◦ b = {x ◦ y : x ∈ a, y ∈ b} (2)

where we assume 0 /∈ b in the case of division.
Based on the binary operation above, for any given two

interval numbers a and b, the following relationships hold:

pa + qb = [paL + qbL, paR + qbR],
∀p, q ≥ 0 (3)

pa − qb = [paL − qbR, paR − qbL], ∀p, q ≥ 0 (4)

a · b = [min{aLbL, aLbR, aRbL, aRbR},
max{aLbL, aLbR, aRbL, aRbR}] (5)

a

b
=

[
aL

bR
,
aR

bL

]
, if 0 /∈ b (6)

The absolute value of interval a is defined as

|a| =

⎧⎪⎨
⎪⎩

[aL, aR], aL ≥ 0

[0, (−aL) + aR], aL < 0 < aR

[−aR,−aL], aR ≤ 0

(7)

An interval number is a special fuzzy numberwhosemem-
bership function takes the value 1 over the interval and 0
anywhere else.

Definition 2 (Ishibuchi and Tanaka 1990) For any given two
interval numbers a and b, the order relation between them is
defined as

a ≤ b⇔m(a) ≤ 1m(b)

If aR ≤ bL, the interval inequality relation a ≤ b is said to
be optimistic satisfactory; if aR ≥ bL, the interval inequality
relation a ≤ b is said to be pessimistic satisfactory.

Definition 3 Let a be an interval number with a = [aL, aR].
Then the crisp mean is defined as

M(a) = aL + aR

2
(8)

Definition 4 For any two given interval numbers a with
a = [aL, aR] and b with b = [bL, bR], the interval aver-
age absolute deviation between a andb is defined as

ω(a, b) = 1

2

(
M

∣∣a − M(a)
∣∣ + M

∣∣b − M(b)
∣∣ ) (9)

Notice that the interval average absolute deviation ω(a, b)
between a and b is defined as the average of M

∣∣a − M(a)
∣∣

andM
∣∣b − M(b)

∣∣, whereM ∣∣a − M(a)
∣∣ is the crisp interval

mean of the absolute deviations between interval numbers
a and the crisp interval mean M(a), and M

∣∣b − M(b)
∣∣ is

the crisp interval mean of the absolute deviations between
interval numbers b and the crisp interval mean M(b).

3 The formulation of multiperiod portfolio selection
problem

In this section, the problem description and notations used in
the following section will be introduced first. The return and
risk of multiperiod portfolio are qualified by interval num-
bers. The cardinality constraints will be presented. Finally,
a new multiperiod portfolio selection problem with interval
values will be proposed.

3.1 Problem description and notations

Let us consider a multiperiod portfolio selection problem
with n risky assets and a risk-free asset. The return rates of
risky assets are denoted as interval values. Assume that an
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investor joins themarket at the beginning of period 1with ini-
tial wealthW1. The investor intends to allocate his/her wealth
among the n+1 assets for making T periods investment plan.
His/her wealth can be reallocated among the n+1 assets at
the beginning of the following T consecutive time periods.
To make it easier to understand the following exposition, all
the notations that will be used hereafter are listed as follows:

xit the investment proportion of risky asset i at period t ;
xi0 the initial investment proportion of risky asset i at

period 0;
xt the portfolio at period t ,where xt = (x1t , x2t , . . . , xnt );
x f t the investment proportion of risk-free asset at period

t , where x f t = 1 − ∑n
i=1 xit ;

xbf t the lower bound of the investment proportion of risk-

free asset at period t , where x f t≥xbf t ;
Rit the interval return of risky asset i at period t ;
rit the expected return of Rit, where rit = E(Rit )

rpt the return of the portfolio xt at period t ;
rNt the net return of the portfolio xt at period t ;
rbt the borrowing rate of the risk-free asset at period t ;
rlt the lending rate of the risk-free asset at period t ;
li t the lower bound constraints of xit ;
uit the upper bound constraints of xit ;
Wt the holding wealth at the beginning of period t ;
cit the unit transaction cost of risky asset i at period t ;
K the desired number of assets in the portfolio at period

t .

3.2 Interval return and risk for multiperiod portfolio
selection

The return, risk, transaction costs, borrowing constraints,
threshold constraints and cardinality constraintswill be intro-
duced in the following subsections. The return and risk will
be quantified by the interval mean value and interval aver-
age absolute deviation about the interval return of the asset,
respectively. Assume that the whole investment process is
self-financing, that is, the investor does not invest the addi-
tional capital during the portfolio selection. The return of
risky asset, Rit = [ait, bit ] (i = 1, 2, . . ., n; t = 1, 2, . . .,
T ) are interval numbers.

Most of the brokerage houses provide the opportunity to
make an acquisition on different assets by borrowing the
money from the brokerage. Some researchers studied the
borrowing constraints, for example, Sadjadi et al. (2011) pro-
posed the fuzzy portfolio model with different rates for bor-
rowing and lending. Deng and Li (2012) proposed a mean–
variance fuzzy portfolio with borrowing constraints. Con-
sidering the borrowing constraints, the interval mean value
of the portfolio xt = (x1t , x2t , . . . , xnt)′ at period t can be
expressed as

rpt =
n∑

i=1

M(Rit )xit =
n∑

i=1

(
ait + bit

2

)
xit

+ r f t

(
1 −

n∑
i=1

xit

)
, t = 1, . . . , T (10)

where r f t =

⎧⎪⎪⎨
⎪⎪⎩
rlt , 1 −

n∑
i=1

xit ≥ 0

rbt , 1 −
n∑

i=1
xit ≤ 0

, rbt ≥ rlt . When

1 − ∑n
i=1 xit ≥ 0, it denotes that lending the risk-free asset

is allowed.When 1−∑n
i=1 xit ≤ 0, it denotes that borrowing

the risk-free asset is allowed.
The transaction costs which are entailed by buying or

selling assets to adjust the existing portfolio are one of the
main concerns for portfolio managers. As mentioned by
Arnott and Wagner (1990), and Yoshimoto (1996) ignor-
ing the transaction costs may fail to obtain the efficient
portfolio. So Gülpinar et al. (2003), and Bertsimas and
Pachamanova (2008) incorporated transaction costs into con-
sideration to study the multiperiod portfolio selection prob-
lem. In this paper, the transaction costs are assumed V-
shaped functions of differences between the t th period port-
folio xt = (x1t , x2t , . . . , xnt ) and the t−1th period portfolio
xt−1 = (x1t−1, x2t−1, . . . , xnt−1). That is to say, the trans-
action cost for asset i at period t is cit |xit − xit−1|. Hence,
the total transaction costs of the portfolio xt = (x1t , x2t , . . .,
xnt ) at periodt can be expressed as

Ct =
n∑

i=1

cit |xit − xit−1|, t = 1, . . . , T (11)

Thus, the net return rate of the portfolio xt at period t can be
denoted as

rNt =
n∑

i=1

n∑
i=1

(
ait + bit

2

)
xit + r f t

(
1 −

n∑
i=1

xit

)

−
n∑

i=1

cit |xit − xit−1|. t = 1, . . . , T (12)

Then, the crisp form of the holding wealth at the beginning
of the period t can be written as

Wt+1 = Wt (1 + rNt )

= Wt

(
1 +

n∑
i=1

(
ait + bit

2

)
xit + r f t

(
1 −

n∑
i=1

xit

)

−
n∑

i=1

cit |xit − xit−1|
)

, t = 1, . . . , T (13)
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Solving Eq. (13) recursively, the terminal wealth at the end
of period T can be represented as

WT+1 = W1

T∏
t=1

(
1 +

(
n∑

i=1

(
ait + bit

2

)
xit

+r f t

(
1−

n∑
i=1

xit

)
−

n∑
i=1

cit |xit−xit−1|
))

(14)

Derived from Eq. (9), the interval average absolute deviation
of the portfolio xt can be expressed as

ωt (xt ) = 1

n

n∑
i=1

M
( ∣∣M(Rit ) − Rit

∣∣)xit .

Theorem 1 Let Rit = [ait, bit ] be an interval numbers
and x3i t 0, (i = 1, 2, . . . , n; t = 1, 2, . . . , T ), then the inter-
val average absolute deviation of the portfolio xt can be
expressed as

ωt (xt ) = 1

n

n∑
i=1

bit − ait
2

xit (15)

Proof

ωt (xt ) = 1

n

n∑
i=1

M
( ∣∣M(Rit ) − Rit

∣∣)xit

= 1

n

n∑
i=1

M

( ∣∣∣∣ait + bit
2

− [ait , bit ]
∣∣∣∣
)

(16)

According to Eq. (4), then

ait + bit
2

− [ait , bit ] =
[
ait − bit

2
,
bit − ait

2

]
(17)

According to Eq. (7), then
∣∣∣∣
[
ait − bit

2
,
bit − ait

2

]∣∣∣∣ = [0, (bit − ait )] (18)

From Eqs. (17) and (18), then the Eq. (16) can be turned into

ωt (xt ) = 1

n

n∑
i=1

M[0, bit − ait ]xit = 1

n

n∑
i=1

bit − ait
2

xit

which ends the proof. ��

To formulate cardinality constraints into the multiperiod
portfolio model, zero-one decision variables are added as:

zit =
⎧⎨
⎩
1 if any of asset i of period t

(i = 1, . . . , n; t = 1, . . . , T ) is held
0 otherwise

(19)

where
∑n

i=1 zit ≤ K .

3.3 The basic multiperiod portfolio optimization models

Assume that the investor wants to maximize his/her terminal
wealth over thewhole T periods investment. Themultiperiod
portfolio selection problem with risk control and cardinality
constraints can be formulated as the following problem:

maxW1

T∏
t=1

(
1 +

( n∑
i=1

(
ait + bit

2

)
xit + r f t

×
(
1 −

n∑
i=1

xit

)
−

n∑
i=1

cit |xit − xit−1|
))

s.t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wt+1 =
(
1 +

(
n∑

i=1

(
ait+bit

2

)
xit + r f t

(
1 −

n∑
i=1

xit

)

−
n∑

i=1
cit |xit − xit−1|

))
Wt

(a)

1
n

n∑
i=1

bit−ait
2 xit ≤ vt (b)

1 −
n∑

i=1
xit ≥ xbf t (c)

n∑
i=1

zit ≤ K , zit ∈ {0, 1} (d)

li t zi t ≤ xit ≤ uit zi t , i = 1, . . . , n,

t = 1, . . . , T (e)

(20)

where constraint (a) denotes the wealth accumulation con-
straint; constraint (b) states the interval average absolute
deviation of the portfolio xt cannot exceed the given value
vt ; constraint (c) indicates the investment proportion of risk-
free asset at period t must exceed the given lower bound xbf t ;
constraint (d) represents the desired number of assets in the
portfolio must not exceed the given value K ; constraint (e)
states threshold constraints of xit .

4 The optimization on the multiperiod portfolio
selection model

In Model (20), investors can choose vt between vt min and
vt max. Then vt min and vt max can be, respectively, obtained
as follows:

max
n∑

i=1

(
ait + bit

2

)
xit + r f t

(
1 −

n∑
i=1

xit

)

−
n∑

i=1

cit |xit − xit−1|
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s.t

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 −
n∑

i=1
xit ≥ xbf t

zi t ∈ {0, 1}
n∑

i=1
zit ≤ K

lit zi t ≤ xit ≤ uit zi t , i = 1, . . . , n

(21)

xmax∗
t (the optimal solution xt = (x1t , x2t , . . . , xnt )′) can be
obtained solving Model (21) by CPLEX. Simultaneously,
vtmin (the biggest of 1

n

∑n
i=1

bit−ait
2 xit ) can also be obtained.

min
1

n

n∑
i=1

bit − ait
2

xit

s.t

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 −
n∑

i=1
xit ≥ xbf t

zi t ∈ {0, 1}
n∑

i=1
zit ≤ K

lit zi t ≤ xit ≤ uit zi t , i = 1, . . . , n

(22)

xmax∗
t (the optimal solution xt = (x1t , x2t , . . . , xnt )′) can be
obtained solving theModel (22) byCPLEX. Simultaneously,
vtmin (the smallest of 1

n

∑n
i=1

bit−ait
2 xit ) is also obtained. The

sub-problem of period t of theModel (20) can be transformed
into

max
n∑

i=1

(
ait + bit

2

)
xit + r f t

×
(
1 −

n∑
i=1

xit
)

−
n∑

i=1

cit |xit − xit−1|

s.t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n

n∑
i=1

bit−ait
2 xit ≤ vt

1 −
n∑

i=1
xit ≥ xbf t

n∑
i=1

zit ≤ k, zit ∈ {0, 1}, i = 1, . . . , n

lit zi t ≤ xit ≤ uit zi t

(23)

In the following section, we provide the detailed procedure
of the forward dynamic programming method for finding an
optimal solution to the Model (20). The procedure of the
algorithm can be showed as follows:

Algorithm The forward dynamic programming method:
Step1. When t = 1,W1 and x0 = (x10, . . . , xn0)

′

have been given, the optimal solution of period t = 1,t =
1, xmax∗

1 = (xmax∗
11 , . . . , xmax∗

n1 )
′
can be obtained solving

the Model (23) by CPLEX. At the same time, Wmax∗
2 =

Wmax∗
1 (1 + ∑n

i=1
ai1+bi1

2 xmax∗
i1 + r f 1(1 − ∑n

i=1 x
max∗
i1 )

− ∑n
i=1 ci1|xmax∗

i1 − xmax∗
i0 |) can be obtained.

Step2. When t = m ( m ≥1 and m ∈Z+), Wmax∗
m+1 and

xmax∗
m = (xmax∗

1m , . . . , xmax∗
nm )

′
have been obtained, the opti-

mal solution of period t = m + 1,
(
xmax∗
m+1 = (xmax∗

m+1 , . . . ,

xmax∗
nm+1)

′
)
can be obtained solving theModel (23) byCPLEX.

At the same time, Wmax∗
m+2 = Wmax∗

m+1 (1 + ∑n
i=1

am+1+bm+1
2

xmax∗
im+1 + r f m+1(1 − ∑n

i=1 x
max∗
im+1) − ∑n

i=1 cim+1
∣∣xmax∗

im+1

− xmax∗
im

∣∣) can be obtained.
Step3. If t = T , then the maximization of the terminal

wealth Wmax
T+1 can be obtained. Otherwise t = m + 1, then

turn Step 2.
When the number of variables in period t (t = 1,. . .,T ) is

not too big, the global optimal solution of theModel (23) can
be obtained by CPLEX. So, the global optimal solution of
the Model (20) can also be obtained by the forward dynamic
programming method.

5 Numerical example

In this section, a numerical example is given to express the
idea of the proposed model. Assume that an investor chooses
thirty stocks from Shanghai Stock Exchange for his/her
investment. The stocks codes are, respectively, S1,. . ., S30.
He/She intends tomake five periods of investmentwith initial
wealth W1 = 1 and his wealth can be adjusted at the begin-
ning of each period.We assume that the returns and risk of the
thirty stocks at each period are represented as interval num-
bers. We collect historical data of them from April 2006 to
September 2014 and set every threemonths as a period to han-
dle the historical data. Using the simple estimationmethod in
Vercher et al. (2007) to handle their historical data, the inter-
val distributions of the return rates of assets at each period
can be obtained as shown in appendix. Suppose that the trans-
action costs of assets of the two periods investment take the
same value cit = 0.003 (i = 1, . . . , 30; t = 1, . . . , 5), the
lower bound of the investment proportion of risk-free asset
xbf t = −0.5, the borrowing rate of the risk-free asset rbt =
0.017, the lending rate of the risk-free asset rlt = 0.009, t =
1, . . ., 5, the lower bound constraints li t = 0.05 and upper
bound constraints uit = 0.2 (i = 1,. . .,30; t = 1,. . .,5), the
desired number of assets in the portfolio at period t K = 6
or 8 (t = 1,. . .,5). The preset given risk value vt = 0.001.

The forward dynamic programming method is used to
solve the Model (20). The corresponding results can be
obtained as follows.

If K = 6, the optimal solution can be obtained as the
Table 1.

When K = 6, the optimal investment strategy at period
1 is x11 = 0.2, x131 = 0.2, x151 = 0.2, x171 = 0.2, x261
= 0.2, x281 = 0.2 and the rest of variables being equal to
zero, which means investor should allocate his initial wealth
on asset 1, asset 13, asset 15, asset 17, asset 26, asset 28
and on other assets by the proportions of 20, 20, 20, 20, 20,
20 % and the rest of variables be equaling to zero among the
thirty stocks, respectively. The optimal investment strategy
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Table 1 The optimal solution when K = 6

t Asset i
The optimal investment proportions

1 Asset 1 Asset 13 Asset 15 Asset 17 Asset 26 Asset 28
0.2 0.2 0.2 0.2 0.2 0.2

2 Asset 1 Asset 12 Asset 13 Asset 15 Asset 17 Asset 28
0.2 0.2 0.2 0.2 0.2 0.2

3 Asset 1 Asset 12 Asset 13 Asset 15 Asset 17 Asset 28
0.2 0.2 0.2 0.2 0.2 0.2

4 Asset 1 Asset 12 Asset 13 Asset 15 Asset 17 Asset 18
0.2 0.2 0.2 0.2 0.2 0.2

5 Asset 1 Asset 12 Asset 13 Asset 15 Asset 17 Asset18
0.2 0.2 0.2 0.2 0.2 0.2

Table 2 The optimal solution when K = 8

t Asset i
The optimal investment proportions

1 Asset 1 Asset 8 Asset 12 Asset 13 Asset 15 Asset 17 Asset 26 Asset 28
0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2

2 Asset 1 Asset 8 Asset 12 Asset 13 Asset 15 Asset 17 Asset 26 Asset 28
0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2

3 Asset 1 Asset 12 Asset 13 Asset 15 Asset 17 Asset 18 Asset 26 Asset 28
0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2

4 Asset 1 Asset 12 Asset 13 Asset 15 Asset 17 Asset 18 Asset 26 Asset 28
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1

5 Asset 1 Asset 8 Asset 12 Asset 13 Asset 15 Asset 17 Asset18 Asset 28
0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2

Table 3 the optimal terminal wealth when K = 1, . . . , 9

K 0 1 2 3 4 5 6 7 8 9

W6 1.0850 1.2841 1.4237 1.5597 1.6912 1.8171 1.9387 2.0570 2.1156 2.1156

at period 2, period 3, period 4 and period 5 can be obtained
from Table 1. In this case, the available terminal wealth is
1.9387.

If K = 8, the optimal solution can be obtained as the
Table 2.

When K = 8, the available terminal wealth is 2.1156.
To display the influence of K on the optimal solution of

multiperiod portfolio selection, we set its value as 6 and
8, respectively. Then, we use the Model (20) for portfolio
decision-making. After using the forward dynamic program-
ming method, the corresponding optimal investment strate-
gies can be obtained as shown in Tables 1 and 2. From
Tables 1 and 2, it can be seen that most of assets of the
optimal solutions of K = 6 and K = 8 are same. There are
six assets in period 1, i.e., asset 1, asset 13, asset 15, asset 17,
asset 26, asset 28; there are six assets in period 2, i.e., asset
1, asset 12, asset 13, asset 15, asset 17, asset 28; there are six
assets in period 3, i.e., asset 1, asset 12, asset 13, asset 15,
asset 17, asset 28; there are six assets in period 4, i.e., asset
1, asset 12, asset 13, asset 15, asset 17, asset 18; there are six

assets in period 5, i.e., asset 1, asset 12, asset 13, asset 15,
asset 17, asset 18.

When K = 1, . . . , 9, the optimal terminal wealth can be
obtained as shown in Table 3.

In the used data sets, the problems corresponding to K ≥ 9
have the same solutions with the K = 8. The experiments
in this paper correspond to the values of K in the interval
[0, 8]. We note that, as will be seen in Table 3, when the
preset the desired number of assets in the portfolio become
larger, the terminalwealth also becomes larger,which reflects
the influence of the desired number of assets on portfolio
selection.

6 Conclusions

In this paper, we discuss a multiperiod portfolio selection
problem with interval number, in which the returns, risk of
risky assets are characterized by interval numbers rather than
single values. We use interval analysis approach to handle
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the imprecise data in financial markets and propose a multi-
period interval portfolio optimization model. Since the pro-
posed model is an interval programming problem, we use the
interval decision-making technique to convert it into a crisp
formdynamic optimizationwith path dependence.A forward
dynamic programmingmethod is designed to obtain the opti-
mal portfolio strategy. A numerical example is given to illus-
trate the application of the proposed model and demonstrate
the effectiveness of the designed algorithm for solving our
model.

Due to changes of situation in financial markets and
investors’ preferences towards risk, most of the applications
ofmultiperiod portfolio optimization involvemaximizing the
terminal wealth for a given level of risk at period t . In addi-
tion, the investors do not only purchase risky assets, but also
they can lend or borrowa risk-free asset.Howdo the investors
make a correct multiperiod decision? It will be very impor-
tant for a real multiperiod portfolio selection problem. So the
multiperiod portfoliomodels based on the intervalmeans and

average absolute will be some future directions on the pro-
posed approach in solving real-life problems.

Acknowledgments This research was supported by the National Nat-
ural Science Foundation of China (nos. 71271161).

7 Appendix

The codes of thirty stocks are, respectively, S1 (600000),
S2 (600005), S3 (600015), S4 (600016), S5 (600019), S6
(600028), S7 (600030), S8 (600036), S9 (600048), S10
(600050), S11 (600104), S12 (600362), S13 (600519), S14
(600900), S15 (601088), S16 (601111), S17 (601166), S18
(601168), S19 (601318), S20 (601328), S21 (601390), S22
(601398), S23 (601600), S24 (601601), S25 (601628), S26
(601857), S27 (601919), S28 (601939), S29 (601988), S30
(601998). The trapezoidal possibility distributions of the
return rates of assets at each period can be obtained as shown
in Tables 4, 5, 6, 7, 8.

Table 4 The fuzzy return rates on assets of five periods investment

t Asset

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6

1 0.1300 0.1559 0.0556 0.0943 0.0921 0.1244 0.1044 0.1299 0.0611 0.0991 0.0899 0.1229
2 0.1339 0.1559 0.0603 0.1022 0.0925 0.1244 0.1106 0.1299 0.0702 0.0991 0.0916 0.1229
3 0.1357 0.1559 0.0645 0.1069 0.1034 0.1244 0.1210 0.1299 0.0809 0.0991 0.0936 0.1229
4 0.1449 0.1582 0.0742 0.1117 0.1059 0.1244 0.1249 0.1299 0.0820 0.0991 0.0952 0.1229
5 0.1480 0.1583 0.0943 0.1163 0.1099 0.1244 0.1250 0.1327 0.0860 0.0991 0.1029 0.1229

Table 5 The fuzzy return rates on assets of five periods investment

t Asset

Asset 7 Asset 8 Asset 9 Asset 10 Asset 11 Asset 12

1 0.0675 0.0920 0.0981 0.1495 0.0513 0.0765 0.0310 0.0443 0.0510 0.0639 0.1048 0.1438
2 0.0728 0.1085 0.1022 0.1495 0.0714 0.0866 0.0345 0.0475 0.0534 0.0650 0.1101 0.1504
3 0.0863 0.1120 0.1058 0.1495 0.0765 0.0870 0.0440 0.0497 0.0556 0.0781 0.1253 0.1506
4 0.0887 0.1171 0.1271 0.1495 0.0813 0.0908 0.0442 0.0518 0.0636 0.0811 0.1404 0.1577
5 0.0920 0.1217 0.1385 0.1528 0.0846 0.0921 0.0443 0.0540 0.0639 0.0842 0.1438 0.1641

Table 6 The fuzzy return rates on assets of five periods investment

t Asset

Asset 13 Asset 14 Asset 15 Asset 16 Asset 17 Asset 18

1 0.1778 0.2319 0.0508 0.0746 0.1422 0.1550 0.0403 0.0833 0.1232 0.1621 0.0648 0.1183
2 0.1885 0.2319 0.0588 0.0746 0.1485 0.1550 0.0417 0.0833 0.1479 0.1621 0.0740 0.1625
3 0.2068 0.2319 0.0653 0.0746 0.1504 0.1571 0.0443 0.0868 0.1485 0.1621 0.0748 0.1949
4 0.2131 0.2319 0.0685 0.0746 0.1505 0.1624 0.0473 0.1020 0.1529 0.1621 0.0889 0.2044
5 0.2156 0.2319 0.0716 0.0746 0.1519 0.1680 0.0606 0.1064 0.1531 0.1626 0.1183 0.2144
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Table 7 The fuzzy return rates on assets of five periods investment

t Asset

Asset 19 Asset 20 Asset 21 Asset 22 Asset 23 Asset 24

1 0.0760 0.1000 0.1100 0.1284 0.0519 0.0833 0.1075 0.1205 0.0123 0.0439 0.0805 0.1082
2 0.0832 0.1000 0.1150 0.1284 0.0524 0.0884 0.1134 0.1205 0.0151 0.0756 0.0811 0.1082
3 0.0856 0.1000 0.1152 0.1284 0.0752 0.0923 0.1162 0.1238 0.0221 0.0840 0.0886 0.1082
4 0.0880 0.1000 0.1200 0.1285 0.0798 0.0961 0.1197 0.1272 0.0231 0.0916 0.0928 0.1082
5 0.0903 0.1000 0.1217 0.1320 0.0833 0.1001 0.1201 0.1307 0.0439 0.0996 0.0959 0.1082

Table 8 The fuzzy return rates on assets of five periods investment

t Asset

Asset 25 Asset 26 Asset 27 Asset 28 Asset 29 Asset 30

1 0.0921 0.1100 0.1054 0.1440 0.0282 0.0455 0.1291 0.1388 0.1026 0.1201 0.0928 0.1101
2 0.0941 0.1100 0.1111 0.1440 0.0368 0.0508 0.1303 0.1460 0.1045 0.1201 0.0972 0.1101
3 0.0974 0.1100 0.1217 0.1440 0.0390 0.0622 0.1324 0.1465 0.1066 0.1201 0.0995 0.1101
4 0.0976 0.1112 0.1377 0.1487 0.0412 0.0712 0.1345 0.1507 0.1113 0.1201 0.1019 0.1101
5 0.1036 0.1144 0.1400 0.1490 0.0455 0.0783 0.1388 0.1552 0.1133 0.1217 0.1021 0.1101
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