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Abstract This paper studies the time complexity of gene
expression programming based on maintaining elitist (ME-
GEP). Using the theory of Markov chain and the technique
of artificial fitness level, the properties of transition matri-
ces of ME-GEP are analyzed. Based on the properties, the
upper and lower bounds of the average time complexity of
ME-GEP are obtained. Furthermore, the upper bound is esti-
mated, which is determined by the parameters of ME-GEP
algorithm. And the theoretical results acquired in this paper
are used to analyze ME-GEP for solving function modeling
and clustering problem. At last, a set of experiments are per-
formed on these problems to illustrate the effectiveness of
theoretical results. The results show that the upper bound of
expected first hitting time can be used to direct the algorithm
design of ME-GEP.
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1 Introduction

Gene expression programming (GEP) (Ferreira 2001) is a
genotype/phenotype evolutionary algorithm. As a descen-
dant of genetic algorithms (GAs) and genetic programming
(GP), GEP combines their advantageous features and elimi-
nates theirmain handicaps. The essential feature amongGEP,
GA and GP is that GEP separates genotype (linear structure)
from phenotype (non-linear structure) of chromosomes. GA
and GP only have one entity, such as linear strings of fixed
length (chromosomes) or nonlinear entities of different sizes
and shapes (parse trees).

From the history of life on the earth (Smith and Szathmry
1995), this kind of system such as GA and GP is condemned
to have one of two limitations (Ferreira 2001): if they are easy
to be manipulated genetically, they lose in functional com-
plexity (the case of GA); if they exhibit a certain amount of
functional complexity, they are extremely difficult to repro-
duce with modification (the case of GP). In GEP, the individ-
uals are encoded as linear strings of fixed length (chromo-
somes) which are afterwards expressed as nonlinear entities
of different sizes and shapes (the phenotype). It not only is
manipulated genetically in an easy way but also exhibits a
certain amount of functional complexity. Thus, GEP over-
comes the limitation of representation of GA and makes up
the defect of complex genetic operators of GP. Those excel-
lent properties of GEP have attracted wide attention of schol-
ars around the world and have aroused their research inter-
ests. In recent years, GEP has rapidly become a powerful tool
of automatic programming. And it has been widely applied
in symbolic regression (Peng et al. 2005; Xin et al. 2006),
time series prediction (Lopes et al. 2004), data mining (Chi
et al. 2003; Bin et al. 2005; Karakasis and Stafylopatis 2008)
and many other fields (Shi et al. 2010; Canakci et al. 2009;
Teodorescu 2004; Teodorescu and Sherwood 2008).
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Up to now, theoretical results of EAon computational time
complexity are comparatively abundant. The representative
works are as follows: for specific problems (e.g. Rudolph
1996; Garnier et al. 1999) and simple single-individual EA,
such as the (1 + 1) EA (e.g. Droste et al. 2002; Wegener and
Witt 2005). It is to be noted that He and Yao have done a
series of works about the time complexity for several kinds
of EAs and different problems (He and Yao 2002, 2003,
2004; Lehre and Yao 2012). Further, some more profound
results about the computation time of EAs by using the drift
analysis and other tools such as Dynkin’s formula in sto-
chastic process theory were given Ding and Yu (2005). A
survey of the results obtained in the past decade along the
time complexity of EAs was presented Oliveto et al. (2007).
After that, a simplified drift theorem was introduced Happ
et al. (2008). A further simplification of the drift theorem
which is particularly suited for the analysis of EAs was pre-
sentedOliveto andWitt (2008).Byexploiting the relationship
between the convergence rates and the expected first hitting
times, the upper bounds of the first hitting times of evolu-
tionary algorithms based on He and Kang works (He and
Kang 1999) were given Yu and Zhou (2008). A general idea
for analyzing population-based EAs on unimodal problems
using Markov chain theory and Chernoff bounds was given
Chen et al. (2009). However, how to make the upper or lower
bounds of the expected first hitting times associate with the
parameters of EAs is sill unresolved.

The individual of GEP has linear genotype and non-linear
phenotype. Simultaneously, GEP not only contains all the
genetic operators of traditional EA but also introduces some
new genetic operators. All above characters of GEP bring
some challenges to the time complexity analysis. Now, in
the case of GEP, most studies of GEP focus on the real-
izations, improvements and applications of the algorithm.
There have been few studies involved in theoretical analy-
sis of GEP, especially the time complexity. To the best of our
knowledge, the convergence ofGEP under the smallest resid-
ual sum of squares was studied Yuan et al. (2004, 2006). In
view of above results, we Du et al. (2009, 2010) studied the
convergence and convergence rate of ME-GEP. We not only
proved that ME-GEP algorithm converged to the global opti-
mal solution in probability but also obtained the upper bound
of the convergence rates of GEP. The results were that the
upper bound was dependent on the second largest eigenvalue
of the transition matrix of the Markov chain by the method
of Jordan Blocks of matrix and the second largest eigenvalue
of the transition matrix was determined by the parameters of
ME-GEP algorithm.

This paper concerns theoretical analysis of the aver-
age time complexity of ME-GEP on optimization prob-
lems with a unique global optimum. A general and easy-
to-apply approach to estimate the average time complexity
for ME-GEP algorithm is presented. By using the proper-

ties of Markov chain and artificial fitness level technique,
the upper and lower bounds of the average time complex-
ity of ME-GEP algorithm are obtained. More importantly,
we get the relation between the upper bound and the para-
meters of ME-GEP algorithm. These results obtained in this
paper are the general theoretical results.Moreover, it has been
shown that the analytical methods and techniques adopted in
this paper have broad suitability and useful reference for the
researchers in the theory of GEP. The rest of this paper is
organized as follows: Sect. 2 introduces GEP and ME-GEP
algorithm. In Sect. 3, the characteristic of nonnegativematrix
and artificial fitness level technique are introduced. In addi-
tion, starting with the Markov chain model associated with
ME-GEP algorithm, some fundamental properties of transi-
tionmatrix ofME-GEP algorithm are proved. Section 4 gives
the upper and lower bound of average time complexity of
ME-GEP algorithm and discusses the relations between the
upper bound and the parameters of ME-GEP. As an applica-
tion of the theoretical results acquired in this paper, in Sect. 5,
the upper bounds of average time complexity ofME-GEP for
function modeling and clustering problem are also explored.
And the results in Sect. 4 are verified. Finally, some short
comments on the results obtained in this paper and future
work are summarized.

2 Background

2.1 GEP algorithm

In the following, we will first introduce the genotype, phe-
notype and genetic operators in GEP.

The genotype is composed of head and tail. Let x be a
genotype and set x = {x̂1, x̂2, . . . , x̂l} where

x̂i ∈
{
T ∨ F, 1 ≤ i ≤ h
T, h < i ≤ l

.

Here, l represents the length of genotype. F represents
function set,which is composed of operators, the primary
functions or user-defined functions. T represents terminal
set, which is composed of constants and variables. Both F
and T are finite. The elements in head are from F or T , and
the elements in tail are from T . Variables h and tal denote
the length of head and tail, respectively. For any given h,
tal is evaluated by formula tal = h × (nmax − 1) + 1, l =
h+ tal, where nmax= max(paraNum( f) f∈F), paraNum(f) is
the number of parameters of function .

For a given genotype, the phenotype is inferred as fol-
lows by Karva Language (Ferreira 2001), which reads geno-
type from the start character depending on the number of
arguments of each element (functions may have a differ-
ent number of arguments, whereas terminals have an arity
of zero). And the representation (algebraic expression) is
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Fig. 1 Transformation relation between genotype, phenotype and rep-
resentation

inferred from the phenotype according to the method of
inorder traversal. The transformation relation between geno-
type, phenotype and representation is shown as Fig. 1.

There are three kinds of genetic operators in basic
GEP (Ferreira 2001), including mutation, transposition and
recombination. Each operation occurs with an active proba-
bility. Next, we show these operators adopted in GEP.

Mutation is allowed to occur anywhere in the chromosome
and each bit flips with a probability independently at time t .
In the head of the gene, a function can be flipped into another
function or terminal. In the tail, a terminal can only be flipped
into another terminal.

In GEP, there are two recombination operators: one-point
and two-point. Similar to crossover operators in GA, the
two operations act the same way to one-point and two-point
crossover operators. In all cases of recombination, both off-
spring are conserved into successive evolution.

IS transposition Any sequence in the chromosome can
become an IS element. The chosen sequence copies itself to
any position in the head of a chromosome except the start
position. A sequence with the same length is excluded from
the end of the head to maintain the structural organization of
the gene. For example, there is a parent chromosome whose
head length is 10 and tail length is 11.

Q∗∗ + abbb∗a a bba aaabbab

Suppose that the sequence “bba” becomes an IS element,
which is highlighted, and its target position is 7, as the result
of IS transposition, the last three elements “b*a” of the head
are deleted. The offspring is as follows:

Q∗∗ + ab bba b abbaaaabbab

2.2 ME-GEP algorithm

Although the advantages of a system like GEP are clear from
nature, the most important should be emphasized. First, the
chromosomes (genotype) are simple entities: linear, com-
pact, relatively small, easy to be manipulated genetically
(mutate, recombine, transpose, etc.). Second,Karva language
was created to read and express the information encoded
in the chromosome (genotype). It always guarantees that a
genotype can be converted into a valid phenotype, which

allows the implementation of a very powerful set of uncon-
strained genetic operators acting on genetic space. Clearly, it
is that the unconstrained genetic operators highly improving
the search capability, also making GEP algorithm difficult to
converge. ME-GEP is a kind of GEP algorithm with elitist
strategy. Thus,ME-GEPnot only has efficient search capabil-
ity but also ensures the convergence proved by our previous
work Du et al. (2010).

ME-GEP algorithm with population size n(n ≥ 1) can be
described as follows:

Step 1 Initialization: generate randomly an initial sub-
population of n individuals, denote it by X (0) = (x1(0),
. . . , xn(0)), where xi (0) ∈ H , i = 1, . . . , n and let t ← 0.
The optimal individual in generation 0, denoted by x0(0), is
then defined as the individual among x1(0), . . . , xn(0) with
the biggest fitness. The population in generation 0 is defined
as ξ(0) = (x0(0), x1(0), . . . , xn(0)), where xi (0) ∈ H ,
i = 0, 1, . . . , n.

Step 2Recombination: generate a new (intermediate) sub-
population by recombination operation based on subpopula-
tion X (t) with probability pc(0 < pc < 1) and denote it as
XC (t).

Step 3 Transposition: generate a new (intermediate) sub-
population by transposition operation based on subpopula-
tion XC (t) with probability pt (0 < pt < 1) and denote it as
XT (t).

Step 4Mutation: generate a new (intermediate) subpopu-
lation by mutation operation based on subpopulation XT (t)
with probability pm(0 < pm < 1) and denote it as XMu(t).

Step 5 Select n individuals from subpopulation XMu(t)
and X (t) according to certain select strategy, where the prob-
ability for each individual to be selected is>0 and then obtain
the next subpopulation X (t + 1).

Step 6 Find optimal individual x0(t + 1) from subpopula-
tion X (t + 1) and optimal individual x0(t).

Step 7 Let t ← t + 1; then the next population ξ(t + 1) =
(x0(t + 1), x1(t + 1), . . . , xn(t + 1)).

Step 8 If f (x0(t + 1)) = fmax, then stop; otherwise go to
step2.

Remark In this paper,we always assume that all the genetic
operations are independent of each other and fitness function
is a single-valued function. The individual space is denoted
by H and |H | = N

3 Markov chain model of ME-GEP

In reference Du et al. (2010), we have proved that both
{X (t); t ≥ 0} and {ξ(t); t ≥ 0} are Homogeneous Markov
chains with finite states space Hn and V = Hn+1, respec-
tively; this is because subpopulation X (t) only depends on
subpopulation X (t−1), and optimal individual x0(t)depends
on both subpopulation X (t) and optimal individual x0(t−1).
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Hence, population ξ(t) only depends on population ξ(t −1);
further, all genetic operators adopted in different generation
are fixed.

Since the limit behaviors of Markov chain are determined
by its corresponding transitionmatrices, somedefinitions and
symbols about matrix are stated as below.

3.1 The characteristic of nonnegative matrix

Definition 1 Rudolph (1994)Asquarematrix A = [ai j ]m×m

is said to be

(1) nonnegative (A ≥ 0 ), if ai j ≥ 0 for all i, j ∈
{1, 2, . . . ,m} ,

(2) positive (A > 0 ), if ai j > 0 for all i, j ∈ {1, 2, . . . ,m}.
A nonnegative matrix A = [ai j ]m×m is said to be

(3) primitive if there exists a positive integer k such that Ak

is positive,
(4) stochastic, if

∑m
j=1 ai j = 1 for all i ∈ {1, 2, . . . ,m},

(5) column-allowable, if it has at least one positive entry in
each column.

Clearly, the product of stochastic matrices is again a sto-
chasticmatrix and that every positivematrix is also primitive.

Apart from providing a smaller Markov chain transition
matrix, artificial fitness levels lead to simplified calculations.
Next, the artificial fitness level technique will be introduced.

3.2 Artificial fitness levels

Artificial fitness levels (Oliveto et al. 2007) is a kind of parti-
tion technique of the search space based on the fitness func-
tion. The whole search space S as a set of |S| = n different
states is divided into m < n states A1, . . . , Am , such that for
all points a ∈ Ai and b ∈ A j it happens that f (a) < f (b)
if i < j . Thus, Am contains only optimal search points, in
such a way the Markov chain can be constructed considering
only m different states rather than n.

3.3 The transition matrices of ME-GEP

Note that the evolutionary process of ME-GEP can be illus-
trated by the following formula:

ξ(t) = (x0(t), X (t))
C−→(x0(t), XC (t))

T−→(x0(t), XT (t))
M−→ (x0(t), XMu(t))

S−→ (x0(t), X (t + 1))
U−→ (x0(t + 1), X (t + 1)) = ξ(t + 1), (1)

where C , T , M , S and U represent recombination, transpo-
sition, mutation, select and update operation, respectively.

Let PX and Pξ be the transition matrices associated with
homogeneous Markov chains {X (t); t ≥ 0} and {ξ(t); t ≥

0}. Then the properties and relations between PX and Pξ

will be analyzed in the following. First, some conclusions of
PX can be stated as below.

Lemma 1 For any two chromosomes x and y, the mutation
probability from x to y is

P
{
x

M−→ y
}

= (1 − pm)h+tal−k1−k2 pk1+k2
m

×
(

1

|F | + |T |
)k1 (

1

|T |
)k2

, (2)

where k1 and k2 are the numbers of different bits in gene head
and tail of x and y separately.

Proof For ∀x, y ∈ H , suppose that there are k1 bits in head
and k2 bits in tail of individual x to be mutated. Each bit in
head has |F | + |T | conditions and each bit in tail has |T |
conditions; hence the probability that individual x becomes
individual y after mutation can be aggregated to

P
{
x

M−→ y
}

= (1 − pm)h+tal−k1−k2

(
pm

|F | + |T |
)k1 (

pm
|T |

)k2

= (1 − pm)h+tal−k1−k2 pk1+k2
m

(
1

|F | + |T |
)k1 (

1

|T |
)k2


�
Lemma 2 Through IS transposition, population in last gen-
eration could generate any chromosome with the probability
of

pT = 2pt/((h − 2) · l · (l + 1))

Proof Suppose individual X = x1, x2, . . . , xl is selected as
IS transpose with probability pt . Let the beginning bit of IS
string be f j , j = 1, 2, . . . , l. There would be l− j +1 possi-
bilities of the IS string, and h−2 possibilities of its insertion
bit, except the first bit and the bit. Thus IS transposition with
the beginning bit f j could generate (h−2) · (l− j +1) kinds
of chromosomes. When IS transposition occurs on X , there
would be
l∑

j=1

(h − 2) · (l − j + 1) = (h − 2) · l · (l + 1)/2

kinds of chromosomes. So any chromosome could be gen-
erated by IS transposition with the probability of 2pt/((h −
2) · l · (l + 1)) . 
�
Lemma 3 PX is primitive, which can be decomposed in a
natural way into a product of stochastic matrices PX =
C · T · M · S, where C = [ci j ]Nn×Nn , T = [ti j ]Nn×Nn ,
M = [mi j ]Nn×Nn and S = [si j ]Nn×Nn are the intermediate
transition matrices induced by recombination, transposition,
mutation and selection, respectively.
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Proof Crossover, mutation and selection operators may be
regarded as random total functions whose domain and range
are Hn , i.e., each state of Hn is mapped probabilistically to
another state since 0 < pc, pm < 1. Therefore, C , M and S
are stochastic matrices.

According to Lemma 1, we have

P
{
a

M−→ b
}

= (1 − pm)h+tal−k1−k2 pk1+k2
m

(
1

|F | + |T |
)k1 (

1

|T |
)k2

≥ (1 − pm)h+tal ph+tal
m

(
1

|F | + |T |
)h (

1

|T |
)tal

,

where k1 ≤ h, k2 ≤ tal.
Denote the minimal mutation probability by pminm =

min
a,b∈H p

{
a

M−→ b
}
; then

pminm ≥ (1−pm)h+tal ph+tal
m

(
1

|F | + |T |
)h (

1

|T |
)tal

>0.

For any i, j ∈ Hn , we have mi j ≥ pnminm > 0. Thus M is
positive.

According to selection operation, the probability of each
individual to be selected is greater than zero. Then for ∀i ∈
Hn , we have sii > 0. Thus S is column-allowable.

Let A = [ai j ]Nn×Nn = T · M , Q = [qi j ]Nn×Nn = C · A,
PX = [pXi j ]Nn×Nn = Q · S. Since C and T are stochastic
matrices with at least one positive entry in each row, and
M > 0, then, bymatrix multiplication ai j = ∑Nn

k=1 tikmkj >

0 for all i, j ∈ {1, 2, . . . , Nn}, i.e. A > 0. Similarly, qi j =∑Nn

k=1 cikak j > 0, and hence pXi j = ∑Nn

k=1 qiksk j > 0 for all
i, j ∈ {1, 2, . . . , Nn}, because S is column-allowable. Thus
PX is positive. Since every positive matrix is primitive. 
�

In order to analyze the properties of transition matrix Pξ ,
we will use artificial fitness level technique to partition the
state space V = Hn+1. First, set H = {s1, s2, . . . , sN } with
f (s1) > f (s2) > · · · > f (sN ); thus H is a totally ordered
set, and the elements in H can be ordered by s1 � s2 � · · · �
sN . Let

Vi = {(si , x1, . . . , xn); x j ∈ H, j = 1, . . . n}, ∀ i = 1, . . . , N .

(3)

It is obvious that V1 ∪ · · · ∪ VN = Hn+1 and V1 is the
optimal state set. Then the following facts can be reached
immediately:

(1) By step 2 to 5 of ME-GEP, we know that the optimal
individual is not affected by the genetic operators, and the
extended transition matrices on Hn+1 for recombination
C ′, transposition T ′, mutation M ′ and selection S′ can
be written as block diagonal matrices.

C ′ =

⎛
⎜⎜⎜⎝
C

C
. . .

C

⎞
⎟⎟⎟⎠ T ′ =

⎛
⎜⎜⎜⎝
T

T
. . .

T

⎞
⎟⎟⎟⎠

M ′ =

⎛
⎜⎜⎜⎝

M
M

. . .

M

⎞
⎟⎟⎟⎠ S′ =

⎛
⎜⎜⎜⎝
S
S

. . .

S

⎞
⎟⎟⎟⎠

C ′T ′M ′S′ =

⎛
⎜⎜⎜⎝
CT MS

CT MS
. . .

CT MS

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

PX

PX

. . .

PX

⎞
⎟⎟⎟⎠

(2) Update operation of step 6 is only to update the optimal
individual. And transition matrix U can be written by
matrices Urk(1 ≤ r, k ≤ N ) as follows:

U =

⎛
⎜⎜⎜⎝
U11 U12 · · · U1N

U21 U22 · · · U2N
...

...
. . .

...

UN1 UN2 · · · UNN

⎞
⎟⎟⎟⎠ ,

where Ui j (1 ≤ i, j ≤ N ) are N × N matrices.
(3) Transition matrix Pζ = (C ′T ′M ′S′) ·U .

Someuseful properties of Pζ canbeobtainedby analyzing
matrix U . Let nk = |{(x1, . . . xn) : max

1≤ j≤n
f (x j ) = f (sk)}|,

that is, nk is the number of those subpopulations with best
individual sk . Then we have

Lemma 4 For each subspace Vi = {(si , x1, . . . , xn): x j ∈
H, j = 1, . . . n}, ∀ i = 1, . . . , N in Hn+1, we have∑ N

k=1nk = Nn and nk = (N − k + 1)n − (N − k)n, where
k = 1, . . . , N.

Proof According to the definition of Vi , we can know imme-
diately that the size of each Vi is equal to Nn ; thus it is clear
that

N∑
k=1

nk = Nn .

In subspaces Vi , if subpopulation (x1, . . . , xn) satisfies
max
1≤i≤n

f (xi ) < f (sk), then subpopulation (x1, . . . , xn) can-
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not contain individuals s1, s2, . . ., sk−1. Thus, there are (N −
k + 1)n states which do not contain individuals s1, s2, . . . ,
sk−1. Likewise, there exist (N−k)n states that do not contain
individuals s1, s2, . . . , sk . So we have

nk = (N − k + 1)n − (N − k)n .


�

Lemma 5 U Matrix has the following properties:

(1) In each rowofmatrixU, there is exactly one entry equal-
ing to 1, all others are 0, and U11 is a unit matrix.

(2) Urk = 0(r < k, 1 ≤ r < N ).
(3) Urk(2 ≤ r ≤ N , 1 ≤ k ≤ r − 1) are diagonal matrices

such that nk elements are 1 in primary diagonal line
and the remaining elements are 0.

(4) Urr (2 ≤ r ≤ N ) are diagonal matrices such that∑N
i=r ni elements are 1 in primary diagonal line and

the remaining elements are 0.

Proof (1) The upgrade operation is represented by an
upgrade matrix U . Let b(i) be the best individual of
the subpopulation (x1, . . . , xn) at any state i and write
b(i) = argmax{ f (xi ): i = 1, . . . , n}. Then ui j = 1

if f (x0) < f (b(i)) with j
�=(b(i), x1, . . . , xn) ∈ V ,

i = (x0, x1, . . . , xn) ∈ V ; otherwise uii = 1, ui j =
0( j �= i). That is, there is exactly one entry equal to
1, and all others are 0 in each row of matrix U . Notice
that subpopulation (x1, . . . , xn) is unchanged by upgrade
operation. In other words, a state either gets upgraded or
remains unaltered. So there is only one in primary diag-
onal line for each sub-matrix Ui j (1 ≤ i, j ≤ N ). In
particular, the optimal individual of subspace V1 is the
global optimal solution. That is f (x∗) ≥ f (b(i)). Then
we have uii = 1,ui j = 0( j �= i) according to (1). So
U11 is a unit matrix.

(2) The state of population remains unaltered when r < k,
that is sr � sk . Then we have ui j = 0( j �= i). Thus
Urk = 0(r < k, 1 ≤ r < N ).

(3) There is sk � sr when 1 ≤ k ≤ r − 1. The total state
number with the best individual sk in Vk is nk according
toLemma4. In addition, for any diagonalmatrixUrk(2 ≤
r ≤ N , 2 ≤ k ≤ r), there are nk elements whose value
equal to 1, while others equal to 0 according to (1).

(4) There is sk = sr when 2 ≤ k = r ≤ N . The total state
number with the best individual sk in Vr is nk . The best
individual can be sr , sr+1, . . . , sN . ThenUrr (2 ≤ r ≤ N )

are diagonal matrices such that nr + nr+1 + · · · + nN
elements are 1 in primary diagonal line and the remaining
elements are 0. 
�

Based on the above, the transition matrix Pξ becomes

Pξ =

⎛
⎜⎜⎜⎝

PX

PX

. . .

PX

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
U11

U21 U22
...

...
. . .

UN1 UN2 · · · UNN

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

PXU11

PXU21 PXU22
...

...
. . .

PXUN1 PXUN2 · · · PXUNN

⎞
⎟⎟⎟⎠ =

(
Y 0
R T

)

(4)

where

R =

⎛
⎜⎜⎜⎝

PXU21

PXU31
.
.
.

PXUN1

⎞
⎟⎟⎟⎠ , T =

⎛
⎜⎝

PXU22
.
.
.

. . .

PXUN2 · · · PXUNN

⎞
⎟⎠ , R �= 0, T �= 0,

Y = PXU11 = PX > 0.

According to the properties of absorbing Markov chain
(Iosifescu 1980) , we have

Pξ =
V1 V \V1

V1
V \V1

(
Y 0
R T

)
(5)

where Y concerns the transition from one absorbing state to
the other, the region 0 consists entirely of 0’s, the matrix R
concerns the transition from transient state to absorbing one,
and the matrix T concerns the transition from transient to
transient states. The matrix Y corresponds to the fact that
once the Markov chain reaches an absorbing state, it will
never leave that absorbing state.

Let Pξ =
(
pξ
i j ; i, j ∈ Nn+1

)
, PX =

(
pXi j ; i, j ∈ Nn

)
where pξ

i j, p
X
i j are the transition probability from state i to stat

j). According to Lemma 5, we know that matrices Urk(2 ≤
r ≤ N , 1 ≤ k ≤ r − 1) and matrices Urr (2 ≤ r ≤ N ) can
be written as follows:

Urk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1︷ ︸︸ ︷
0

. . .

0
nk︷ ︸︸ ︷

1
. . .

1
0

. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Urr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑r−1
i=1 ni︷ ︸︸ ︷

0
. . .

0 ∑N
i=r ni︷ ︸︸ ︷

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then we have

PXU21 =

⎛
⎜⎜⎜⎝

pX11 pX12 · · · pX1Nn

pX21 pX22 · · · pX2Nn

...
...

...
...

pXNn1 pXNn2 · · · pXNnNn

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n1︷ ︸︸ ︷
1

. . .

1

0 · · · 0
· · ·
0 · · · 0

0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

pX11 · · · pX1n1 0 · · · 0
pX21 · · · pX2n1 0 · · · 0
...

...
...

...

pXNn1 · · · pXNnn1
0 · · · 0

⎞
⎟⎟⎟⎠ (6)

PXU32 =

⎛
⎜⎜⎜⎜⎝

pX11 pX12 · · · pX1Nn

pX21 pX22 · · · pX2Nn

...
...

...
...

pXNn ,1 pXNn ,2 · · · pXNn ,Nn

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1︷ ︸︸ ︷
0

. . .

0
n2︷ ︸︸ ︷

1
. . .

1
0

. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 pX1,n1+1 · · · pX1,n1+n2
0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 pXNn ,n1+1 pXNn ,n1+n2
0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(7)

PXU22 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

pX11 pX12 · · · pX1Nn

pX21 pX22 · · · pX2Nn

.

.

.
.
.
.

.

.

.
.
.
.

pXNn ,1 pXNn ,2 · · · pXNn ,Nn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1︷ ︸︸ ︷
0

. . .

0 ∑N
i=2 ni︷ ︸︸ ︷

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 pX1,n1+1 · · · pX1,n1+n2
pX1,n1+n2+1 · · · pX1,Nn

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 pXNn ,n1+1 pXNn ,n1+n2
pXNn ,n1+n2+1 · · · pXNn ,Nn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

The matrix R contains N sub-matrices similar to above
sub-matrix PXU21. The matrix T contains two kinds of
sub-matrices: PXUrk(2 ≤ r ≤ N , 1 ≤ k ≤ r − 1) and
PXUrr (2 ≤ r ≤ N ); as example PXU32 and PXU22 can be
written as Eqs. (7) and (8).

4 The average time complexity of ME-GEP

In this section, EFHT is used to estimate the average time
complexity of ME-GEP based on the Markov Chain Model
and transition matrices of ME-GEP shown above.

The first hitting time (FHT) of ME-GEP is the time that
ME-GEP finds the optimal solution for the first time, and the
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expected first hitting time (expected FHT) is the average time
that ME-GEP requires to find the optimal solution, which
implies the average computational time complexity of ME-
GEP.

The first hitting time on V1 can be defined by

τ(V1) = min {k; k ≥ 0, ξ(k) ∈ V1} (9)

Let E denote the expectation operators. The first hitting
time τ(V1) is a random variable, and what we are interested
is its expectation value E[τ(V1)].

Hence, we can obtain the following conclusion of EFHT
of ME-GEP:

Theorem 1 Let β = min{pXi j ; i, j ∈ Nn}; then the EFHT
of ME-GEP is as follows:

P{ξ(0) /∈ V1} 1

1 − (Nn − n1)β
≤ E[τ(V1)]

<
1

(Nn − (N − 1)n)β

Proof Note that P{τ(V1) ≥ 0} = 1, P{τ(V1) ≥ 1} =
P{ξ(0) /∈ V1}.

By Markov property of {ξ(t); t ≥ 0}, for any l ≥ 2, we
have

P{τ(V1) ≥ l}
= P{ξ(0) /∈ V1, ξ(1) /∈ V1, · · · , ξ(l − 1) /∈ V1}

= P{ξ(0) /∈ V1}
l−2∏
k=0

P{ξ(k + 1) /∈ V1|ξ(k) /∈ V1}

= P{ξ(0) /∈ V1}
l−2∏
k=0

P{ξ(k + 1) /∈ V1, ξ(k) /∈ V1}
P{ξ(k) /∈ V1}

= P{ξ(0) /∈ V1}
l−2∏
k=0

∑
i, j /∈V1 P{ξ(k + 1) = j |ξ(k) = i}P{ξ(k) = i}∑

s /∈V1 P{ξ(k) = s}

= P{ξ(0) /∈ V1}
l−2∏
k=0

∑
i /∈V1 [P{ξ(k) = i} · ∑

j /∈V1 pξ
i j ]∑

s /∈V1 P{ξ(k) = s} .

Then for any i /∈ V1, according to Eqs. (6)–(8), we have

(Nn − n1)β ≤
∑
j /∈V1

pξ
i j ≤ 1 − n1β.

So that for any l ≥ 2, we have

P{τ(V1) ≥ l} ≥ P{ξ(0) /∈ V1}
l−2∏
k=0

(Nn − n1)β

≥ P{ξ(0) /∈ V1}
l−2∏
k=0

(Nn − n1)β

≥ P{ξ(0) /∈ V1}{(Nn − n1)β}l−1

P{τ(V1) ≥ l} ≤ P{ξ(0) /∈ V1}
l−2∏
k=0

(1 − n1β)

≤ P{ξ(0) /∈ V1}
l−2∏
k=0

(1−(Nn−(N−1)n)β)

≤ P{ξ(0) /∈ V1}{1−(Nn−(N−1)n)β}l−1

Note that 0 < n1β < 1, 0 < (Nn − n1)β < 1. Hence

E[τ(V1)] =
∑
l≥1

P{τ(V1) ≥ l} = P{ξ(0) /∈ V1}

+
∑
l≥2

P{τ(V1) ≥ l}

So the upper bound for E[τ(V1)] is
E[τ(V1)] =

∑
l≥1

P{τ(V1) ≥ l}

≤ P{ξ(0) /∈ V1} + P{ξ(0) /∈ V1}
+∞∑
l=2

{1 − (Nn − (N − 1)n)β}l−1

≤ P{ξ(0) /∈ V1}
{
1 +

+∞∑
l=2

× {
1 − (Nn − (N − 1)n)β

}l−1
}

The lower bound for E[τ(V1)] is
E[τ(V1)] =

∑
l≥1

P{τ(V1) ≥ l}

≥ P{ξ(0) /∈ V1}

+ P{ξ(0) /∈ V1}
+∞∑
l=2

{(Nn − n1)β}l−1

≥ P{ξ(0) /∈ V1}{1 +
+∞∑
l=2

{(Nn − n1)β}l−1}

≥ P{ξ(0) /∈ V1} 1

1 − (Nn − n1)β

That is,

P{ξ(0) /∈ V1} 1

1 − (Nn − n1) · β
≤ E[τ(V1)]

≤ P{ξ(0) /∈ V1} 1

(Nn − (N − 1)n)β

P{ξ(0) /∈ V1} 1

1 − (Nn − n1) · β

≤ E[τ(V1)] <
1

(Nn − (N − 1)n)β


�
In order to make the EFHT associated with parameters of

ME-GEP directly, Corollary 1 is given.
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Corollary 1 Let pmin t = min∀a,b∈H p
{
a

T−→ b
}
, pmin s =

min∀a∈H p
{
a

S−→ a
}
, pminm = min∀a,b∈H p{a M−→ b} ; then we

have

E[τ(V1)] <
1

(Nn − (N − 1)n) · pnmin t · pnminm · pnmin s

Proof For any i, δ, η, k, j ∈ Hn , we have∑
i,δ∈Hn

pCiδ = 1, pTδη ≥ pnmin t , p
M
ηk ≥ pnminm, pSj j ≥ pnmin s .

Then we have

pXi j = P(X (t + 1) = j |X (t) = i)

=
∑

η,δ,k∈Hn

pCiδ · pTδη · pMηk · pSk j

≥
∑
k= j

∑
δ,η∈Hn

pCiδ · pTδη · pMηk · pSk j

≥ pSj j · pnmin t · pnminm ·
∑
δ∈Hn

pCiδ

≥ pnmin s · pnmin t · pnminm

So we get

β ≥ pnmin t · pnminm · pnmin s

By Theorem 1, we have

E[τ(V1)] <
1

(Nn − (N − 1)n) · pnmin t · pnminm · pnmin s


�
Theorem 1 estimates the upper and lower bounds of

EFHT of ME-GEP algorithm. Further, Corollary 1 makes
the upper bound associate with parameters ofME-GEP algo-
rithm directly. Thus, Theorem 1 and Corollary 1 can be used
to direct algorithm design of ME-GEP.

5 Case study

In order to justify our theoretical results, the EFHT of ME-
GEP for solving function modeling and clustering problems
are analyzed below.

To guarantee the validity of results, each execution of each
algorithm on each parameter set was independently repeated
50 times.

5.1 Function modeling problem

5.1.1 The description of function modeling problem

Function modeling problem can be described as follows:
given a group of datum (xi1, x

i
2, . . . , x

i
m, yi ), i = 1, 2, . . . k,

find a function ϕ(x1, x2, . . . , xm) in a certain function set

(x̄), x̄ = (x1, . . . , xm), which satisfies

Min
g(x̄)∈
(x̄)

k∑
i=1

(
g

(
xi1, x

i
2, . . . , x

i
m

)
− yi

)2

=
k∑

i=1

(
ϕ

(
xi1, x

i
2, . . . , x

i
m

)
− yi

)2
,

where g(x̄) is an arbitrary function in set 
(x̄).
Next, the functionmodeling about the amount of gas emit-

ted from coalfaces (Xin et al. 2006) is used as an example
to be described as follows. The amount of gas emitted from
coalfaces in coal mine is the main unsafe factor during the
production of coal mine. However, this amount is hard to
predict because it is affected by many factors and has com-
plicated nonlinear relations with these factors. In Table 1, the
sampling cases are given. There are six main factors as input
variables: the depth of coalface x1, the height of coalface
x2, the amount of coalfaces x3, the layer interval between
working coalface and neighboring coalface x4, average daily
advance of working face x5 and average daily output x6. The
amount of gas emitted from coalfaces y is the output variable.
By ME-GEP, the function can be found to model accurately
the nonlinear relations between input variables and y.

5.1.2 The EFHT of ME-GEP for solving the amount of gas
emitted from coalfaces

The parameters of ME-GEP algorithm are designed as fol-
lows: Let n = 80, h = 15 then tal = 16, l = 31,
F = {+,−, ∗, /, sqrt, exp, sin, cos, ln}, T = {R, x} where
R is a set of random constants, and we assume that R has
20 elements. The genetic operators adopted are one-point
recombination, IS transposition, selection andmutation oper-
ators. Especially, mutation operators include uniform muta-
tion that flips independently each bit with probability pm
and one-point mutation that flips one bit with probability pm
randomly. Each individual is selected with same probability
in selection strategy. Next, the EFHT of ME-GEP with two
different mutation operators is analyzed below.

The fitness (Ferreira 2001) of ME-GEP is evaluated by
Eq. (10).

fi = max

⎛
⎝M −

k∑
j=1

(∣∣∣∣Ci j − y j
y j

∣∣∣∣ · factor
)

, 0

⎞
⎠ . (10)

where k is the number of sampling, and M is the range of
selection. For this example, let M = 1,000, factor= M/k≈
56, Ci j be the value returned by the individual i for sample
case j , and y j be the target value for sample case j .
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Table 1 Sample cases of gas
emitted from coalfaces x1 x2 x3 x4 x5 x6 y

408 2.0 1.92 20 4.42 1,825 3.34

411 2.0 2.15 22 4.16 1,527 2.97

420 1.8 2.14 19 4.13 1,751 3.56

432 2.3 2.58 17 4.67 2,078 3.62

456 2.2 2.40 20 4.51 2,104 4.17

516 2.8 3.22 12 3.45 2,242 4.60

527 2.5 2.80 11 3.28 1,979 4.92

531 2.9 3.35 13 3.68 2,288 4.78

550 2.9 3.61 14 4.02 2,325 5.23

563 3.0 3.68 12 3.53 2,410 5.56

590 5.9 4.21 18 2.85 3,139 7.24

604 6.2 4.03 16 2.64 3,354 7.80

607 6.1 4.34 17 2.77 3,087 7.68

634 6.5 4.80 15 2.92 3,620 8.51

640 6.3 4.67 15 2.75 3,412 7.95

450 2. 2 2. 43 16 4. 32 1,996 4. 06

544 2. 7 3. 16 13 3. 81 2,207 4. 92

629 6. 4 4. 62 19 2. 80 3,456 8. 04

Applying Theorem 1 and Corollary 1, we have

E[τ(V1)] <
1

(Nn − (N − 1)n) · pnmin t · pnminm · pnmin s

Let pminm1 and pminm2 be the minimum probabilities
when an individual x becomes individual y after uniform
mutation and one-point mutation, respectively. Next, we will
estimate N , pmin t , pminm1, pminm2 and pmin s .

(1) The size of individual space N .
Denote the tree height of phenotype by variable ht .

Because the individual length is 31, we have ht ≤ 5. It fol-
lows that

N = |H | ≤ 9(20+21+22+23) × (|R| + 6)2
4 = 915 × 2616

(2) pminm1

According to Lemma 1, we have

P
{
x

M−→ y
}

= (1 − pm)l
(

pm
1 − pm

)k1+k2

×
(

1

|F | + |T |
)k1 (

1

|T |
)k2

If 1 − pm > pm , that is pm < 1
2 , it follows that

P

{
x

M−→ y

}
> (1 − pm)l

(
pm

1 − pm

)l ( 1

|T | + |F |
)l ( 1

|T |
)l

=
(

pm
(|T | + |F |) · (|T |)

)l
=

( pm
910

)31

It is easy to find that the minimum probability that any indi-
vidual x mutates to another individual y is

( pm
910

)31 where

pm ∈ (0, 0.5). Thus, we have pminm1 ≥ ( pm
910

)31.
(3) pminm2

There are two situations for one-point mutation. One is
that one bit flips in head. The other is that one bit flips in tail.

For the first situation according to Lemma 1, we have

P
{
x

M−→ y
}

= (1 − pm)l−1 pm
|F | + |T |

= (1 − pm)l
pm

1 − pm

1

|F | + |T |

If 1 − pm > pm , that is pm < 1
2 , it follows that

P{x M−→ y} > (1 − pm)l
(

pm
1 − pm

)l ( 1

|T | + |F |
)

= pml

|T | + |F | = pm31

35

For the second situation according to Lemma 1, we have

P
{
x

M−→ y
}

= (1 − pm)l−1 pm
|T | = (1 − pm)l

pm
1 − pm

1

|T |
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If 1 − pm > pm , that is pm < 1
2 , it follows that

P
{
x

M−→ y
}

> (1 − pm)l
(

pm
1 − pm

)l ( 1

|T |
)

= pml

|T | = pm31

26

From above analysis, the minimum probability that any

individual x mutates to another individual y is pm31

35 where

pm ∈ (0, 0.5). Thus, we have pminm2 ≥ pm31

35 .
(4) pmin t

According to Lemma 2, for ∀x, y ∈ H , we have

P
{
x

T−→ y
}

= 2

(h − 2) · l · (l + 1)
· pt

>
2

(l − 2) · l · (l + 1)
· pt >

2

l2(l + 1)
· pt

Thus, we have

pmin t = 2

l2(l + 1)
· pt = 1

15376
· pt

(5) pmin s

According to selection operator, obviously, we have
pmins = 1

2n .

According to Corollary 1, the EFHT of ME-GEP with
uniform mutation is as follows:

E[τ(V1)] <
1

(Nn − (N − 1)n) · pnmin t · pnminm1 · pnmin s

<
280 · 8080 · 9102480 · 1537680(

(915×2616)80 − (915×2616 − 1)80
) · p2480m · p80t

(11)

and the EFHT of ME-GEP with one-point mutation is as
follows:

E[τ(V1)] <
1

(Nn − (N − 1)n) · pnmin t · pnminm2 · pnmin s

<
280 · 8080 · 3580 · 1537680(

(915×2616)80 − (915×2616 − 1)80
) · p2480m · p80t

(12)

5.1.3 Numerical experiment

From above formulas (11) and (12), the EFHT of ME-GEP
can be decreased by increasing mutation probability and
transposition probability.

The following experiments to observe the actual average
first hitting time ofME-GEP, especially considering different
mutation operators, are done:

(1) When IS transposition probability is 0.1, uniform and
one-point mutation probabilities are changed;

(2) When uniform and one-point mutate probabilities are
0.04, the IS transposition probability is changed.

Fig. 2 The EFHT of ME-GEP for solving gas emitted from coalfaces
modeling with different one-point mutation and IS transposition prob-
abilities

Fig. 3 The EFHT of ME-GEP for solving gas emitted from coalfaces
modeling with different uniform mutation and IS transposition proba-
bilities

The results obtained are shown in Figs. 2 and 3. The EFHT
of ME-GEP decreased with the increasing of one-point and
uniform mutation probabilities when IS transposition prob-
ability was 0.1. And the EFHT of ME-GEP decreased with
the increasing of IS transposition probability when one-point
and uniform mutation probabilities were 0.04. In this exam-
ple, the experimental results conformed to formulas (11) and
(12).

5.2 Clustering problem

5.2.1 The description of clustering problem

Clustering problem can be described as follows: given a set
of observations (P1, . . . , Pm), where each observation is a
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d-dimensional real vector, partition the m observations into
q(≤ m) sets C = {C1, . . . ,Cq}, which satisfies

Minimize
q∑

i=1

∑
Pj∈Ci

||Pj − μi ||2, where μi is the mean of

points in Cj.
In ME-GEP for solving clustering problems, two special

clustering operators, namely ‘∪’ and ‘∩’, are introduced as
binary operators used to define aggregation and segmentation
of clusters respectively.

Let O1 and O2 be the centers of cluster C1 and C2.

(1) The aggregation operator ‘∩’ is defined as O1 ∩
O2 =centroid (O1, O2), where the return of function
centroid is the center vector of O1 and O2. And C1 and
C2 are aggregated into a cluster C with the center O =
centroid (O1, O2).

(2) The segmentation operator ′∪′ is defined as O1 ∪ O2

= {O1, O2}. C1 and C2 are two distinct clusters, and
they still keep the segmentation, whose centers of the
clusters are O1 and O2, respectively.

The chromosome is also composed of head and tail.
The function set is F = {∪,∩}, and the terminals set is
T = {x1, x2, . . . , xi }, where i ∈ (1, n). Here, the symbol xi
represents the center of a cluster in the data set.

Based on above definitions, the clusters are easily defined
in the chromosome of ME-GEP framework.

The main procedure of ME-GEP for solving clustering
problem is described as follows. The detailed content can be
got in reference (Chen et al. 2007):

Step 1 Initialize the population;
Step 2 Select and aggregate cluster centers by coding and

decoding expression trees;
Step 3 Calculate the Euclidean distances between each

data object and cluster centers and tag the corresponding
data object;

Step 4 Update the cluster centers and compute the fitness
of each individual;

Step 5 Preserve the best individual to the next generation;
Step 6 Select individuals with same probability;
Step 7Mutate and recombination with a certain probabil-

ity;
Step 8Generate a new population, and if the optimal solu-

tion has been found, then turn to step 9; otherwise, turn to
step 2;

Step 9 Select the best individual;
Step 10 Auto-clustering algorithm of best individual;
Step 11 Output the result of clusters.
The EFHT of ME-GEP (Chen et al. 2007) for solving

two actual clustering examples of Iris and Yeast (benchmark
databases) (Zhou et al. 2003) with different data dimensions
and sizes is analyzed as follows:

To solve clustering problems in examples, the parame-
ters of ME-GEP are designed as Table 2. The genetic opera-

Table 2 Parameters set ofME-GEP for clustering two benchmark data-
bases

Database Size Data
dimensions

The length of
gene head (h)

Popsize (n)

Iris 150 4 4 20

Yeast 1,484 8 15 30

tors adopted include one-point recombination, selection with
equal probability, uniform and one-point mutation operators.

The fitness of ME-GEP algorithm for solving the cluster-
ing problem is evaluated by Eq. (13).

f = 1
q∑

i=1

∑
Pj∈Ci

||Pj − μi ||2
, μi = 1

ni

∑
Pj∈Ci

Pj , (13)

where q is the number of clusters, Ci is the i th cluster, Pj

is the observation point of cluster Ci and μi is the center of
i th cluster. The bigger the individual fitness, the more com-
pact and independent the cluster, namely the corresponding
individual is better.

5.2.2 The EFHT of ME-GEP for sloving clustering Iris
database

The parameters of ME-GEP for clustering Iris database are
as follows: Let h = 4; then tal = 5, l = 9. T = {x1, x2,
x3, x4, x5}.

Applying Theorem 1 and Corollary 1, we have

E[τ(V1)] <
1

(Nn − (N − 1)n) · pnminm · pnmin s

Let pminm1 and pminm2 be the minimum probabilities
when an individual x changes to individual y after uniform
mutation and one-point mutation, respectively. Next, we will
evaluate and estimate N , pminm1, pminm2 and pmin s .

(1) The size of individual space N .
Denote the tree height of phenotype by variable ht .

Because the individual length is 9, we have ht ≤ 4. It follows
that

N = |H | ≤ 2(20+21+22) × 52
3= 27 × 58

(2) pminm1

According to Lemma 1, we have

P
{
x

M−→ y
}

= (1 − pm)l
(

pm
1 − pm

)k1+k2( 1

|F |
)k1( 1

|T |
)k2

If 1 − pm > pm , that is pm < 1
2 , it follows that

P
{
x

M−→ y
}

> (1 − pm)l
(

pm
1 − pm

)l ( 1

|F |
)l ( 1

|T |
)l

=
(

pm
(|F |) · (|T |)

)l

=
( pm
10

)9

123



The time complexity analysis 1623

From the above analysis, the minimum probability that
any individual x mutates to another individual y is

( pm
10

)9
where pm ∈ (0, 0.5). Thus, we have pminm1 ≥ ( pm

10

)9.
(3) pminm2

There are two situations for one-point mutation. One is
that one bit flips in head. The other is that one bit flips in tail.

For the first situation according to Lemma 1, we have

P
{
x

M−→ y
}

= (1 − pm)l−1 pm
|F | = (1 − pm)l

pm
1 − pm

1

|F |

If 1 − pm > pm , that is pm < 1
2 , it follows that

P
{
x

M−→ y
}

> (1 − pm)l
(

pm
1 − pm

)l ( 1

|F |
)

= pml

|F | = pm9

2

For the second situation according to Lemma 1, we have

P{x M−→ y} = (1 − pm)l−1 pm
|T | = (1 − pm)l

pm
1 − pm

1

|T |

If 1 − pm > pm , that is pm < 1
2 , it follows that

P
{
x

M−→ y
}

> (1 − pm)l
(

pm
1 − pm

)l

(
1

|T | )

= pml

|T | = pm9

5

From above analysis, the minimum probability that any

individual x mutates to another individual y is pm9

5 , where

pm ∈ (0, 0.5). Thus, we have pminm2 ≥ pm9

5 .
(4) pmin s

According to selection operator, obviously, we have
pmins = 1

2n .
According to Corollary 1, the EFHT of ME-GEP with

uniform mutation is as follows:

E[τ(V1)] <
1

(Nn − (N − 1)n) · pnminm1 · pnmin s

<
10180 · 220 · 2020(

(27 × 58
)20 − (27 × 58 − 1)20) · p180m

(14)

And the EFHT of ME-GEP with one-point mutation is as
follows:

E[τ(V1)] <
1

(Nn − (N − 1)n) · pnminm2 · pnmin s

<
520 · 220 · 2020(

(27 × 58)20 − (27 × 58 − 1)20
) · p180m

(15)

5.2.3 The EFHT of ME-GEP for clustering yeast database

The parameters of ME-GEP for clustering yeast database
are as follows: Let h = 15; then tal = 16, l = 31. T =
{x1, x2, . . . , x16}.

Applying Theorem 1 and Corollary 1, we have

E[τ(V1)] <
1

(Nn − (N − 1)n) · pnminm · pnmin s

Let pminm1 and pminm2 be the minimum probabilities
when an individual x mutates to individual y after uniform
mutation and one-point mutation, respectively. Next, we will
evaluate and estimate N , pminm1, pminm2 and pmin s .

(1) The size of individual space N .
Denote the tree height of phenotype by variable ht .

Because the individual length is 31, we have ht ≤ 5. It fol-
lows that

N = |H | ≤ 2(20+21+22+23) × 162
4= 215 × 1616

(2) pminm1

According to Lemma 1, we have

P
{
x

M−→ y
}

= (1 − pm)l
(

pm
1 − pm

)k1+k2( 1

|F |
)k1( 1

|T |
)k2

If 1 − pm > pm , that is pm < 1
2 , it follows that

P
{
x

M−→ y
}

> (1 − pm)l
(

pm
1 − pm

)l ( 1

|F |
)l ( 1

|T |
)l

=
(

pm
(|F |) · (|T |)

)l

=
( pm
32

)31

It is easy to find that the minimum probability that any
individual x mutates to another individual y is

( pm
32

)31 where
pm ∈ (0, 0.5). Thus, we have pminm1 ≥ ( pm

32

)31.
(3) pminm2

There are two situations when an individual does one-
point mutation. First is that one bit flips in head. Second is
that one bit flips in tail.

For the first situation according to Lemma 1, we have

P{x M−→ y} = (1 − pm)l−1 pm
|F |

= (1 − pm)l
pm

1 − pm

1

|F |
If 1 − pm > pm , that is pm < 1

2 , it follows that

P
{
x

M−→ y
}

> (1 − pm)l
(

pm
1 − pm

)l ( 1

|F |
)

= pml

|F | = pm31

2
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For the second situation according to Lemma 1, we have

P
{
x

M−→ y
}

= (1 − pm)l−1 pm
|T | = (1 − pm)l

pm
1 − pm

1

|T |

If 1 − pm > pm , that is pm < 1
2 , it follows that

P
{
x

M−→ y
}

> (1 − pm)l
(

pm
1 − pm

)l ( 1

|T |
)

= pml

|T | = pm31

16

From above analysis, the minimum probability that any

individual x mutates to another individual y is pm31

16 where

pm ∈ (0, 0.5). Thus, we have pminm2 ≥ pm31

16 .
(4) pmin s

According selection operator, obviously, we have pmins =
1
2n .

According to Corollary 1, the EFHT of ME-GEP with
uniform mutation is as follows:

E[τ(V1)] <
1

(Nn − (N − 1)n) · pnminm1 · pnmin s

<
32930 · 230 · 3030(

(215 × 1616)30 − (215 × 1616 − 1)30
) · p930m

(16)

And the EFHT of ME-GEP with one-point mutation is as
follows:

E[τ(V1)] <
1

(Nn − (N − 1)n) · pnminm2 · pnmin s

<
1630 · 230 · 3030(

(215 × 1616)30 − (215 × 1616 − 1)30
) · p930m

(17)

5.2.4 Numerical experiments

From the above formulas (14)–(17), the upper bound of the
EFHT of ME-GEP for solving clustering Iris and Yeast data-
bases can be decreased by increasing mutate probability.

In order to verify formulas (14)–(17), the following exper-
iments to observe the actual average first hitting times of
ME-GEP, especially considering different mutation opera-
tors: (1) the uniform mutation probability is changed; (2) the
one-point mutation probability is changed.

The results obtained are shown in Figs. 4 and 5. The EFHT
of ME-GEP decreased with the increasing of mutate proba-
bilities. In the above mentioned examples, the experimental
results conformed to formulas (14)–(17).

Fig. 4 The EFHT of ME-GEP algorithm for clustering Iris database
with different one-point and uniform mutation probabilities

Fig. 5 The EFHT of ME-GEP algorithm for clustering Yeast database
with different one-point and uniform mutation probabilities

Conclusion and future work

This paper studies the computational time complexity ofME-
GEP. By Markov chain theory and artificial fitness levels
technique, the upper and lower bounds of expected first hit-
ting timeofME-GEPare obtained. Furthermore, the relations
between the upper bound and the parameters of theME-GEP
are given. Moreover, the relations between the expected first
hitting time and the parameters of the algorithm are veri-
fied by actual examples for function modeling and clustering
problems. Our results obtained in this paper are the general
theoretical results, which can be used to guide the design and
implementation of GEP. What is more, it has shown that the
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analytical methods and techniques adopted in this paper have
broad suitability and useful reference for the researchers in
relevant research area of GEP theory.

Crossover operator has an important role in GEP. The
influence of crossover operator on EFHT of GEP will be
discussed in our future work. We will also research on the
approach to judging whether a problem belongs toME-GEP-
easy class or ME-GEP-hard class.
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