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Abstract Current quantum cryptographic protocols aim to
distribute a classical secret key to be used afterwards in
classical encryption/decryption schemes. We show in this
paper that quantum information processing can be used to
do much more than just key distribution. Simple quantum
transformations augmented with the ability to store qubits
in a quantum memory are the building blocks of a class of
protocols allowing two parties to communicate secretly by
encoding/decoding the exchanged message directly through
quantum means, without the need to establish a secret
encryption/decryption key first. Consequently, our quan-
tum mechanical process of securely transmitting a message
through a public channel is conceptually simpler than the
two-step scenario with a quantum distributed classical key.
In addition, since the encrypted message is only transmitted
through a quantum channel, copying and off-line analysis
of the transmission is impossible. Our algorithms rely on the
common assumption that public information can be authenti-
cated. In terms of security, the protocol using three encoding
bases achieves the maximum detection rate of 33% per qubit
tested. The probability of catching a potential eavesdropper
can be brought as close to 1 as desired by increasing the
length of the signature string attached to the message.
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1 Introduction

Quantum cryptography has been mainly concerned with
quantum key distribution (Bennett 1992; Bennett and Bras-
sard 1984; Bennett et al. 1992; Ekert 1991). Regardless
of whether they rely on quantum entanglement or not, all
these quantum protocols are used with a single goal: to
establish a classical secret key that is subsequently used
to encrypt/decrypt a message using classical cryptographic
algorithms. Actually, a large body of literature considers the
quantumkey distribution problem to be in fact a key enhance-
ment (Lomonaco 2000), since a small secret keymust already
be available to the two communicating parties to authenticate
the classical channel. Key enhancementmeans that Alice and
Bob share already a small secret key, possibly obtained via a
classical protocol, and then develop a large secret key. Key
distribution starts from public information only and develops
a secret key during the protocol.

As we have previously argued in Nagy et al. (2010), true
key distribution is possible through quantum means using
protected public information to guarantee the authenticity
of exchanged messages. In our scheme, the public infor-
mation that supports authentication is still classical, but an
interesting area of research was opened by Gottesman and
Chuang, when they proposed a quantum digital signature
scheme, based on quantum one-way functions, that employs
a public key made up of a set of quantum states (Gottesman
and Chuang 2001). The scheme allows for a small number
of quantum digital signatures to be shared among potential
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recipients. It has the disadvantage of using several copies
of the signatures, thus revealing more information about the
actual signature to potentialmalevolent parties. The difficulty
of using a quantum public key for a reduced number of times
is discussed in Cao (2010). A scheme that does not use quan-
tummemories is proposed inDunjko et al. (2014). It uses only
classical information when sending messages. Thus, signing
a message is rather classical, but has good implementation
prospects, as can be seen in the implementation-oriented ver-
sion of the paper (Collins et al. 2014). Non-interactive quan-
tum authentication schemes with classical keys are also stud-
ied in Barnum et al. (2002), where an efficient procedure to
create purity-testing protocols is given. Finally, the original
idea of Gottesman and Chuang was later enhanced by other
researchers (Zeng and Keitel 2002; Lu and Feng 2005) to
allow general quantum states to be signed, not just classical
bitstrings.

After this brief detour on authentication techniques, we
come back to the problem of encrypting a message directly
throughquantummeans,which is themain focus of our paper.
Although in the protocols developed herein, each physical
message contains a signature along with the useful informa-
tion, this signature plays the role of a sentinel, as it is used for
detecting eavesdropping rather than for authentication pur-
poses. The signature is unique for each message, that is, once
used for a message it is not used again. Thus our protocols
implement one-time signatures.

In any existing quantum key distribution protocol, an
important characteristic of the classical secret key is that it
is randomly generated. No quantum key distribution scheme
can be used to distribute a key that is known a priori to any
of the communicating parties. This randomness comes from
the implicit randomness associated with the measurement
postulate in quantum mechanics. In this paper, we distance
ourselves from the very idea of using a key for encryption.We
develop a class of protocols that transmit a message secretly
by scrambling the order of the bits rather than explicitly
encrypting the message with a key. The scrambled message
is transmitted via a quantum channel and therefore consists
of quantum bits (qubits) rather than classical bits.

Our protocols come with all the advantages of quantum
cryptography. An intruder, Eve, listening to the message
being transmitted, destroys the superposition state of the
qubits and thus can gain knowledge about it only with a low
probability. Also, the intruder is detected by Alice and Bob
with an arbitrarily high probability. In addition, our protocols
are equivalent to a one-time pad (Shannon 1949). As we use
no key, information about the scrambling of themessage is of
the same order as the message itself. Eavesdropping on one
application of the protocol provides no gain to the intruder
for any subsequent protocol applications.

We first illustrate our idea with a simple protocol encod-
ing bits in one of two complementary bases and show that

the detection rate per qubit checked is 25 % (same as in
Bennett and Brassard 1984; Bennett 1992). We then extend
the encoding strategy to three complementary bases, which
improves the detection rate per qubit to 33 %. Finally, we
describe a general quantum protocol in which the encod-
ing basis is arbitrary (not chosen from a pre-defined discrete
set). In all three protocols, the step of establishing and dis-
tributing a cryptographic key is no longer needed. Together
with the fact that we are using only simple unary quantum
gates, the whole process of securely transmitting a message
between two communicating parties becomes greatly sim-
plified and streamlined. By comparison, the RSA algorithm
(Rivest et al. 1978) used to just distribute the secret key
needed to encrypt/decrypt the actual message through clas-
sical means is much more computationally intensive. More-
over, our protocols benefit from the level of security conferred
by quantum mechanical properties when the encrypted mes-
sage is transmitted. The no-cloning theorem makes it impos-
sible for an eavesdropper to copy the transmission without
disturbing it and then analyze the transmission off-line. Pre-
vious protocols benefit from this quantum level of security
just for the key distribution step, the encrypted message is
still transmitted through a classical channel, which is subject
to all classical ways of attack.

Beside simple quantum gates, our scheme also relies on
the use of a quantum memory capable of storing qubits
(described by their quantum states) for a certain amount of
time as detailed in the description of the protocol. Although
building such aquantummemory is a challenging endeavor in
practice, important steps in this direction have been recently
reported (Gisin et al. 2011; Tittel et al. 2011; Lukin et al.
2012; Steger et al. 2012). Any practical implementation of
a quantum protocol aimed at securing communications has
to find an appropriate physical embodiment for the qubits
transmitted over the quantum channel. The best choice in
this respect seems to be photons, whose polarizations can
easily be manipulated and which are, by definition, very fast,
traveling at the speed of light. On the other hand, photons
are not well suited for storage, where solid-state approaches
seem to be the most promising technology.

Now, two separate teams, one led byWolfgang Tittel at the
University of Calgary in Alberta, Canada (Tittel et al. 2011)
and another led by Nicolas Gisin at the University of Geneva
in Switzerland (Gisin et al. 2011) are reporting advances
on the road to make the two technologies work together.
Experimenting with different types of crystals, they man-
aged to have the quantum state of a photon being captured in
solid crystals through entanglement. Furthermore, scientists
at Harvard University have developed a room-temperature
quantum memory that can hold information on the order of
seconds by using the spin of the nucleus of an atom inside a
diamond to physically realize a qubit (Lukin et al. 2012). But
the record on how long a superposition state can be main-
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tained definitely belongs to a team led by Professor Mike
Thewalt of Simon Fraser University, Canada (Steger et al.
2012). Using the spins of atomic nuclei embedded in silicon,
the research team was able to create a superposition state
which lasted for 192 s (more than 3 min). These advances
seem to hint to the possibility of practical realizations for
protocols using quantum memories (like the one described
in this paper) in the near future.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a simple keyless protocol that securely trans-
mits a message from a source to a destination. It also ana-
lyzes the protocol’s protection from the intruder’s actions
including a formal proof of security. The analysis is formal-
ized to measure the intruder’s gain of knowledge for dif-
ferent levels of attack. Section 3 describes an improvement
on the detection rate of the intruder using an encoding in
three complementary bases. A generalized encoding scheme
where the encoding basis can be any ortho-normal basis span-
ning a two-dimensional Hilbert space is presented in Sect. 4.
Finally, Sect. 5 offers some conclusions and highlights the
main ideas that made the results in this paper possible.

2 Keyless quantum message transmission

In this section, we describe in detail the inner workings of
a protocol that allows two parties (commonly referred to as
Alice and Bob) to communicate secretly over an insecure,
public quantum channel. The protocol relies on the fact that
a quantum channel cannot be eavesdropped on without dis-
turbing the quantum information transmitted over the chan-
nel. To communicate secretly, the two parties are assumed to
have access to the following resources:

– a public quantum channel capable of delivering a block
of qubits from Alice to Bob. This could be a fiber-optic
cable or even air, depending on the particular physical
embodiment chosen for a qubit. No particular restrictions
are imposed on the quantum channel. In particular, it is
open to any form of eavesdropping.

– a public classical channel that allows Alice and Bob to
communicatewith each other, exchanging classical infor-
mation. Although this channel is also public and open to
eavesdropping, it is authenticated. This means that Alice
has the certainty of speaking to (communicating with)
Bob and Bob has the certainty of speaking to Alice.

– a quantum memory required by Bob to store the qubits
sent by Alice until the signature is verified and they can
be decrypted.

– the ability to perform quantum information processing,
namely applying single-qubit gates and measurements
in the normal computational basis {|0〉, |1〉}. Note that
this is not equivalent to the power of a general quantum

computer, since two-qubit gates are required for universal
quantum computation.

The main steps of the protocol are given next. Also, a graphi-
cal representation of the information flow during the unfold-
ing of the protocol is depicted in Fig. 1.

Phase I: Communication over the quantum channel
Step 1: Alice concatenates the two binary strings, one

representing the message she intends to send over to Bob
and the other representing the signature bitstring that will be
used for eavesdropping.

Step 2: For each bit in the concatenated sequence, Alice
uses one of the two bases, or alphabets (chosen randomly) to
encode the value of the respective bit in the quantum state of
the resulting qubit.

Step 3: Alice scrambles the order of the qubits forming
the quantum encrypted block obtained in step 2, by choosing
an arbitrary permutation of the qubits and then sends them
over to Bob through the insecure, public quantum channel.

Step 4: Bob applies the necessary procedures to safely
store the qubits received fromAlice until the second phase of
the protocol, when hewill gain knowledge about each qubit’s
encoding basis and position in the original qubit sequence.
The position, or index of the qubit in the original sequence
is called the qubit’s rank.

Phase II: Communication over the classical channel
Step 1: Alice discloses to Bob which of the qubits trans-

mitted are part of the signature string and the encoding base
of each.

Step 2: Following Alice’s instructions, Bob reconstructs
the signature bitstring.

Step 3: Alice and Bob proceed to verify, bit by bit,
whether the signature bitstring was untampered with, dur-
ing the transmission.

Step 4: If the discrepancy between Alice and Bob is dis-
covered in the values of the signature bits, the presence of an
eavesdropper is inferred and the protocol is abandoned.

Otherwise, Alice informs Bob about the correct position
(rank) of each qubit in the original message and the encoding
alphabet employed to obtain each qubit.

Step 5: Bob decodes and re-arranges the qubits he still
has in storage to obtain the plain message sent to him by
Alice.

Having presented the structure of the protocol, a few clar-
ifications and an analysis of it are perhaps appropriate at this
point. Generally, the length of the signature bitstring reflects
the intended level of security for the transmitted message.
The analysis below clearly shows that a longer signature
bitstring results in higher chances of detecting a potential
eavesdropper. Consequently, the signature length can be var-
ied according to the importance of the message.

The protocol above is described in general terms,
abstracted away from any particular physical realizations for
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Fig. 1 Information flow diagram outlining the steps of the communi-
cation protocol using two bases

a qubit. Moreover, any two alphabets, i.e., encoding bases,
can be used, as long as they are complementary. Complemen-
tary bases means that they correspond to conjugate quantum
variables. In this situation, trying tomeasure (decode) a qubit
using the other basis, and not the one used for encoding, will
maximize the uncertainty over the value of the correspond-
ing bit: equal chances to obtain 0 or 1. From a mathematical
point of view, the simplest example to achieve complemen-
tarity would probably be the use of the regular computa-
tional basis {|0〉, |1〉} together with the “Hadamard basis”{
H |0〉 = |0〉√

2
+ |1〉√

2
, H |1〉 = |0〉√

2
− |1〉√

2

}
. We note in passing

that the BB84 protocol (Bennett and Brassard 1984), which
uses photon polarization as qubit embodiment, achieves
complementarity by choosing randomly between rectilinear
polarization {|→〉, |↑〉} and diagonal polarization {|↗〉, |↖〉}
as the two possible encoding bases. In general, the precise
meaning or interpretation of a certain basis depends entirely
on the physical realization chosen for the qubit. To keep our
discussion as general as possible, while still referring to a
concrete pair of complementary bases, we assume hence-
forth that the two encoding alphabets are the computational
basis (see Fig. 2) and the Hadamard basis (see Fig. 3), as
specified above. This basically means that Alice will create

Fig. 2 Normal computational basis

Fig. 3 Hadamard basis

a |0〉 qubit for each 0 bit in the message and a |1〉 qubit for
each 1 bit in the message, with a random choice to apply a
Hadamard gate on the resulting qubit.

What can Eve, the prototypical eavesdropper do, to elicit
as much information as possible about the transmitted mes-
sage, while the qubits are in transit from Alice to Bob? The
two main possible eavesdropping strategies are discussed
next.

2.1 Opaque eavesdropping

Opaque eavesdropping refers to Eve’s attempt to gain knowl-
edge about the transmitted message by measuring each qubit
passing through the quantum channel in one of the two possi-
ble bases. Eve knows the two bases that Eve has used: com-
putational and Hadamard. Yet, for any specific qubit, Eve
does not know the basis used, as Alice chooses the basis ran-
domly. If Eve is lucky and chooses the same basis, she will
be able to read the binary value of the qubit and will leave
no trace of her interference. Nevertheless, if Eve chooses the
wrong basis, she gains no knowledge about the binary value
of the qubit, and also may disturb the correct measurement
for Bob. There are two cases with similar results. First, Alice
may send the qubit simply in the computational basis (see
Fig. 4). If Eve mistakenly applies a Hadamard gate prior to
her own measurement, she will get either 0 or 1 with equal
probability, regardless of Alice’s original value. Therefore,
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Fig. 4 Opaque eavesdropping.
Eve wrongly measures in the
Hadamard basis a qubit sent by
Alice in the computational basis

Bob may measure the wrong value with a 50 % chance. If
this is a qubit that Alice and Bob check, again they have a
50 % chance to catch Eve. Secondly, Alice may send a qubit
in the Hadamard basis. If Eve mistakenly measures the qubit
directly she again produces a qubit on which she may be
caught with a chance of 50 %. Therefore, on each qubit that
Eve wrongly disturbs, she is caught 50% of the times. As she
is disturbing half the qubits on average, Eve is caught with
a probability of 25 % on each qubit she chooses to observe.
Or else, on each qubit that Eve decides to observe and Bob
decides to check, Eve remains undetected with a probability
of 75 % = 3

4 .
Suppose, there are n qubits in the signature string. They

are observed by Eve and checked by Bob. Eve remains unde-
tected with a probability of

( 3
4

)n
. Therefore, Bob’s detection

rate over n qubits is given by the formula

Rate = 1 −
(
3

4

)n

. (1)

Nevertheless, if Eve gets lucky enough to remain undetected,
then she will gain access to the rank and encoding basis of
each bit in themessage. Thismeans that she can put the bits in
the correct order, but she can only be certain about their value
for half of them, the ones for which she correctly guessed the
encoding basis. For example, if Eve listens to n qubits, she is
certain of the value of n

2 qubits. Thus, her information gain
is 50 % = 1

2 .
Note that the probability for Eve to remain undetected

may be very low; for example, if the signature string is 25
bits long, Eve remains undetected with a probability of about
0.075 %.

2.2 Translucent eavesdropping

Alternatively, Eve could try a more insidious eavesdropping
strategy, avoiding a direct measurement on the qubits in tran-
sit through the quantum channel. This can be achieved by
making a copy of each qubit or entangling each qubit to one
of her own, before sending the original further on to Bob.
Since the two encoding bases are complementary, no quan-

tum circuit exists that can accurately duplicate all four base
vectors (no-cloning theorem). For example, the Controlled-
NOT (CNOT) gate acts as a cloning gate for qubits encoded
in the computational basis, but creates as entangled pair
1√
2
(|00〉 ± |11〉) whenever we push a quantum state like

1√
2
(|0〉±|1〉) through it. Consequently, each qubit originally

encoded by Alice in the Hadamard basis will arrive at Bob
entangled with a corresponding qubit in Eve’s possession.
Now when Bob applies a Hadamard gate on his half of the
entanglement, to decode the qubit, he effectively transforms
the state of the Bob–Eve ensemble as follows:

H ⊗ I

(
1√
2
|00〉 + 1√

2
|11〉

)

= 1

2
(|00〉 + |01〉 + |10〉 − |11〉) , (2)

and

H ⊗ I

(
1√
2
|00〉 − 1√

2
|11〉

)

= 1

2
(|00〉 − |01〉 + |10〉 + |11〉) . (3)

When any of the two quantum states above is measured by
Bob in the normal computational basis, the entanglementwill
collapse to one of the four basis vectors {|00〉, |01〉, |10〉,
|11〉} and Bob will have a 50 % chance to obtain the correct
bit value, the one originally encoded by Alice. Consequently,
the detection rate for translucent eavesdropping is the same
as the one derived for opaque eavesdropping.

2.3 Lower levels of eavesdropping

The above analysis for eavesdropping consequences is based
on the assumption that Eve tampers with all qubits transmit-
ted through the quantum channel. Here, tampering with a
qubit means either measuring or trying to clone it. If Eve is
caught, she gains no knowledge whatsoever about the con-
tent of the message. This happens because whenever Eve is
caught in Step 4 of Phase II of the protocol (see descrip-
tion at the beginning of Sect. 2), the protocol is abandoned.
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Fig. 5 The graph shows the
detection rate together with
Eve’s information gain for a
16-bit signature. The Ox axis
represents x , the percentage of
the signature read by Eve. The
Oy axis shows both the
detection rate and the
information gain

Alice does not reveal the correct order of the qubits and the
scrambled message is meaningless both to Eve and Bob.

Consequently, Eve could settle for a more discrete strat-
egy, according to the plan that partial information is better
than no information at all. If Eve decides to eavesdrop on
a fraction x of the qubits in the quantum encrypted block
transmitted, then the detection rate varies with x and with
the signature length n as follows:

rate = 1 −
(
3

4

)x ·n
, (4)

where 0 ≤ x ≤ 1 and n is the length of the signature, for
example n = 16 bits long.

In the eventuality that she remains undetected, the per-
centage of the message that Eve is certain she has correctly
decoded is 50 %. Thus the information gain on a fraction
x is x

2 . A graph depicting the variation of the detection rate
and information gain for various levels of eavesdropping is
presented in Fig. 5. The graph assumes a constant signature
length of 16 bits. A longer signature will, of course, push the
detection rates asymptotically closer to the 100 % limit.

From Eve’s point of view, probably the most pertinent
question is:What is the optimal level of eavesdropping such
that the probability of escaping detection and the knowledge
gained about the message are both maximized? To answer
this question, we need to find the maximum of a benefit func-
tion that quantifies both these quantities. A suitable function
is

fbenefit : [0, 1] → [0, 1], fbenefit(x) = x

2

(
3

4

)x ·n
. (5)

This function was obtained by multiplying the two quan-
tities, probability of escaping detection and the fraction of
the message correctly decoded, normalized to the interval
[0, 1]. As it can be seen from Fig. 6, this function reaches
its maximum for a level of eavesdropping of about 22 %, if

the signature string consists of 16 bits. This maximum drops
to 14 % for a 24-bit signature and to around 11 % for a 32-
bit signature. These data suggest that the best strategy for
Eve is to decrease the level of eavesdropping as the size of
the signature increases. However, the length of the signa-
ture string is disclosed only during the second phase of the
protocol, so Eve cannot use this information in planning her
eavesdropping strategy.

2.4 Security proof

Having discussed the main eavesdropping strategies for Eve,
we close this section with a formal proof of security for our
keyless protocol in the special case of single-qubit eavesdrop-
ping. As in the case of BB84, the security of the protocol is
guaranteed by the very laws of quantum mechanics, namely,
the indistinguishability of non-orthogonal quantum states,
the no-clonability theorem and the measurement postulate.
Since the qubits passing through the quantum channel are
encoded in complementary bases, there is no quantum circuit
Eve can use to consistently make copies of them or entangle
them with her measuring apparatus. To extract information,
Eve has to perform a measurement that will inevitably alter
the state of the qubit, an act which opens the possibility for
Bob to detect the intrusion.

Formally, any signature qubit on which Eve decides to
eavesdrop is in a state |ϕ〉 taken from the set {|0〉, |1〉, H |0〉,
H |1〉}. In general, the act of eavesdropping on a qubit can
be modeled by first applying some unitary transformation
U followed by a von Neumann measurement in an ortho-
normal basis {|m1〉, |m2〉}. Note that this model is general
enough to also cover strategies in which Eve may attempt
to copy the quantum state of the qubit or entangle it with
her measurement apparatus. According to the measurement
postulate of quantummechanics, the probability of obtaining
result mi is
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Fig. 6 The benefit of
eavesdropping versus the
detection rate

p(mi ) = 〈ϕ|U †PmiU |ϕ〉, (6)

where Pmi = |mi 〉〈mi | is the projector associated with mea-
surement outcome mi .

The qubit eavesdropped upon, now in state |mi 〉, is again
measured by Bob and the outcome verified with Alice. The
measurement applied by Bob is again a projective measure-
ment, either in the normal or Hadamard basis. This process
can be viewed as a measurement of observable

Z =
[
1 0
0 −1

]
= |0〉〈0| − |1〉〈1| (7)

with eigenvectors |0〉 and |1〉 on the state V |mi 〉, where V
= I , if Bob measures in the normal computational basis, and
V = H , if Bob measures in the Hadamard basis.

The only chance for Eve to consistently pass the verifica-
tion test between Alice and Bob is that state |mi 〉 coincides
with the initial state |ϕ〉 prepared by Alice. In other words,
the quantum state of the qubit is not altered by the eaves-
dropping action. However, according to the laws of quantum
mechanics, the vectors in the normal computational basis
{|0〉, |1〉} cannot be reliably distinguished from the vectors
in the Hadamard basis H |0〉, H |1〉} because they are non-
orthogonal. Consequently, for each qubit “observed” by Eve,
there is a non-zero probability that |mi 〉 �= |ϕ〉, which trans-
lates into a non-zero probability pd that what Bob observes
upon measuring this qubit is different from what Alice has
prepared.

From the point of view of ensuring the security of the
protocol, the actual valueof pd is irrelevant as long as pd > 0.
This is because the length of the signature string n acts as a
security parameter that can bring the probability of catching
Eve as close to 1 as desired:

lim
n→∞(1 − (1 − pd)

n) = 1. (8)

Even if the exact value of pd does not affect the security of
the protocol, it affects its efficiency. Consequently, in the next

section, we show how the efficiency of the protocol can be
improvedbyencoding eachbit in oneof three complementary
bases.

3 Encoding in three bases

We have discussed an algorithm that reveals the presence
of Eve whenever the signature test fails. For each bit of the
signature, Eve can be detected with a probability of 25 %.
This detection rate per qubit is common to all classical key
distribution protocols (Bennett and Brassard 1984; Bennett
1992).We hereby propose an encoding scheme that improves
the detection rate per qubit to 33 %. The improved detection
rate comes from encoding each qubit in three complementary
bases.Note that this detection rate is optimal, sincewe cannot
select more than three pairwise complementary bases for the
state space of a qubit. Expressing this in the geometry of the
Bloch sphere, we cannot have more than three lines going
through the center of the sphere that are perpendicular to
each other.

While working with three bases may seem to increase the
complexity in manipulating each qubit, the gates used for
encoding are common and simple. More precisely, in the
following protocol, the three bases used for encoding are
the computational basis, the Hadamard basis, and the phase-
shift-Hadamard basis. The phase-shift-Hadamard basis has
two gates applied to a qubit: a Hadamard gate and then a R π

2
rotation (see Fig. 7).

When Alice wants to send a binary digit 0 or 1, she first
prepares a qubit in the computational basis |0〉 or |1〉. Then
Alice chooses randomly one of the three bases to encode her
qubit:

1. The computational basis |0〉 and |1〉.
2. TheHadamard basis, 1√

2
(|0〉+|1〉) for 0 and 1√

2
(|0〉−|1〉)

for 1.
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Fig. 7 The phase-shift Hadamard basis

3. The R π
2
-Hadamard basis, 1√

2
(|0〉 + i |1〉) for 0 and

1√
2
(|0〉 − i |1〉) for 1.

If Alice chooses the computational basis, she simply sends
the qubit to Bob. If Alice chooses the Hadamard basis, then
she applies a Hadamard gate first and then sends the trans-
formed qubit to Bob. If Alice chooses the R π

2
-Hadamard

basis, Alice applies a Hadamard gate then a π
2 phase-shift

gate, and then sends the doubly transformed qubit to Bob.
According to the protocol, when Bob receives a qubit

from Alice, he waits to be informed on the classical channel
what encoding basis was used. Then he applies the necessary
gates in reverse order: the phase-shift gate first and then the
Hadamard gate.

3.1 What Eve can do

The eavesdropper can be supposed to know the mechanism
of encryption, while not knowing the random encoding basis.

In opaque eavesdropping, Evewill try tomeasure the qubit
intercepted from Alice and then will further transmit either
the measured qubit or a qubit of her choice to Bob. Eve
guesses one of the three encoding bases and treats the qubit
intercepted from Alice accordingly.

Suppose Eve tries the computational basis. If Alice’s qubit
is encoded in the computational basis, Eve reads the correct
value and remains undetected. If Alice’s qubit is encoded

in the Hadamard basis, Eve wrongly pushes Alice’s qubit
through a Hadamard gate and will be detected by Bob in
50 % of the cases. This situation is represented in Fig. 4.
If Alice’s qubit was encoded in the phase-shift -Hadamard
basis and Eve measures the qubit in the computational basis,
Eve destroys the balanced superposition. As in the previous
case, Bob can catch Eve with a 50 % chance. Figure 8 shows
an example of Alice encoding a binary 0 in the phase-shift-
Hadamard basis. Bob, by applying the same steps that Alice
did in reverse order will retrieve the initial 0 only 50 % of the
times. As Alice encodes a qubit randomly in one of the three
bases, and Eve reads the stolen qubit in the computational
basis, Eve will be caught in two situations with a chance of

50%. This yields an overall probability of 1
3

(
1
2+ 1

2

)
= 33%.

This chance is considerably higher than 25 % offered by two
bases encoding.

We supposed that Eve decides to measure the intercepted
qubit in the computational basis. If Eve chooses tomeasure in
any other of the three bases, a similar result can be obtained.
The detection probability is 33 % no matter what basis Eve
chooses.

If eavesdropping is tested on a larger signature, the detec-
tion rate increases sharply with the length of the signature
n:

rate = 1 −
(
2

3

)n

. (9)

Figure 9 shows a comparison on the detection rate for the
case of two encoding and three encoding bases, respectively.
The graph shows that for short signatures, the detection rate
for three encoding bases is measurably larger, whereas signa-
tures large than 25 qubits do not benefit from three encoding
bases.

3.2 Lower levels of eavesdropping

Let us study the optimal level of eavesdropping on the three
bases encoding scheme. Under the assumption that Eve is not
caught, Eve gains the value of the qubits that she has luckily
measured in the same basis asBob.As there are three possible
bases, Eve reads correctly 1

3 of the qubits she intercepts.

Fig. 8 Alice encodes her qubit
in the phase-shift-Hadamard
basis. Eve guesses the
computational basis. Bob
catches Eve with a 50 % chance
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Fig. 9 The graph shows the
detection rate versus the
signature length for three
encoding bases. The Ox axis
represents the length of the
signature string. The Oy axis
shows the probability for Eve to
be detected

Fig. 10 The graph shows the
detection rate together with
Eve’s information gain for a
16-bit signature. The Ox axis
represents the percentage of the
signature read by Eve. The Oy
axis shows both the detection
rate and the information gain

Suppose Eve does not listen to the entire qubit block, but
eavesdrops a fraction x . Therefore, she will disturb a fraction
x of the signature of length n. The detection rate varies with
x according to the following formula

rate = 1 −
(
2

3

)x ·n
. (10)

Also, x affects the information gain, which will be the frac-
tion x

3 of themessage. Figure 10 represents both the detection
rate and the information gain for the three bases encoding
scheme, computed on a signature of 16 bits. In the figure,
we also show with a thin line the graphs for encoding in two
bases, for comparison purposes. It can be seen that the three
bases protocol improves over the two bases protocol, both in
terms of detection rate as well as information gain.

In Sect. 2.3, we defined a benefit function that Eve uses to
find the optimal level of eavesdropping. For the three bases
encoding, the function becomes

Fig. 11 The benefit of eavesdropping versus the detection rate

fbenefit : [0, 1] → [0, 1], fbenefit(x) = x

3

(
2

3

)x ·n
. (11)

Figure 11 shows the graph of this function juxtaposedwith
the graph for the two bases encoding defined in Sect. 2.3. By
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Fig. 12 Information flow diagram outlining the steps of the general-
ized communication protocol

comparison, we see that the optimal level of eavesdropping is
approximately the same, about 22%.Nevertheless, for a three
bases encoding scheme the benefit is considerably lower.

4 Generalization to an arbitrary basis

In the previous two sections, we have described and analyzed
two protocols sharing the same idea of a random choice for
the encoding basis. The first protocol uses two complemen-
tary bases while the second protocol uses three complemen-
tary bases. In this section, we describe a general quantum
communication protocol in which the encoding basis can be
any ortho-normal basis spanning a two-dimensional Hilbert
space.

The information flow diagram describing the steps of this
generalized protocol is given in Fig. 12. The process starts
with Alice choosing an encoding basis for the bitstring she
wants to send to Bob. This bitstring is formed by the actual
message to which a signature bitstring is appended. The sig-
nature will allow Alice and Bob to detect anyone trying to
eavesdrop on the transmitted message. This means that every
bit in the plaintext block (message and signature) will be con-
verted to one of the two basis vectors of the quantum basis

Fig. 13 Encoding basis is a straight line through the center of theBloch
sphere, specified by a pair (θ, ϕ)

chosen. An intuitive graphical representation of an encoding
basis is a straight line going through the center of the Bloch
sphere. Such a line is fully specified by two real-valued para-
meters: the angle θ between the line and the z axis, and the
angle ϕ between the projection of the line on the equatorial
plane and the x axis (see Fig. 13). In some sense, this encod-
ing method is somewhat similar to anamorphosis, since the
actual message can only be “seen” when viewed from the
proper angle. With the major difference that attempting to
“read” the message from any angle except the correct one is
equivalent to a quantum measurement that will necessarily
alter the message.

Therefore, to choose an encoding basis, Alice needs to
decide on a pair (θ, ϕ). For example, the pair (0, 0) specifies
the computational basis, described by the two basis vectors
|0〉 and |1〉 aligned along the z axis (see Fig. 2). Alterna-
tively, pair (π/2, 0) specifies the Hadamard basis, described
by basis vectors H |0〉 = (1/

√
2)|0〉+(1/

√
2)|1〉 and H |1〉 =

(1/
√
2)|0〉−(1/

√
2)|1〉, aligned along the x axis (see Fig. 3).

As a last example, pair (π/2, π/2) specifies an encoding
basis whose base vectors are (1/

√
2)|0〉 + (i/

√
2)|1〉 and

(1/
√
2)|0〉 − (i/

√
2)|1〉. Note that these two vectors are ori-

ented in opposite directions along the y axis (see Fig. 7).
In general, for an arbitrarily chosen encoding basis (θ, ϕ),

each 0 bit in the plaintext is embodied in a qubit with the
quantum state

|�0〉 = RϕUθ |0〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉. (12)

Similarly, a qubit in the quantum state

|�1〉 = RϕUθ |1〉 = sin
θ

2
|0〉 − eiϕ cos

θ

2
|1〉 (13)

will carry a value of 1. The quantum operations (gates) Uθ

and Rϕ are described by the following matrices:

Uθ =
⎡
⎣
cos θ

2 sin θ
2

sin θ
2 − cos θ

2

⎤
⎦ ; Rϕ =

⎡
⎣
1 0

0 eiϕ

⎤
⎦. (14)
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Once the plaintext is properly encoded, Alice will scram-
ble the qubits so that signature qubits are scattered through-
out and interspersed with message qubits. Consequently, the
original ordering of bits in the message and in the signature
(the rank of each bit) will no longer be preserved after the
scrambling process. Whatever the scrambled quantum block
is, Alice will send it through the quantum channel over to
Bob, who will store each qubit received in a quantum mem-
ory, in the order they arrive. With this step, the quantum
communication part of the protocol, that is, communication
through the quantum channel is over. In the second phase, all
communication betweenAlice andBob is carried out through
the public authenticated classical channel.

This second phase starts with Alice disclosing to Bob
the exact encoding basis that she used to encrypt the plain-
text. With this information Bob is able to decrypt each qubit
(whether belonging to the message or to the signature) stored
in his quantum memory. Next, Alice shares with Bob the
position and value of each bit in the signature string. In this
way, they can verify that the signature string received by Bob
matches exactly the one sent by Alice. A perfect match will
be taken as proof that the encoded quantum block was not
tampered with while in transit, or at least not to a signifi-
cant level. Of course, a potential eavesdropper may remain
undetected if she is lucky enough not to disturb the quantum
states of the qubits in the signature. But this probability can
be made arbitrarily small by increasing the signature length.

Finally, if the verification step reveals no trace of an eaves-
dropper,Alice informsBob about the rank (actual position) of
each bit in the message string. This allows Bob to re-arrange
the bits in the proper order and thus recover the original
message.

4.1 Analysis

In what follows, we analyze the security of the protocol by
investigating the effects of a possible eavesdropping act on
the quantum and classical communication channels. Since
the quantum channel is public, an eavesdropper (conven-
tionally named Eve) may choose to act on any of the qubits
passing by on their way fromAlice to Bob. For concreteness,
but without loss of generality, let us analyze the scenario in
which Eve eavesdrops on a qubit encoding the value 0. The
other case, in which a qubit encodes a 1 is perfectly similar.

The quantum state of a qubit embodying a 0 is |�0〉 (see
Eq. 12). When Eve intercepts this qubit, she may try to mea-
sure it directly in the computational basis or try to guess what
the encoding basis may have been, so that she can decrypt the
qubit before measuring it. Let us denote the encoding basis
(the one chosen by Alice) by (θA, ϕA) and label the basis
guessed by Eve (θE , ϕE ). Trying to decrypt the qubit, Eve
applies R−ϕE followed byUθE to |�0〉 altering the qubit state
as follows:

UθE R−ϕE |�0〉 = UθE

(
cos

θA

2
|0〉 + ei(ϕA−ϕE ) sin

θA

2
|1〉

)

=
(
cos

θE

2
cos

θA

2
+ ei(ϕA−ϕE ) sin

θE

2
sin

θA

2

)
|0〉

+
(
sin

θE

2
cos

θA

2
− ei(ϕA−ϕE ) cos

θE

2
sin

θA

2

)
|1〉 (15)

Consequently, Eve will now measure a 0 with probability

p0Eve = | cos θE

2
cos

θA

2
+ ei(ϕA−ϕE ) sin

θE

2
sin

θA

2
|2

= cos2
θA − θE

2
− 1

2
sin θE sin θA(1 − cos�ϕ) (16)

and a 1 with probability

p1Eve = | sin θE

2
cos

θA

2
− ei(ϕA−ϕE ) cos

θE

2
sin

θA

2
|2

= sin2
θA + θE

2
− 1

2
sin θE sin θA(1 + cos�ϕ) (17)

where �ϕ = ϕA − ϕE .
Eve is aware that her actions may have modified the state

of the qubit, so before sending it further on toBob, shewill try
to undo the consequences of her eavesdropping by applying
UθE followed by RϕE . Therefore, what Bob receives (from
Eve) is a qubit in the state

|�0〉 = cos
θE

2
|0〉 + eiϕE sin

θE

2
|1〉 (18)

with probability p0Eve, or in the state

|�1〉 = sin
θE

2
|0〉 − eiϕE cos

θE

2
|1〉 (19)

with probability p1Eve.
Assuming that the qubit comes straight from Alice, Bob

now applies R−ϕA and UθA to decode it:

UθA R−ϕA |�0〉 =
(
cos

θA

2
cos

θE

2
+ ei(ϕE−ϕA) sin

θA

2
sin

θE

2

)
|0〉

+
(
sin

θA

2
cos

θE

2
− ei(ϕE−ϕA) cos

θA

2
sin

θE

2

)
|1〉 (20)

UθA R−ϕA |�1〉 =
(
cos

θA

2
sin

θE

2
− ei(ϕE−ϕA) sin

θA

2
cos

θE

2

)
|0〉

−
(
sin

θA

2
sin

θE

2
+ ei(ϕE−ϕA) cos

θA

2
cos

θE

2

)
|1〉 (21)

WhenmeasuringUθA R−ϕA |�0〉, Bobwill obtain 0with prob-
ability p0Eve. Similarly, if the state of the qubit receivedbyBob
is |�1〉, hewillmeasure a 0with probability p1Eve.Overall, the
probability that Bob correctly decodes the qubit and obtains
a 0 is (p0Eve)

2 + (p1Eve)
2. In this case, Eve’s eavesdropping

activity remains undetected. The probability of detection on
a single qubit is therefore:

pd,1=1−((p0Eve)
2+(p1Eve)

2)=2p0Eve p
1
Eve=2p0Eve(1 − p0Eve)

(22)
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This probability achieves its maximum of 1/2 when p0Eve =
p1Eve = 1/2. This happens when the basis guessed by
Eve (θE , ϕE ) is “maximally non-orthogonal” to the basis
(θA, ϕA) chosen by Alice. In BB84 (Bennett and Brassard
1984), for example, this maximum non-orthogonality is real-
ized by choosing horizontal/vertical together with diagonal
polarization. In terms of the Bloch sphere representation, two
bases are “maximally non-orthogonal” if the two straight
lines corresponding to the two bases are perpendicular to
each other. On the other hand, the detection probability is 0,
when Eve chooses the same basis as Alice (p0Eve = 1) or an
orthogonal basis in which the roles of the two basis vectors
are reversed (p0Eve = 0).

WhenAlice uses a signature bitstring of length n, the prob-
ability of detecting the disruptions caused by eavesdropping
on the qubits encoding the signature grows to

pd,n = 1 − ((p0Eve)
2 + (p1Eve)

2)n (23)

Since (p0Eve)
2 + (p1Eve)

2 = 2(p0Eve)
2 − 2p0Eve + 1 ∈ (0, 1],

it follows that

lim
n→∞ pd,n = 1, (24)

except for the particular case when Eve correctly guesses
the encoding basis (p0Eve = 1 or p1Eve = 1) and remains
undetected (pd,1 = pd,n = 0). Consequently, the longer the
signature string is, the larger the number of qubits that are
tested for eavesdropping and the higher the probability to
catch a potential eavesdropper.

4.2 Opaque eavesdropping

In the previous section, we have analyzed a rather elaborate
scheme for Eve to hide her presence and make her eaves-
dropping actions transparent to Alice and Bob. Even with all
those precautions, we have seen that the detection rate can
be pushed as high as desired by increasing the number of
bits tested for eavesdropping in the signature string. In this
section, we investigate a more direct, opaque eavesdropping
strategy in which Eve directly measures some or all of the
qubits traveling through the quantum channel from Alice to
Bob.

Again, without loss of generality, let us assume Eve inter-
cepts a qubit encoding a value of 0. Such a qubit is described
by quantum state |�0〉 (see Eq. 12). Upon measuring this
qubit in the normal computational basis, Eve will observe a
0 with probability p0Eve = cos2 (θ/2) and a 1 with probabil-
ity p1Eve = sin2 (θ/2), where θ is one of the two parameters
characterizing the encoding basis chosen by Alice. Accord-
ing to the measurement postulate of quantum mechanics, the
post-measurement state of the qubit must be compatible with
the measurement outcome, so Eve will pass on to Bob a qubit

in state |0〉 (with probability p0Eve) or a qubit in state |1〉 (with
probability p1Eve).

During the second phase of the protocol, after Alice has
disclosed the encoding basis, Bob can proceed to decrypt
the received qubits. Note that at this time, although Eve can
also eavesdrop on the classical communication channel and
thus gain knowledge of θ and ϕ, the message qubits are no
longer in her possession, so there is nothing else she can do
to increase her knowledge about the transmittedmessage. By
applying R−ϕ and Uθ to the received qubit, Bob will evolve
its quantum state to

Uθ R−ϕ |0〉 = cos
θ

2
|0〉 + sin

θ

2
|1〉 (25)

with probability p0Eve, or to

Uθ R−ϕ |1〉 = Uθ (e
−iϕ |1〉) = e−iϕ(sin

θ

2
|0〉 − cos

θ

2
|1〉)

(26)

with probability p1Eve. A measurement on these quantum
states will yield a 0 (correct decoding) with probability

cos4
θ

2
+ sin4

θ

2
= 1 − 2 sin2

θ

2
cos2

θ

2
= 1 − sin2 θ

2
(27)

and a 1 (incorrect decoding) with probability 1
2 sin

2 θ . Con-
sequently, the eavesdropping detection probability per qubit
varies between 0 (realized when θ = 0) and 1/2 (achieved
for θ = π/2). In other words, Eve remains undetected when
the encoding basis coincides with the normal computational
basis; on the other hand, there is a 50% probability of detect-
ing the actions of Eve if the encoding basis is “maximally
non-orthogonal” to the normal computational basis (like the
Hadamard basis {H |0〉, H |1〉}, for example). Therefore, on
average, the detection probability per qubit tested is given by

1
2

∫ π

0 sin2 θdθ

π
=

∫ π
2
0 sin2 θdθ

π
= 1

4
(28)

As in the more complex scenario discussed before, this prob-
ability can be brought as close to 1 as desired by increasing
the number of qubits tested for eavesdropping (the signature
string).

Another interesting question in this analysis is: Howmuch
information from the transmitted message can Eve gain,
assuming that she remains undetected? The condition to
remain undetected is essential for Eve. Otherwise, Alice will
not disclose to Bob the rank (correct position) of each qubit
in the message and consequently, the information gain for
Eve is null, even if she has correctly decoded each qubit.

A measure of the information gain is 1 − Hbin(p0Eve),
where Hbin(p0Eve) is the binary entropy associated with the
probability of seeing a 0whenmeasuring a qubit that encodes
a 0. We can express this information gain as a function of the
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Fig. 14 Information gain as a function of the encoding angle θ

parameter θ as follows:

1 − Hbin(p
0
Eve) = 1 + p0Eve log p0Eve + (

1 − p0Eve
)

× log
(
1 − p0Eve

) = 1 + cos2
θ

2
log cos2

θ

2
+ sin2

θ

2

× log sin2
θ

2
= 1 + 2 cos2

θ

2
log cos

θ

2
+ 2 sin2

θ

2
log sin

θ

2
(29)

The graph of this function is depicted in Fig. 14. When Eve
performs a direct measurement in the normal computational
basis on a qubit encoding a 0, she can be certain of the
observed value for an encoding angle θ of 0 or π . On the
other extremity, when θ = π

2 , the measurement provides no
information gain whatsoever. From Eve’s point of view, the
message bit could still be a 0 or a 1, with equal probability.
On average, the information gain is given by

∫ π

0

(
1 + 2 cos2 θ

2 log cos
θ
2 + 2 sin2 θ

2 log sin
θ
2

)
dθ

π
≈ 0.44

(30)

4.3 Variations

The role of the signature string in this general protocol is to
ensure (with a certain probability, which can be made arbi-
trarily large) its security or, in other words, the secrecy of the
communication between Alice and Bob. To this end, the bits
forming the signature are treated in exactly the same way as
the bits composing the actual message: they are scrambled
together and encoded according to a chosen basis (θ, ϕ).

Consequently, when attempting an eavesdropping, Eve has
no knowledge whatsoever if the bit she tampers with is part
of the signature or part of themessage. Ideally, shewould like
to eavesdrop only on the message bitstring to avoid detection
and maximize her knowledge on the message transmitted.
Unfortunately for her, the information gain is directly pro-
portional to the probability of being detected, so Eve has
to think twice before deciding to eavesdrop on a particular
qubit.

This property can be used to slightly simplify the protocol
such that the bits in the signature string are not encoded (or
equivalently, they are encoded in the normal computational
basis: 0 becomes |0〉 and 1 becomes |1〉). Now Eve can com-
pletely avoid detection by choosing tomeasure the bypassing
qubits directly in the standard computational basis. In this
way, the quantum states of the signature qubits will not be
altered, but the state of any message qubit will be projected
to one of the two eigenvectors of the measurement basis: |0〉
or |1〉.

Consequently, Alice may pick as encoding basis for the
message bitstring the Hadamard basis (π

2 , 0), which will
maximize Eve’s uncertainty over each measurement she per-
forms on themessage qubits. Effectively, the outcomeof each
such measurement has a 50 % probability of being correct,
which is not better than tossing a fair coin. Therefore, we
can confidently say that Eve has zero knowledge about the
true value encoded in such a qubit, or equivalently, the binary
entropy of such a qubit is 1.

This variant of the protocol, in which the message bits
are encoded using the Hadamard basis while the bits in the
signature are encoded in the normal computational basis, is
reminiscent of BB84 Bennett and Brassard (1984) with its
two encoding bases: horizontal/vertical and diagonal that are
randomly applied byAlice.Here, as there, it is the “maximum
non-orthogonality” of the two bases that keeps Eve in the
dark, but this protocol has an important advantage: it can
be used to directly encrypt any message without the need to
establish a secret key first. Still, the classical channel needs
to be authenticated, which is usually done with a small secret
key, but it was shown that this requirement is too strong and
all that is actually needed is protected public information
(Nagy and Akl 2007).

Since the price for avoiding detection is total uncertainty
about the transmitted message, Eve is forced to measure at
least some of the qubits in the Hadamard basis, thus exposing
herself to detection. The choice for Eve is a difficult one:
either try as much as possible to remain hidden, but then she
faces the prospect of gaining little information (if any at all)
about the content of the message, or aiming at decrypting
as much as possible from the transmitted message, which
increases the risk of being caught.And in case of detection, no
information is gained (zero knowledge), because Alice will
no longer reveal the proper order of the bits in the message.
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If the first variation discussed is one in which the com-
plexity of the protocol is decreased, the second one involves
an increase in complexity with the purpose of also decreas-
ing the probability of the worst case. In the original proto-
col, the worst case happens when Eve gets so lucky that she
guesses precisely the encoding basis (θ, ϕ) used by Alice.
We can think of a variation in which Alice randomly chooses
a pair (θ, ϕ) for every single bit transmitted. This will not
change the average-case analysis, butwill definitelymake the
worst-case much less probable, since Eve will have to get
lucky N times now, where N is the total number of bits
transmitted (message and signature together).

5 Conclusion

Quantum mechanical properties have been used before in
cryptographic protocols, but only for key distribution pur-
poses, or more precisely for key enhancement, if authentica-
tion is achieved through a small secret key already distrib-
uted to the parties involved. In this paper, we have shown that
secret communication does not need an encryption key. The
secrecy of themessage ensues from randomly scrambling the
order of the bits in the message. As the bits are sent in ran-
dom order, the scrambled message does not reveal anything
about the content of the message. The correct order of the
qubits is revealed publicly after the absence of an intruder is
checked. Our protocols are entanglement free and use only
unary quantum transformations, which means that the com-
putational power assumed is less than that of a universal
quantum computer. Consequently, communicating securely
through public channels can be performed simple, fast and
efficient ifwe resort to quantummechanics to directly encrypt
the transmitted message into a sequence of qubits.

All protocols presented benefit from the capability of
detecting an intruder, a trait which is unique to quantum
protocols. The intruder, Eve, leaves an unmistakable mark
on the qubits she read: she changes the intended value of the
qubit with a certain probability. Our scheme has an improved
intruder detection rate of 33 % (from 25 %) per intercepted
qubit. This is achieved using three complementary encoding
bases. Eve’s presence is searched on a signature, as in all
other protocols. Our paper also gives an extensive analysis
on what Eve can do: opaque and translucent eavesdropping,
and also low levels of eavesdropping. It studies the advan-
tages of Eve and the maximum benefit Eve can get from a
certain signature length.

The two important ideas that made these results possible
are the use of a quantum memory and bringing the rank (or
position) of a bit in the message bitstring into play. The use
of a quantum memory is essential to make “informed” mea-
surements in the second phase of the protocols, after all the
qubits have been received. Consequently, no qubits have to be

discarded due to “incorrect” measurements, which translates
into increased efficiency in terms of the number of qubits that
need to be transmitted. Yet, storing qubits is rarely contem-
plated (if ever) in quantum protocols, perhaps due to their
fragility and ephemeral nature. Nevertheless, experimental
quantum physicists are making good progress towards mak-
ing quantum memories a practical reality.

Scrambling the qubits encoding the message, on the other
hand, guarantees that no knowledge whatsoever about the
content of the message is gained by a potential eavesdropper,
even in the highly unlikely eventuality of correctly decoding
the individual bits in the message. It is our belief that the
synergy of these two ideas working together may open the
door for a whole new class of cryptographic protocols with
superior characteristics.
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