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Abstract Since the financial markets are complex, some-
times the future security returns are represented mainly
based on experts’ judgments. This paper discusses a portfolio
adjusting problem with risky assets in which security returns
are given subject to experts’ estimations. Here, we propose
uncertain mean-semiabsolute deviation adjusting models for
portfolio optimization problem in the trade-off between risk
and return on investment. Various uncertainty distributions
of the security returns based on experts’ evaluations are used
to convert the proposed models into equivalent deterministic
forms. Finally, numerical examples with synthetic uncertain
returns are illustrated to demonstrate the effectiveness of the
proposedmodels and the influence of transaction cost in port-
folio selection.

Keywords Portfolio adjusting · Transaction costs ·
Semiabsolute deviation · Uncertainty modeling · Uncertain
programming

1 Introduction

One of the most well-known portfolio selection models in
contemporary finance is the mean-variance model developed
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by Markowitz (1952). However, it is not extensively used to
construct large-scale portfolio problems in its original form.
The reason for this is the computational difficulty associ-
ated with solving a large-scale quadratic programming prob-
lem with a dense covariance matrix. To overcome the prob-
lem, many methods have been used to transform the prob-
lem into a linear programming. Most of the literatures in
portfolio optimization, variance and absolute deviation are
used to measure the risk. But in case of asymmetric return
distribution, the risk measure maybe have to sacrifice too
much expected return in eliminating both low and high return
extremes.Tomeasure real investment risk infinancialmarket,
semi-variance (Markowitz 1993) and semiabsolute deviation
(Speranza 1993) have been employed. Konno and Yamazaki
(1991) used the absolute deviation risk function to replace
the variance in Markowitz’s model and formulated as a lin-
ear programming model. Simaan (1997) provided a detailed
comparison of the mean-variance and the mean-absolute
deviation models. In particular, Speranza (1993) first for-
mulated a semiabsolute deviation portfolio selection model
in stochastic environment.

In real situations, historical data may be insufficient to
estimate probability distributions of security returns.Another
feasible way is to estimate returns by experts based on their
subjective evaluations. To deal with this subjective uncer-
tainty, Liu (2007) founded the concept of uncertainty mea-
sure and further developed it as uncertain theory in Liu
(2010). Furthermore, Liu (2010) also proposed uncertain
programming for solving optimization problems involving
uncertain variables. In this area, there are many works to be
done, for example, vehicle routing and project scheduling
problems (Liu 2010), shortest path problem (Gao 2011), sin-
gle period inventory problem (Qin and Kar 2013), finance
problem (Chen et al. 2013; Li et al. 2013), production plan-
ning problem (Ning et al. 2013), facility location-allocation
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problem (Wen et al. 2014) and data envelopment analysis
(Wen et al. in press).

In particular, Qin et al. (2009) and Huang (2011) applied
uncertainty theory to model portfolio optimization prob-
lem. Zhu (2010) applied uncertain optimal control to model
continuous-time portfolio selection problem. As extensions,
Huang and Qiao (2012) presented a risk index model for
multi-period case and then employed the risk index to study
the portfolio adjusting problem Huang and Ying (2013) sub-
ject to experts’ evaluations. Yao and Ji (2014) introduced
a portfolio selection model based on the idea of uncertain
decision-making. In the framework of uncertainty theory, the
variance of an uncertain variable cannot be exactly calculated
using its uncertain distribution. Therefore, Liu (2010) have to
use a stipulation to handle this situation. Liu and Qin (2012)
further introduced the concept of semiabsolute deviation to
measure downside risk in the case of asymmetrical uncertain
returns. Li and Qin (2014) followed the concept and formu-
lated a mean-semiabsolute deviation model by considering
the security returns with interval expected returns as uncer-
tain variables. The main advantage is that the semiabsolute
deviation of an uncertain return is exactly determined by its
uncertainty distribution. Thus, it provides an exact measure-
ment of risk or downside risk in an uncertain environment.

Due to the rapidly changing situations in the financialmar-
kets, an existing portfolio may not be efficient after a certain
period of time. Again changing the financial data in the mar-
ket has a great impact on the investor’s holdings. Therefore,
portfolio adjustment is necessary in response to the changed
situation in financial markets and investor’s capital. The cost
associated with buying or selling of a risky asset, known
as transaction cost, is one of the main concerns for portfo-
lio managers. Arnott and Wagner (1990) first suggested that
ignoring transaction costs would result in an inefficient port-
folio;whereas, adding transaction costswould assist decision
makers to better understanding of an efficient frontier. Some
researchers like Patel and Subrahmanyam (1982), Morton
and Pliska (1995), Yoshimoto (1996), Choi et al. (2007),
Lobo et al. (2007), Bertsimas and Pachamanova (2002),
Baule (2010), Wen et al. (2014), etc. extended the works
on portfolio selection problems with transaction costs. In the
portfolio adjusting problem, investors always update their
existing portfolios by buying or selling risk assets to hedge
the fluctuations of financial markets. Some researchers such
as Fang et al. (2006), Glen (2011), Lee and Yu (2011) and
Zhang et al. (2011) studied the portfolio adjusting problems
in the framework of return-risk trade-off.

Up to now, there is no paper considering the portfolio
adjusting problem in the assumption of uncertain variable
returns by using semiabsolute deviation to measure risk. The
purpose of this paper is to develop the uncertain portfolio
adjustment problem according to the expert’s evaluations of
future return of the security. Similar to Markowitz’s mean-

variance idea, here we use the expected value and semi-
absolute deviation of the uncertain return on portfolios as
the investment return and risk measurements, respectively.
Equivalent deterministic models are obtained by further pro-
viding various uncertainty distributions. The rest of the paper
is organized as follows. In Sect. 2, we review some funda-
mentals of uncertainty theory. Section 3 formulates themean-
semiabsolute deviation portfolio adjustment model when the
returns of assets are uncertain variables. Section 4 provides
some equivalent deterministic forms of mean-semiabsolute
deviationmodels. In Sect. 5, numerical examples are given to
illustrate the effectiveness of the proposed model. Some con-
cluding remarks are given in Sect. 6. Finally, all the proofs
are placed in the appendix to preserve the continuity of the
presentation.

2 Preliminaries

In 2007, Liu proposed the concept of uncertain measure and
founded uncertainty theory. In this part, we recall some basic
definitions andproperties about uncertainmeasure anduncer-
tain variable, which will be used in the whole paper.

Let � be a non-empty set, and let L be a σ -algebra over
�. Each element � ∈ L is called an event. It is necessary to
assign to each event � a numberM{�} which indicates the
chance that � will occur. Liu (2007) proposed three axioms
to ensure that the number M{�} satisfying certain mathe-
matical properties, (1)M{�} = 1; (2)M{�}+M{�c} = 1
for any event �; (3) For every countable sequence of events
{�i }, we have

M
{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i }. (1)

The triplet (�,L,M) is called an uncertainty space. Fur-
thermore, Liu (2010) provided the product axiom as follows.
If (�k,Lk,Mk) are uncertainty spaces for k = 1, 2, . . ., then
the product uncertain measure M is an uncertain measure
satisfying

M
{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k},

where �k are arbitrarily chosen events from Lk for k =
1, 2, . . ., respectively.

An uncertain variable ξ is defined by Liu (2007) as a mea-
surable function from an uncertainty space (�,L,M) to the
set of real numbers, i.e., for any Borel set B of real num-
bers, the set {ξ ∈ B} = {γ ∈ �|ξ(γ ) ∈ B} is an event.
It can be characterized by an uncertainty distribution which
is a function � : R → [0, 1] defined by Liu (2007) as
�(t) = M{ξ ≤ t}. For example, by a linear uncertain vari-
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able,wemean that the variable has the following linear uncer-
tainty distribution

�(r) =
⎧⎨
⎩
0, if r ≤ a,

(r − a)/(b − a), if a ≤ r ≤ b,
1, if r ≥ b.

The linear uncertain variable is denoted by L(a, b) where a
and b are real numbers with a < b. By a zigzag uncertain
variable, we mean that the variable has the following zigzag
uncertainty distribution

�(r) =

⎧⎪⎪⎨
⎪⎪⎩

0, if r ≤ a,

(r − a)/2(b − a), if a ≤ r ≤ b,
(x + c − 2b)/2(c − b), if b ≤ r ≤ c,

1, if r ≥ c.

The zigzag uncertain variable is denoted byZ(a, b, c)where
a, b, c are real numbers with a < b < c. By a normal uncer-
tain variable, we mean that the variable has the following
normal uncertainty distribution

�(r) =
(
1 + exp

(
π(e − r)√

3σ

))−1

, r ∈ R.

The normal uncertain variable is denoted by N (e, σ ) where
e and σ are real numbers with σ > 0.

The uncertain variables ξ1, ξ2, . . . , ξm are said by Liu
(2007) to be independent if

M
{

m⋂
i=1

{ξi ∈ Bi }
}

= min
1≤i≤m

M {ξi ∈ Bi } (2)

for any Borel sets B1, B2, . . . , Bm of real numbers. To rank
uncertain variables, the expected value of ξ was proposed by
Liu (2007) as

E[ξ ] =
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr (3)

provided that at least one of the two integrals is finite. For
example, the linear uncertain variable ξ ∼ L(a, b) has an
expected value E[ξ ] = (a + b)/2; the zigzag uncertain
variable ξ ∼ Z(a, b, c) has an expected value E[ξ ] =
(a + 2b + c)/4; the normal uncertain variable ξ ∼ N (e, σ )

has an expected value e, i.e., E[ξ ] = e.

Lemma 1 (Liu 2010) Let a and b be two real numbers, and
ξ and η two uncertain variables. Then we have E[aξ +b] =
aE[ξ ]+b. Further, if ξ and η are independent, then E[aξ +
bη] = aE[ξ ] + bE[η].

Definition 1 (Liu and Qin 2012) Let ξ be an uncertain vari-
able with finite expected value e. Then, the semiabsolute
deviation of ξ is defined as

Sa[ξ ] = E
[|(ξ − e)−|] , (4)

where (ξ − e)− = min(ξ − e, 0).

Lemma 2 (Liu and Qin 2012) Let ξ be an uncertain vari-
able with finite expected value e, and �(·) its uncertainty
distribution. Then, we have Sa[ξ ] = ∫ e

−∞ �(r)dr.

Lemma 3 (Liu andQin 2012)Let ξ be an uncertain variable
with finite expected value. Then for any real numbers a and
b, we have

Sa[aξ + b] = |a| · Sa[ξ ]. (5)

3 Uncertain mean-semiabsolute deviation adjusting
model

In this section, we formulate the problem of finding the
desirable portfolio by rebalancing the existing portfolio.
Suppose that an investor has an existing portfolio x0 =
(x01 , x

0
2 , . . . , x

0
n ) in which x0i is the current holding of risk

security i (i = 1, 2, . . . , n). Due to the changes of situa-
tion in financial market, the investor decides to adjust his/her
portfolio to maximize the return and/or minimize the risk.

Let x+ = (x+
1 , x+

2 , . . . , x+
n ) and x− = (x−

1 , x−
2 , . . . , x−

n ),
where x+

i and x−
i are, respectively, the proportion of the i-th

security brought and sold by the investor. It is evident that x+
i

and x−
i are both non-negative. After adjusting, the holding

amount of the i-th risk security can be expressed as

xi = x0i + x+
i − x−

i , i = 1, 2, . . . , n.

Let bi and si are, respectively, the unit transaction cost for
purchasing and selling the risk security i (i = 1, 2, . . . , n).
Without loss of generality, we assume that bi , si > 0 for
i = 1, 2, . . . , n. Then, the total transaction cost incurred by
adjusting the existing portfolio is

∑n
i=1(bi x

+
i + si x

−
i ). Let

ξi be the future return of security i (i = 1, 2, . . . , n). Then,
the net return of the portfolio x = (x1, x2, . . . , xn) after
rebalancing is

r(x1, x2, . . . , xn) =
n∑

i=1

ξi xi −
n∑

i=1

(
bi x

+
i + si x

−
i

)
. (6)

Analogous to the framework of mean-risk model, the
expected value of r(x1, x2, . . . , xn) is considered as the
investment return. If the investor accepts semiabsolute devia-
tion as risk measure, then the investment risk of the portfolio
(x1, x2, . . . , xn) is measured by Sa[r(x1, x2, . . . , xn)]. By
trading off return and risk, we establish the following mean-
semiabsolute deviation adjusting model
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⎧⎪⎪⎨
⎪⎪⎩
min Sa [r(x1, x2, . . . , xn)]
max E [r(x1, x2, . . . , xn)]
s.t. xi = x0i + x+

i − x−
i , i = 1, 2, . . . , n

xi , x
+
i , x−

i ≥ 0, i = 1, 2, . . . , n.

(7)

Definition 2 A feasible solution (x̂+
1 , . . . , x̂+

n , x̂−
1 , . . . , x̂−

n )

is said to be a Pareto optimal solution of Model (7) if there
is no feasible solution (x+

1 , . . . , x+
n , x−

1 , . . . , x−
n ) such that

E[r(x̂+
1 , . . . , x̂+

n , x̂−
1 , . . . , x̂−

n )]
≤ E[r(x+

1 , . . . , x+
n , x−

1 , . . . , x−
n )],

Sa[r(x̂+
1 , . . . , x̂+

n , x̂−
1 , . . . , x̂−

n )]
≥ Sa[r(x+

1 , . . . , x+
n , x−

1 , . . . , x−
n )]

and at least one of these two inequalities strictly holds.

Theorem 1 Model (7) is equivalent to the following one,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min Sa
[∑n

i=1 ξi xi
]

max E
[∑n

i=1 ξi xi
] − ∑n

i=1(bi x
+
i + si x

−
i )

s.t. xi = x0i + x+
i − x−

i , i = 1, 2, . . . , n

xi , x
+
i , x−

i ≥ 0, i = 1, 2, . . . , n.

(8)

Theorem 2 If (x̂+
1 , . . . , x̂+

n , x̂−
1 , . . . , x̂−

n ) is the Pareto opti-
mal solution of Model (8), then we have x̂+

i · x̂−
i = 0 for

i = 1, 2, . . . , n.

If the investment is self-financing, i.e., no new fund is
added and no fund is taken out of the existing portfolio, then
we have

n∑
i=1

x0i −
n∑

i=1

(
bi x

+
i + si x

−
i

) =
n∑

i=1

xi .

Let li and ui be the lower bound and the upper bound of hold-
ing on risk security i after adjusting for i = 1, 2, . . . , n. Then,
we reformulate the mean-semiabsolute deviation model as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min Sa
[∑n

i=1 ξi xi
]

max E
[∑n

i=1 ξi xi
] − ∑n

i=1(bi x
+
i + si x

−
i )

s.t.
∑n

i=1 x
0
i − ∑n

i=1(bi x
+
i + si x

−
i ) = ∑n

i=1 xi

xi = x0i + x+
i − x−

i , i = 1, 2, . . . , n

x+
i · x−

i = 0, i = 1, 2, . . . , n

x+
i , x−

i ≥ 0, i = 1, 2, . . . , n,

li ≤ xi ≤ ui , i = 1, 2, . . . , n.

(9)

We introduce a risk-averse factor φ to convert Model (9)
into a single-objective programming

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max E
[∑n

i=1 ξi xi
] − ∑n

i=1(bi x
+
i + si x

−
i ) − φSa

[∑n
i=1 ξi xi

]
s.t.

∑n
i=1 x

0
i − ∑n

i=1(bi x
+
i + si x

−
i ) = ∑n

i=1 xi

xi = x0i + x+
i − x−

i , i = 1, 2, . . . , n

x+
i · x−

i = 0, i = 1, 2, . . . , n

x+
i , x−

i ≥ 0, i = 1, 2, . . . , n,

li ≤ xi ≤ ui , i = 1, 2, . . . , n.

(10)

The greater the factorφ, themore conservative is the investor.

4 Equivalents of mean-semiabsolute deviation adjusting
models

To simplify the proposed models, this section will con-
sider several special situations in which deterministic mod-
els are obtained. We first assume that uncertain returns
ξ1, ξ2, . . . , ξn are independent in the sense of uncertain
measure, which implies that E[ξ1x1 + ξ2x2 · · · + ξnxn] =
x1E[ξ1] + x2E[ξ2] + · · · + xnE[ξn].

Theorem 3 Suppose that security returns ξ1, ξ2, . . . , ξn are
all linear uncertain variables. Denote by ξi = (ci , di ) for i =
1, 2, . . . , n. Then, model (9) is converted into the following
deterministic model 11,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑n

i=1 xi (di − ci )

max
∑n

i=1 xi (di + ci ) − 2
∑n

i=1(bi x
+
i + si x

−
i )

s.t.
∑n

i=1 x
0
i − ∑n

i=1(bi x
+
i + si x

−
i ) = ∑n

i=1 xi

xi = x0i + x+
i − x−

i , i = 1, 2, . . . , n

x+
i · x−

i = 0, i = 1, 2, . . . , n

x+
i , x−

i ≥ 0, i = 1, 2, . . . , n,

li ≤ xi ≤ ui , i = 1, 2, . . . , n

(11)

which is a bi-objective linear programming model.

Theorem 4 Suppose that security returns ξ1, ξ2, . . . , ξn are
all zigzag uncertain variables. Denote by ξi = (ai −
αi , ai , ai + βi ) for i = 1, 2, . . . , n. Then model (9) is con-
verted into the following deterministic model,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

(∑n
i=1 2xi (αi + βi ) + ∣∣∑n

i=1 xi (αi − βi )
∣∣)2∑n

i=1 xi (αi + βi ) + ∣∣∑n
i=1 xi (αi − βi )

∣∣
max

∑n
i=1 xi (4ai + βi − αi ) − 4

∑n
i=1(bi x

+
i + si x

−
i )

s.t.
∑n

i=1 x
0
i − ∑n

i=1(bi x
+
i + si x

−
i ) = ∑n

i=1 xi

xi = x0i + x+
i − x−

i , i = 1, 2, . . . , n

x+
i · x−

i = 0, i = 1, 2, . . . , n

x+
i , x−

i ≥ 0, i = 1, 2, . . . , n,

li ≤ xi ≤ ui , i = 1, 2, . . . , n.

(12)
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Remark 1 If αi < βi for i = 1, 2, . . . , n, then we have

Sa

[
n∑

i=1

ξi xi

]
=

[∑n
i=1 xi (αi + 3βi )

]2
2

∑n
i=1 βi xi

.

Ifαi = βi for i = 1, 2, . . . , n, thenwehave Sa[∑n
i=1 ξi xi ] =

4
∑n

i=1 xi (αi + βi ). If αi > βi for i = 1, 2, . . . , n, then we
have

Sa

[
n∑

i=1

ξi xi

]
=

[∑n
i=1 xi (3αi + βi )

]2
2

∑n
i=1 αi xi

.

Theorem 5 In these special situations, the first objective
function of Model (12) has a relatively simple expression.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑n

i=1 σi xi

max
∑n

i=1 ei xi − ∑n
i=1(bi x

+
i + si x

−
i )

s.t.
∑n

i=1 x
0
i − ∑n

i=1(bi x
+
i + si x

−
i ) = ∑n

i=1 xi

xi = x0i + x+
i − x−

i , i = 1, 2, . . . , n

x+
i · x−

i = 0, i = 1, 2, . . . , n

x+
i , x−

i ≥ 0, i = 1, 2, . . . , n,

li ≤ xi ≤ ui , i = 1, 2, . . . , n

(13)

which is also a bi-objective linear programming.

Theorem 6 Suppose that security returns ξ1, ξ2, . . . , ξn are
uncertain variables with regular uncertainty distributions
�1,�2, . . . , �n. Denote by�−1

1 ,�−1
2 , . . . , �−1

n the inverse
uncertainty distributions of�1,�2, . . . , �n. Then,model (9)
is converted into the following deterministic model (14),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∫ ∑n

i=1 xi
∫ 1
0 �−1

i (α)dα

−∞
α(r)dr

max
∑n

i=1 xi
∫ 1
0 �−1

i (α)dα − ∑n
i=1(bi x

+
i + si x

−
i )

s.t.
∑n

i=1 x
0
i − ∑n

i=1(bi x
+
i + si x

−
i ) = ∑n

i=1 xi

xi = x0i + x+
i − x−

i , i = 1, 2, . . . , n

x+
i · x−

i = 0, i = 1, 2, . . . , n

x+
i , x−

i ≥ 0, i = 1, 2, . . . , n,

li ≤ xi ≤ ui , i = 1, 2, . . . , n

(14)

in which α(r) is just the root of the equation x1�
−1
1 (α) +

· · · + xn�−1
n (α) = r .

Remark 2 Similar to Theorems 3–6, we can also translate
Model (10) into deterministic ones when the security returns
have the same type of uncertainty distributions.

5 Numerical examples

This sectionwill present two numerical examples to illustrate
our proposed model.

Table 1 Zigzag uncertain returns of ten securities in Example 1

Security no. Uncertain return Security no. Uncertain return

ai αi βi ai αi βi

1 0.1 0.5 0.4 6 −0.1 0.3 0.5

2 −0.2 0.6 0.4 7 0.1 0.9 0.8

3 −0.1 0.4 0.4 8 0.3 0.8 0.4

4 0.1 0.8 0.5 9 0.2 0.9 0.4

5 0.3 0.9 0.6 10 0.0 0.6 0.8

Example 1 In this example,we consider a casewith ten secu-
rities with zigzag uncertain returns shown in Table 1.

Assume that unit purchasing cost bi is 0.01 and unit selling
cost si is 0.02 for i = 1, 2, . . . , 10. Further, assume that the
holding quantity after adjusting is no more than 0.3 and short
selling is not allowed. That is to say, li = 0 and ui = 0.3 for
i = 1, 2, . . . , 10.Model (10) is employed to seek the optimal
portfolio, which is rewritten as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
1

4

10∑
i=1

[xi (4ai + βi − αi ) − 4(bi x
+
i + si x

−
i )]

−φ

(∑10
i=1 2xi (αi+βi )+

∣∣∣∑10
i=1 xi (αi−βi )

∣∣∣)2∑10
i=1 xi (αi+βi )+

∣∣∣∑10
i=1 xi (αi−βi )

∣∣∣
s.t.

∑10
i=1 x

0
i − ∑10

i=1(bi x
+
i + si x

−
i ) = ∑10

i=1 xi

xi = x0i + x+
i − x−

i , i = 1, 2, . . . , 10

x+
i · x−

i = 0, i = 1, 2, . . . , 10

0 ≤ xi ≤ 0.3, i = 1, 2, . . . , 10

(15)

which is a deterministicmathematical programmingwith lin-
ear constraints.

Assume that the investor’s current existing portfolio
before adjusting is

(x01 , x02 , x03 , x04 , x05 , x06 , x07 , x08 , x09 , x010)

= (0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10).

The function “fmincon” in Matlab is employed to solve the
model, and the computational results are shown in Table 2
for different risk-averse factors φ.

Example 2 We consider another problem with ten secu-
rities with different types of uncertain returns. The first
five securities have zigzag uncertain returns denoted by
ξ1 = Z(−0.4, 0.1, 0.6), ξ2 = Z(−0.8,−0.2, 0.4), ξ3 =
Z(−0.5,−0.1, 0.3), ξ4 = Z(−0.6, 0.1, 0.8) and ξ5 =
Z(−0.6, 0.2, 1.0), respectively, and the other five secu-
rities have normal uncertain returns denoted by ξ6 =
N (−0.10, 0.05), ξ7 = N (0.10, 0.24), ξ8 = N (−0.05,
0.12), ξ9 = N (0.15, 0.15), ξ10 = N (0.05, 0.16), respec-
tively. First, we can obtain their inverse uncertainty distribu-
tions as follows:
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Table 2 The optimal adjusting
strategies for ten securities for
different values of φ

Security no. φ = 0.2 φ = 1.0 φ = 3.0

x+
i x−

i xi x+
i x−

i xi x+
i x−

i xi

1 0.150 0 0.250 0.200 0 0.300 0.200 0 0.300

2 0 0.100 0 0 0.100 0 0 0.100 0

3 0 0.100 0 0 0.100 0 0 0.100 0

4 0 0.100 0 0 0.100 0 0 0.100 0

5 0.200 0 0.300 0.200 0 0.300 0.099 0 0.199

6 0 0.100 0 0 0.100 0 0.084 0 0.184

7 0 0.067 0.033 0 0.100 0 0 0.100 0

8 0.200 0 0.300 0.200 0 0.300 0.200 0 0.300

9 0 0 0.100 0 0.018 0.072 0 0.100 0

10 0 0.100 0 0 0.100 0 0 0.100 0

Phi−1
1 (α) = α − 0.4

�−1
2 (α) = 1.2α − 0.8

�−1
3 (α) = 0.8α − 0.5

�−1
4 (α) = 1.4α − 0.6

�−1
5 (α) = 1.6α − 0.6

�−1
6 (α) = −0.10 + 0.123 ln(α/(1 − α))

�−1
7 (α) = 0.10 + 0.270 ln(α/(1 − α))

�−1
8 (α) = −0.05 + 0.191 ln(α/(1 − α))

�−1
9 (α) = 0.15 + 0.214 ln(α/(1 − α))

�−1
10 (α) = 0.05 + 0.221 ln(α/(1 − α))

Let (x1, x2, . . . , x10) be the portfolio after adjusting. Then
we have

x1�
−1
1 (α) + x2�

−1
2 (α) + · · · + x10�

−1
10 (α)

= (x1 + 1.2x2 + 0.8x3 + 1.4x4 + 1.6x5)α

+(0.123x6 + 0.270x7 + 0.191x8 + 0.214x9

+0.221x10) ln(α/(1 − α))

−0.4x1 − 0.8x2 − 0.5x3 − 0.6x4 − 0.6x5

−0.10x6 + 0.10x7 − 0.05x8 + 0.15x9 + 0.05x10.

If the short-selling is not allowed, then x1, . . . , x10 are all
non-negative. Consequently, x1�

−1
1 (α)+ x2�

−1
2 (α)+· · ·+

x10�
−1
10 (α) is an increasing function of α which implies that

the equation

x1�
−1
1 (α) + x2�

−1
2 (α) + · · · + x10�

−1
10 (α) = r

has only one root, denoted by α(r). The function “fzero” in
Matlab can be used to find the root of the above equation.

Assume that the investor’s current holding on security i is
x0i = 0.10, and bi = 0.01, si = 0.02 for i = 1, 2, . . . , 10.
In addition, we assume that the holding quantity is no more
than 0.3 after adjusting. If the investorwishes tominimize the

semiabsolute deviation (risk) when the expected return is no
less than the return level r0, then the corresponding mean-
semiabsolute deviation adjusting model is reformulated as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∫ τ

−∞
α(r)dr

s.t. 0.025 + 0.1x+
1 − 0.2x+

2 − 0.1x+
3 + 0.1x+

4 + 0.2x+
5 − 0.1x+

6

+0.1x+
7 − 0.05x+

8 + 0.15x+
9 + 0.05x+

10 − 0.1x−
1 + 0.2x−

2

+0.1x−
3 0.1x−

4 − 0.2x−
5 + 0.1x−

6 − 0.1x−
7 + 0.05x−

8 − 0.15x−
9

−0.05x−
10 = τ0.025 + 0.09x+

1 − 0.21x+
2 − 0.11x+

3 + 0.09x+
4

+0.19x+
5 − 0.11x+

6 + 0.09x+
7 − 0.06x+

8 + 0.14x+
9 + 0.04x+

10

−0.12x−
1 + 0.18x−

2 + 0.08x−
3 − 0.12x−

4 − 0.22x−
5 + 0.08x−

6

−0.12x−
7 + 0.03x−

8 − 0.17x−
9 − 0.07x−

10 ≥ r0∑10
i=1 x

+
i − 0.9703

∑10
i=1 x

−
i = 0

x+
i · x−

i = 0, i = 1, 2, . . . , 10

0 ≤ x+
i ≤ 0.2, i = 1, 2, . . . , 10

0 ≤ x−
i ≤ 0.1, i = 1, 2, . . . , 10,

(16)

where α(r) is the root of

(0.6 + x+
1 + 1.2x+

2 + 0.8x+
3 + 1.4x+

4 + 1.6x+
5 − x−

1

−1.2x−
2 − 0.8x−

3 − 1.4x−
4 − 1.6x−

5 )α

+(0.1019 + 0.123x+
6 + 0.270x+

7 + 0.191x+
8 + 0.214x+

9

+0.221x+
10 − 0.123x−

6 − 0.270x−
7

−0.191x−
8 − 0.214x−

9 − 0.221x−
10) ln(α/(1 − α)) − 0.275

−0.4x+
1 − 0.8x+

2 − 0.5x+
3 − 0.6x+

4 − 0.6x+
5 − 0.10x+

6

+0.10x+
7 − 0.05x+

8 + 0.15x+
9 + 0.05x+

10

+0.4x−
1 + 0.8x−

2 + 0.5x−
3 + 0.6x−

4 + 0.6x−
5 + 0.10x−

6

−0.10x−
7 + 0.05x−

8 − 0.15x−
9 − 0.05x−

10 = r

in which r ≤ τ .
The function “fmincon” in Matlab is again employed to

solve the above model, in which the objective is calculated
based onnumerical integral and the function “fzero” is called.

123



Uncertain portfolio adjusting model 723

Table 3 The optimal adjusting
strategies for ten securities for
different return levels r0

Security no. r0 = 0.04 r0 = 0.08 r0 = 0.12

x+
i x−

i xi x+
i x−

i xi x+
i x−

i xi

1 0.200 0 0.300 0.200 0 0.300 0.200 0 0.300

2 0 0.100 0 0 0.100 0 0 0.100 0

3 0 0.090 0.010 0 0.100 0 0 0.100 0

4 0 0.100 0 0 0.100 0 0 0.059 0.041

5 0 0.028 0.072 0.100 0 0.200 0.200 0 0.300

6 0.200 0 0.300 0.080 0 0.180 0 0.082 0.018

7 0 0.100 0 0 0.100 0 0 0.100 0

8 0 0.100 0 0 0.100 0 0 0.100 0.300

9 0.200 0 0.300 0.200 0 0.300 0.200 0.100 0

10 0 0.100 0 0 0.100 0 0 0.077 0.023

SAD 0.1254 0.1404 0.1566

0.115 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16 0.165
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Semiabsolute deviation of return on the portfolio after adjusting
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Fig. 1 The efficient frontier of Example 2

The obtained results are shown in Table 3. The last row shows
the corresponding semiabsolute deviations of optimal port-
folios. It can be observed that the semiabsolute deviation
will increase with the desired return levels r0 increases. To
see intuitively this point, the efficient frontier is shown in
Fig. 1 in which the vertical axis is the return levels and the
horizontal axis is the corresponding minimum semiabsolute
deviations.

6 Conclusions

In this paper, we have considered the problem of unbalancing
an existing portfolio in response to changed financial mar-
kets. The returns of risk securities are given by the expert’s
evaluation and treated as uncertain variables. We used the
expected value and semiabsolute deviation of uncertain vari-
ables to measure the return and risk of the securities, respec-

tively. Considering the return of risky securities are linear,
zigzag and normal uncertain variables, we converted the opti-
mization models into corresponding crisp mathematical pro-
gramming. Two numerical examples were presented to show
the effectiveness of the proposed approach. The modeling
methods provide alternatives to solve portfolio selection and
are also applied to other fields.
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ural Science Foundation of China (Nos. 71371019 and 71371021), and
in part by the Program for New Century Excellent Talents in University
(No. NCET-12-0026).

Appendix

Proof of Theorem 1 Note that
∑n

i=1 ξi xi is also an uncertain
variable. It immediately follows from Lemmas 1 and 3 of
Sect. 2 that the theorem holds.

Proof of Theorem 2 Assume that there exists k ∈ {1, 2, . . . ,
n} such that x̂+

k > 0 and x̂−
k > 0. Without loss of generality,

it is assumed that x̂+
k > x̂−

k . The optimal holding quantity
of security i after adjusting is x̂k = x0k + x̂+

k − x̂−
k . We set

x̃+
k = x̂+

k − x̂−
k and x̃−

k = 0. It is evident that x̃+
k · x̃−

k = 0,
x̃+
k , x̃−

k ≥ 0 and x̃k = x0k + x̃+
k − x̃−

k = x̂k which implies that
(x̂+

1 , . . . , x̂+
k−1, x̃

+
k , x̂+

k+1, . . . , x̂
+
n , x̂−

1 , . . . , x̂−
k−1, x̃

−
k , x̂−

k+1,

. . . , x̂−
n ) is a feasible solution of Model (8). Note that

r(x̂1, . . . , x̂k−1, x̃k, x̂k+1, . . . , x̂n)

−r(x̂1, . . . , x̂k−1, x̂k, x̂k+1, . . . , x̂n)

= (bk + sk)x̂
−
k > 0

which means that E[r(x̂1, . . . , x̂k−1, x̃k, x̂k+1, . . . , x̂n)] >

E[r(x̂1, . . . , x̂k−1, x̂k, x̂k+1, . . . , x̂n)]. In addition, since x̃k =
x̂k , the returnon theportfolio (x̂1, . . . , x̂k−1, x̃k, x̂k+1, . . . , x̂n)
has the same semiabsolute deviation as that on the portfolio
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(x̂1, . . . , x̂k−1, x̂k, x̂k+1, . . . , x̂n). Therefore, it is in contra-
diction to that (x̂+

1 , . . . , x̂+
n , x̂−

1 , . . . , x̂−
n ) is Pareto optimal.

The theorem is completed.

Proof of Theorem 3 It follows from the operational law of
uncertain variables that the portfolio return

∑n
i=1 ξi xi =

(
∑n

i=1 xi ci ,
∑n

i=1 xidi ) is also a linear uncertain variable
with expected value

∑n
i=1 xi (di + ci )/2. Further, we have

E

[
n∑

i=1

ξi xi

]
−

n∑
i=1

(bi x
+
i + si x

−
i )

= 1

2

(
n∑

i=1

xi (di + ci ) − 2
n∑

i=1

(bi x
+
i + si x

−
i )

)
.

Therefore, the second objective is equivalent to maximize
the term in parentheses on the right-hand side of the above
equation. In addition, it follows from Liu and Qin (2012) that

Sa

[
n∑

i=1

ξi xi

]
= 1

8

n∑
i=1

xi (di − ci ).

Note that since xi ≥ 0 and di > ci for i = 1, 2, . . . , n,
we have

∑n
i=1 xi (di − ci ) ≥ 0 which implies that the first

objective is equivalent to minimize it. The theorem is proved.

Proof of Theorem 4 It follows that the portfolio return

n∑
i=1

ξi xi =
(

n∑
i=1

xi (ai − αi ),

n∑
i=1

xiai ,
n∑

i=1

xi (ai + βi )

)

is also a zigzag uncertain variable.According to the definition
of expected value, we have E[∑n

i=1 ξi xi ] = ∑n
i=1 xi (4ai +

βi − αi )/4 which implies that the second objective is equiv-
alent to maximize

∑n
i=1 xi (4ai +βi −αi )−4

∑n
i=1(bi x

+
i +

si x
−
i ). Further, by the definition of semiabsolute deviation of

uncertain variable, it is obtained that

Sa

[
n∑

i=1

ξi xi

]
=

[∑n
i=1 2xi (αi +βi )+

∣∣∑n
i=1 xi (αi −βi )

∣∣]2∑n
i=1 xi (αi +βi )+

∣∣∑n
i=1 xi (αi −βi )

∣∣ .

Substituting the semiabsolute deviationof theportfolio return
into the first objective, the theorem is proved.

Proof of Theorem 5 It follows from the operational law
of normal uncertain variables that the portfolio return∑n

i=1 ξi xi ∼ N (
∑n

i=1 xi ei ,
∑n

i=1 xiσi ) is also a normal
uncertain variable. Further, it follows from the definitions
of expected value and semiabsolute deviation of uncertain
variables that

E

[
n∑

i=1

ξi xi

]
=

n∑
i=1

ei xi ≥ 0,

Sa

[
n∑

i=1

ξi xi

]
=

√
3 ln 2

π

n∑
i=1

σi xi ≥ 0

in which non-negativity holds due to non-negativity of xi , ei
and σi for i = 1, 2, . . . , n. Substituting them into the two
objective functions in Model (9), the theorem is proved.

Proof of Theorem 6 The second objective holds since E[ξi ]
= ∫ 1

0 �−1
i (α)dα for i = 1, 2, . . . , n by Lemma 1. Accord-

ing to the definition of semiabsolute deviation of uncertain
variable, we have

Sa

[
n∑

i=1

ξi xi

]
=

∫ +∞

0
M

{
min

{
n∑

i=1

ξi xi

−
n∑

i=1

xi

∫ 1

0
�−1

i (α)dα, 0

}
≥ r

}
dr

=
∫ ∑n

i=1 xi
∫ 1
0 �−1

i (α)dα

−∞
M

{
n∑

i=1

ξi xi≤r

}
dr.

Note that since xi ≥ 0 for i = 1, 2, . . . , n, it follows from
the operational law (Liu 2010) that ξ1x1+ξ2x2 · · ·+ξnxn has
an inverse uncertainty distribution �−1

1 (α) = x1�
−1
1 (α) +

x2�
−1
2 (α) · · · + xn�−1

n (α). For any given r, the value of
�(r) = M{ξ1x1 + · · · + ξnxn ≤ r} is just the root of the
equation�−1

1 (α) = r , i.e., x1�
−1
1 (α)+· · ·+xn�−1

n (α) = r .
Substituting it into the expression of Sa[ξ1x1 + ξ2x2 · · · +
ξnxn], the first objective function is obtained. The theorem is
proved.
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