Soft Comput (2015) 19:2511-2524
DOI 10.1007/s00500-014-1576-2

@ CrossMark

FOCUS

Three empirical studies on predicting software maintainability

using ensemble methods

Mahmoud O. Elish - Hamoud Aljamaan -
Irfan Ahmad

Published online: 8 January 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract More accurate prediction of software mainte-
nance effort contributes to better management and control of
software maintenance. Several research studies have recently
investigated the use of computational intelligence models
for software maintainability prediction. The performance of
these models, however, may vary from dataset to dataset.
Consequently, ensemble methods have become increasingly
popular as they take advantage of the capabilities of their con-
stituent computational intelligence models toward a dataset
to come up with more accurate or at least competitive pre-
diction accuracy compared to individual models. This paper
investigates and empirically evaluates different homogenous
and heterogeneous ensemble methods in predicting soft-
ware maintenance effort and change proneness. Three major
empirical studies were designed and conducted taken into
consideration different design such as the types of the investi-
gated ensembles methods, types of prediction problems, used
datasets, and other experimental setup. Overall empirical evi-
dence obtained from the three studies confirms that some
ensemble methods provide more accurate or at least com-
petitive prediction accuracy compared to individual models
across datasets, and thus they are more reliable.

Keywords
techniques -

Computational intelligence - Ensemble
Homogenous ensemble - Heterogeneous

Communicated by I. R. Ruiz.

M. O. Elish () - H. Aljamaan - I. Ahmad

Information and Computer Science Department, King Fahd University
of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

e-mail: elish@kfupm.edu.sa

H. Aljamaan
e-mail: hjamaan @kfupm.edu.sa

I. Ahmad
e-mail: irfanics @kfupm.edu.sa

ensemble - Software maintenance - Prediction - Empirical
studies

1 Introduction

Software maintenance has been one of the most difficult and
costly tasks in the software development lifecycle (Li and
Henry 1993; Zhou and Leung 2007). Accurate prediction of
software maintainability can be useful to support and guide
(De Lucia et al. 2005): software-related decision-making;
maintenance process efficiency; comparing productivity and
costs among different projects; resource and staff allocation,
and so on. As a result, future maintenance effort can be kept
under control. Recent research studies have investigated the
use of computational intelligence models for software main-
tainability prediction (Elish and Elish 2009; Koten and Gray
2006; Zhou and Leung 2007). These models have different
prediction capabilities and none of them has proved to be the
best under all conditions. Performance of these models may
vary from dataset to dataset. Ensemble methods take advan-
tage of the capabilities of their constituent computational
intelligence models (base learners) toward a dataset to come
up with more accurate or, at least, competitive prediction
accuracy as compared to the individual models. They have
high potential in providing reliable predictions. Therefore,
there is a need for empirical evidences on the effectiveness
of ensemble methods and the extent to which these ensem-
bles enhance the accuracy, or in some cases deteriorate the
prediction accuracy.

In this research, we conducted three empirical studies on
predicting software maintainability using ensemble meth-
ods. These studies differ in terms of types of the investi-
gated ensembles methods (homogenous and heterogeneous),
types of prediction problems (maintenance effort and change-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-014-1576-2&domain=pdf

2512

M. O. Elish et al.

proneness), used datasets, and other experimental setup. The
objective was to investigate and empirically evaluate differ-
ent ensemble methods with respect to prediction accuracy,
and to compare them among themselves and against indi-
vidual models. This work is a significant extension of the
preliminary work reported in Aljamaan et al. (2013) where
some experiments were carried out to investigate the use of
one ensemble method for software maintenance effort pre-
diction.

This paper reports the details of the three conducted empir-
ical studies and their results. The first study aimed to eval-
uate and compare three heterogeneous ensemble methods
in predicting software maintenance effort. The purpose of
the second study was to evaluate and compare two homoge-
neous ensemble methods in predicting object-oriented class
change proneness. The third study was conducted to evaluate
and compare three heterogeneous ensemble methods in pre-
dicting object-oriented class change proneness. According to
the best knowledge of the authors, there is no other work in
the published literature which reports such a comprehensive
study of ensemble models for software maintenance effort
and change proneness prediction in terms of the use of dif-
ferent datasets, variety of individual computational models
used, and the different approaches to ensemble.

The rest of this paper is organized as follows. Section 2
reviews the related work. In Sect. 3, we provide an overview
of the ensemble methods of computational intelligence mod-
els. We describe the three empirical studies that were con-
ducted and we provide the analysis of the results in Sects. 4, 5,
and 6; one empirical study per section. In Sect. 7, we present
the conclusions and suggest directions for future work.

2 Related work

Several research studies have investigated the relationship
between object-oriented metrics and the maintainability of
object-oriented software systems, and they found signifi-
cant correlations between them (Al-Dallal 2013; Bandi et al.
2003; Briand et al. 2001; Fioravanti and Nesi 2001; Li and
Henry 1993; Misra 2005). These metrics can thus be used
as good predictors of software maintainability. Furthermore,
recent studies have investigated the use of computational
intelligence models for software maintainability prediction.
These models were constructed using object-oriented met-
rics as input variables. Such models include TreeNet (Elish
and Elish 2009), multivariate adaptive regression splines
(Zhou and Leung 2007), Naive bayes (Koten and Gray 2006),
artificial neural network (Thwin and Quah 2005; Zhou and
Leung 2007), regression tree (Koten and Gray 2006; Zhou
and Leung 2007), and support vector regression (Zhou and
Leung 2007), and Mamdani fuzzy inference engine (Ahmed
and Al-Jamimi 2013).

@ Springer

Thwin and Quah (2005) predicted the software maintain-
ability as the number of lines changed per class. Their exper-
imental results found that general regression neural network
predict maintainability more accurately than Ward network
model. Koten and Gray (2006) evaluated and compared the
naive bayes classifier with commonly used regression-based
models. Their results suggest that the naive bayes model can
predict maintainability more accurately than the regression-
based models for one system, and almost as accurately as the
best regression-based model for the other system. Zhou and
Leung (2007) explored the employment of multiple adaptive
regression splines (MARS) in building software maintain-
ability prediction models. MARS was evaluated and com-
pared against multivariate linear regression models, artificial
neural network models, regression tree models, and support
vector models. Their results suggest that, for one system,
MARS can predict maintainability more accurately than the
other four typical modeling techniques. Then, Elish and Elish
(2009) extended the work done by Zhou and Leung (2007)
to investigate the capability of TreeNet technique in software
maintainability prediction. Their results indicate that TreeNet
can yield improved, or at least competitive, prediction accu-
racy over previous maintainability prediction models.

Recently, ensemble methods have received much attention
and have demonstrated promising capabilities in improving
the accuracy over single models (Braga et al. 2007; Sol-
lich 1996). Ensemble methods have been used in the area
of software engineering prediction problems. For example,
they have been used in software reliability prediction (Zheng
2009), software project effort estimation (Braga et al. 2007,
Elish et al. 2013), and software fault prediction (Aljamaan
and Elish 2009; Khoshgoftaar et al. 2003). In addition, they
have been used in many real applications such as face recog-
nition (Gutta and Wechsler 1996; Huang et al. 2000), OCR
(Mao 1998), seismic signal classification (Shimshoni and
Intrator 1998) and protein structural class prediction (Bitten-
court et al. 2005). To the best of our knowledge, ensemble
methods have not been explored in predicting software main-
tainability expect our preliminary work reported in Aljamaan
et al. (2013). In that work (Aljamaan et al. 2013), we pro-
posed and empirically evaluated one ensemble method of
computational intelligence models for predicting software
maintenance effort. The results confirm that the proposed
ensemble method provides more accurate prediction com-
pared to individual models, and thus it is more reliable.

This paper is a significant extension of the preliminary
work reported in Aljamaan et al. (2013), and it differs from
the above related works in several aspects. This paper inves-
tigates and compares different homogeneous and heteroge-
neous ensemble methods in software maintainability predic-
tion problems. We considered maintenance effort prediction
(regression problem) and also change-proneness prediction
(classification problem). Furthermore, different combination

Predicting software maintainability using ensemble methods

2513

Table 1 Comparison of the three empirical studies conducted in this research

Study Problem type Datasets Ensemble Base learner(s) Combination
methods rule(s)
Empirical study I Regression UIMS (39) and Heterogeneous MLP, RBF, SVM, M5P Linear
(Sect. 4) (maintenance QUES (71) (averaging)
effort)
Heterogeneous MLP, RBF, SVM, M5P Linear (weighted
averaging)
Heterogeneous MLP, RBF, SVM, M5P Linear
(best in training)
Empirical study I ~ Classification VSSPLUGIN (36) Homogeneous MLP, RBF, SVM, DT Linear
(Sect. 5) (change proneness) and PeerSim (60) (bagging) (averaging)
Homogeneous MLP, RBF, SVM, DT Linear
(Boosting) (averaging)
Empirical study III ~ Classification VSSPLUGIN (36) Heterogeneous SVM, MLP, logistic regression, Linear
(Sect. 6) (change proneness) and PeerSim (60) genetic programming, K-means (best in training)
Heterogeneous SVM, MLP, logistic regression, Linear
genetic programming, K-means (majority voting)
Heterogeneous SVM, MLP, logistic regression, Non-linear (DTF)

genetic programming, K-means

rules (linear and non-linear) for the ensemble methods were
investigated.

3 Ensembles of computational intelligence models

An ensemble of computational intelligence models uses the
outputs of all its individual constituent prediction models
(base learners), each being assigned a certain priority level,
and provide the final output with the help of an arbitra-
tor (combination rule) (Optiz and Maclin 1999). There are
homogenous (single-model) ensembles and heterogeneous
(multi-model) ensembles. In homogenous ensembles, the
individual base learners are of the same type (for example,
all of them could be radial basis function network), but each
with randomly generated training set. Examples of homoge-
nous ensembles include bagging (Breiman 1996) and boost-
ing (Freund 1995). In heterogeneous ensembles, there are
different individual base learners.

The ensemble methods can be further classified, accord-
ing to the design of their arbitrator, into linear ensembles and
nonlinear ensembles (Kiran and Ravi 2008). In linear ensem-
bles, the arbitrator combines the outputs of the base learners
in alinear fashion such as averaging, weighted averaging, etc.
In nonlinear ensembles, no assumptions are made about the
input thatis given to the ensemble (Kiran and Ravi 2008). The
output of the individual base learners are fed into an arbitra-
tor, which is a nonlinear prediction model such as neural net-
work which when trained, assigns the weights accordingly.

In this research, we conducted three empirical studies. In
each study, we developed different ensemble methods, and
then evaluated and compared their prediction performance in

a software maintainability prediction problem. Table 1 pro-
vides a summary comparison of the three conducted empiri-
cal studies. The details of these empirical studies, their results
and analysis are provided in the following sections.

4 Empirical study I

The goal of this empirical study is to evaluate and compare
three heterogeneous ensemble methods (i.e., heterogeneous
ensembles with three different linear combination rules) in
predicting software maintenance effort.

4.1 Ensemble methods
4.1.1 Average-based ensemble

Average-based (AVG) ensemble is the simplest ensemble
method, where each constituent model in the ensemble has
the same weight. For each observation in the dataset, the out-
put (predicted) values of the individual prediction models are
taken as inputs to the arbitrator that outputs the average of
these values. Figure 1 provides a formal description of the
AVG ensemble method.

4.1.2 Weighted-based ensemble

In weighted-based (WT) ensemble, individual output values
by the prediction models in the ensemble are given weights
based upon a certain criterion. In this study, the criterion is
mean magnitude of relative error (MMRE); the lower the

@ Springer

2514

M. O. Elish et al.

Choose dataset with N observations
Choose M individual prediction models
Set K for K folds cross validation
For each k € K fold
For each n e N observation in the testing set for fold(k)
For each m € M model
Apply model m on observation n
Store the result as R(m)
End for

ZR(m)

EnsembleOutput =

End for
End for

Fig. 1 AVG ensemble

Choose dataset with N observations
Choose M individual prediction models
Set K for K folds cross validation
For each k € K fold
For each m e M model
Apply model m on the training set for fold(k)
Calculate training error E, based on a certain criterion
Store error E
End for
Rank all M models based on their training error E
For each n e N observation in the testing set for fold(k)
For each m e M model
Apply model m on observation n
Multiply model m output by its rank
Store the result as WR(m)
End for

M
> WR(m)
EnsembleOQutput = 'MT

i=1
End for
End for

Fig. 2 WT ensemble

MMRE the higher the weight. Figure 2 provides a formal
description of the WT ensemble method.

4.1.3 Best-in-training-based ensemble

Best-in-training-based (BT) ensemble takes the advantage
of the fact that individual prediction models have different
errors across the used dataset partitions. The idea behind
this ensemble method is to take across the dataset partitions,
the best model in training based upon a certain criterion in
that partition. In this study, the criterion is MMRE. Figure 3
provides a formal description of the BT ensemble method.

4.2 Base learners

In this section, we briefly describe the individual computa-
tional intelligence models that were used as base learners for

@ Springer

Choose dataset with N observations
Choose M individual prediction models
Set K for K folds cross validation
For each k € K fold
For each m e M model
Apply model m on the training set for fold(k)
Calculate training error E, based on a certain criterion
Store error E
End for
Select the best model b € M, based on training error E
For each n e N observation in the testing set for fold(k)
EnsembleOutput = the result of applying model b on observation n
End for
End for

Fig. 3 BT ensemble

the ensemble methods in this empirical study. These mod-
els were built using WEKA machine learning toolkit (Misra
2005), and their parameters were initialized using the default
values.

4.2.1 Multilayer perceptron

Multilayer perceptron (MLP) (Haykin 1999) are feed-
forward networks that consist of an input layer, one or more
hidden layers of nonlinearly activating nodes and an output
layer. Each node in one layer connects with a certain weight
to every other node in the following layer. MLP uses back-
propagation algorithm as the standard learning algorithm for
any supervised-learning.

The parameters of this model were initialized as follows.
Back-propagation algorithm was used for training. Sigmoid
was used as an activation function. Number of hidden layers
was 5. Learning rate was 0.3 with momentum 0.2. Network
was set to reset with a lower learning rate. Number of epochs
to train through was 500. Validation threshold was 20.

4.2.2 Radial basis function network

Radial basis function network (RBF) (Poggio and Girosi
1990) is an artificial neural network that uses radial basis
functions as activation functions to provide a flexible way to
generalize linear regression function. Commonly used types
of radial basis functions include Gaussian, multi-quadric, and
poly-harmonic spline. RBF models with Gaussian basis func-
tions possess desirable mathematical properties of universal
approximation and best approximation. A typical RBF model
consists of three layers: an input layer, a hidden layer with a
non-linear RBF activation function and a linear output layer.

The parameters of this model were initialized as follows. A
normalized Gaussian radial basis function network was used.
Random seed to pass on to K-means clustering algorithm was
1. Number of clusters for K-means clustering algorithm to
generate was 2, with minimum standard deviation for clusters
set to 0.1.

Predicting software maintainability using ensemble methods

2515

4.2.3 Support vector machines

Support vector machines (SVMs) were proposed by Vap-
nik (1995) based on the structured risk minimization (SRM)
principle. SVMs are a group of supervised learning methods
that can be applied to classification or regression problems.
SVMs aim to minimize the empirical error and maximize the
geometric margin. SVM model is defined by these parame-
ters: complexity parameter C, extent to which deviations are
tolerated &, and kernel.

The parameters of this model were initialized as follows.
The cost parameter C was set to 1, with polynomial as SVM-
reg kernel. The most popular (RegSMOImproved) algorithm
Shevade et al. (2000) was used for parameter learning.

4.2.4 M5 model tree

MS5 model tree (M5P) (Quinlan 1992; Witten and Frank 2005)
is an algorithm for generating M5 model trees that predicts
numeric values for a given instance. To build a model tree,
the M5 algorithm starts with a set of training instances. The
tree is built using a divide-and-conquer method. At a node,
starting with the root node, the instance set that reaches it is
either associated with a leaf or a test condition is chosen that
splits the instances into subsets based on the test outcome. In
M35, the test that maximizes the error reduction is used. Once
the tree has been built, a linear model is constructed at each
node. The linear model is a regression equation.

The parameters of this model were initialized as follows.
M35 algorithm was used for generating M5 model trees (Quin-
lan 1992; Wang and Witten 1997). Pruned M5 model trees
were built, with three instances as the minimum number of
instances allowed at a leaf node.

4.3 Datasets

We used two popular object-oriented software maintain-
ability datasets published by Li and Henry (1993): UIMS
and QUES datasets. These datasets are publicly available
which makes our study verifiable, repeatable, and reputable
(Bradley 1997). The UIMS dataset contains class-level met-
rics data collected from 39 classes of a user interface manage-
ment system, whereas the QUES dataset contains the same
metrics collected from 71 classes of a quality evaluation sys-
tem. Both systems were implemented in Ada. Both datasets
consist of 11 class-level metrics: ten independent variables
and one dependent variable.

The independent (input) variables are five Chidambar and
Kemerer metrics (Chidamber and Kemerer 1994): WMC,
DIT, NOC, RFC, and LCOM,; four Li and Henry metrics
(Li and Henry 1993): MPC, DAC, NOM, SIZE2; and one
traditional lines of code metric (SIZE1). Table 2 provides
brief description for each metric.

Table 2 Independent variables in the datasets for empirical study I

Metric ~ Description

WMC Count of methods implemented within a class

DIT Level for a class within its class hierarchy

NOC Number of immediate subclasses of a class

RFC Count of methods implemented within a class plus the
number of methods accessible to an object class due to
inheritance

LCOM The average percentage of methods in a class using each
data field in the class subtracted from 100 %

MPC The number of messages sent out from a class

DAC The number of instances of another class declared within a
class

NOM The number of methods in a class

SIZE1 The number of lines of code excluding comments

SIZE2 The total count of the number of data attributes and the

number of local methods in a class

The dependent (output) variable is a maintenance effort
proxy measure, which is the actual number of lines in the
code that were changed per class during a 3-year maintenance
period. A line change could be an addition or a deletion. A
change in the content of a line is counted as a deletion and
an addition (Li and Henry 1993).

Previous studies (Elish and Elish 2009; Koten and Gray
2006; Zhou and Leung 2007), on both datasets, indicate that
both datasets have different characteristics, and therefore,
considered heterogeneous and a separate maintenance effort
prediction model is built for each dataset.

4.4 Performance evaluation measures

We used de facto standard and commonly used accuracy eval-
uation measures that are based on magnitude of relative error
(MRE) (Conte et al. 1986). These measures are mean mag-
nitude of relative error (MMRE), standard deviation mag-
nitude of relative error (StdMRE), and prediction at level ¢
(Pred(g)). MMRE over a dataset of n observations is calcu-
lated as follows:

1 n

MMRE = — Z MRE;

i=1
where MRE; is a normalized measure of the discrepancy
between the actual value (x;) and the predicated value (x;)
of observation i. It is calculated as follows:
5=
MRE; =

Xi
In addition to MMRE, we used StdMRE since it is less sen-
sitive to the extreme values compared to MMRE. We also
used Pred(g), which is a measure of the percentage of obser-

@ Springer

2516

M. O. Elish et al.

Table 3 Prediction accuracy results: UIMS dataset

Individual models Ensemble methods

MLP RBF SVM MS5P AVG WT BT

MMRE 1.39 323 164 167 146 121 097
StdMRE 240 443 238 275 208 178 1.61
Pred(0.3) 2333 15 20 2333 2333 2333 25

vations whose MRE is less than or equal to g. It is calculated
as follows:

k
Pred(¢q) = —,
n

where k is the number of observations whose MRE is less
than or equal to a specified level ¢, and 7 is the total number
of observations in the dataset. An acceptable value for level g
is 0.3, as indicated in the literature (Conte et al. 1986; Koten
and Gray 2006; Zhou and Leung 2007). We therefore adopted
that value.

4.5 Results and analysis

We used a tenfold cross validation (Kohavi 1995) (i.e., k-fold
cross validation, with k set to 10). In tenfold cross validation;
a dataset is randomly partitioned into tenfolds of equal size.
For ten times, ninefolds are picked to train the models and
the remaining fold is used to test them, each time leaving out
a different fold.

Table 3 provides the results obtained from applying
the individual computational intelligence models on UIMS
dataset, as well as the results achieved by the ensemble
methods. Among the individual models, the MLP model
achieved the best result in general, whereas the RBF model
was the worst. Among the ensemble methods, the BT ensem-
ble method achieved the best result (bold).

Figure 4 shows the box plot of MRE values for each model
on UIMS dataset, where the middle of each box represents
the MMRE for each model. As can be seen, the BT ensemble
method has the narrowest box and the smallest whiskers (i.e.,
the lines above and below from the box). Moreover, its box
and whiskers are lower than those of the individual models,
which clearly indicate that the BT ensemble method out-
performs the individual models. Moreover, all the ensemble
methods were generally better than the individual models.
Figure 5 shows a histogram of the achieved Pred(0.30) value
by each model. Clearly, each of the three ensemble methods
(AVG, WT, and BT) achieved a Pred(0.30) value that is more
than or equal to the achieved value by any of the individual
models (MLP, RBF, SVM, and M5P).

Table 4 provides the results obtained from applying
the individual computational intelligence models on QUES
dataset, as well as the results achieved by the ensemble meth-

@ Springer

oMean []+SE | +SD

Il T -

N W A OO N O ©

MLP SVM AVG Ensemble BT Ensemble
RBF M5P WT Ensemble

Fig. 4 Box plots of MRE for each model: UIMS dataset

30

25 —

20 —

15 —

Pred
(0.30)

MLP RBF SVM MS5P AVG WT BT

Fig. 5 Pred(0.30) for each model: UIMS dataset

Table 4 Prediction accuracy results: QUES dataset

Individual models Ensemble methods

MLP RBF SVM MS5P AVG WT BT

MMRE 071 096 044 054 058 049 041
StdMRE 065 152 039 056 0.69 051 032
Pred(0.3) 40 36.66 56.66 51.66 53.33 53.33 60

ods under investigation. Among the individual models, the
SVM model achieved the best result, whereas the RBF model
was the worst. Among the ensemble methods, the BT ensem-
ble method achieved the best result (bold).

Figure 6 shows the box plot of MRE values for each model
on QUES dataset, where the middle of each box represents
the MMRE for each model. It can be observed that the BT
ensemble method has the narrowest box and the smallest
whiskers. Its box and whiskers are also lower than those of the
individual models, which clearly indicate that the BT ensem-
ble model outperforms the individual models in this dataset
too. Figure 7 shows a histogram of the achieved Pred(0.30)
value by each model. The BT ensemble method achieved the

Predicting software maintainability using ensemble methods

2517

3.0
o Mean [_] +SE _[_ +SD
2.5 _

2.0

=3 -
0.5 e J = ,:%

-1.0

MLP SVM AVG Ensemble BT Ensemble
RBF M5P WT Ensemble

Fig. 6 Box plots of MRE for each model: QUES dataset

70

60 —

50 —

40— -

Pred
(0.30)

30 —

20

10 —

0

MLP RBF SVM MS5P AVG WT BT

Fig. 7 Pred(0.30) for each model: QUES dataset

highest Pred(0.30) value, i.e., 60 %. Furthermore, each of
the three ensemble methods (AVG, WT, and BT) achieved a
Pred(0.30) value that is more than the achieved value by each
of the individual models except the SVM model. However,
the Pred(0.30) values of the AVG and WT ensemble meth-
ods were slightly less than the Pred(0.30) value of the SVM
model.

When considering the results from both datasets, there are
a number of interesting observations. First, the results sup-
port that the performance of the individual prediction mod-
els may vary from dataset to dataset; the MLP model was
the best in the UIMS dataset while the SVM model was the
best in the QUES dataset. Second, the BT ensemble method
outperformed all other ensemble and individual models in
both datasets. Third, among the ensemble methods, the BT
method was the best followed by the WT method and then the
AVG method. Finally, ensemble methods generally achieved
more accuracy or at least competitive prediction accuracy
compared to individual models.

model generation
Let n be the number of instances in the training data
For each of t iterations:
Sample n instances with replacement from training data
Apply the learning algorithm to the sample
Store the resulting model
classification
For each of the t models:
Predict class of instance using model
Return class that has been predicted most often

Fig. 8 Bagging ensemble

5 Empirical study IT

The goal of this empirical study is to evaluate and com-
pare two homogeneous ensemble methods in predicting class
change proneness.

5.1 Ensemble methods
5.1.1 Bagging ensemble

Bagging, short for bootstrap aggregating, is an ensemble
technique proposed by Breiman (1996) to improve the accu-
racy of classification models by combining classifications of
same type (i.e., based on the same base classifier) of ran-
domly generated training sets. Bagging assigns equal weight
to models created, thus helps in reducing the variance associ-
ated with classification, which in turn improves the classifi-
cation process. Bagging technique has produced good results
whenever the learning algorithm is unstable (Breiman 1996).
Figure 8 states the bagging algorithm (Witten and Frank
2005):

Bagging technique requires three parameters: (1) classi-
fier, the base classifier to apply bagging on; (2) bagSizePer-
cent, size of each bag, as a percentage of the training set size;
and (3) numlterations, number of instances of the base clas-
sifiers to be created, i.e., the ensemble size. In this study, we
prefer to use the term ensemble size for clarity purpose.

5.1.2 Boosting ensemble

Boosting is an ensemble technique proposed by Freund
(1995) to build a classifier ensemble incrementally, by adding
one classifier at a time. The training set used for each member
of the ensemble is chosen based on the performance of the
earlier classifiers in the ensemble. Figure 9 states the boosting
algorithm (Witten and Frank 2005):

Boosting technique requires three parameters: (1) clas-
sifier: the base classifier to apply boosting on; (2) resam-
pling/reweighting: which approach is used (resampling or
reweighting); and (3) numlterations: number of instances of
the base classifiers to be created, i.e., the ensemble size. In

@ Springer

2518

M. O. Elish et al.

model generation
Assign equal weight to each training instance.
For each of t iterations:
Apply learning algorithm to weighted dataset and
store resulting model.
Compute error e of model on weighted dataset and
store error.
If e equal to zero, or e greater or equal to 0.5:
Terminate model generation.
For each instance in dataset:
If instance classified correctly by model:
Multiply weight of instance by e / (1 —e).
Normalize weight of all instances.
classification
Assign weight of zero to all classes.
For each of the t (or less) models:
Add —log(e / (1 — e)) to weight of class predicted by model.
Return class with highest weight.

Fig. 9 Boosting ensemble

this study, we prefer to use the term ensemble size for clarity
purpose.

There are a family of boosting algorithms (Freund and
Schapire 1996). In this study, we used AdaBoost algorithm
proposed by Freund and Schapire (1995). AdaBoost was pro-
posed to improve the performance of other learning algo-
rithms. There are two approaches implemented in AdaBoost:
resampling and reweighting. In resampling, the fixed train-
ing sample size and training examples are resampled accord-
ing to a probability distribution used in each iteration. In
reweighting, all training examples, with weights assigned to
each example, are used in each iteration to train the base clas-
sifier. In this study, we used the resampling approach, because
it has been reported to yield better accuracy (Banfield et al.
2007; Zhang et al. 2008).

5.2 Base learners

Four base learners (classifiers) were used for the bagging
and boosting ensemble methods. Three of them, which are
MLP, RBF and SVM are described in Sect. 4.2. The fourth
model is decision tree (DT), which is created typically using
C4.5 algorithm developed by Quinlan (1993). C4.5 creates
decision tree whose structure consists of leaves using a top-
down, divide-and-conquer approach. We used C4.5 algo-
rithm to generate decision tree through WEKA machine
learning toolkit (Misra 2005), and its parameters were initial-
ized using the default values as follows. Confidence factor
used for pruning was 25 %. Minimum number of instance
per leaf was 2.

5.3 Datasets
We used two recent object-oriented class change-proneness

datasets collected by Elish and Al-Khiaty (2013): VSSPLU-
GIN and PeerSim datasets. The VSSPLUGIN dataset con-

@ Springer

Table S Independent variables in the datasets for empirical study II

Metric Description

WMC Count of methods implemented within a class

DIT Level for a class within its class hierarchy

NOC Number of immediate subclasses of a class

RFC Count of methods implemented within a class plus the
number of methods accessible to an object class due to
inheritance

LCOM The average percentage of methods in a class using each
data field in the class subtracted from 100 %

CBO The number of classes to which a class is coupled

tains class-level metrics data collected from the 36 classes of
the first release of the system, whereas the PeerSim dataset
contains the same metrics collected from the 60 classes of the
first release of the system. Both systems were implemented
in Java.

Both datasets consist of seven class-level metrics: six inde-
pendent variables and one dependent variable. The indepen-
dent (input) variables are the Chidambar and Kemerer metrics
(Chidamber and Kemerer 1994): WMC, DIT, NOC, RFC,
LCOM, and CBO. Table 5 provides brief description for
each metric. The dependent (output) variable is a Boolean
variable, which indicates whether or not the corresponding
class has changed during the software evolution.

5.4 Performance evaluation measures

Two popular and common performance metrics were used to
assess and compare the prediction models. The first one is
correct classification rate (CCR), which is the ratio of cases
that were correctly predicted to the total number of cases. It
is calculated as follows:

CCR — TP + TN ’

N

where TP is the number of true positive cases, TN is the
number of true negative cases, and N in the total number of
cases. The second metric is area under curve (AUC), which
is calculated based on the receiver operating characteristic
(ROC) curve that plots the true positive rate versus the false
positive rate at various threshold settings. It is calculated as
follows (Bradley 1997):

auC =3 1= - b0y + 3180 -) 8

1

TP
1 — B = TruePositiveRate = ————
TP + FN
.. FP
o = FalsePositiveRate = ———,
FP + TN

Predicting software maintainability using ensemble methods

2519

Table 6 Classification performance results: VSSPLUGIN dataset

Model Individual Bagging ensemble Boosting ensemble
CCR AUC CCR AUC CCR AUC

MLP 55.00 0.54 66.67 0.60 61.11 0.50

RBF 4722 044 63.89 0.55 55.56 0.53

SVM 63.89 048 61.11 041 5833 0.56

DT 66.67 0.55 7222 0.71 63.89 0.60

Bold values in this table represent best prediction performance values

Table 7 Classification performance results: PeerSim dataset

Model Individual Bagging ensemble Boosting ensemble
CCR AUC CCR AUC CCR AUC

MLP 55.00 0.54 5833 0.60 60.00 0.50

RBF 66.67 0.59 61.67 0.61 66.67 0.64

SVM 6833 0.55 68.33 0.59 60.00 0.58

DT 55.00 0.57 65.00 0.65 63.33 0.60

Bold values in this table represent best prediction performance values

where FP is the number of false positive cases, and FN is
the number of false negative cases. The higher the AUC, the
better the model.

5.5 Results and analysis

A leave-one-out cross-validation procedure was used in this
experiment. In this procedure, one observation is removed
from the dataset, and then each model is built with the remain-
ing n — 1 observations and evaluated in predicting the value
of the observation that was removed. The process is repeated
each time removing a different observation. It was observed
that when ensemble size was set to 25 and more, bagging
and boosting did not produce significant different results over
smaller ensemble sizes, i.e., mostresults are stable (Aljamaan
and Elish 2009). The size of ensembles was therefore set to
25 in this study.

Tables 6 and 7 show the CCR and AUC values that were
achieved by each of the four individual classifiers and their
bagging and boosting ensembles when applied to VSSPLU-
GIN and PeerSim datasets, respectively. By comparing the
individual classifiers, BT model was the best performing clas-
sifier on VSSPLUGIN dataset while both RBF and SVM
models achieved the best competitive accuracy on PeerSim
dataset.

Figure 10 shows the impact of the bagging and boosting
ensemble methods on the classification accuracy of the indi-
vidual models when applied to VSSPLUGIN dataset. Bag-
ging ensembles increased the accuracy for MLP, RBF, and
DT, while there was a minor decrease in accuracy for SVM.
Boosting ensembles had an increase of accuracy for MLP
and RBF, while it decreased the accuracy for SVM and DT.

80.00

B Individual M| Bagging m| Boosting

70.00

60.00

50.00

40.00

30.00

20.00

10.00

MLP RBF SVM DT

Fig. 10 CCR for each model: VSSPLUGIN dataset

80.00

M| Individual M| Bagging | Boosting

70.00

60.00

50.00

40.00

30.00

20.00

10.00 1

MLP RBF SVM DT

Fig. 11 CCR for each model: PeerSim dataset

It can be also observed that bagging ensembles resulted in
better accuracy than the corresponding boosting ensembles.

Figure 11 shows the impact of the bagging and boost-
ing ensemble methods on the classification accuracy of the
individual models when applied to PeerSim dataset. Bag-
ging ensembles increased the accuracy or at least produced
the same accuracy for MLP, SVM and DT, while there was a
minor decrease in accuracy for RBF. Boosting ensembles had
an increase of accuracy for MLP and DT, while it decreased
the accuracy in RBF and SVM.

The results from both datasets suggest that bagging and
boosting ensemble methods have positive impact on the clas-
sification accuracy when MLP model is used as base classi-
fier, but they have negative impact when SVM model is used
as base classifier. In case of RBF model, the impact was posi-
tive in one dataset and negative in the other dataset. In case of
DT model, the impact of boosting ensembles was positive in
one dataset and negative in the other dataset, but the impact
of bagging ensembles was positive on both datasets.

@ Springer

2520

M. O. Elish et al.

Choose dataset with N observations
Choose M individual prediction models
Set K for K folds cross validation
For each k e K fold
For each m e M model
Apply model m on the training set for fold(k)
Calculate training error E, based on a certain criterion
Store error E
End for
Select the best model b € M, based on training error E
For each n e N observation in the testing set for fold(k)
EnsembleOutput = the result of applying model b on observation n
End for
End for

Fig. 12 Best-in-training ensemble

6 Empirical study III

The goal of this empirical study is to evaluate and compare
three heterogeneous ensemble methods in predicting class
change proneness. Two of the ensembles have linear combi-
nation rules, whereas the third one has non-linear combina-
tion rules.

6.1 Ensemble methods
6.1.1 Best-in-training ensemble

The idea behind this ensemble is to take across the dataset
partitions, the best model (base classifier) in training based
upon a certain criterion in that partition. In our case, the
criterion is the classification accuracy. Figure 12 provides a
formal description of the ensemble.

6.1.2 Majority voting ensemble

For majority voting, we take the output of each base learner
(classifier) for the test set and the ensemble output is the
category which is predicted by majority of the base learners.
Figure 13 provides a formal description of the ensemble.

6.1.3 Non-linear ensemble

In the non-linear ensemble, we train the model by training a
classifier whose input is the prediction outputs (for the train-

ing set) of base learners and the classifier uses them to learn
the actual output (for the training set). Finally, the trained
ensemble uses the test set output of base learners to make
a final prediction on the test set. Decision tree forest (DTF)
was used as a classifier for the non-linear ensemble. DTF is
an implementation of random forest developed by Breiman
(2001). It is a collection of decision trees where the predic-
tion of each tree is combined to make an overall prediction.
DTF has high prediction/classification accuracy and is highly
resistant to over fitting. We used DTREG tool for imple-
mentation without any parameter optimization. Figure 14
provides a formal description of the non-linear
ensemble.

6.2 Base learners

Five base learners (classifiers) were used for the ensemble
methods in this empirical study. Two of them, which are
MLP and SVM are described in Sect. 4.2. The other three
are described next.

6.2.1 Logistic regression

Logistic regression is a well-known and widely used regres-
sion model. It is used when the target variable is categorical
(for classification task) as opposed to continuous (for predic-
tion task). We used DTREG tool implementation of logistic
regression.

6.2.2 K-Means

K-Means is one of the oldest models and was developed by
Hartigan and Wong (1979). The core idea of the model is the
clustering algorithm where the algorithm clusters the data
points and assign same cluster IDs to the clusters belonging
to same class (K being the number of classes). A target is
assigned the class whose cluster center is nearest to the target.

Fig. 13 Majority voting
ensemble

For each k € K fold

End for

End for
End for

Choose dataset with N observations
Choose M individual prediction models
Set K for K folds cross validation

For each m e M model
Apply model m on the training set for fold(k)
Do the prediction on the test set for fold(k)

For each n € N observation in the testing set for fold(k)
Count the number of models predicting a category
EnsembleOutput = the category which has the maximum count for the observation n

@ Springer

Predicting software maintainability using ensemble methods

2521

Fig. 14 Non-linear ensemble

For each k e K fold

End for
End for

End for
End for

Choose dataset with N observations
Choose M individual prediction models
Set K for K folds cross validation

For each m e M model
Train model m on the training set for fold(k)
For each n e N observation in the training set for fold(k)
Predict the category of observation n by applying the trained model m

Train the ensemble with inputs as category predicted for the observation n € N in the training
set for fold(k) by each model me M
For each n e N observation in the testing set for fold(k)
EnsembleOutput = the prediction made by the trained ensemble

6.2.3 Gene expression programming (GEP)

Gene Expression Programming was developed by Ferreira
(2001). Itis a special type of genetic algorithm where the indi-
vidual chromosomes are initially encoded as linear strings
but later gets transformed into non-linear representation with
variable sizes and shape. It performs symbolic regression
(where the form of the function to fit is not specified before-
hand) to fit the data. We used DTREG tool for implementa-
tion of GEP without any parameter optimization.

6.3 Datasets

In this study, we used the same two datasets (VSSPLUGIN
and PeerSim) that we used for the second empirical study,
which are described in Sect. 5.3.

6.4 Performance evaluation measures

Correct classification rate (CCR) and area under curve (AUC)
were used as performance evaluation measures. They were
already described in Sect. 5.4.

6.5 Results and analysis

We partition each dataset into four disjoint randomly selected
test sets such that each test set contains 25 % of the data and
the remaining 75 % of the data was assignment as the training
set for that particular test set. Each training set was used to
training the base classifiers and evaluation was carried out on
the test set associated with that particular training set. Per-
formance evaluation measures were recorded for each exper-
iment. Finally, we report the overall results by aggregating
the performance over the four set of experiments carried out
on a dataset.

Table 8 reports the classification performance results
achieved by the individual classifiers as well as the three
ensemble methods. Among the individual classifiers, Genetic
Programming performed best for VSSPLUGIN dataset

Table 8 Classification performance results

Classifier VSSPLUGIN dataset PeerSim dataset
CCR AUC CCR AUC
SVM 66.67 0.36 63.33 0.64
MLP 50.00 045 60.00 0.52
Logistic regression 55.56 0.54 55.00 0.50
Genetic programming 7778 0.71 60.00 0.55
K-Means 58.33 0.50 58.33 0.55
Ensemble (best in training) 61.11 0.58 68.33 0.67
Ensemble (majority voting) 63.89 60.00
Ensemble (nonlinear-DTF) 66.67 0.59 68.33 0.63

Bold values in this table represent best prediction performance values

whereas SVM classifier performed best for PeerSim dataset.
Among the ensemble methods, the non-linear ensemble per-
formed best for VSSPLUGIN dataset, but the best-in-training
ensemble performed best for PeerSim dataset. Moreover, the
performance of the non-linear ensemble was competitive for
PeerSim dataset.

Furthermore, in case of VSSPLUGIN dataset, Genetic
Programming classifier was the best and outperformed all
ensembles. However, the non-linear ensemble outperformed
all other individual classifiers. In case of PeerSim dataset,
the best-in-training ensemble and also the non-linear ensem-
ble outperformed all the individual classifiers. These results
are also supported by Figs. 15 and 16, which show the ROC
curves for all classifiers. The top most curves represent the
best performing classifier.

These results may be explained by the fact that some clas-
sifiers train very well on the train set, but do not perform
well for the test set (the problem of over-fitting) and due
to this the effectiveness of the ensemble is reduced because
they essentially rely on the training performance of individ-
ual classifiers. One way to address this issue as a future work
is to select classifiers that are not too prone to over-fitting.
Another way to address this problem is to have a separate

@ Springer

2522

M. O. Elish et al.

1.0

0.8

0.6
o
=
= —
7]
c e
[
9 044

Source of the Curve
— —SVM
—MLP
0.2 LogisticRegression
—J — GeneticProgramming
KMeans
~— EnsembleBestinTraining
EnsembleNonlinearDTF
0.0 T T T T
0.0 02 04 0.6 08 10

1 - Specificity

Fig. 15 ROC curves for the classifiers: VSSPLUGIN dataset

10
|

08+

17 |
0.4+ Dd

/H Source of the Curve

~——SVM

~—MLP
LogisticRegression

—— GeneticProgramming

I'_// KMeans

| ~—EnsembleBestinTraining

EnsembleNonlinearDTF
00 J T

0.0 0.2 04 06 08 1.0
1 - Specificity

Sensitivity
o
[=2}
1
\

[__J

024

Fig. 16 ROC curves for the classifiers: PeerSim dataset

validation set (taken out from training set) and use the clas-
sifiers performance on validation set instead of the training
set for the ensembles.

7 Conclusion
This paper has reported a comprehensive study of ensem-

ble models for predicting software maintainability. We con-
ducted three empirical studies on predicting software main-

@ Springer

tainability using ensemble methods. The first study aimed to
evaluate and compare three heterogeneous ensemble meth-
ods with different linear combination rules in predicting soft-
ware maintenance effort. Several interesting findings were
obtained from that study. The results support the indication
that the performance of the individual prediction models may
vary from dataset to dataset; the MLP model was the best in
one dataset while the SVM model was the best in the other
dataset. The BT ensemble method outperformed all other
ensemble and individual models in both datasets. Moreover,
among the ensemble methods, the BT method was the best
followed by the WT method and then the AVG method. We
observed that the ensemble methods generally achieved more
accurate or at least competitive prediction accuracy com-
pared to individual models.

The purpose of the second empirical study was to evaluate
and compare two homogeneous ensemble methods in pre-
dicting class change proneness. The results from that study
suggest that bagging and boosting ensemble methods have
positive impact on the classification accuracy when MLP
model is used as base classifier, but they have negative impact
when SVM model is used as base classifier. In case of RBF
model, the impact was positive in one dataset and negative in
the other dataset. In case of DT model, the impact of boost-
ing ensembles was positive in one dataset and negative in
the other dataset, but the impact of bagging ensembles was
positive on both datasets.

The third empirical study was conducted to evaluate and
compare three heterogeneous ensemble methods in predict-
ing class change proneness. Linear as well as non-linear com-
bination rules were used for the ensembles. From that study
we observed that among the individual classifiers, genetic
programming performed best for one dataset, whereas SVM
classifier performed best for the other dataset. Among the
ensemble methods, the non-linear ensemble performed best
for one dataset, but the best-in-training ensemble performed
best for the other dataset. Moreover, the performance of
the non-linear ensemble was also competitive for the other
dataset.

This paper contributes novel empirical evidences on the
effectiveness of ensemble methods in predicting software
maintainability. Overall empirical evidence obtained from
the three empirical studies confirms that some ensemble
methods provide more accurate or at least competitive predic-
tion accuracy compared to individual models across datasets,
and thus they are more reliable. There are possible direc-
tions for future work, which include: investigating more
nonlinear ensemble methods and comparing their perfor-
mance with linear ensemble methods; considering other
ensemble constituent models; applying ensemble methods
to other software engineering prediction problems such as
fault prediction. Both theoretical (Hansen and Salamon 1990;
Krogh and Vedelsby 1995) and empirical research stud-

Predicting software maintainability using ensemble methods

2523

ies (Hashem et al. 1994; Opitz and Shavlik 1996a,b) have
demonstrated that a good ensemble is one where the indi-
vidual prediction models in the ensemble are both accu-
rate and make their errors on different parts of the input
space. Therefore, one important direction of future work is
to investigate different sets of ensemble constituent mod-
els.

Acknowledgments The authors wish to acknowledge King Fahd Uni-
versity of Petroleum and Minerals (KFUPM) for utilizing the various
facilities in carrying out this research.

References

Ahmed M, Al-Jamimi H (2013) Machine learning approaches for pre-
dicting software maintainability: a fuzzy-based transparent model.
IET Softw 7(6):317-326

Al-Dallal J (2013) Object-oriented class maintainability prediction
using internal quality attributes. Inf Softw Technol 55:2028-2048

Aljamaan H, Elish M (2009) An empirical study of bagging and boost-
ing ensembles for identifying faulty classes in object-oriented soft-
ware. In: IEEE symposium on computational intelligence and data
mining, pp 187-194

Aljamaan H, Elish M, Ahmad I (2013) An ensemble of computational
intelligence models for software maintenance effort prediction. In:
12th International work conference on artificial neural networks
(IWANN 2013), part I, LNCS 7902, pp 592-603

Bandi R, Vaishnavi V, Turk D (2003) Predicting maintenance per-
formance using object-oriented design complexity metrics. IEEE
Trans Softw Eng 29(1):77-87

Banfield R, Hall L, Bowyer K, Kegelmeyer W (2007) A comparison
of decision tree ensemble creation techniques. IEEE Trans Pattern
Anal Mach Intell 29(1):173-180

Bittencourt V, Abreu M, Souto M, Canuto A (2005) An empirical com-
parison of individual machine learning techniques and ensemble
approaches in protein structural class prediction. In: International
joint conference on neural networks, pp 527-531

Bradley A (1997) The use of the area under the ROC curve in the evalua-
tion of machine learning algorithms. Pattern Recognit 30(7):1145—
1159

Braga P, Oliveira A, Ribeiro G, Meira S (2007) Bagging predictors
for estimation of software project effort. In: International joint
conference on neural networks, pp 1595-1600

Breiman L (1996) Bagging predictors. Mach Learn 24(2):123-140

Breiman L (2001) Random forests. Mach Learn 45(1):5-32

Briand L, Bunse C, Daly J (2001) A controlled experiment for evalu-
ating quality guidelines on the maintainability of object-oriented
designs. IEEE Trans Softw Eng 27(6):513-530

Chidamber S, Kemerer C (1994) A metrics suite for object oriented
design. IEEE Trans Softw Eng 20(6):476-493

Conte S, Dunsmore H, Shen V (1986) Software engineering metrics
and models. Benjamin/Cummings, Menlo Park

De Lucia A, Pompella E, Stefanucci S (2005) Assessing effort estima-
tion models for corrective maintenance through empirical studies.
Inf Softw Technol 47(1):3-15

DTREG, Predictive modeling software by Phillip Sherrod. http://www.
dtreg.com. Accessed 5 Jan 2014

Elish M, Al-Khiaty M (2013) A suite of metrics for quantifying his-
torical changes to predict future change-prone classes in object-
oriented software. J Softw Evol Process 25(5):407-437

Elish M, Elish K (2009) Application of TreeNet in predicting object-
oriented software maintainability: a comparative study. In: 13th

European conference on software maintenance and reengineering
(CSMR ’09), pp 69-78

Elish M, Helmy T, Hussain M (2013) Empirical study of homogeneous
and heterogeneous ensemble models for software development
effort estimation. Math Probl Eng 2013:1-21. doi:10.1155/2013/
312067

Ferreira C (2001) Gene expression programming: a new adaptive algo-
rithm for solving problems. Complex Syst 13(2):87-129

Fioravanti F, Nesi P (2001) Estimation and prediction metrics for adap-
tive maintenance effort of object-oriented systems. IEEE Trans
Softw Eng 27(12):1062-1084

Freund Y (1995) Boosting a weak learning algorithm by majority. Inf
Comput 121(2):256-285

Freund Y, Schapire RE (1995) A decision-theoretic generalization of
on-line learning and an application to boosting. In: European con-
ference on computational learning theory, pp 23-37

Freund Y, Schapire RE (1996) Experiments with a new boosting algo-
rithm. In: Thirteenth international conference on machine learning,
Italy, pp 148-156

Gutta S, Wechsler H (1996) Face recognition using hybrid classifier
systems. In: [EEE international conference on neural networks, pp
1017-1022

Hansen L, Salamon P (1990) Neural network ensembles. IEEE Trans
Pattern Anal Mach Intell 12(10):993-1001

Hartigan J, Wong M (1979) Algorithm AS 136: a K-means clustering
algorithm. J R Stat Soc Ser C (Appl Stat) 28(1):100-108

Hashem S, Schmeiser B, Yih Y (1994) Optimal linear combinations of
neural networks. Neural Netw 3:1507-1512

Haykin S (1999) Neural networks: a comprehensive foundation. Pren-
tice Hall, New Jersey

Huang FJ, Zhou Z, Zhang H-J, Chen T (2000) Pose invariant face recog-
nition. In: Proceedings of the 4th IEEE international conference
on automatic face and gesture recognition, France, pp 245-250

Khoshgoftaar T, Geleyn E, Nguyen L (2003) Empirical case studies of
combining software quality classification models. In: Third inter-
national conference on quality software, p 40

Kiran N, Ravi V (2008) Software reliability prediction by soft comput-
ing techniques. J Syst Softw 81(4):576-583

Kohavi R (1995) A study of cross-validation and bootstrap for accu-
racy estimation and model selection. In: Proceedings of the 14th
international joint conference on artificial intelligence (IJCAI), pp
1137-1143

Koten C, Gray A (2006) An application of Bayesian network for pre-
dicting object-oriented software maintainability. Inf Softw Tech-
nol 48(1):59-67

Krogh A, Vedelsby J (1995) Neural network ensembles, cross valida-
tion, and active learning. Adv Neural Inf Process Syst 7:231-238

Li W, Henry S (1993) Object-oriented metrics that predict maintain-
ability. J Syst Softw 23(2):111-122

Mao J (1998) A case study on bagging, boosting and basic ensembles of
neural networks for OCR. In: Proceedings of IEEE international
joint conference on neural networks, pp 1828-1833

Misra S (2005) Modeling design/coding factors that drive maintainabil-
ity of software systems. Softw Qual Control 13(3):297-320

Opitz D, Shavlik J (1996) Actively searching for an effective neural-
network ensemble. Connect Sci 8(3/4):337-353

Opitz D, Shavlik J (1996) Generating accurate and diverse members of a
neural-network ensemble. Adv Neural Inf Process Syst 8:535-541

Optiz D, Maclin R (1999) Popular ensemble methods: an empirical
study. J Artif Intell Res 11:169-198

Poggio T, Girosi F (1990) Networks for approximation and learning.
Proc IEEE 78(9):1481-1497

Quinlan J (1993) C4.5: programs for machine learning. Morgan Kauf-
mann Publishers, San Francisco

Quinlan R (1992) Learning with continuous classes. In: 5th Australian
joint conference on artificial intelligence, Singapore, pp 343-348

@ Springer

http://www.dtreg.com
http://www.dtreg.com
http://dx.doi.org/10.1155/2013/312067
http://dx.doi.org/10.1155/2013/312067

2524

M. O. Elish et al.

Shevade S, Keerthi S, Bhattacharyya C, Murthy K (2000) Improvements
to the SMO algorithm for SVM regression. IEEE Trans Neural
Netw 11(5):1188-1193

Shimshoni Y, Intrator N (1998) Classification of seismic signals by inte-
grating ensembles of neural networks. IEEE Trans Signal Process
46(5):1194-1201

Sollich P (1996) Learning with ensembles: how over-fitting can be use-
ful. Adv Neural Inf Process Syst 8:190-196

Thwin M, Quah T (2005) Application of neural networks for soft-
ware quality prediction using object-oriented metrics. J Syst Softw
76(2):147-156

Vapnik V (1995) The nature of statistical learning theory. Springer, New
York

@ Springer

Wang Y, Witten IH (1997) Induction of model trees for predicting con-
tinuous classes. In: Poster papers of the 9th European conference
on machine learning

Witten I, Frank E (2005) Data mining: practical machine learning tools
and techniques, 2nd edn. Morgan Kaufmann, San Francisco

Zhang C, Zhang J, Zhang G (2008) An efficient modified boosting
method for solving classification problems. J Comput Appl Math
214:381-392

Zheng J (2009) Predicting software reliability with neural network
ensembles. Expert Syst App 36(2):2116-2122

Zhou Y, Leung H (2007) Predicting object-oriented software maintain-
ability using multivariate adaptive regression splines. J Syst Softw
80(8):1349-1361

	Three empirical studies on predicting software maintainability using ensemble methods
	Abstract
	1 Introduction
	2 Related work
	3 Ensembles of computational intelligence models
	4 Empirical study I
	4.1 Ensemble methods
	4.1.1 Average-based ensemble
	4.1.2 Weighted-based ensemble
	4.1.3 Best-in-training-based ensemble

	4.2 Base learners
	4.2.1 Multilayer perceptron
	4.2.2 Radial basis function network
	4.2.3 Support vector machines
	4.2.4 M5 model tree

	4.3 Datasets
	4.4 Performance evaluation measures
	4.5 Results and analysis

	5 Empirical study II
	5.1 Ensemble methods
	5.1.1 Bagging ensemble
	5.1.2 Boosting ensemble

	5.2 Base learners
	5.3 Datasets
	5.4 Performance evaluation measures
	5.5 Results and analysis

	6 Empirical study III
	6.1 Ensemble methods
	6.1.1 Best-in-training ensemble
	6.1.2 Majority voting ensemble
	6.1.3 Non-linear ensemble

	6.2 Base learners
	6.2.1 Logistic regression
	6.2.2 K-Means
	6.2.3 Gene expression programming (GEP)

	6.3 Datasets
	6.4 Performance evaluation measures
	6.5 Results and analysis

	7 Conclusion
	Acknowledgments
	References

