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Abstract Voltage stability assessment and prediction of
loadability margin are the major concerns in real-time oper-
ation of power systems. This paper proposes a support
vector machine (SVM) regression network for the volt-
age stability assessment for normal condition as well as
for contingency cases. The loadability margin of any given
operating conditions is obtained for pre-contingency and
post-contingency based on the computation of a stability
index. SVM takes real and reactive power at all buses of the
system and gives the loading margin. The validity of the pro-
posed SVM-based index is tested on IEEE 30 and Indian 181
bus systems. The results of the proposed method are com-
pared with neural network, extreme learningmachine, online
sequential extreme learning machine and extreme support
vector machine regression methods. The feasibility of appli-
cation of the proposed SVM regression network for real-time
stability assessment is discussed. Also, FACTS devices are
produced to improve the system loadability and their results
are discussed.
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Abbreviations

ANN Artificial neural network
CPF Continuation power flow
ELM Extreme learning machine
OS-ELM Online sequential extreme learning machine
SVM Support vector machine
SVR Support vector regression
ESVM Extreme support vector machine
AI Artificial intelligence
MLP Multi-layer perceptron
DE&PSO Differential evolution andparticle swarmopti-

mization
LM_index Loadability Margin_Index
nl Number of load buses
λo Loadability factor of base operating load point

(p.u)
λVC(Pre) Loadability factor of voltage collapse point

(p.u) for pre-contingency case
λVC(Post) Loadability factor of voltage collapse point

(p.u) for post-contingency case
PSAT Power system analysis toolbox
Pg Pl Qg Ql Real and reactive powers in generators and

load buses respectively
λ Loadability factor
MSE Mean square error
C Cost function in SVM
γ Gamma
Xi Loading margin
Yi Target value, i.e., loading margin from CPF
n No: of buses
Pli,n Real power load vector of i th bus for ‘n’

number of patterns
Qli,n Reactive power load vector of i th bus for ‘n’

number of patterns

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-014-1544-x&domain=pdf


808 M. V. Suganyadevi et al.

ε-SVR Epsilon-SVR
ν-SVR nu-SVR
LIBSVM Library SVM

1 Introduction

In recent years, the analysis and assessment of voltage sta-
bility have become a major concern in many power system
planning and operation, since it has been the cause for many
power system blackouts around the world (Taylor 1994).
Lack of new generation and transmission facilities and over
exploitation of the existing facilities geared by increased load
demand, especially in the deregulated environment, forces
the system to operate closer to their security boundaries lead-
ing to system instability. Loading margin analysis has been
profoundly identified as one of the fundamentalmeasurement
in voltage collapse or voltage stability studies. The voltage
collapse condition is predicted to occur when the load is
increased exceeding the maximum loading point and subse-
quently the system starts to lose its equilibriums.

Generally, loading margin determination can be achieved
by two techniques, viz., direct method and Homotopy
method. The direct method can find the critical point where
the Jacobian is singular by solving the enlarged system of
power flow equations in one step. The major drawback of
this method is requirement of good initial assumptions for a
successful convergence. It also doubles the number of equa-
tions to be solved. For amore complicated practical nonlinear
problem, the direct methods may not work at all (Ajjarapu
2006).

The lack of knowledge of an initial guess can be tackled
by the Homotopy method. This method first defines an easy
problem for which a solution is known and then it defines
path between the easy problem to the problem that need to be
solved. The easy problem, with which the Homotopymethod
starts, is gradually transformed into the solution of the hard
problem. The Homotopy method consists of a continuation
equation,whose Jacobianmatrix is not singular at bifurcation
points, hence they are numerically robust (Kundur 1994). The
continuation power flow (CPF) approach is one of the Homo-
topy methods and consists of predictor–corrector scheme to
forecast the bifurcation point of PV or QV curve (Ajjarapu
2006; Naoto Yorino 2005; Chiang et al. 1995; Canizares
2002). At some critical points (turning or fold points), the
singularity of the Jacobian matrix often causes trouble either
in the prediction or correction process because the selection
of step size in step length control scheme is problem depen-
dent.

In ref Irisarri et al. (1997), interior-point optimization
method is used to determine optimal loading parameters for
loading maximization. Multiple load flow solutions are pro-
posed to obtain the minimum loadability margins in Yorino

et al. (1997). An energy function-based approach is proposed
to evaluate the loadability margins on a given loading direc-
tion in the references Klump andOverbye (1997) and Chiang
and Ningqiang (2013). In Tare and Bijwe (1997), the authors
maximize the loadability margin in a given loading direc-
tion through minimizing the reactive power losses near the
critical loading point by linear programming technique.

Thus, various techniques for estimating the loadability
margin of power systems have been proposed related to volt-
age stability limits but all these techniques tend to depend on
size and nonlinearity of the problem (Zambroni et al. 2011;
Nagao et al. 1997; Van Cutsem 2002).

In recent years, research has been devoted to neural net-
work applications to voltage security assessment and moni-
toring. Artificial neural network (ANN) is a highly efficient
computational tool that could be used for online loadability
evaluation. Multi-layered feedforward neural network has
been widely used for power margin estimation associated
with static voltage stability limits by adopting different train-
ing criteria and algorithms. In references Saikat and Ben-
jamin (2007), Bahmanyar and Karami (2014),Wan and Song
(1998), Srivastava et al. (2000), the active and reactive pow-
ers, bus voltage magnitude and angles had been used as the
input attributes to the their proposed ANN model. In Torre
et al. (2007), the authors have proposed a new methodol-
ogy for loading margin estimation based on subtractive clus-
tering and adaptive neuro-fuzzy inference system, wherein
various voltage stability indices has been selected as inputs.
This method has proven to give good results to deal with
uncertain load behavior and hence, can be implemented in a
real-time environment. However, most of the artificial intel-
ligence (AI)-basedmethods have failed to predict the voltage
stabilitymargin correctly, because they cannot find the global
minima accurately.

Ant Colony optimization technique has been used in Kalil
(2006) while in reference Ismail and Titik (2003), utilized
Evolutionary Programming. The results obtained using the
multi-layer perceptron (MLP) associatedwith hybrid particle
swarm optimization technique have been compared with the
results of the conventional CPF technique in El-Dib (2006).
An expert system called fuzzy logic approach has been used
to determine the maximum loadability limit in Babulal et al.
(2008), but has not proved to give global optima. In Sug-
anyadevi and Babulal (2009), the comparative study of vari-
ous voltage stability indices for the estimation of loadability
margin is presented which gives some other useful infor-
mation such as identification of critical bus/line of a power
system.

A new DEPSO algorithm combining the advantages of
differential evolution (DE) and particle swarm optimization
(PSO) algorithm has been proposed in Gnanambal and Bab-
ulal (2012) to determine the maximum loading point which
has provided more promising and accurate results compared
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to other evolutionary algorithms. In general, in any evolu-
tionary technique, the time per iteration is greater and hence,
it cannot be directly applicable to solve practical large scale
interconnected power system networks.

Avast observation of literature review shows that the prob-
lem of loadability prediction still needs further investigation
for real-time applications. In the operation of practical power
systems, different loading scenariosmay result in very differ-
ent loadability margins for the same operating point, hence
loadabilitymargins should be predicted for any loadingdirec-
tion. Therefore, this paper presents a new methodology for
the estimation of voltage stability margin of a power system
based on support vector regression (SVR).

The proposed method is tested on IEEE 30 bus and
Indian 181 bus systems. The simulation results are
comparedwith the results obtained byCPF andANN, ESVM
(Liu et al. 2008), ELM (Huang et al. 2006) and OS-ELM
regression methods (Liang et al. 2006). The performance of
SVR (Vapnik 1998) is compared with other algorithms on
statistical measures like mean square error and average com-
putation time.

FACTS controllers enhance the voltage profile and also
the loadability margin of power systems. Natesan and Rad-
man (2004), Gotham and Heydt (1998). FACTS devices are
used for power flow analysis (Enrique et al. 2004; Eberhart
and Kennedy 1995). FACTS devices can be connected to a
transmission line in various ways, such as in series, shunt,
or combination of series and shunt. For example, the static
VAR compensator (SVC) and static synchronous compen-
sator (STATCOM) are connected in shunt; static synchro-
nous series compensator (SSSC) and thyristor-controlled
series capacitor (TCSC) are connected in series; thyristor-
controlled phase-shifting transformer (TCPST) and unified
power flow controller (UPFC) are connected in a series and
shunt combination. The behavior of the test system with and
without FACTS device under different loading conditions is
studied.

The organization of the paper is as follows: In Sect. 2, a
summarized prediction of loadability margin of a power sys-
tem during normal as well as contingency cases is presented.
Section 3 presents the SVM methodology and in Sect. 4, the
algorithm for the prediction of loadability margin and the
process of data generation are described in Sect. 5. The sim-
ulation results of the proposed approach and the comparison
of SVR result with and without FACTS devices and com-
pared with other algorithms are in Sect. 6. Finally, important
conclusions are drawn in Sect. 7.

2 Prediction of loadability margin

Loadability margin is the distance with respect to the load-
ing parameter, from the current operating point to voltage
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Fig. 1 PV curve and voltage stability limit

collapse point (Kundur 1994). The most common method to
determine the loadability margin is the continuation power
flow (CPF) technique. CPF employs a predictor–corrector
scheme to find a solution path of a set of power flow equa-
tions reformulated to include a load parameter. It starts from a
known solution and uses a tangent predictor to estimate sub-
sequent solution corresponding to a different value of the load
parameter. This estimate is then corrected using Newton–
Raphson power flow. The local parameterization provides a
mean of identifying each point along the solution path and
plays an integral part in avoiding singularity in Jacobian. Fig-
ure 1 shows a typical PV curve, which is recognized as an
important tool for assessing voltage stability. The continu-
ation method systematically increases the loading level or
bifurcation parameter, until bifurcation or point of collapse
is determined.

2.1 LM index

In this paper, we define a term called Loadability Margin
index (LM_Index), which is given by Eqs. (1) and (2), shown
below, indicating the distance from the current operating
point to the voltage collapse point in terms of loading parame-
ter for a given system operating condition with and without
specified contingency. The LM_Index for pre-contingency
and post-contingency is given by the following equations.

LM_Index(Pre-Contingency) = λVC(Pre) − λ0 (1)

LM_Index(Post-Contingency) = λVC(Post) − λ0 (2)

2.2 Loadability margin for pre-contingency

The prediction of load direction in real time is not known,
hence the present work has considered seven different load
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scenarios under normal operating conditions covering the
whole spectrumof load direction prediction. The various sce-
narios considered are listed as follows:

• Scenario 1-real power load alone increased at a single load
bus.

• Scenario 2-real power load alone increased atmultiple load
buses.

• Scenario 3-reactive power load alone increased at a single
load bus.

• Scenario 4-reactive power load alone increased at multiple
load buses.

• Scenario 5-both real and reactive power loads are increased
simultaneously at a single load bus for different loading
factor.

• Scenario 6-both real and reactive power loads are increased
simultaneously at multiple load buses for different loading
factor.

• Scenario 7-both real and reactive power loads at all load
buses are increased keeping the power factor as constant
at 0.8 lagging.

The conventional CPF algorithm available in PSAT toolbox
(Federico 2009) is used for the above scenarios to generate
sufficient data set. The data set includes real and reactive
power load at all buses and the corresponding loading para-
meter λ.

2.3 Loadability margin for post-contingency

Post-contingency is the state of the power system after a
contingency has occurred A contingency is the loss or failure
of a small part of the power system (e.g., a transmission line),
or an individual equipment failure (such as a generator or
transformer). This is also called an unplanned “outage”.

Many possible outage conditions could happen in a power
system. This has necessitated a need to study the system
behavior under a large number of contingency cases, so that
power system operator can be given a warning signal to ini-
tiate an appropriate corrective action so as to prevent seri-
ous damage or overload on other equipments. The problem
of studying all possible outages becomes very difficult and
time-consuming, since it is required to present the results
quickly for corrective actions to be taken.

The post-contingency analysis is used as a tool for the
offline analysis of contingency events, and as an online tool
to showoperatorswhatwould be the effects of future outages.
It allows operators to be better prepared to react to outages
using pre-planned recovery scenarios.

The sequence of steps carried out offline in applying
regression approach for the prediction of loadability margin
is depicted in Fig. 2.

Data Generation 
using CPF for seven type of loading 

scenarios 

Create a data base for the input vector in the 
form of real and reactive power load and the 

target/output vector in terms of lambda 
(loading margin). 

SVM ESVM
Select C and γ parameter, kernel type 

Prediction of Loadability Margin 

Regression Schemes 

Power System Network 

Simulate all N-1 contingency Precontingency 

Postcontingency 

Start 

Stop 

Fig. 2 Loadability margin prediction framework

3 SVM methodology

SVM has two special properties that SVMs can achieve (1)
high generalization by maximizing the margin and (2) sup-
port an efficient learning of nonlinear functions by kernel
trick. For the classification, the SVM tries to find the opti-
mal hyperplane, which is expressed as a linear combination
of a subset of training data (called support vectors) by solv-
ing a linearly constrained quadratic programming (QP) prob-
lem with a maximummargin between the two classes. Addi-
tionally, with the introduction of Vapnik’s ε-insensitive loss
function, the SVM has been extended to solve a nonlinear
regression-estimation problem, called the SVM for regres-
sion (Jin-Tsong 2006).

SVMRegression (SVR) is amethod to estimate a function
that maps from an input object to a real number based on
training data. Similar to SVMClassification (SVC), SVR has
the same properties of the margin maximization and kernel
trick for nonlinear mapping (Hwanjo and Sungchul 2010).

Figure 3 shows the structure of SVR predictor which real-
izes the mapping function. The basic idea of SVR is to map
the data of input space into high dimensional feature space via
a nonlinear mapping and to do linear regression in this space.
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Fig. 3 Structure of support vector regression predictor

x̂t+1 = f (xt , xt−1, xt−2 . . . . . . xt−(m−1)) in which x̂t+1 is
the predicted value and �xt is the observed value.

A training set for regression is represented as follows.

D = {(x1, y1), (x2, y2) . . . . . . (xm, ym)} (3)

where xi is a n-dimensional vector and y is the real number
for each xi . The SVR function F(xi ) makes a mapping from
an input vector xi to the target yi and takes the form.

F(X) = w ∗ x − b (4)

where w is the weight vector and b is the bias. The goal is to
estimate the parameters (w and b) of the function that give
the best fit of the data. An SVR function F(x) approximates
all pairs (xi , yi ) while maintaining the differences between
estimated values and real values under precision. That is, for
every input vector x in D,

yi − w ∗ xi − b ≤ ε

w ∗ xi + b − yi ≤ ε

The margin is

m arg in = 1

‖w‖
By minimizing ‖w‖2 to maximize the margin, the train-
ing in SVR becomes a constrained optimization problem as
follows.

Minimize: L(w) = 1

2
‖w‖2 (5)

Subject to: yi − w ∗ xi − b ≤ ε (6)

w ∗ xi + b − yi ≤ ε (7)

The solution of this problem does not allow any errors. To
allow some errors to deal with noise in the training data, the
soft margin SVR uses slack variables ξ and ξ̂

Then, the optimization problem can be revised as follows.

Minimize: L(w, ξ) = 1

2
‖w‖2 + C

∑

i

(
ξ2i , ξ̂2i

)
,C > 0

(8)

Subject to:

yi − w ∗ xi − b ≤ ε + ξi ∀(xi , yi ) ∈ D (9)

w ∗ xi + b − yi ≤ ε + ξ̂i ∀(xi , yi ) ∈ D (10)

ξi , ξ̂i ≥ 0 (11)

The constant C > 0 is the trade-off parameter between the
margin size and the amount of errors.

The slack variables ξ and ξ̂ dealwith infeasible constraints
of the optimization problem by imposing the penalty to the
excess deviations which are larger than ε.

To solve the optimization problem Eq. (8), we can con-
struct a Lagrange function from the objective function with
Lagrange multipliers as follows:

minimize: L = 1

2
‖w‖2 + C

∑

i

(
ξi , ξ̂i

)

−
∑

i

(
ηiξi + η̂i ξ̂i

)
(12)

−
∑

i

αi (ε + ηi − yi + w · xi + b)

−
∑

i

α̂i
(
ε + η̂i + yi − w · xi − b

)

subject to : ηi , η̂i ≥ 0 (13)

αi , α̂i ≥ 0 (14)

where ηi , η̂i , αi , α̂i are the Lagrange multipliers which sat-
isfy positive constraints.

The following is the process to find the saddle point using
the partial derivatives of L with respect to each lagrangian
multipliers for minimizing the function L.

∂L

∂b
=

∑

i

(
αi − α̂i

) = 0 (15)

∂L

∂w
= w −

∑

i

(
αi − α̂i

)
xi = 0, w =

∑

i

(
αi − α̂i

)
xi

(16)

∂L

∂ξ̂i
= C − α̂i − η̂i = 0, η̂i = C − α̂i (17)

The optimization problem with inequality constraints can be
changed into the following dual optimization problem by
substituting Eqs. (15), (16) and (17) in (12).

maximize: L(α) =
∑

i

yi
(
αi − α̂i

) − ε
∑

i

(αi + α̂i )

−1

2

∑

i

∑

j

(αi − α̂i )(αi − α̂i )xi x j (18)

subject to:
∑

i

(
αi − α̂i

) = 0 (19)

0 ≤ α, α̂ ≤ C (20)
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The dual variables ηi , η̂i are eliminated in revising Eq. (12) in
Eq. (18). Equations (16) and (17) can be rewritten as follows.

w =
∑

i

(
αi − α̂i

)
xi (21)

± ⊃ Bηi = C − αi (22)

η̂i = C − α̂i (23)

wherew is represented by a linear combination of the training
vectors xi. Accordingly, the SVR function F(x) becomes the
following function.

F(x) =
∑

i

(
αi − α̂i

)
xi x j + b (24)

Equation (25) can map the training vectors to target real val-
ues with allowing some errors but it cannot handle the non-
linear SVR case. The same kernel trick can be applied by
replacing the inner product of two vectors xi and x j with
a kernel function K (xi , x j ). The transformed feature space
is usually high dimensional, and the SVR function in this
space becomes nonlinear in the original input space. Using
the kernel function K , The inner product in the transformed
feature space can be computed as fast as the inner product
xi∗x j in the original input space. Once replacing the orig-
inal inner product with a kernel function K , the remaining
process for solving the optimization problem is very similar
to that for the linear SVR. The linear optimization function
can be changed using kernel function as follows.

maximize: L(α) =
∑

i

yi (αi − α̂i ) − ε
∑

i

(αi + α̂i )

−1

2

∑

i

∑

j

(αi − α̂i )(αi − α̂i )Kxi x j (25)

subject to:
∑

i

(αi − α̂i ) = 0 (26)

α̂i ≥ 0, αi ≥ 0 (27)

0 ≤ α, α̂ ≤ C (28)

Finally, the SVR function F(x) becomes the following using
the kernel function.

F(x) =
∑

i

(αi − α̂i )Kxi x j + b (29)

4 Algorithm for predicting loadability margin

The detailed algorithm for the prediction of loadability mar-
gin of a power system is given as follows:

1. Run the test systems data in PSAT for all seven loading
scenarios.

2. From the CPF results, create a database for the input
vector in the form of [PG, PL, QG, QL] where PG, PL,

Run CPF 
in 

PSAT 
at 

various 
loading 

scenarios 

ν - SVR, 
Poly Kernel 

ε - SVR,  
Poly kernel 

ε - SVR, 
RBF Kernel 

ν - SVR,  
RBF Kernel 

Loadability 
Margin 

LM_Index 

nlinli

lili

QP

QP

,,

1,1,

...
.....
.....
.....

...

Module 1 Module 2

Fig. 4 Structure of SVR model

QG and QL are the real and reactive powers in generators
and load buses, respectively, and output vector in the form
of scalar lambda (loading margin) for the corresponding
input vectors as shown in module 1 of Figs. 4 and 5.

3. Choose different possibilities, such as kernel type, kernel
parameters and SVR parameters (C and γ ) to train the
SVR network.

4. Train theSVRnetworkusing the trainingdata set. Test the
accuracy of the regression model to unseen test samples
and verify the predictor of loadability margin value.

5. Compare the predictor loadability margin of SVR with
other algorithms and conventional CPF technique in
terms of computational time and Mean Squared Error
(MSE) as given in following Eq. (30).

MSE =
n∑

i=1

(Xi − Yi )2

n
(30)

where Xi is the predictor loading margin value and Yi is
target value (i.e., loading margin from CPF).

Where
[
Pli,1, Pli,2, . . . . . . Pli,n

]
is the real power load

vector of i th bus for ‘n’ number of patterns and
[
Qli,1, Qli,2,

. . . . . . Qli,n
]
is the reactive load vector of i th bus for ‘n’

patterns.
The structure of the proposed SVRmodel consists ofmod-

ule 1 and module 2 as shown in the Fig. 3. In module 1, the
continuation power flow method is used for various load-
ing scenarios of the test systems. The P and Q values from
the module 1 are given as input to the module 2 of different
SVRs. These SVRmodels estimate the loadability margin of
the given power system.

5 Test systems and data generation

The proposed algorithm (explained in Sect. 4) is applied to
the IEEE 30 bus and Indian 181 bus systems. The numer-
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Fig. 6 Nose curve of Indian 181 bus system

ical data for IEEE 30 bus and Indian 181 bus systems are
taken from Power System Test Archive-UWEE and Bab-
ulal and Kannan (2006), respectively. In machine learning
approaches, the generated data set must adequately repre-
sent the entire range of power system operating states.

5.1 Pre-contingency cases

The input and output patterns can be generated either from
real time or offline mode of simulation. In this work, a large
number of characteristics of operating points are generated
through offline simulation using CPF method using PSAT
software for IEEE 30 bus system and CPF method using
MATPOWER software (Zimmerman et al. 2011) for Indian
181 bus system. The following Figs. 4, 5 and 6 shows the
nose curves (Loading parameter versus voltage) of IEEE 30
bus and Indian 181 bus systems, respectively. These curves
are obtained using CPF for all possible loading scenarios by
increasing the real and reactive power load from its base case
condition.

In IEEE 30 bus system, 600 patterns were generated by
varying the real and reactive power loads randomly from its
base case value to 150 %. Out of 600 patterns generated
for IEEE 30 bus system, 80 % (480 patterns) are selected

Table 1 Data size of pre-contingency and post-contingency cases

Cases IEEE 30 bus system Indian 181 bus system

Pre-contingency

Training phase 28,800 217,200

Testing phase 7,200 54,300

Post-contingency

Training phase 21,600 139,008

Testing phase 5,400 34,752

arbitrarily for training, while the left 20 % (120 patterns) are
used for testing. In Indian 181 bus test system, as many as
750 patterns were generated by changing the loading at each
bus randomly in wide range (±50 % of base case). Thus,
271,500 data samples are used for the simulation study. Out
of 750 patterns, 80% (600 patterns) are taken for training and
the remaining for testing. The size of the data set adopted for
training and testing phases under pre-contingency cases is
shown in Table 1.

5.2 Post-contingency cases

For loading margin estimation in the contingency cases, a
large number of load patterns are generated by all single line
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outages and selected double line outages in the power system
to capture all possible scenarios. In IEEE 30 bus system, 450
patterns were generated for all single line outages and some
double line outages. In Indian 181 bus test system, as many
as 480 patterns were generated by N-1 contingency scenar-
ios. Out of 450 patterns generated in IEEE 30 bus system,
80% (360 patterns) are selected arbitrarily for training, while
the left 20 % (90 patterns) are used for testing. Similarly for
Indian 181 bus system, out of 480 patterns, 80 % (384 pat-
terns) are taken for training and the remaining for testing. The
size of the data set adopted for training and testing phases
under normal as well as under contingency cases are shown
in Table 1.

6 Simulation results and discussion

6.1 Selection of kernel and SVR parameters using tenfold
cross-validation approach

LIBSVM (Babulal and Kannan 2006) and MATLAB rou-
tine is used for training the SVMs in both classification
and regression. The training performance of the SVR mod-
ule depends on proper selection of SVR parameter such
as cost function C and γ and kernel types. The vari-
ous kernel types considered for SVM regression are the
RBF, linear, polynomial and Gaussian. This paper uses
RBF kernel type over the others because of its superior-
ity (Suganyadevi and Babulal 2013). The best combination
of C and γ is often selected by a grid search with expo-
nentially growing sequences of C and γ , for example, C ∈{
2−5, 2−3, . . . . . . 213, 215

}; γ ∈{
2−15, 2−13, . . . . . . 21, 23

}
.

Typically, every combination of parameter choices is checked
using cross-validation, and the parameters with best cross-
validation accuracy are selected. The improper selection of
these two parameters can lead to over-fitting or under-fitting

problems. Tenfold cross-validation approach in grid-search
method is used to determine the optimal value of C and γ so
that the regressionmodel can accurately predict the unknown
data (Kalyani and Swarup 2013). Highest cross-validation
accuracy of 93 % is obtained for C = 100 and γ = 0.2.

6.2 Comparison of various regression model’s loadability
margin without FACTS devices

This section compares the performance of ANN, ELM,
OSELM and ESVM with respect to SVM in predicting the
loadability margin of IEEE 30 bus and Indian 181 bus sys-
temswithout FACTS devices. ANN is designedwith an input
layer of three neurons, a hidden layer of five neurons and an
output layer of one neuron. The Levenberg–Marquardt back-
propagation network training function is used. The network
is trained for up to 300 epochs to an error goal of 0.000001. In
ELM and OSELM algorithms, the RBF activation function
is used to compute the hidden layer output matrix. Sigmoidal
activation function is used for ESVM.

The proposed SVM model is used to determine the load-
ability margin and the results in terms of training time,
testing time, training MSE and testing MSE for both pre-
contingency and post-contingency cases are compared and
shown in Tables 2 and 3. Clearly from the tables, the per-
formance of SVM is better than others. Hence the proposed
SVM regressionmodelmay be suitable for online implemen-
tation. As SVM predicts quickly, it may allow the operator
to monitor the power system stability from time to time and
take appropriate control and preventive actions accordingly.

6.3 Prediction of VSM after placing FACTS devices

The best location for shunt reactive power compensation, as
far as the improvement of voltage stability margin is con-
cerned, is the weakest bus of the system. The weakest bus

Table 2 Comparative analysis
of various regression models for
LM estimation for IEEE 30 bus
test system

Parameters ANN SVM ESVM ELM OSELM

Pre-contingency cases

No of neurons 5 – – 20 20

Training time (s) 0.105771 0.086699 0.094696 0.095638 0.096960

Testing time (s) 0.109304 0.101318 0.109586 0.107834 0.109467

Training MSE 0.094922 0.066183 0.071314 0.077211 0.079163

Testing MSE 0.098700 0.062966 0.071754 0.077029 0.076414

Post-contingency cases

No of neurons 5 – – 20 20

Training time (s) 2.8172 0.24286 1.2919 0.89495 0.9878

Testing time (s) 2.8678 0.23102 1.1498 0.89153 0.9867

Training MSE 0.122865 0.049101 0.054744 0.059739 0.064163

Testing MSE 0.1231906 0.0461205 0.0738572 0.0561156 0.0647328
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Table 3 Comparative analysis
of various regression models for
LM estimation for Indian 181
bus test system

Parameters ANN SVM ESVM ELM OSELM

Pre-contingency cases

No of neurons 10 – – 25 25

Training Time (s) 1.360278 0.689144 1.070068 1.104361 1.181827

Testing Time (s) 6.270195 0.35545 4.1945 5.190138 1.690904

Training MSE 0.46727 0.09515 0.31332 0.240359 0.309578

Testing MSE 0.36412 0.04525 0.28603 0.193606 0.28018

Post-contingency cases

No of neurons 10 – – 25 25

Training Time (s) 5.731265 0.267097 4.751874 1.243422 0.92021

Testing Time (s) 5.717564 0.281543 4.182546 1.121544 0.795975

Training MSE 1.56422 0.124017 0.464179 0.440359 0.461239

Testing MSE 0.74573 0.11263 0.446925 0.560426 0.636512
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Fig. 7 Nose curve of IEEE 30 bus system after placing SVC at 26th bus

of the system can be identified using nodal voltage stability
indices (Suganyadevi and Babulal 2009). Introducing shunt
compensation devices at this location will improve the LM.
In IEEE 30 bus system, bus number 26 is identified as the
weakest bus, the injection of reactive power of 2.5 p.u. in this
bus from SVC will increase the loading margin by 33.34 %.
Similarly in Indian 181bus system, SVC (reactive power 3.75
p.u.) is connected at the weakest bus number 109, increases
the loading margin by 37.14 %. The enhancement of LM
is also studied with the introduction of TCSC in the weak-
est transmission line (identified by the line voltage stability
indices (Suganyadevi andBabulal 2009). In IEEE 30 bus sys-
tem, 20 % of line reactance compensation is inserted in the
weakest line number 34.An increase in loading of P = 1.5%
and Q = 1.75 % are obtained due to the inclusion of TCSC.
Similarly for the Indian 181 bus system, TCSC (30 % of
the line reactance of the weakest line between 110 and 141
bus numbers) is connected and the improvement in the load-
ings of P = 2.89 % and Q = 3.52 % are obtained. The
nose curves of IEEE 30 bus and Indian 181 bus systems after
placing SVC at its weakest buses are shown in the following
Figs. 7 and 8, respectively.

The enhanced LM with SVC and TCSC are determined
and the results in terms of training time, testing time and
testing MSE are compared and presented for IEEE 30 bus
and Indian 181 bus systems in Tables 4 and 5, respectively.
The tables show clearly that the proposed SVM model esti-
mate the same loadability margin as obtained by the other
techniqueswith greater accuracy. The training computational
time of ELM network is slightly higher than the SVM and
ANN. The SVM training and testing time are lesser and accu-
rate when compared to ANN model. The results show that
the SVM type predicts the result quickly when compared
to other models and the computational time also less in the
order of 10−4.

Figure 9 shows the variation of LM for base case, con-
tingency, TCSC and SVC of IEEE 30 bus system for some
testing patterns obtained from SVMmodels. SVC gives bet-
ter voltage stability compared to series compensation device
TCSC, i.e., the LM of the system with SVC is higher than
that of TCSC. Shunt compensation device injects the reac-
tive power at the connected weakest bus but series com-
pensation device inserts the reactive power at the connected
line(weakest line). It shows that IEEE 30 bus system needs
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Fig. 8 Nose curve of Indian 181 bus system after placing SVC at 109th bus

Table 4 Comparison of various
regression models by placing
FACTS devices for IEEE 30 bus
test system

FACTS
devices

Training data
samples

Testing data
samples

Networks Training
time (s)

Testing
time (s)

MSE

TCSC 5,760 1,440 SVM 1.258 0.279 1.27E−04

ANN 1.867 0.582 3.35E−03

ELM 2.748 0.912 8.35E−03

OS-ELM 5.998 1.359 11.40E−03

ESVM 10.445 2.561 17.66E−04

SVC 5,760 1,440 SVM 1.292 0.764 1.68E−04

ANN 1.923 1.346 4.87E−02

ELM 3.692 2.178 6.39E−03

OS-ELM 9.447 5.301 12.48E−03

ESVM 16.315 8.891 18.57E−03

Table 5 Comparison of various
regression models by placing
FACTS devices for Indian 181
bus test system

FACTS
devices

Training data
samples

Testing data
samples

Networks Training
time (s)

Testing
time (s)

MSE

TCSC 112,944 28,236 SVM 8.698799 4.058508 7.11E−05

ANN 13.1841 6.527784 9.41E−03

ELM 15.23748 10.81546 1.05E−02

OS-ELM 18.40651 12.51452 1.77E−03

ESVM 26.34827 14.02375 2.09E−03

SVC 121,632 30,408 SVM 21.5741 5.029404 6.93E−05

ANN 25.78761 7.822764 9.57E−03

ELM 27.2533 12.14162 9.64E−03

OS-ELM 32.57959 12.72199 1.11E−03

ESVM 42.62027 14.43191 1.97E−03

more reactive power at the load bus than the line. Theweakest
bus 26 of the system requires more reactive power. Injection
of reactive power at bus 26 or in its vicinity can improve the
voltage stability margin. Similarly, the variation of LM for
base case, contingency, TCSC and SVC of Indian 181 bus

system for some testing patterns obtained from SVM mod-
els is shown in Fig. 10. The weakest bus 109 of the system
requires more reactive power. Injection of reactive power at
bus 109 or in its vicinity can improve the voltage stability
margin.
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Fig. 10 LM of Indian 181 bus test system with and without FACTS devices

7 Conclusion

This paper has presented a new SVM model for online pre-
diction of loadability margin for power system leading to fast
voltage stability assessment. The comparative results of LM
for IEEE 30 bus and Indian 181 bus systems under normal as
well as post-contingency cases had proven the efficacy of the
SVMmodel for online estimation. This, in turn, will help the
power system operator to take necessary control actions at
the appropriate time thereby preventing voltage collapse and
system blackout. The proposed SVM model is well trained
to predict the voltage stability margin in a short frame of
time for the considered power system. Injection of reactive
power at the weakest bus using SVC can improve LM than
that of TCSC. The estimation of LM using SVM model is
achievedwith least absolute error,minimumtraining and test-
ing computational time, compared to other machine learning
models. Future work will focus on application of proposed
work for the estimation of loadability margin in restructured
environment.
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