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Abstract This paper analyzes the pricing decisions of a
dual-channel supply chain including one retailer and one
manufacturer who produces a product and sells it to the end
customer through retailer or directly. Both themanufacturing
cost and the customer demand are considered as fuzzy vari-
ables. Two pricing models, including centralized decision
model and manufacturer-leader Stackelberg game, with con-
sideration of different market power structures are adopted.
Optimal decisions on wholesale price and retail prices are
determined using game theoretical approach and fuzzy set
theory for eachmodel. Finally, a numerical example is solved
to illustrate the effectiveness of models and provide some
managerial insights from analysis.

Keywords Pricing decisions · Dual-channel ·
Game theory · Fuzzy environments

1 Introduction

Nowadays, the issue of pricing decision is reshaped because
the customer’s attitudes change and some of them prefer
online shopping while the others like to go to the stores.
In this situation, the manufacturers have to sell their product
through a direct channel in addition to the retail channel. The
pricing strategies are the critical factor in making profit for
firms in a supply chain fromoperational and financial point of
views as themanufacturers canmanage the customer demand
by handling pricing decisions.
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Recently, a considerable amount of literature has been
published on piecing decisions. Among these studies some
of them are established in certain environment. For example,
Zhang et al. (2012) investigated the effect of product sub-
stitutability and relative channel status on pricing decisions
under different power structures of a dual exclusive channel
system. Chen (2013) considered pricing policies in a sup-
ply chain with one manufacturer, who sells a product to an
independent retailer and directly to consumers through an
Internet channel. Wei et al. (2013) explored the pricing prob-
lems with regard to two complementary products in a supply
chain with two manufacturers and one common retailer.

There are some uncertain parameters in real world that
cannot be overlooked to make profitable decisions in sup-
ply chain. These uncertainties may be related to customer
demand, product supply, manufacturing cost, etc. A number
of studies havemodeled these uncertainties using probability
theory. Karakul and Chan (2010) defined the uncertainty of
demandbyprobability distributions. Cao et al. (2012) consid-
ered a continuous time dynamic pricing problem for selling
a given number of items that the demand is price sensitive
and follows a non-homogeneous Poisson process.

However, it is impossible to find an appropriate probabil-
ity distribution in some cases to consider these uncertainties
since estimation of these parameters using traditional meth-
ods is not always possible. For example, there aremany cases
where no historical data are available to estimate the para-
meters such as the related costs because of the rapid changes
in real-life situations (Xie et al. 2006), but we can get the
useful information based on manager’s judgments, intuitions
and experience so the fuzzy theory rather than the probability
theory should be applied to model these kind of uncertainties
(Zimmermann 2000).

There are some papers based on optimal pricing in fuzzy
environments. For example, Zhao et al. (2012) studied the
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pricing problem of substitutable products in a supply chain
with onemanufacturer and two competitive retailers by fuzzi-
ness of consumer demand and manufacturing cost. The pric-
ing problem of substitutable products in a fuzzy supply chain
is analyzed by using game theory by Zhao et al. (2012).
Wei and Zhao (2011) considered the optimal pricing deci-
sion problem of a fuzzy closed-loop supply chain with retail
competition. Wei and Zhao (2012) explored the decisions of
reverse channel choice in a fuzzy closed-loop supply chain.
They investigated the implications of three different used-
product collection modes on the decisions of the manufac-
turer, the retailer, and the third party, and on their own profits
in the expected valuemodel.Wei andZhao (2013) considered
the pricing decisions of substitutable products which are pro-
duced by duopolistic manufacturers, respectively, and then
sold by one common retailer to the consumers by defining
vertical and horizontal competition in fuzzy environments.

As far as we know, there is no study that explores the
pricing decisions for a dual-channel supply chain in fuzzy
environments. In this paper, we study a supply chain with
one manufacturer and one retailer that the manufacturer has
two channels for selling product: retailer channel and direct
channel. The customer demand and manufacturing cost are
considered as fuzzy variables and two structures are defined
for power market including one centralized and one decen-
tralized structures. We suppose that the manufacturer has
more power in decentralized supply chain.

The reminder of this paper is organized as follows. Sec-
tion 2 includes problem description and notations. Section 3
details the expected values of centralized decision model and
decentralized decision model. A numerical example is pre-
sented to illustrate the effectiveness of each model in Sect. 4.
In Sect. 5, conclusions of the articlewith some future research
are stated.

2 Preliminaries

A possibility space is defined as a triplet (�,P(�), pos),
where� is a nonempty set,P(�) the power set ofP(�), and
Pos a possibility measure. Each element in P(�) is called a
fuzzy event. For each event A, pos(A) indicates the possibil-
ity that A will occur. Nahmias (1978) and Liu (2002) gave
the following four axioms.

Axiom 1. pos(�) = 1.
Axiom 2. pos(∅) = 0, where ∅ denotes the empty set.
Axiom 3. pos(∪m

i=1Ai ) = sup1≤i≤mpos(Ai ) for any collec-
tion of events Ai in P(�).
Axiom 4. Let�i be nonempty sets, onwhich Posi is possibil-
ity measure satisfying the first three axioms, i = 1, 2, . . . , n,

and � = ∏n
i=1 �i . Then

pos(A) = sup(θ1,θ2,...,θn)Pos1(θ1) ∧ Pos2(θ2)

∧ · · · ∧ Posn(θn).

For each A ∈ pos(�). In that case we write Pos = ∧n
i=1Posi .

Lemma 1 (Liu 2002) Suppose that (�i ,P(�)i ,Posi ) is a
possibility space, i = 1, 2, . . . , n. By Axiom 4,
(
∏n

i=1 �i ,P(
∏n

i=1 �i ),∧n
i=1Posi ) is also a possibility

space, which is called the product possibility space.

Definition 1 (Nahmias 1978) A fuzzy variable is defined as
a function from the possibility space (�,P(�), pos) to the
set of real numbers and its membership function is derived
from the possibility by

με(x) = pos({θ ∈ �|ε(θ) = x}), ∀x ∈ R.

Definition 2 (Liu 2002) A fuzzy variable ε is said to be non-
negative (or positive) if pos({ε < 0}) = 0 (or pos({ε ≤ 0}) =
0).

Definition 3 (Liu 2002) Let f : Rn → R be a function,
and εi a fuzzy variable defined on the possibility space
(�i ,P(�)i ,Posi ), i = 1, 2, . . . , n, respectively. Then ε =
f (ε1, ε2, . . . , εn) is a fuzzy variable defined on the product
possibility space (

∏n
i=1 �i ,P(

∏n
i=1 �i ),∧n

i=1Posi ).
The independence of fuzzy variables was discussed by

several researchers such as Liu (2002), Nahmias (1978) and
Zadeh (1965).

Definition 4 (Liu 2002) The fuzzy variables ε1, ε2, . . . , εn
are independent if for any sets B1, B2, . . . , Bn of R,

pos({εi ∈ Bi , i = 1, 2, . . . , n}) = min
1≤i≤n

pos({εi ∈ Bi }).

Lemma 2 (Liu 2004) Let εi , i = 1, 2, . . . ,m be indepen-
dent fuzzy variables, and fi : Rn → R function. Then
f1(ε1), f2(ε2), . . . , fn(εn) are independent fuzzy variables.

Definition 5 (Liu 2002) Let ε be a fuzzy variable on the
possibility space (�,P(�), pos), and α ∈ (0, 1]. Then,
εLα = inf {r |pos({ε ≤ r}) ≥ α} and

εUα = sup {r |pos({ε ≥ r}) ≥ α}
are called the α-pessimistic value and the α -optimistic value
of ε, respectively.

Example 1 The triangular fuzzy variable ε = (a1, a2, a3)
has its α-pessimistic value and α-optimistic value

εLα = a2α + a1(1 − α) and εUα = a2α + a3(1 − α).

Lemma 3 (Wang et al. 2007) Let εi , i = 1, 2, . . . , n
be independent fuzzy variables defined on the possibility
spaces (�i ,P(�)i ,Posi )with continuous membership func-
tion, and f : X ⊂ Rn → R a measurable function. If
f (x1, x2, . . . , xn) is monotonic with respect to xi , respec-
tively, then
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1. f Uα (ε) = f (ε∨
1α, ε∨

2α, . . . , ε∨
nα), where ε∨

iα = εUiα if
f (x1, x2, . . . , xn) is non-decreasing with respect to xi ;
ε∨
iα = εLiα , otherwise,

2. f Lα (ε) = f (ε∨̄
1α, ε∨̄

2α, . . . , ε∨̄
nα), where ε∨̄

iα = εLiα , if
f (x1, x2, . . . , xn) is non-decreasing with respect to xi ;
ε∨̄
iα = εUiα , otherwise,

where f Uα (ε) and f Lα (ε) denote the α-pessimistic value and
theα-optimistic value of the fuzzy variable f (ε), respectively.

Definition 6 (Liu and Liu 2002) Let (�,P(�), pos) be a
possibility space and A is a set in P(�). The credibility
measure of A is defined as

Cr(A) = 1

2
(1 + pos(A) − pos(Ac)),

where Ac denotes the complement of A.

Definition 7 (Liu and Liu 2002) Let ε be a fuzzy variable.
The expected value of ε is defined as

E [ε] =
∫ +∞

0
Cr({ε ≥ x})dx −

∫ 0

−∞
Cr({ε ≤ x})dx

provided that at least one of the two integrals is finite.

Example 2 The triangular fuzzy variable ε = (a1, a2, a3)
has an expected value

E [ε] = a1 + 2a2 + a3
4

.

Definition 8 (Liu and Liu 2002) Let f be a function on R →
R and ε be a fuzzy variable. Then the expected value E [ f (ε)]
is defined as

E [ f (ε)] =
∫ +∞

0
Cr({ f (ε) ≥ x})dx

−
∫ 0

−∞
Cr({ f (ε) ≤ x})dx

provided that at least one of the two integrals is finite.

Lemma 4 (Liu and Liu 2003) Let ε be a fuzzy variable with
finite expected value. Then,

E [ε] = 1

2

∫ 1

0

(
εUα + εLα

)
dx .

Lemma 5 (Liu and Liu 2003) Let ε and η be independent
fuzzy variables with finite expected values. Then for any num-
bers a and b,

E [aε + bη] = aE [ε] + bE [η] .

3 Problem description and notations

Consider a dual-channel supply chain with one manufac-
turer and one retailer. Themanufacturermay sell the products

through retailer or directly to the end customer. Themanufac-
turer and the retailer make their pricing decisions to achieve
their own maximal expected profits. The following notations
are used to formulate the fuzzy supply chain models.

pr Unit retail price of product, which is the
retailer’s decision variable

pd Unit direct sale price of product, which is the
manufacturer’s decision variable

w Unit wholesale price of product, which is the
manufacturer’s variable

c̃ Unit manufacturing cost of product, which is
a fuzzy variable

β̃ Cross-price sensitivity of a product’s demand
to its own price, which is fuzzy variable

ã1, ã2 Self-price sensitivities of a product’s demand
to the price of other channel, which are fuzzy
variables

ρ The share of the demand goes to the direct
channel

ã The primary demand for product, which is a
fuzzy variable

D̃r (pr , pd) The demand for product in the retail channel
D̃d(pr , pd) The demand for product in the direct channel

Similar to McGuire and Staelin (1983), the consumer
demand function is defined as a linear form of the retail price.
The demand for retail channel can be expressed as follows:

D̃r (pr , pd) = (1 − ρ)ã − ã1 pr + β̃ pd . (1)

The demand for direct channel is stated as follows:

D̃d(pr , pd) = ρã − ã2 pd + β̃ pr . (2)

We make some assumptions as follows:

1. All activities occurred in a single period.
2. The fuzzyparameters β̃, ã1, ã2, ã, c̃ aremutually indepen-

dent and nonnegative. The expected values of parameters
ã1, ã2 are larger than the expected value of β̃, which
means that the expected demand for a product should be
more sensitive to changes in its price than to changes in
the price of the product of the other channel.

3. The manufacturer and the retailer have perfect informa-
tion of the demands and the cost structures of the other
channel member.

4. The logistic cost components of themanufacturer and the
retailer (i.e., transportation cost and inventory cost) are
ignored for computational convenience.

The profits of the manufacturer, the retailer, and total sys-
tem can be expressed as follows:
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πm(w, pd) = (w − c̃)[(1 − ρ)ã − ã1 pr + β̃ pd ]
+ (pd − c̃)[ρã − ã2 pd + β̃ pr ], (3)

πr (pr) = (pr − w)
[
(1 − ρ)ã − ã1 pr + β̃ pd

]
, (4)

πc(pr , pd) = πm(w, pd) + πr (pr) = (pr − c̃)

×
[
(1 − ρ)ã − ã1 pr + β̃ pd

]

+ (pd − c̃)[ρã − ã2 pd + β̃ pr ]. (5)

4 Analytical results

In this section, there are one centralized decision case and
one decentralized decision case. We consider a Stackelberg
structure for market power between manufacturer and the
retailer. When one member has more market power than the
other, he will have the advantage of the first move and can
impose his decisions on the other.

The game-theoretical approach is applied to explore the
pricing decision models for each case in the following.

4.1 Centralized decision model

Wefirst examine the centralizeddecision case, inwhich, there
is one central controller (manager) that aims to optimize the
whole system performance. In this case, the wholesale price,
w becomes inner transfer price and can be ignored. So, the
expected value of the profit can be determined by the retail
price and direct sale price and formulated as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
(pr ,pd )

E [πc(pr , pd)] ,

subject to

pos
({

(1 − ρ)ã − ã1 pr + β̃ pd < 0
})

= 0,

pos({ρã − ã2 pd + β̃ pr < 0}) = 0,
pos({pr − c̃ < 0}) = 0,
pos({pd − c̃ < 0}) = 0.

Proposition 1 The expected profit E [πc(pr , pd)] is jointly
concave in (pr , pd).

Proof Note that, the fuzzy parameters are all independent
and nonnegative. By Eq. (5), Lemmas 3 and 4, the expected
profit E [πc(pr , pd)] can be represented as follows:

E [πc(pr , pd)] = E
[
(pr − c̃)

[
(1 − ρ)ã − ã1 pr + β̃ pd

]

+ (pd − c̃)[ρã − ã2 pd + β̃ pr ]
]

= 1

2

∫ 1

0
{((pr − c̃)

[
(1 − ρ)ã − ã1 pr + β̃ pd

]

+ (pd − c̃)[ρã − ã2 pd + β̃ pr ])Uα
+ ((pr − c̃)

[
(1 − ρ)ã − ã1 pr + β̃ pd

]

+ (pd − c̃)[ρã − ã2 pd + β̃ pr ])Lα }dα = (1 − ρ)

×E
[
ã
]
pr − E

[
ã1

]
p2r + 2E

[
β̃
]
pr pd + ρE

[
ã
]
pd

− E
[
ã2

]
p2d + ρE

[
c̃ã

] + E
[
c̃ã1

]
pr

+ E
[
c̃ã2

]
pd − (1 − ρ)

2

∫ 1

0
(c̃Lα ã

U
α + c̃Uα ãLα )dα

− (pd + pr )

2

∫ 1

0
(c̃Lα β̃U

α + c̃Uα β̃L
α )dα. (6)

The first-order and second-order partial derivatives of
E [πc(pr , pd)] with respect to (pr , pd) can be given as

∂E [πc(pr , pd)]

∂pr
= (1 − ρ)E

[
ã
] − 2pr E

[
ã1

]

+ 2E
[
β̃
]
pd+E

[
c̃ã1

]

− 1

2

∫ 1

0
(c̃Lα β̃U

α + c̃Uα β̃L
α )dα, (7)

∂E [πc(pr , pd)]

∂pd
= ρE

[
ã
] − 2E

[
ã2

]
pd

+ 2E
[
β̃
]
pr − E

[
c̃ã2

]

− 1

2

∫ 1

0
(c̃Lα β̃U

α + c̃Uα β̃L
α )dα, (8)

∂2E [πc(pr , pd)]

∂p2r
= −2E

[
ã1

]
, (9)

∂2E [πc(pr , pd)]

∂p2d
= −2E

[
ã2

]
, (10)

∂2E [πc(pr , pd)]

∂pr pd
= ∂2E [πc(pr , pd)]

∂pd pr
= 2E

[
β̃
]
. (11)

By Eqs. (9), (10), and (11) the Hessian matrix

H1 =
⎡

⎣
∂2E[πc(pr ,pd )]

∂p2r

∂2E[πc(pr ,pd )]
∂pr pd

∂2E[πc(pr ,pd )]
∂pd pr

∂2E[πc(pr ,pd )]
∂p2d

⎤

⎦

=
⎡

⎣
−2E

[
ã1

]
2E

[
β̃
]

2E
[
β̃
]

−2E
[
ã2

]

⎤

⎦ . (12)

We can see that H1 is negative definite according to above-
mentioned assumptions.

Let εL0+ = limα→0+ εL0 , εU0+ = limα→0+ εU0 , αε (0, 1] ,
the notations will be used in the following propositions.

Proposition 2 The optimal prices are given as follows:

p∗
r =

E
[
ã2

]
A1 + E

[
β̃
]
A2

2
(
E

[
ã1

]
E

[
ã2

] − E2
[
β̃
]) , (13)

p∗
d =

E
[
β̃
]
A1 + E

[
ã1

]
A2

2
(
E

[
ã1

]
E

[
ã2

] − E2
[
β̃
]) . (14)
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where

A1 = (1 − ρ)E
[
ã
] + E

[
c̃ã1

] − 1

2

∫ 1

0

(
c̃Lα β̃U

α + c̃Uα β̃L
α

)
dα

A2 = ρE
[
ã
] + E

[
c̃ã2

] − 1

2

∫ 1

0

(
c̃Lα β̃U

α + c̃Uα β̃L
α

)
dα

Proof By setting Eqs. (7) and (8) equal to zero and solving
them with respect to prand pd concurrently, the results (13)
and (14) can be gained. ��

4.2 Manufacturer-leader Stackelberg (MS) game

In this case, the retailer is smaller than the manufacturer. The
manufacturer first determines optimal prices and the retailer
makes her decision on retail price with respect to the whole-
sale price and direct sale price. The MS model is formulated
as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
(w,pd )

E
[
πm(w, pd , p∗

r (w, pd ))
]
, subject to

pos({w − c̃ < 0}) = 0, pos({pd − c̃ < 0}) = 0,

pos({pd − c̃ < 0}) = 0, pos
({

ρã − ã2 pd + β̃ pr < 0
})

= 0

p∗
r (w, pd ) are derived from solving the problem,⎧
⎪⎨

⎪⎩

max(pr ) E [πr (pr )] , subject to

Pos
({

(1 − ρ)ã − ã1 pr + β̃ pd < 0
})

= 0,

pr ≥ w.

By considering w and pd , which are announced by the
manufacturer, the retailer’s response function can be derived
as follows:

Proposition 3 In the MS model, given decisions w and pd
made by the manufacturer, the retailer’s optimal retail price
p∗
r (w, pd) is:

p∗
r (w, pd) = w

2
+

E
[
β̃
]

2E
[
ã1

] pd + (1 − ρ)
E

[
ã
]

2E
[
ã1

] . (15)

Under the following condition that
(
2E

[
ã1

] + E
[
β̃
]
pd

)
ãL0+ + 2E

[
ã1

]
pd β̃

L
0+ + ρE

[
ã
]
ãL10+

> 2ρE
[
ã1

]
ãU0+ + (

E
[
ã1

]
w + E

[
ã
])
ãU10+ ,

Proof By Eq. (4), Lemmas 3 and 4, the expected profit
E [πr (pr )] can be expressed as follows:

E [πr (pr )]

= E
[
(pr − w)((1 − ρ)ã − ã1 pr + β̃ pd)

]

= 1

2

∫ 1

0

{(
(pr − w)((1 − ρ)ã − ã1 pr + β̃ pd)

)U

α

+
(
(pr − wi )((1 − ρ)ã − ã1 pr + β̃ pd)

)L

α

}

dα

= (1 − ρ)E
[
ã
]
pr − E

[
ã1

]
p2r + E

[
β̃
]
pd pr

−(1 − ρ)E
[
ã
]
w + E

[
ã1

]
wpr − E

[
β̃
]
pdw. (16)

The first-order and second-order partial derivatives of
E [πr (pr )] with respect to prcan be shown as:

∂E [πr (pr )]

∂pr
= (1 − ρ)E

[
ã
] − 2E

[
ã1

]
pr

+E
[
ã1

]
w + E

[
β̃
]
pd , (17)

∂2E [πr (pr )]

∂p2r
= −2E

[
ã1

]
. (18)

So, E [πr (pr )] is jointly concave with respect to pr .
By settingEq. (17) equal to zero and solving itwith respect

to pr , the result (15) can be gained. By Definition 5, the fol-
lowing equation is equivalent to the abovementioned condi-
tion:

Pos
({

(1 − ρ)ã − ã1 pr + β̃ pd < 0
})

= 0.

��
Proposition 4 In this scenario, the manufacturer’ optimal
wholesale price and direct sale price can be given as:

w∗ = 2E[ã2]A3 + E[β̃]A4

2E
[
ã1

]
E

[
ã2

] − E2[β̃] , (19)

p∗
d = E[β̃]A3 + E[ã1]A4

2E
[
ã1

]
E

[
ã2

] − E2[β̃] . (20)

where

A3 = (1 − ρ)E
[
ã
]

2
+ 1

2
E

[
c̃ã1

]− 1

4

∫ 1

0
(c̃Lα β̃U

α +c̃Uα β̃L
α )dα,

A4 =
(1 − ρ)E

[
ã
]
E

[
β̃
]

2E
[
ã1

] + ρE
[
ã
] +

E2
[
β̃
]

E
[
ã1

]

−1

2

∫ 1

0

(
c̃Lα β̃U

α + c̃Uα β̃L
α

)
dα,

Proof By Eqs. (7) and (8), Lemmas 3 and 4, the expected
profit of themanufacturer, E [πm(w, pd)] can be represented
as follows:

E
[
πm(w, pd , p

∗
r (w, pd))

]

= E
[
(w − c̃)[(1 − ρ)ã − ã1 pr − β̃ pd ] + (pd − c̃)

× [ρã − ã2 pd − β̃ pr ]
]

= 1

2

∫ 1

0

{(
(w − c̃)[(1 − ρ)ã − ã1 pr − β̃ pd ]

+(pd − c̃)[ρã − ã2 pd − β̃ pr ]
)U

α

+
(
(w − c̃)[(1 − ρ)ã − ã1 pr − β̃ pd ] + (pd − c̃)

× [ρã − ã2 pd − β̃ pr ]
)L

α

}

dα

= (1 − ρ)E
[
ã
]
w − E

[
ã1

]

2
w2 − (1 − ρ)E

[
ã
]

2
w
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+E
[
β̃
]
pdw + ρE

[
ã
]
pd − E

[
ã2

]
p2d

+
(1 − ρ)E

[
ã
]
E

[
β̃
]

2E
[
ã1

] pd +
E2

[
β̃
]

2E
[
ã1

] p2d

− (1 − ρ)

2

∫ 1

0

(

c̃Lα ã
U
α + c̃Uα ãLα

)

dα + ρE
[
c̃ã

]

+ E
[
c̃ã1

]

2
w + (1 − ρ)E

[
ã
]
E

[
c̃ã1

]

2E
[
ã1

]

− pd
2

∫ 1

0

(

c̃Lα β̃U
α + c̃Uα β̃L

α

)

dα + E
[
c̃ã2

]

−w

4

∫ 1

0

(

c̃Lα β̃U
α + c̃Uα β̃L

α

)

dα

− (1 − ρ)E
[
ã
]

4E
[
ã1

]

∫ 1

0

(

c̃Lα β̃U
α + c̃Uα β̃L

α

)

dα

−
E

[
β̃
]

4E
[
ã1

]

∫ 1

0

(

c̃Lα β̃U
α + c̃Uα β̃L

α

)

dα. (21)

The first-order and second-order partial derivatives of
E

[
πm(w, pd , p∗

r (w, pd))
]
with respect to w and pdcan be

shown as:

∂E
[
πm(w, pd , p∗

r (w, pd))
]

∂w

= (1 − ρ)E
[
ã
]

2
− E

[
ã1

]
w

+E
[
β̃
]
pd + 1

2
E

[
c̃ã1

]

−1

4

∫ 1

0
(c̃Lα β̃U

α + c̃Uα β̃L
α )dα, (22)

×∂E
[
πm(w, pd , p∗

r (w, pd))
]

∂pd

=
(1 − ρ)E

[
ã
]
E

[
β̃
]

2E
[
ã1

] + ρE
[
ã
]

−2E
[
ã2

]
pd + E

[
β̃
]
w +

E2
[
β̃
]

E
[
ã1

] pd

−1

2

∫ 1

0
(c̃Lα β̃U

α + c̃Uα β̃L
α )dα, (23)

∂2E
[
πm(w, pd , p∗

r (w, pd))
]

∂w2 = −E
[
ã1

]
, (24)

∂2E
[
πm(w, pd , p∗

r (w, pd))
]

∂p2d

= −2E
[
ã2

] +
E2

[
β̃
]

E
[
ã1

] , (25)

∂2E
[
πm(w, pd , p∗

r (w, pd))
]

∂w∂pd

= ∂2E
[
πm(w, pd , p∗

r (w, pd))
]

∂pd∂w
= E

[
β̃
]
. (26)

By Eqs. (24), (25), and (26) the Hessian matrix

H2 =
⎡

⎣
∂2E[πm (w,pd ,p∗

r (w,pd ))]
∂w2

∂2E[πm (w,pd ,p∗
r (w,pd ))]

∂w∂pd
∂2E[πm (w,pd ,p∗

r (w,pd ))]
∂pd∂w

∂2E[πm (w,pd ,p∗
r (w,pd ))]

∂p2d

⎤

⎦

=
⎡

⎢
⎣

−E
[
ã1

]
E

[
β̃
]

E
[
β̃
]

−2E
[
ã2

] + E2
[
β̃
]

E[ã1]

⎤

⎥
⎦ . (27)

We can see that H2 is negative definite according to above-
mentioned assumptions, so E

[
πm(w, pd , p∗

r (w, pd))
]
is

jointly concave with respect to w and pd .
By setting Eqs. (22) and (23) equal to zero and solving

them with respect to w and pd concurrently, the results (19)
and (20) can be gained. ��

Proposition 5 The optimal retail price is shown as:

p∗
r = w∗

2
+

E
[
β̃
]

2E
[
ã1

] p∗
d + (1 − ρ)

E
[
ã
]

2E
[
ã1

] . (28)

Proof By substituting (19) in (15), the optimal retail price
can be obtained. ��

5 Numerical example

In this section, we present a numerical example to show the
effects of fuzzy parameters on optimal prices and the opti-
mal expected profits for channel members by considering the
centralized supply chain and MS game. We assume that the
values of parameters are as follows:

ã = (250, 300, 350), ρ = 0.2, ã1 = (12, 15, 18),

ã2 = (15, 17, 19), β̃ = (4, 6, 8), c̃ = (9, 10, 11)

So, we would have

E
[
ã
] = 250 + 2(300) + 350

4
= 300

E
[
ã1

] = 12 + 2(15) + 18

4
= 15

E
[
ã2

] = 15 + 2(17) + 19

4
= 17

E
[
β̃
]

= 4 + 2(6) + 8

4
= 6

E
[
c̃
] = 9 + 2(10) + 11

4
= 10.
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The α-optimistic values and α-pessimistic values of the para-
meters are:

ãUα = 350 − 50α ãLα = 250 + 50α

ãU1α = 18 − 3α ãL1α = 12 + 3α

ãU2x = 19 − 2α ãL2α = 15 + 2α

β̃U
α = 8 − 2α β̃L

α = 4 + 2α

c̃Uα = 11 − α c̃Lα = 9 + α.

Using abovementioned values, we have

E
[
c̃ã

] = 1

2

∫ 1

0

(
c̃Lα ã

L
α + c̃Uα ãUα

)
dα = 3,016.67

E
[
c̃ã1

] = 1

2

∫ 1

0

(
c̃Lα ã

L
2α

+ c̃Uα ãU2α

)
dα = 151

E
[
c̃ã2

] = 1

2

∫ 1

0

(
c̃Lα ã

L
2α

+ c̃Uα ãU2α

)
dα = 170.67

1

2

∫ 1

0

(
c̃Lα β̃U

α + c̃Uα β̃L
α

)
dα = 59.33

1

2

∫ 1

0

(
c̃Lα ã

U
α + c̃Uα ãLα

)
dα = 2,983.33.

The optimal prices and the expected profits are given in
Tables 1 and 2.

From the above tables, it can be found that the largest
expected profit of the entire system can be gained in cen-
tralized supply chain structure and the expected profit of the
manufacturer is more than the retailer’s expected profit in
MS game.

We explore the effects of the fuzzy degrees of parameter
β̃ on optimal values in MS game. The values of the other
parameters are the same as before.

Tables 3 and 4 illustrate the optimal expected profits
of the manufacturer and the entire channel degrade while
the retailer’s optimal expected profit increases as the fuzzy
degree of parameter β̃ decreases also the optimal prices are
decreasing slightly up to down.

Table 1 Optimal expected profits of the channel members under dif-
ferent scenarios

Scenario E [πc] E [πr ] E [πm ]

CD 1,423.52

MS 1,208.09 91.67 1,116.42

Table 2 Optimal decisions of retail price, direct sale price and whole-
sale price under different scenarios

Scenario p∗
r p∗

d w∗

CD 11.45 7.83

MS 15.01 3.71 12.54

Table 3 The changes of optimal expected profits in MS game with the
fuzzy degree of parameter β̃

β̃ E [πc] E [πr ] E [πm ]

(2, 6, 10) 1,223.88 90.86 1,133.02

(3, 6, 9) 1,215.98 91.27 1,124.71

(4, 6, 8) 1,208.09 91.67 1,116.42

(5, 6, 7) 1,199.97 92.09 1,107.88

Table 4 The changes of optimal prices in MS game with the fuzzy
degree of parameter β̃

β̃ p∗
r p∗

d w∗

(2, 6, 10) 15.03 3.74 12.57

(3, 6, 9) 15.02 3.73 12.56

(4, 6, 8) 15.01 3.71 12.54

(5, 6, 7) 15.00 3.70 12.52

Table 5 The changes of optimal expected profits in MS game with the
fuzzy degree of parameter ã1

ã1 E [πc] E [πr ] E [πm ]

(11, 15, 19) 1,214.042 91.27 1,122.77

(12, 15, 18) 1,208.09 91.67 1,116.42

(13, 15, 17) 1,202.15 92.08 1,110.06

(14, 15, 16) 1,196.02 92.50 1,103.52

Table 6 The changes of optimal prices in MS game with the fuzzy
degree of parameter ã1

ã1 p∗
r p∗

d w∗

(11, 15, 19) 15.02 3.72 12.55

(12, 15, 18) 15.01 3.715 12.54

(13, 15, 17) 15.007 3.713 12.53

(14, 15, 16) 15.001 3.711 12.52

We study the effects of parameter ã1 on optimal values by
reducing the fuzziness of this parameter. The values of the
other parameters are considered as before.

By considering above Tables 5 and 6, it can be found
that the optimal expected profits of the manufacturer and
the entire channel increase while the retailer’s optimal
expected profit decreases as the fuzzy degree of parameter ã1
decreases. The optimal prices decrease with decreasing the
fuzzy degree of parameter ã1.

The effects of parameter ã2 on optimal values are consid-
ered by reducing the fuzziness of this parameter. The values
of the other parameters are constant (Table 7).

The optimal expected profits of the manufacturer and the
entire supply chain decrease with falling the fuzzy degree of
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Table 7 The changes of optimal expected profits in MS game with the
fuzzy degree of parameter ã2

ã2 E [πc] E [πr ] E [πm ]

(13, 17, 21) 1,208.75 91.674 1,117.07

(14, 17, 20) 1,208.42 91.674 1,116.75

(15, 17, 19) 1,208.09 91.674 1,116.42

(16, 17, 18) 1,207.75 91.674 1,116.07

Table 8 The changes of optimal prices in MS game with the fuzzy
degree of parameter ã2

ã2 p∗
r p∗

d w∗

(13, 17, 21) 15.014 3.7153 12.542

(14, 17, 20) 15.014 3.7153 12.542

(15, 17, 19) 15.014 3.7153 12.542

(16, 17, 18) 15.014 3.7153 12.542

parameter ã2 while the retailer’s optimal expected profit and
optimal prices are constant so these values are independent
of this parameter (Table 8).

6 Conclusion

In this paper, we study the pricing decisions for a dual-
channel supply chain with one retailer and one manufac-
turer in fuzzy environments over two different structures for
market power. This study makes several contributions to the
current literatures. First, we consider demand and production
cost as fuzzy variables rather than deterministic or stochas-
tic ones and gain the optimization pricing problem under
the uncertain environments. Second, using fuzzy theory and
game-theoretical approach, the optimal prices and optimal
expected profits for retailer and manufacturer are specified
in two different scenarios. Third, we explore the effects of
changing the fuzzy degrees of parameters on the behavior of
firms in changing uncertain environments.

It is recommended that further research be undertaken
in the following areas: different or more general forms of
the demand function can be used to analyze the problem,
the dual-channel supply chain with many manufacturers and
many retailers can also be considered in the future. More-
over, we use the constant wholesale price contract in this
paper. So, an extension would be to explore the other kinds
of contracts between retailer and themanufacturer.We define

a symmetric structure for demand or production cost infor-
mation. It is also interesting to develop an asymmetric struc-
ture for information between channel members in uncertain
environments.

References

Cao P, Li J, Yan H (2012) Optimal dynamic pricing of inventories
with stochastic demand and discounted criterion. Eur J Oper Res
217(3):580–588

Chen CY, Fang S,Wen U (2013) Pricing policies for substitutable prod-
ucts in a supply chain with Internet and traditional channels. Eur
J Oper Res 224(3):542–551

Karakul M, Chan LMA (2010) Joint pricing and procurement of sub-
stitutable products with random demands—a technical note. Eur J
Oper Res 201(1):324–328

Liu B (2002) Theory and practice of uncertain programming. Physica-
Verlag, Heidelberg

LiuB,LiuY (2002)Exceptedvalue of fuzzyvariable and fuzzy expected
value models. IEEE Trans Fuzzy Syst 10(4):445–450

Liu B (2004) Uncertainty theory: an introduction to its axiomatic foun-
dation. Springer, Berlin

Liu Y, Liu B (2003) Expected value operator of random fuzzy variable
and random fuzzy expected value models. Int J Uncertain Fuzzi-
ness Knowl-Based Syst 11(2):195–215

McGuire TW, Staelin R (1983) An industry equilibrium analyses of
down stream vertical integration. Mark Sci 2:161–191

Nahmias S (1978) Fuzzy variables. Fuzzy Sets Syst 1(2):97–110
WangC, TangW, Zhao R (2007) On the continuity and convexity analy-

sis of the expected value function of a fuzzy mapping. J Uncertain
Syst 1(2):148–160

Wei J, Zhao J (2011) Pricing decisions with retail competition in a fuzzy
closed-loop supply chain. Expert Syst Appl 38(9):1209–11216

Wei J, Zhao J (2013) Reverse channel decisions for a fuzzy closed-loop
supply chain. Appl Math Model 37(3):1502–1513

Wei J, Zhao J, Li Y (2013) Pricing decisions for complementary
products with firms’ different market powers. Eur J Oper Res
224(3):507–519

Wei J, Zhao J (2014) Pricing decisions for substitutable products with
horizontal and vertical competition in fuzzy environments. Ann
Oper Res. doi:10.1007/s10479-014-1541-6

XieY, Petrovic D, BurnhamK (2006) A heuristic procedure for the two-
level control of serial supply chains under fuzzy customer demand.
Int J Prod Econ 102:37–50

Zadeh L (1965) Fuzzy sets. Inf Control 8(3):338–353
Zhang R, Liu B, Wang W (2012) Pricing decisions in a dual channels

system with different power structures. Econ Model 29(2):523–
533

Zhao J, TangW,Wei J (2012) Pricing decision for substitutable products
with retail competition in a fuzzy environment. Int J Prod Econ
135(1):144–153

Zhao J, TangW,ZhaoR,Wei J (2012) Pricing decisions for substitutable
productswith a common retailer in fuzzy environments. Eur JOper
Res 216(2):409–419

Zimmermann HJ (2000) Application-oriented view of modeling uncer-
tainty. Eur J Oper Res 122(2):190–198

123

http://dx.doi.org/10.1007/s10479-014-1541-6

	Optimal pricing decisions in a fuzzy dual-channel supply chain
	Abstract 
	1 Introduction
	2 Preliminaries
	3 Problem description and notations
	4 Analytical results
	4.1 Centralized decision model
	4.2 Manufacturer-leader Stackelberg (MS) game

	5 Numerical example
	6 Conclusion
	References




