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Abstract In this paper,we introduce agenericway to repre-
sent andmanipulate pairwise information about partial orders
(representing rankings, preferences, ...) with belief functions.
We provide generic and practical tools to make inferences
from this pairwise information and illustrate their use on
the machine learning problems that are label ranking and
multi-label prediction. Our approach differs from most other
quantitative approaches handling complete or partial orders,
in the sense that partial orders are here considered as pri-
mary objects and not as incomplete specifications of ideal
but unknown complete orders.

Keywords Dempster–Shafer theory · Belief functions ·
Paired comparisons · Partial orders · Label ranking ·
Multilabel classification

1 Introduction

The need to quantitatively model order structures and make
inference about them is present in many fields: rank manip-
ulation in statistics (Marden 1995), preference modelling
in multi-criteria decision making (Grabisch and Labreuche
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2008), preference learning (Fürnkranz and Hüllermeier
2010), decision theory, etc.

Orders being complex structures, information about them
is often incomplete or uncertain. However, while the need to
consider partial observations of complete orders in the pre-
viously mentioned fields have been quickly acknowledged,
quantitative methods still focus mainly on representing and
inferring complete orderings (this is in contrast with more
qualitative representations, such as CP-nets, Boutilier et al.
2004, that are tailored to model partial orders).

It is only recently that the task of inferring partial orders
has gained some interest in fields such as learning to
rank (Cheng et al. 2010, 2012) or learning multi-criteria
aggregation functions (Labreuche2010) (note that this task of
inferring partial orders is quite different from trying to choose
a unique representation from partial informations, Greco et
al. 2011). Even in these cases, partial orders are seen as
incomplete but reliable inferences concerning ideals underly-
ing complete orders, about which we have insufficient infor-
mation.

This paper takes a quite different perspective, as partial
orders are here considered as the primary objects, meaning
that linear orders are merely a special case of the presented
framework. More precisely, this work proposes to use belief
functions bearing on the relation between pairs of objects
and to infer information about partial orders from them.
It provides generic as well as pragmatic tools to perform
inferences. Belief functions indeed provide interesting uncer-
tainty models to model partial information about orders: they
allow to mix imprecise observations and belief degrees in a
single setting, thus formally putting sets and probabilities
under a common umbrella. One of the main contributions
of this paper is to provide a framework where the incompa-
rability relation of partial orders is explicitly modelled (in
our case as a specific focal element), a feature that, as far as
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we know, is not present in works dealing with quantitative
models of orders.

There are only few other works that deal with belief func-
tions defined over partial orders. Among them, the work of
Tritchler andLockwood (1991) is probably the oldest one, but
it remains very theoretical (not providing practical inference
tools) and does not explicitly model incomparability. Utkin
(2009) also proposes belief functions to work with partial
orders, but considers frequencies of pairwise comparisons
between groups of objects (i.e., imprecise observations) and
no incomparability, while we consider pairwise comparisons
between single objects and models incomparability, without
necessarily referring to a frequentist interpretation.

The main framework we use is presented in Sect. 3, and is
then illustrated in Sect. 4 on two problems of machine learn-
ing: label ranking and multilabel classification. Section 2
recalls the necessary elements of belief function theory.

2 Belief functions

TheTheoryofBelief Functions (also referred to asDempster–
Shafer or Evidence Theory) has been proposed by Shafer
(1976) as a general model of uncertainties. Bymixing proba-
bilistic and set-valued representations, it allows to represent
degrees of belief and incomplete information in a unified
framework, which makes it adequate to model uncertainty
about orders or preferences between objects. Indeed, pref-
erences are most often partially observed and may be sub-
ject to various uncertainties (e.g., a decision maker can be
quite uncertain about her/his preferences, or the preferences
between different agents may be based on quite different
amount of data).

Let us consider an uncertain variable ω taking values in a
finite and unordered set � (in our case, this will be the set
of asymmetric relations bearing on a set � = {λ1, . . . , λc}
of c objects) called the frame of discernment. Within belief
function theory, the belief or the information regarding the
actual value taken by ω is represented by a mass function
Shafer (1976) and Smets and Kennes (1994) defined as a
function m� from 2� to [0, 1], verifying

∑

A⊆�

m�(A) = 1, (1)

and

m�(∅) = 0. (2)

The notation m� will be simplified to m when there is no
ambiguity about the frame of discernment. The sets A of �

such that m(A) > 0 are called focal sets of m. Each focal set
A represents a set of possible values for ω, and the quantity

m(A) can be interpreted as a fraction of a unit mass of belief,
which is allocated to A on the basis of a given evidential cor-
pus. Complete ignorance corresponds tom(�) = 1 (vacuous
mass), and perfect knowledge of the value ofω is represented
by the certain mass assigning the whole mass of belief to a
unique singleton of �. A mass function is said to be logical
if it has only one focal set. A mass function is simple if it has
at most two focal sets, including �.

Any mass function can be equivalently represented by a
belief function bel, a plausibility function pl and a common-
ality function q defined, respectively, by

bel(A) �
∑

B⊆A

m(B), (3)

pl(A) �
∑

B∩A �=∅
m(B), (4)

q(A) �
∑

B⊇A

m(B), (5)

for all A ⊆ �. The belief function quantifies how much
event A is implied by the information, as it sums up masses
of sets included in A and whose mass is necessarily allocated
to A. The plausibility function quantifies how much event A
is consistent with our information, as it sums masses that
do not contradict A, i.e., whose intersection with A is non-
empty. The commonality is harder to interpret, but possesses
mathematical properties that we will exploit in this paper.
The first of them is that for any singleton ω ∈ �, we have
pl({ω}) = q({ω}).

Two mass functions m1 et m2 on � representing two dis-
tinct pieces of evidencemay be combined byDempster’s rule
of combination. The resulting mass functionm⊕ = m1⊕m2

is given by

m⊕(A) � 1

1 − K

∑

B∩C=A

m1(B)m2(C), (6)

with K , called the degree of conflict, defined as the mass
m(∅) given to the empty set, i.e.,

K �
∑

B∩C=∅
m1(B)m2(C). (7)

Dempster’s rule of combination may be equivalently expres-
sed using commonalities as

q⊕(A) = 1

1 − K
q1(A)q2(A) ∀A ⊆ �, (8)

where q1(A) and q2(A) are, respectively, the commonalities
associated tom1 andm2. This provides a very easy means to
express the result of Dempster’s rule on events A ⊆ �, and
we will make heavy use of it in the next sections.
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3 Partial order prediction in the framework of belief
functions using a pairwise approach

3.1 Problem statement, notations

Let � = {λ1, . . . , λc} denote the set of c possible objects
(labels, alternatives, etc.). A binary relation R ⊆ � × � is
asymmetric if (λi , λ j ) ∈ R ⇒ (λ j , λi ) /∈ R, and we will
denote by A the set of asymmetric relations defined over �.

A strict partial order over � is a binary relation that is
transitive1 and asymmetric, and we will denote byR the set
of such partial orders over�. In this latter case (λi , λ j ) ∈ R,
also written λi �R λ j , indicates that λi is strictly higher than
(preferred to) λ j . If neither λi �R λ j nor λ j �R λi holds,
λi and λ j are said to be incomparable and we will denote it
by λi ≺�R λ j .

A partial order R is a total (or linear) order if it satisfies
the additional completeness property stating that, for every
λi , λ j ∈ �, either λi �R λ j or λ j �R λi must hold. As
explained in the introduction, one of themain contributions of
this paper is to introduce variousmeans to perform inferences
on the spaceR or on one of its subspace, given that our initial
information comes in the form of belief functions bearing on
the c(c−1)/2 pairs λi , λ j , i < j of labels.

Considering such pairwise decomposition is common
when dealing with orders, as the space we are working on
quickly becomes huge as c increases. Indeed, with c = 8,
there are already 431,723,379 possible partial order relations
(source On-line Encyclopedia of Integer Sequences, http://
oeis.org/A001035) and 8! = 40, 320 linear orders. Directly
working on R would be computationally prohibitive and
hence the interest of decomposing the problem into a set
of simpler ones.

3.2 Combination of pairwise belief functions

For each pair {λi , λ j }, i < j we consider that the informa-
tion about the relation between λi and λ j provided by some
source (e.g., a classifier as in Sect. 4, a decision maker, a
recommendation system) is expressed using a mass func-
tion quantifying the uncertainty related to this relation and
denoted by m�i j . This mass function has the following gen-
eral form:

⎧
⎪⎪⎨

⎪⎪⎩

m�i j (λi � λ j ) = αi j ,

m�i j (λ j � λi ) = βi j ,

m�i j (λi ≺� λ j ) = γi j ,

m�i j (A) = 1 − αi j − βi j − γi j ,

(9)

with λi � λ j , λ j � λi , and λi ≺� λ j being short notations
for the events {R ∈ A : (λi , λ j ) ∈ R}, {R ∈ A : (λ j , λi ) ∈

1 (λi , λ j ), (λ j , λk) ∈ R ⇒ (λi , λk) ∈ R.

R}, and {R ∈ A : (λi , λ j ) /∈ R and (λ j , λi ) /∈ R}, respec-
tively. Note that the abovemassmay give a positive weight to
incomparability, which implicitly means that such incompa-
rability can be observed. While this is a reasonable assump-
tion in some cases, such as when decision makers are unable
to compare two alternatives, or in learning problems where
observations are partial orders (e.g., multilabel prediction,
see Sect. 4), in others (e.g., label ranking) assuming incom-
parability can be observed may turn out to be unreasonable,
in which case one can simply impose γi j = 0 in (9).

When the observation is the preference λi � λ j with some
reliability αi j , then this can be modelled by setting γi j =
0 and βi j = 0 in Expression (9). Similarly, observing the
preference λ j � λi with some reliability βi j can bemodelled
by setting γi j = 0 and αi j = 0.

The combination of the c(c−1)/2 pairwise mass functions
defined by (9) may be seen as an information fusion problem
and Dempster’s rule of combination may be used to this end.
Applying Dempster’s rule yields

mA = m�12 ⊕ m�13 ⊕ · · · ⊕ m�(n−1)n , (10)

This combination can be computed equivalently using the
commonalities by

qA =
∏

i< j

q�i j . (11)

Since the focal elements of two distinct masses m�i j and
m�k
 will contain information about different pairs of labels
{λi , λ j }, {λk, λ
}, the intersections between the focal ele-
ments ofm�i j and ofm�k
 will be non-empty, and the results
of these intersections will be asymmetric relations. In partic-
ular, this also means that in our case the value of K in (6)
will be null.

Example 1 Let � = {λ1, λ2, λ3}. Let us consider the fol-
lowing focal elements, respectively, taken from m�12 , m�13

and m�23

– λ1 � λ2 := {{(λ1, λ2), (λ2, λ3), (λ1, λ3)}, {(λ1, λ2),
(λ2, λ3), (λ3, λ1)}, {(λ1, λ2), (λ3, λ2), (λ1, λ3)},
{(λ1, λ2), (λ2, λ3), (λ1, λ3)}, {(λ1, λ2), (λ3, λ2)},
{(λ1, λ2), (λ2, λ3)}, {(λ1, λ2), (λ1, λ3)},
{(λ1, λ2), (λ3, λ1)}, {(λ1, λ2)}}

– λ1 ≺� λ3 := {{(λ1, λ2), (λ2, λ3)}, {(λ1, λ2), (λ3, λ2)},
{(λ2, λ1), (λ2, λ3)}, {(λ2, λ1), (λ3, λ2)}, {(λ1, λ2)},
{(λ2, λ1)}, {(λ3, λ2)}, {(λ2, λ3)}}

– A

The focal element φ resulting from the intersection of
λ1 � λ2, λ1 ≺� λ3 and A is the set composed of the three
following partial asymmetric relations:

φ = {{(λ1, λ2), (λ2, λ3)}, {(λ1, λ2), (λ3, λ2)}, {(λ1, λ2)}}.
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The mass of φ resulting from the combination is

mA(φ) = m�12(λ1 � λ2)m
�13(λ1 ≺� λ3)m

�23(A). (12)

3.3 Inferences on partial orders

The combination (10) allocates masses to various sets of
asymmetric relations defined on � × �. However, the focus
of this paper is on partial orders R (a subset of A), and we
will now explain howwe can go from amodel on the spaceA
to inferences onR. From (10), finding a partial order belong-
ing to some specific set S ⊆ R can be done by finding the
element within S that has the maximum plausibility, that is
by finding

ω̂ = argmax
ω∈S

plA({ω}). (13)

Using the maximum of plausibility on singletons has been
recently proposed as an efficient decision tool in many prob-
lems involving belief functions (El Zoghby et al. 2013;
Denœux and Masson 2012). It also corresponds to a max-
imax type of decision (thus adopting an “optimistic” crite-
rion, Troffaes 2007) or to the decision that would be taken
using the plausibility transform (Cobb and Shenoy 2006).

Rather than directly computing (13), we could first con-
dition on the space S and then find the element of the condi-
tioned belief function with the highest plausibility. Actually,
the decision given by (13) is also consistent with such an
approach. Indeed, recall that conditioning on a set B with
Dempster’s conditioning gives the conditioned plausibility
measure pl(A|B) = pl(A∩B)/pl(B), hence for any ω,ω′ ∈ B
if pl(ω) ≤ pl(ω′), then pl(ω)/pl(B) ≤ pl(ω′)/pl(B), meaning that
the ordering on singleton plausibilities before or after condi-
tioning remains unchanged.

Using the fact that plausibilities coincide with common-
alities on singletons, plausibilities of singletons can be easily
expressed as a product of plausibilities of combined belief
functions using Eq. (11). Let us consider an element R ofR.
As R is a singleton, we have that

⎧
⎨

⎩

q�i j ({R}) = 1 − βi j − γi j if λi �R λ j ,

q�i j ({R}) = 1 − αi j − γi j if λ j �R λi ,

q�i j ({R}) = 1 − αi j − βi j if λ j ≺�R λi .

(14)

Using (14) and (8), the commonality/plausibility of R can be
written as

qA({R}) = plA({R}) ∝
∏

λi�Rλ j

(1 − βi j − γi j )

×
∏

λl�Rλk

(1 − αkl − γkl)
∏

λm≺�Rλn

(1 − αmn − βmn).

(15)

Given the size of the spaceR (or one of its subset of inter-
est), finding the most plausible order relation obviously can-
not be doneby enumeration. This iswhywepropose a generic
approach to get this most plausible relation, this approach
consisting of reformulating the problem as a binary integer
linear programming problem to which can then be applied
state-of-art techniques issued from optimization. First, we
introduce the binary variables ri j , i, j = 1, . . . c defined by
{

λi �R λ j ⇐⇒ ri j = 1 and r ji = 0,
λi ≺�R λ j ⇐⇒ ri j = 0 and r ji = 0.

Let us now define, for each i < j :
⎧
⎪⎪⎨

⎪⎪⎩

X (1)
i j = ri j (1 − r ji ),

X (2)
i j = r ji (1 − ri j ),

X (3)
i j = (1 − ri j )(1 − r ji ).

Expression (15) can be rewritten using these new binary vari-
ables as

plA({R}) ∝
∏

i< j

(1−βi j−γi j )
X (1)
i j (1−αi j−γi j )

X (2)
i j (1−αi j−βi j )

X (3)
i j .

(16)

Maximizing expression (16) is equivalent to maximizing its
logarithm so that the most plausible relation ω̂ ∈ A may
be found as the solution of the following binary integer pro-
gramming problem:

max
X (k)
i j ∈{0,1}

∑

i< j

X (1)
i j ln (1 − βi j − γi j )

+
∑

i< j

X (2)
i j ln (1 − αi j − γi j )

+
∑

i< j

X (3)
i j ln (1 − αi j − βi j ). (17)

subject to

3∑

k=1

X (k)
i j = 1 ∀i < j, (18)

this constraint ensuring that only one alternative between
λi � λ j , λ j � λi and λi ≺� λ j will be chosen. Depending
on the nature of the relation we want to retrieve (or condition
on), additional constraints may be imposed, as we shall now
detail for partial orders, linear orders and bipartite rankings.

Partial orders the property of transitivity satisfied by par-
tial orders can be encoded by the following constraint:

ri j + r jk − 1 < rik ∀i, j, k, (19)

that has to be added to (18) to ensure that the solution of (17)
will be a partial order. It can be expressed using the variables
of the problem since the following equations hold:
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ri j =
⎧
⎨

⎩
1 − X (2)

i j − X (3)
i j if i < j,

1 − X (1)
i j − X (3)

i j if i > j.
(20)

Linear orders a linear order is a partial order without
incomparability. Basically, there are two ways within our
framework to obtain linear orders: either set γi j = 0 for
all i ≤ j in (9) and solve (17) under constraints (18)–(19),
so that partial orders with incomparability cannot have the
highest plausibility, or simply add the constraint

X (3)
i j = 0 ∀i < j (21)

stating that λi , λ j cannot be incomparable.
Bipartite rankings a (partial) bipartite ranking consists in

dividing the objects or labels in two subsets: the preferred
ones and the non-preferred ones. In practice, this means that
there cannot be three objects λi , λ j , λk such that λi � λ j �
λk , as there are only two subsets. Such kind of partial orders
are at work, e.g., in multilabel classification problems. This
can be encoded by adding the constraints

ri j + r jk ≤ 1 ∀i, j, k. (22)

to constraint (18). Multipartite ranking, where K ordered
subsets L1, . . . , Lk of objects must be constructed, can be
modelled by extending constraints (22) to more than triplets
of objects and by adding transitivity constraints.

Partial orders, linear orders and multipartite rankings are
only some examples illustrating the flexibility of our frame-
work, since many constraints are very easy to formulate
within it. For instance, it is straightforward to impose some
(known) relation to hold, simply by constraining the vari-
ables X (k)

i j to adequate values. It would also be interesting to
investigate if some specific families of partial orders, such
as interval orders or semi-orders, can be easily expressed
through constraints.

4 Applications

We now illustrate how our approach can be applied to some
well-known and difficultmachine learning problems, namely
label ranking and multilabel classification. These kinds of
problems find applications in various domains like music or
text categorization, bioinformatics, semantic classification of
images, recommendation systems (Boutell et al. 2004; Elis-
seeff andWeston 2001; Li and Ogihara 2006; Ueda and Saito
2002, ...). In particular, we explore how partial rankings can
be predicted for the label ranking problemusing our approach
and the interest of explicitly modelling the incomparability
in the multilabel problem.

Fig. 1 Pairwise decomposition in case of label ranking

In traditional (single-label) classification, it is assumed
that each observation x of an input spaceX is associated with
a single label λ from a finite possible set � = {λ1, . . . , λc}.
The task is then to learn the mapping or classifier from X
to � using a training set of n observations (xi , yi ) with xi
in X and yi ∈ �. Label ranking and multilabel settings dif-
fer from the assumptions of the traditional one in the sense
that it is assumed that with each observation is associated a
linear order (possibly imprecisely observed) in the case of
label ranking and a set of relevant labels defining a bipartite
ranking in the case of multilabel prediction.

4.1 Label ranking

In the label ranking setting Vembu and Gärtner (2011), each
instance xi is associated with a linear order Ri over �, pos-
sibly partially observed. Rather than training one classifier
over all possible orderings (whose number is c!), a common
strategy is to decompose the problem into pairwise prefer-
ences, and to train c(c−1)/2 classifiers, that is one for each pair
of labels (Hüllermeier et al. 2008). Other approaches propose
to estimate the mapping between instances and complete or
partial rankings by learning a utility function for each label
(e.g., by constraint classification or log-linear models), from
which a ranking can then be deduced (Dekel et al. 2003;
Har-Peled et al. 2003).

The pairwise decomposition applied to an illustrative data
set is pictured by Fig. 1. From this figure, one can see that
this decomposition tackles the problem of missing data in
a straightforward way, as missing pairwise preferences will
simply mean less data in the corresponding split.

In the usual label ranking setting, the goal is to predict a
linear order as close as possible to the observed one (note that,
in the case of label ranking, the notion of closeness can be
modelled by various loss functions, Hüllermeier et al. 2008).
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However, someauthors have recently discussed the interest of
producing not linear orders, but partial orders as predictions
(Cheng et al. 2010). The idea behind such predictions is close
to the one of the reject option (Chow 1970) in traditional
classifiers or to credal classification (Zaffalon 2002), that is
to abstain to make precise predictions when the available
information is insufficient.

As our framework is tailored to infer partial orders,wefirst
apply it in this context of label ranking with partial absten-
tion and compare it to the approach of Cheng et al. (2010),
first considered by Rademaker and De Baets (2010) in the
general setting of partial order aggregation. The method of
Cheng et al. is based on the principle of classifier ensembles.
Instead of training a single model, the idea is to train k binary
probabilistic classifiers by creating k bootstrap samples from
the original data. In this way, k estimates p̂


i j , 
 = 1, . . . , k of
the probability P(λi � λ j ) are thus available. For each pair
of labels {λi , λ j }, a preference degree P(λi , λ j ) is defined as
the fraction of classifiers for which λi is preferred λi to λ j :

P(λi , λ j ) = 1

k
|{
 : p̂


i j > 0.5}|. (23)

Then, a binary relation is derived by thresholding the prefer-
ence degrees:

Rα = {(λi , λ j ) : P(λi , λ j ) ≥ α}, (24)

where the threshold α is such that α >
�k/2�
k , where �x�

denotes the integer part of x . Note that, by construction,
the number of possibly different values in P , and conse-
quently the number of possible thresholds, is directly related
to the number of bootstrap replicates. The authors underline
that, for a given threshold, especially if it is low, the relation
obtained is not necessarily transitive and may even contain
cycles. The transitivity may be easily enforced by computing
the transitive closure, but guaranteeing the absence of cycle
is more problematic. The authors propose a procedure to find
the minimum value of α such that the transitive closure of
the partial relation is a strict partial order relation. By vary-
ing the value of the threshold, different relations are obtained:
the larger the α value, the less informative the corresponding
relation (i.e., the more incomparabilities it contains).

To compare our approach with the one of Cheng et al.
(2010), we follow the following procedure:

1. we build k bootstrap replicates of the learning set;
2. from each bootstrap sample, we train c(c−1)/2 classifiers;
3. for a fixed threshold τ , we compute m�

i j as follows:

⎧
⎪⎨

⎪⎩

m�i j (λi � λ j ) = 1
k |{l : p̂li j > 0.5 + τ }|,

m�i j (λ j � λi ) = 1
k |{l : p̂li j < 0.5 − τ }|,

m�i j (λi ≺� λ j ) = 1
k |{l : 0.5 − τ < p̂li j < 0.5 + τ }|,

(25)

Table 1 Data sets description for label ranking

Data set # Features # Labels # Instances

Iris 4 3 150

Wine 13 3 178

Glass 9 6 214

Vehicle 18 4 846

Pendigits 26 10 2,199

Segment 18 7 2,310

Cold 24 4 2,465

Heat 24 6 2,465

where it is clear that the higher τ is, the more incompa-
rabilities are favoured.

4. To take account of the different performances of each
classifier, a discounting operation (Shafer 1976) is
applied to eachmassm�i j . For a givenmass, let ε ∈ [0, 1]
be the average of the k values of mean squared error
obtained on the training set; then m�i j is transformed
into εm�i j such that

{
εm�i j (A) = (1 − ε)m(A) ∀A �= A,
εm�i j (A) = (1 − ε)m(A) + ε,

(26)

The coefficient ε is usually interpreted as the unrelia-
bility of the source of information (Smets 1993): when
ε is equal to 1, m becomes the vacuous mass function,
and when ε = 0 the information is fully reliable and m
remains unchanged.

5. The most plausible partial order is computed by solv-
ing problem (17) under constraints (18)–(19). By varying
the value of τ (τ ∈ [0; 0.5[), different partial orders are
obtained: the larger the τ value, the less informative the
corresponding relation.

We applied this strategy to eight data sets presented in
Hüllermeier et al. (2008). The first six datasets are multiclass
data sets from the UCI machine learning repository (Bache
and Lichman 2013) that have been transformed into label
ranking data by a procedure proposed in Hüllermeier et al.
(2008). A naiveBayes classifierwas trained on the entire data
set. Then, for each instance, the labels were ordered accord-
ing to the predicted class probabilities.2 The last two datasets
(cold and heat) are real-world data sets originating from the
bioinformatics field and are described in Hüllermeier et al.
(2008). All these data sets are described in Table 1.

To evaluate the performance of the methods, we use two
measures proposed in Cheng et al. (2010). The first one,
correctness, quantifies how the predicted (partial) ranking

2 The data sets are available at http://www.uni-marburg.de/fb12/kebi/
research/repository/labelrankingdata.
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matches the observed ranking, whereas the second one is
intended to measure the degree of completeness of the rela-
tion. A good method predicting partial orders should see its
correctness increase as the completeness decrease, and there
is usually a trade-off to find between these two criteria. They
can be formally defined as follows: let (xi , Li ), i = 1, n,
denote the test set. Li is the true linear order relation on
� × � and let Ri denote the partial (or linear) order com-
puted by the method. For each xi , a pair of labels {λk, λl} is
said to be concordant if

((λk, λl) ∈ Li and (λk, λl) ∈ Ri ) or

((λl , λk) ∈ Li and (λl , λk) ∈ Ri ).

It is said to be discordant if

((λk, λl) ∈ Li and (λl , λk) ∈ Ri ) or

((λl , λk) ∈ Li and (λk, λl) ∈ Ri ).

Let ci and di denote the number of concordant and discordant
pairs of alternatives for sample (xi , Li ), respectively. The
correctness measure for the test set is defined as

Correctness = 1

n

n∑

i=1

ci − di
ci + di

,

whereas the completeness is defined by

Completeness = 1

n

n∑

i=1

ci + di
n(n − 1)/2

.

The performances of our method were compared to those of
Cheng et al. (2010). For both methods, the base learner was
a logistic regression. The number of bootstrap replicates was
fixed to 11. The results reported in Fig. 2 are the mean values
computed over five repetitions of a tenfold cross-validation
procedure.As already explained, for some instances,Cheng’s
et al. method fails at finding an acyclic relation for low val-
ues of threshold, unlike our method which is able to find a
solution in any situation. As an illustration, Table 2 gives the
average rate of non-responses of Cheng’s method, computed
over five repetitions for different data sets with α = 0.5. The
instances for which no relation is found are usually complex
cases. So, for the comparison to be fair, completeness and
correctness are computed only over instances for which a
relation is found by both methods.

Our results and the results of Cheng et al. are represented,
respectively, by solid and dashed lines. From these experi-
ments, the following conclusions may be drawn:

1. As expected, for both methods, partial abstention leads
to improved correctness, that is the abstention is done on
poorly reliable predictions. For some data sets, a signifi-
cant gain in performance can be achieved without losing
too much completeness.

2. The performances of the twomethods are very similar for
large values of completeness, but it can be seen that our
approach (1) usually provides better correctness results
when completeness decreases and (2) is able to span a
wider range of completeness values, as it can go from
linear to vacuous order.

Another, perhaps surprising observation is that providing cor-
rect predictions seems much more difficult on the genuine
label rankingdata sets (onwhichourmethod clearly performs
better when allowing for partial orders) than on the synthetic
label ranking data sets. This suggests that the synthetic data
sets are much more regular than genuine label ranking prob-
lems, in which case it appears important to consider the two
kind of sets when assessing label ranking methods.

Note that we have checked that always giving a response
does not decrease dramatically the performance of our
method. For example, looking for a complete relation, the
correctness degree for the iris data set is equal to 0.88 when
it is computed using the entire data set instead of 0.9, and to
0.86 instead of 0.88 for the glass data set.

4.2 Multilabel classification

In the multilabel setting (Tsoumakas et al. 2010), each
instance can be associated simultaneouslywith one or several
labels. This association implicitly defines a bipartition of the
labels into relevant and irrelevant labels. The task we con-
sider in this section is thus to learn a mapping from X to the
powerset of � from the training data (xi ,Yi ), i = 1, . . . , n
with xi in X and Yi ⊆ �.

In recent years, many approaches have been suggested
to solve this problem. A review of these methods can be
found in Tsoumakas and Katakis (2007) and Tsoumakas et
al. (2010). Also, Madjarov et al. (2012) have proposed an
extensive experimental comparison of the methods. In their
paper, the performances of 12 methods are studied according
to different evaluation measures/loss functions. The meth-
ods are divided into three categories: algorithm adaptation,
problem transformation and ensemble methods. Algorithm
adaptation methods extend existing machine learning algo-
rithms to the problem of multi-label classification. Problem
transformationmethods aremulti-label learningmethods that
transform the multi-label problem into one or more single-
label problems, like the pairwise approach used in this paper.
Ensemble methods use problems transformation methods or
algorithms adaptation as base classifiers. A summary of all
these methods is given in Table 3.

Classically, the transformation of the multilabel prob-
lem into an ordering problem somehow assumes that obser-
vations Yi are incomplete observations of complete rank-
ings (Fürnkranz et al. 2008). The task is then to learn how
to predict complete rankings out of these observations, and
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Fig. 2 Correctness versus
completeness for different data
sets (dashed line, triangles:
Cheng et al. method; solid line,
squares: our method)
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a multilabel prediction is then obtained by “cutting off” the
order between relevant and irrelevant labels.

Our approach is different, and as far as we know has not
been proposed before in amultilabel setting: we try to predict
not a complete order, but directly a partial order correspond-
ing to a bipartite ranking. In particular, this means that we

include incomparabilities as observations. More precisely, in
the training set labels incomparability between λ j , λk will be
observed in Yi if either λ j , λk ∈ Yi or λ j , λk /∈ Yi ; other-
wise λ j � λk when λ j ∈ Yi , λk /∈ Yi . A noticeable differ-
ence with viewing multilabel observations as incompletely
observed linear ordering is that in our case, if all multilabel
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Table 2 Non-response rate for Cheng’s et al. method (α = 0.5)

Data set Rate (%)

Iris 5.47

Wine 0.2

Glass 5.51

Vehicle 1.61

Authorship 0.2

Segment 6.55

observations are precise, all pairwise training data sets con-
tain as many data as the original data set, that is there are no
“missing” preferences (Fig. 3).

We compare the results given in Madjarov et al. (2012)
with the results obtained with our method using three usual
data sets: emotions, scene and yeast, which are described
in Table 4. The performances of the methods are evaluated
using four popular evaluation criteria for multi-label classifi-
cation: the ranking loss, the Hamming loss, the F1-measure
and the accuracy. Let (xi ,Yi ), i = 1, . . . , n, Yi ⊆ �, denote
the set of test samples. Let Ŷi denote the set of predicted
labels for instance xi . The evaluation criteria are defined as
follows:

The Hamming loss evaluates how many times a label is
misclassified, i.e., a label not belonging to the instance is
predicted or a label belonging to the instance is not predicted.
The measure has to be minimized (performance is perfect
when Hammingloss = 0) and is defined by

Hamming loss = 1

n

n∑

i=1

|Yi�Ŷi |
c

, (27)

where � stands for the symmetric difference between two
sets and c for the number of labels.

Fig. 3 Pairwise decomposition in case of multilabel classification

The accuracy is the average over the test samples of the
Jaccard coefficient between the sets Yi and Ŷi ; it has to be
maximized:

Accuracy = 1

n

n∑

i=1

|Yi ∩ Ŷi |
|Yi ∪ Ŷi |

(28)

F1 score is the harmonic mean between two other evaluation
measures, namely precision and recall, and is computed as
follows:

F1 = 1

n

n∑

i=1

2|Yi ∩ Ŷi |
|Yi | + |Ŷi |

(29)

The best value for F1 is 1 and the worst is 0. The ranking loss,
which has to be minimized, evaluates the average fraction of
pairs of labels that are reversely ordered:

Table 3 Methods for multilabel
classification Method References Type

Binary relevance Tsoumakas and Katakis (2007) Pb transformation (one vs all)

Classifier chaining Read et al. (2011) Pb transformation (one vs all)

HOMER Tsoumakas et al. (2008) Pb transformation (label powerset)

Calibrated label ranking Fürnkranz et al. (2008) Pb transformation (pairwise)

QWML Loza Mencía et al. (2010) Pb transformation (pairwise)

Multilabel C4.5 (ML C4.5) Clare and King (2001) Algorithm adaptation

Multilabel kNN Zhang and Zhou (2007) Algorithm adaptation

Predictive clustering trees (PCT) Blockeel et al. (1998) Algorithm adaptation

ECC Read et al. (2011) Ensemble methods

Random forest ML-C4.5 Madjarov et al. (2012) Ensemble methods

Random forest of PCT Kocev et al. (2007) Ensemble methods

Rakel Tsoumakas and Vlahavas (2007) Ensemble methods
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Table 4 Data sets description
for multilabel classification Data set # Features # Labels # Tr. instances # T. instances Cardinality

Scene 294 6 1,211 1,159 1.07

Emotions 72 6 391 202 1.87

Yeast 103 14 1,500 917 4.24

Table 5 Results for the Scene dataset

Worst Best BFPC Rank

F1 (max) 0.395 0.771 0.6947 8

HL (min) 0.141 0.077 0.1048 10

RL (min) 0.174 0.064 0.1127 10

ACC (max) 0.388 0.735 0.6813 8

Table 6 Results for the Yeast dataset

Worst Best BFPC Rank

F1 (max) 0.578 0.687 0.6374 8

HL (min) 0.234 0.190 0.2054 9

RL (min) 0.296 0.163 0.0846 1

ACC (max) 0.440 0.559 0.5357 3

Ranking loss = 1

n

n∑

i=1

|Di |
|Yi ||Ŷi |

, (30)

where Di = {(λi , λ j )|(λi , λ j ) ∈ Yi ×Yi and (λi , λ j ) ∈ Ŷi ×
Ŷi }. Note that this Di is formally equivalent to the number of
discordant pairs used for evaluating label ranking in Sect. 4.1,
but is here used in a different way (in particular, there is no
need to split between correctness and completeness, as all
predictions are complete).

Asbinary classifiers,weused the evidential kNN(Denœux
1995)methodwith three classes (λi � λ j,λ j � λi ,λi ≺� λ j ),
which directly provides a mass function in a form of (25).3

The optimum number of nearest neighbours (the same for
all classifiers) is determined using five repetitions of tenfold
cross-validation procedure on the learning set. This optimum
number is used to evaluate the method on the test set.

Tables 5, 6 and 7 summarizes our results on the various
data sets in a synthetic way. As we can see, this approach
is worth exploring further, as we were able to obtain very
good results on some data sets: we are consistently better on
the Emotions dataset, and we perform very well on the Yeast
dataset for both ranking loss and accuracy. Performances for
Scene are worse, but this could be explained by the fact that
KNN approaches can perform poorly when a high number
of features are used.

3 The software can be downloaded from https://www.hds.utc.fr/
~tdenoeux/.

Table 7 Results for the Emotions dataset

Worst Best BFPC Rank

F1 (max) 0.431 0.651 0.6673 1

HL (min) 0.361 0.189 0.1988 3

RL (min) 0.331 0.151 0.0907 1

ACC (max) 0.319 0.536 0.5883 1

Roughly speaking, as our approach is based on pairwise
information between labels, we can expect to perform better
on measures related to pairwise information, such as ranking
loss (this is indeed the case for the Yeast data set). Explor-
ing in detail the relation between the current methods and
the minimization of some given loss function is out of the
scope of the current paper, whose main scope remains mak-
ing inferences about partial order in a general setting (not
necessarily machine learning). This would nevertheless be
an interesting study. In any case, empirical results show good
performances.

5 Conclusion

In this paper, we have introduced a general uncertainty
model, based on belief functions, to deal with partial orders
in a pairwise way. Information on each pair of objects (alter-
natives, labels, ...) regarding ordering or incomparability is
modelled by a belief function, and the belief functions of the
different pairs are then combined through Dempster’s rule.
We have then provided means to perform various efficient
inference tasks based on the principle of maximal plausibil-
ity and on the use of integer linear program.

The application of the approach is then illustrated on two
machine learning tasks involving partial orders, namely par-
tial predictions in label ranking and bipartite ranking predic-
tion in multilabel problems. In both cases our approach has
proved to be competitive with other algorithms, thus demon-
strating its potential interest.

It is worth mentioning that, thanks to the flexibility of our
framework, we can in principle predict any partial order. This
in contrastwith other label rankingmethods producingpartial
orders that can only make predictions that belong to specific
families of partial orders, such as semi-orders (Cheng et al.
2012) or interval orders (Destercke 2013).
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Given the flexibility of the present approach, it would be
interesting to study its connections with other areas such
as multi-criteria decision making (for example, we could
try to describe the set of orders representable by popular
models such a CP-net through constraints). Similarly, it may
be worthwhile to explore other potential application domain
involving orders, for example object ranking (Kamishima et
al. 2011).
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