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Abstract A significant stream of literature which draws
inspiration from the foraging activities of various organisms
to design optimisation algorithms has emerged over the past
decade. The success of these algorithms across awide variety
of application domains has spurred interest in the examina-
tion of the foraging behaviours of other organisms to develop
novel and powerful, optimisation algorithms. A variety of
animals, including some species of birds and bats, engage in
social roostingwhereby large numbers of conspecifics gather
together to roost, either overnight or for longer periods. It has
been claimed that these roosts can serve as information cen-
tres to spread knowledge concerning the location of food
resources in the environment. In this paper we look at the
social roosting and foraging behaviour of one species of bird,
the common raven, and take inspiration from this to design a
novel optimisation algorithm which we call the raven roost-
ing optimisation algorithm. The utility of the algorithm is
assessed on a series of benchmark problems and the results
are found to be competitive. We also provide a novel tax-
onomy which classifies foraging-inspired optimisation algo-
rithms based on the underlying social communication mech-
anism embedded in the algorithms.
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1 Introduction

When the location of food resources are not known with
certainty, organisms need to develop a search strategy to
find these resources as efficiently and effectively as pos-
sible. Foraging success is vital for survival and organisms
with better-quality foraging strategies will be preferentially
selected in the process of evolution. This observation has
led to the development of a significant literature in computer
science which takes inspiration from the foraging strategies
of various organisms to design powerful search algorithms.
Examples of these algorithms include ant colony optimisa-
tion (Bonabeau et al. 1999; Dorigo 1992; Dorigo and DiCaro
1999; Dorigo et al. 1996; Dorigo and Stützle 2004), bacte-
ria foraging algorithms (Passino 2000, 2002), and honey bee
algorithms (Chong et al. 2006; Le Dinh et al. 2013; Nakrani
and Tovey 2004; Pham et al. 2006; Yang 2005) to name but
a few.

1.1 The context of foraging

Real-world foraging behaviours are context-sensitive and
depend on the nature of exploited resources as characterised
by their location, size and quality, the degree of competi-
tion for these resources, the predation risk faced whilst for-
aging, the locomotion capability of an organism, its sen-
sory and cognitive capabilities, its daily energy requirements,
the energy cost of finding, subduing and digesting food
resources, and the ability of the organism to store energy
(Anderson 1991; Benoit-Bird and Au 2009; Deygout et al.
2010; Emlem 1966; Serfass 1995). As would be expected,
there has been heavy interaction of these factors in evolution-
ary time and it is plausible that advances in sensory capabil-
ities and mobility have been driven, at least in part, by their
adaptive impact on resource capture capability.
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Another aspect of foraging is that it takes place in a
dynamic environment as food location, and quality, changes
over time as a result of factors such as consumption and
degradation due to environmental influences. This suggests
that higher-quality food foraging strategies need to be adap-
tive to changing conditions and to feedback based on their
degree of past success. This aspect of foraging makes it par-
ticularly interesting as a source of inspiration for the design
of optimisation algorithms. Many real-world problems are
‘hard’ precisely because they occur in a dynamic environ-
ment.

1.2 Social foraging

Foraging for food can be an individual activity where each
individual in a species forages on its own (solitary forag-
ing), or a social activity where foraging is a group behaviour.
Social foraging was long thought to be confined to higher-
level animals such as primates; however, it is now known
that co-operative foraging behaviours exist in many species
of mammals, fish, birds, and insects (Lonnstedt et al. 2014).

Social foraging, a subfield of behavioural ecology, has
attracted substantial research interest (Giraldeau and Caraco
2000; Stephens and Krebs 1986; Viswanathan et al. 2011)
and topics of interest include

1. how do members of the group search for food,
2. how are food finds communicated to other members of

the group, and
3. how are food finds divided up between members of the

group.

The first two of these topics have particular relevance for
the design of foraging inspired optimisation algorithms.

1.3 Communicating information about food

A key aspect of social foraging is the transmission of infor-
mation between conspecifics about food finds using ‘food
calls’ or other behavioural cues and signals. Although a huge
array of specific natural mechanisms for social communica-
tion of information about food finds exist, these have been
broadly categorised into four main groupings in the social
foraging literature. The forager who finds a food resource
may (Bradbury and Vehrencamp 2011) (p. 591),

1. take up position at the food and broadcast an easily local-
isable signal to fellow foragers,

2. generate a chemical or visible trail between the food and a
central location and then induce fellow foragers to follow
this trail to the food,

3. return to a central location and provide directions to fel-
low foragers on how to find the food, or

4. return to a central location, recruit fellow foragers, and
lead them back to the food site.

The economic balance of benefits and costs of the four
options vary. Broadcasting an advertisement for a food
resource from its location is relatively easy, and the related
signal can be optimised for maximum range and localisa-
tion. The major cost (risk) is that of eavesdropping as both
intraspecific and interspecific competitors could use the sig-
nals to locate the advertised food resource. Predators could
also use the signal to find the animal advertising the food
resource.

The use of chemically mediated trails are common in
species of ants, termites, and stingless bees. These trails can
create large aggregations of foragers at a food find within a
short period. One risk of such trails is their interception by
eavesdroppers and predators. Some insects such as stingless
bees reduce this risk by creating a broken (as distinct from a
continuous) trail wherein pheromone is only laid down every
5–10m.

Perhaps the best-known example of recruitment at a cen-
tral location (such as a hive) and providing directions to fel-
low foragers is providedby the honeybee dance (Seeley 1995;
von Frisch 1967). The private nature of this dance (it is per-
formed within the hive) minimises the risk of eavesdropping
by non-hive members. The system is costly in that it imposes
a significant cognitive burden on both senders and receivers
(to produce and to process the information in the dance) and
the waggle dances are also an energetically expensive dis-
play.

The final mechanism of ‘communication, recruitment at a
central location and subsequently leading followers back to
the food site’, creates fewer eavesdropper risks than broad-
cast signals from the food site. However, a potential leader
requires a mechanism for locating likely recruits, the ability
to find the food again, and sufficient compensation for the
extra time and energy that leading imposes on it.

1.3.1 Why communicate information about food?

Although the transmission of information which advertises
the existence of and in some cases, the location and quality
of food discoveries, is common, an interesting question is
why this is so. The benefit to the recipient of the information
is evident but it is less clear why an animal would wish to
transmit this information. The sender of a food call bears
costs, including the risk that a predator will use the signal to
locate and attack the sender, and of course, the sender incurs
a cost in that the food resource will be shared.

A number of potential benefits to the sender of the sig-
nal have been suggested (Bradbury and Vehrencamp 2011).
Having more conspecifics at a feeding location means that
vigilance and predator defense duties can be shared, and it
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also dilutes the risk to an individual if a predator attacks.
There may also be other payoffs in that food sharing behav-
iour may attract potential mates to the food site. In cases
where prey items are large in size or dangerous, animals may
send food calls to recruit a group of conspecifics to attack the
prey item.

The topological distribution of food resources also plays
an important role in determining whether a species will tend
to group together and forage socially. Species that feed on
large, ephemeral, clumps of food such as seeds or fruit often
live in groups, as in this case, the key limitation in foraging
tends to be finding the location of good food sites (Davies et
al. 2012).

Hence, the decision as to whether or not it makes sense to
forage socially and/or to alert conspecifics to food resources
when found, can be viewed through an economic lens of costs
and benefits and many species vary their propensity to give
food calls depending on the amount and divisibility of food
found (Bradbury and Vehrencamp 2011).

1.4 A taxonomy of foraging algorithms

The classification of four methods of communicating infor-
mation about food finds from the behavioural ecology liter-
ature (see Sect. 1.3) provides a useful and novel taxonomy
which we can use to distinguish between the best-known
families of foraging inspired optimisation algorithms.

In bacteria foraging optimisation an importantmechanism
in the algorithm is the attraction of other conspecifics to good
resource locations via emission of a simulated ‘attractant’
chemical, akin to broadcasting a food signal (communication
mechanism 1). In ant-colony optimisation, the communica-
tion is via a chemical trail (mechanism 2), whereas in honey
bee optimisation algorithms, the emphasis is placed on pro-
vision of detailed information as to location via a simulation
of the dance process (mechanism 3).

The fourth communication mechanism, namely recruit-
ment at a central site with subsequent ‘leader’ behaviour to
bring the conspecifics to the food resource, has not attracted
much attention in the design of foraging-inspired optimisa-
tion algorithms to date.

Several examples of this foraging behaviour exist in nature
including tandem running by ants. For example, when an ant
of the species Temnothorax albipennis finds food, it leads
another (naïve) ant from the nest to the food source to ‘teach’
it the route to the food resource (Franklin and Franks 2012).

1.5 Focus of this study

In this studywe take an example of the fourth communication
mechanism above, drawing on an example of a social roost-
ing behaviour. Several species of animals engage in social
roosting including some species of birds and bats. These

roosts can potentially serve as information centres for the
exchange of information concerning the location of food and
other resources. We examine one instance of social roosting
and associated foraging behaviour, namely that of juvenile
common ravens, where information is exchanged at a noctur-
nal roost, and foragerswith knowledge of the location of good
food resources recruit for those resources and subsequently
lead conspecifics back to them.We design a series of optimi-
sation algorithms drawing inspiration from these behaviours
and test them on a series of benchmark functions.

The remainder of this contribution is organised as follows:
Sect. 2 provides some background on roosting behaviour
and the associated information centre hypothesis. Section 3
outlines the design of the raven roost optimisation (RRO)
algorithm. In Sect. 4 we outline the experimental design
and present results. Finally, conclusions and opportunities
for future work are discussed in Sect. 5.

2 Roosts as information centres

A social behaviour which is exhibited by many animals is
‘roosting’ where multiple conspecifics come together to rest.
This naturally leads to the question as to what evolutionary
advantages this behaviour produces. Initial explanations cen-
tred on possible anti-predatory benefits, increased opportu-
nities for mate choice, enhanced care of young, increased
opportunity for status display and thermal benefits dur-
ing overnight roosting (Dall 2002; Marzluff and Heinrich
2001).

Analternative explanation, the Information Center Hypoth-
esis (ICH), was proposed by Zahavi (1972) and Ward and
Zahavi (1973). This hypothesis suggested that birds join
colonies and roosts to increase their foraging efficiency by
means of the exchange of information regarding the location
of food. The author(s) made a strong claim that enhanced
food foraging success was the primary reason for the evolu-
tion of gregariousness in birds.

The core tenet of the ICH is that birds which successfully
find food advertise this fact at the roost site and are subse-
quently followed by several conspecifics to the food resource
(i.e. they ‘recruit’ for the food resource they have found).

Interest in the ICH is not restricted to bird roosting behav-
iours. The possibility that information transfer could also
occur in communally roosting bats was first suggested by
Fleming (1982). Later work by Wikinson (1992) examined
the foraging behaviour of the bat species Nycticeius humer-
alis and found that poorly performing foragers tend to sub-
sequently follow previously successful foragers and that the
foraging success of putative followers is greater than that of
unsuccessful bats which depart solitarily. The author con-
cluded that information transfer concerning good foraging
sites was taking place, potentially via echolocation pulses,
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although the exact mechanism of information transfer was
not isolated in the study.

2.1 Raven roosts

Raven roosts consist of juvenile, non-breeding, unrelated
common ravens. Ravens normally arrive at roosts shortly
before sunset and typically leave the roost in highly synchro-
nised groups at dawn the next day. The first comprehensive
study of information transfer in raven roosts was undertaken
by Marzluff et al. (1996) who examined roosting behaviours
of the common raven (Corvus corax) in the forested moun-
tains of Maine (USA). Ravens in this region are specialist
feeders on the carcasses of large mammals in winter, some-
times scavenging the kills of large carnivores such as wolves
(Stahler et al. 2002). These food sources are ephemeral as
they degrade or are consumedquickly, and the location of car-
casses is unpredictable. Hence, the search for food resources
is continuous.

The typical food discovery process observed commenced
with a small number of birds feeding at a carcass site, fol-
lowed by a rapid (overnight) doubling in numbers with most
of these birds arriving simultaneously at dawn. The carcass
would be consumed over several days and at the final stage
of carcass depletion, feeding group size declined rapidly as
many birds left the carcass in the afternoon (prior to sunset)
and did not return to it the next day.

Marzluff et al. (1996) undertook careful observation at
both roosting and foraging sites and monitored the change
in the number of ravens at a carcass from one day to the
next. Control experiments, in which naïve birds (birds intro-
duced into the roost with no knowledge of the location of
food locations) were released at roosts demonstrated that
these birds found feeding locations by following their roost
mates, providing evidence for the existence of information
sharing. Observations by the authors also indicated that the
same individuals in a roost are not always knowledgable,
suggesting that information sharing rather than mere para-
sitism (wherein ‘excellent’ foragers were simply followed by
less-skilled conspecifics) was taking place. The study con-
cluded that information sharing did take place at roosts and
that ravens which successfully found a new food resource
recruited other members of the roost to that resource.

These findings were extended in a study by Wright et al.
(2003) which examined the behaviour of ravens in a large
roost in North Wales in the United Kingdom. In contrast to
North America, raven roosts in Europe are typically larger
and havemore stablemembership. The researchers deposited
baited carcasses at various locations around the roost and
found that most carcasses were consumed within five days.
Observational evidence suggested that recruitment started for
each carcass via a single bird on day zero with subsequent
recruitment of about six to seven birds per day. Birds that

first discovered the baited carcasses recruited conspecifics
using pre-roost (evening) acrobatic flight displays and vocal-
isations. The ‘discoverer’ birds spent the night surrounded
in the roost by the group that would follow them out the
next morning to the food source. Recruitment appeared to be
a competitive activity which was more successful for geo-
graphically closer carcasses, consistent with the idea that the
pre-roost displays accurately reflected the energetic state of
the displaying bird and, therefore, the relative distance and
profitability of the carcass discovered. The authors consid-
ered that the findings ‘provide strong circumstantial evidence
for raven roosts as structured information centres’ (Wright
et al. 2003).

Considering the reason as to why ravens may share infor-
mation on food location, one suggestion is that many car-
casses will be located within the territory of a mated pair of
ravens (the birds become territorial on mating). If a juvenile
raven recruits other birds to the carcass in sufficient num-
bers, the non-territorial group may be able to take the carcass
away from the usually dominant territorial pair (Bradbury
and Vehrencamp 2011).

Of course, the foraging process of ravens has a number of
additional features. Just like other organisms (Grüter et al.
2013; Grüter and Leadbeater 2014; Leadbeater and Florent
2014; Wray et al. 2012), a bird may have private knowledge
of food resource locations and hence may place different
weight on socially acquired information depending on its pri-
vate knowledge. In addition, birds can visually survey a wide
terrain while flying (Stahler et al. 2002) and may decide to
deviate if an alternative food source is seen whilst in flight. In
commonwithmany animals, ravens are known to suffer from
‘neophobia’ (a fear of new things) and have initial reluctance
to forage at new carcasses which they have not seen before,
particularly if no other birds are feeding there already (Davies
et al. 2012; Stahler et al. 2002). This suggests that ravens will
have some reluctance to abandon existing feeding locations
for new ones, even if the new locations offer good resources.

In the next section we develop a high-level model of for-
aging, inspired by the activities of ravens, which is then used
to formulate a variety of specific optimisation algorithms.

3 Algorithm development

As discussed in the introduction to this paper, there are a
number of elements which contribute to the foraging behav-
iour of animals (Giraldeau and Caraco 2000; Stephens and
Krebs 1986; Viswanathan et al. 2011), namely

1. an individual’s perception capability, depending on the
acuity of its senses such as vision, touch, smell, etc.,

2. an individual’s memory of previously successful / unsuc-
cessful food foraging locations,
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3. the capability of an animal to broadcast or receive infor-
mation about food locations from conspecifics, and

4. a stochastic element to animalmovementwhen searching
for new food resources.

All foraging-inspired algorithms embed these components
in differing degrees, typically linking them together in a
‘foraging strategy’ and, therefore, will have some high-level
similarities. For example, canonical ant colony optimisation
algorithms emphasise socially transmitted information via a
pheromone trail combined with a random element in that
an individual ant is not restricted to follow the strongest
pheromone trail when it leaves the ant nest. In most honey
bee optimisation implementations, the emphasis is on sto-
chastic recruitment of foraging bees by social transmission
of information via the dance language.

Below we propose an algorithm, named the raven roost
optimisation (RRO) algorithm, which includes all four of the
above components. The algorithm draws metaphorical inspi-
ration from the process of raven foraging in that in each iter-
ation of the algorithm, a percentage of the simulated flock of
birds (denoted as Percfollow) are recruited (mimicking social
transmission of information at a roost) and follow the bird
which found the best location in the last iteration of the algo-
rithm back to that location. The remaining birds return to
the best foraging location that they have found so far (simu-
lating a memory). In both cases, if a bird perceives (sees) a
‘better location’ whilst en route to the relevant location they
may stochastically decide to stop there instead of continuing
with their flight. The details of the operationalisation of the
algorithm are provided in the next subsection.

3.1 Description of algorithm

Initially, a randomly located (in the input space) roosting
site is chosen and this roost location is then fixed for the
remainder of the algorithm. Each of the population of N
‘ravens’ is placed at a random initial location (a potential
food location) in the search space. The fitness values of the
N locations are assessed, and the bird at the location of the
best solution is denoted as “LEADER”.

A roosting process is then simulated by mimicking an
information-sharing step. In the next iteration of the algo-
rithm, a proportion of the ravens (Percfollow) are recruited to
leave the roost site and follow the LEADER to the best-so-
far location. The follower bird then selects a random point
within a hypersphere of radius (Rleader) around the location
previously found by LEADER at which to forage.

As in real-world raven roosting, only a portion of the roost
members will be recruited to a new food source and other
roost members will continue to return to a ‘private’ food
location. On leaving the roost, unrecruited birds travel to the
best location that they have personally found to date (pbest)

and continue to forage there. The inclusion of a personal best
‘memory’ for each bird embeds a concept of ‘private infor-
mation’ as unrecruited birds in essence are choosing to rely
on private information rather than piggy-back on socially-
broadcast information from the LEADER.

Whilst in flight to their intended destination, all birds
maintain a search for new food sources en-route.We simulate
this process by dividing their flight into Nsteps. The length of
each step is chosen randomly, and the bird’s position in flight
is updated using the following equation:

xi,t = xi,t−1 + di,t , (1)

where xi,t is the current position of the i th raven, xi,t−1 is
its previous position, and di,t is a random step size. At each
step, a raven senses (perceives) the quality of its stopping
point and also of its surrounding environment in the range
of radius Rpcpt. In the latter case it samples Npcpt percep-
tions randomly within this hypersphere. If a better location
is perceived amongst these locations than the bird’s personal
best, there is a Probstop percent chance that the raven stops
its flight at that point and forages at the newly found loca-
tion; otherwise, it takes another flight step and continues to
move to its destination. At the conclusion of the algorithm,
the highest quality location found is returned. Pseudocode
for the algorithm is provided in Algorithm 1, supplemented
by Fig. 1 which illustrates the step process.

3.2 Comparison of algorithm with other optimisation
algorithms

At a surface level the RRO algorithm bears some similarities
with other optimisation algorithms. It is useful to compare
its workings with those of some well-known optimisation
algorithms (here we consider ACO and PSO algorithms) to
clarify what features it shares with existing algorithms and
what features are distinct.

To provide a framework for this comparison we employ
the four elements of a foraging behaviour described in Sect. 3
above. Table 1 provides a synopsis of how the four elements
can be mapped to ACO, PSO, and RRO, respectively. While
PSO is not typically considered as a foraging algorithm, it is
included in this table for discussion purposes.

3.2.1 Perception

In ACO and PSO, the insects/particles do not have an explicit
perception mechanism for sampling (perceiving) the quality
of multiple locations on the landscape as they traverse it.
They only assess the worth of a single location (or ‘solution’
in ACO) in each iteration, in essence obtaining feedback
information to a location decision rather than feedforward
information which they can use before selecting a location.
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Algorithm 1: Raven Roosting Optimisation Algorithm

Randomly select a roosting site;
repeat

The N foraging ravens are assigned to N random locations in
the search space;
Evaluate the fitness of each raven location;
Update the personal best location of each raven;
The location of the best solution is denoted as LEADER;
Recruit Perc f ollow percentage of the N foragers from the
roosting site which will search in the vicinity of the LEADER
(within the range of radius Rleader ) and the rest of the ravens
will seek to travel to their personal best locations;
Set step = 0;
while step < Nsteps do

On the way to its destination (whether the destination is
the LEADER’s vicinity or their personal best location),
each raven flies for a while and searches in the vicinity of
its current position (within the range with radius Rpcpt );
if a better solution is found than the bird’s personal best
then

There is a Probstop chance the raven will stop;
Update the personal best location;

else
It continues to fly;

end
step = step + 1;

end
For the ravens which finally arrive at their destinations (the
LEADER’s vicinity or their personal best), update their
personal best locations if necessary;
to the fitness of the location) and evaluate the fitness for each
forager;
Update location of the best solution found so far if necessary;

until terminating condition;

In contrast, a simple perception mechanism is embedded in
RROwhereby followers, or birds returning to a ‘private’ loca-
tion, can sample other locations en route and stochastically
stop at these if they find a better location than their pbest.

Table 1 Mapping of four foraging behaviours to the ACO, PSO, and
RRO algorithms

Foraging behaviour ACO PSO RRO

Individual perception of environment ✕ ✕ ✓

Personal memory ✕ ✓ ✓

Social transmission of information ✓ ✓ ✓

Stochastic search component ✓ ✓ ✓

3.2.2 Memory

Memory is implemented in distinct ways in each algorithm.
In the canonical ACO algorithm, individual ants do notmain-
tain a personal memory as to good solutions they have found;
instead, the memory of good solutions found by all ants
is maintained via pheromone trails in the simulated search
environment. PSO embeds a concept of personal memory
in which each particle ‘remembers’ the location of the best
solution it has found to date (pbest). RRO embeds a similar
concept as each bird remembers the best resource location
that it has found to date.

3.2.3 Social transmission of information

A core component of all three algorithms is the social trans-
mission of information. From the discussion in Sect. 1.4 it
can be seen that themechanisms of transmission in each algo-
rithm are quite distinct. In ACO, feedback as to the quality of
solutions is transmitted socially via pheromone deposits in
the environment. In PSO, all particles are aware of the best
location found to date by any member of the swarm (gbest)
and this information is blendedwith personal information and
a momentum factor to produce the position update for each
particle. Hence, it can be considered that gbest is ‘publicly

Fig. 1 Illustration of the following and the step process in the RRO algorithm
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broadcast’ to all members of the swarm and this information
always impacts on the position update of particles. In RRO, a
distinct ‘follower’ mechanism is implemented, whereby the
bird who has found the ‘best’ location to date recruits a num-
ber of followers and leads them back to this site. However,
not all birds in the roost are recruited. Therefore, unlike PSO,
the best-so-far location does not influence the search process
of all birds in each iteration of the algorithm.

3.2.4 Stochastic search

All three algorithms embed stochastic search using different
mechanisms. In canonical ACO, the decision as to which arc
to follow when leaving a node in the construction graph is
typically determined by two pieces of information, the rela-
tive amount of pheromone deposited on each arc and infor-
mation from a problem-specific heuristic which attempts to
assess which outgoing arc may be ‘better’. The ant stochas-
tically selects its next arc based on a blending of these pieces
of information, tending to favour arcs which are heavily
reinforced with pheromone and arcs which are considered
good using the heuristic guide to arc quality. During posi-
tion updates for particles in the PSO algorithm, the relative
weight accorded to pbest and gbest is also varied stochasti-
cally. In RRO, a stochastic element is embedded in the algo-
rithm as the length of each step taken is randomly chosen as
each bird flies, and the perception samplings at each step are
drawn randomly from within a hypersphere at each of these
locations.

4 Experiments and results

In this section we describe the experiments undertaken
and present the results from these experiments. Four stan-
dard benchmark problems (see Table 2), at three levels of
dimensionality (20, 40 and 60), were used to test the devel-
oped algorithms. Two of these functions namely, DeJong and
Rosenbrock, represent unimodal problems. Griewank and
Rastrigin are more complex functions which contain mul-
tiple local optima. The aim in all the experiments was to find
the vector of valueswhichminimise the value of the test func-
tions. In total, 192 separate experiments are undertaken. The

results of each experiment are averaged over 30 independent
runs.

No single study can simultaneously investigate, bench-
mark, and concisely report results from experiments cov-
ering a multiplicity of test functions of varying dimension-
ality and differing parameter settings. Hence we have had
to make choices in deciding where to focus our work. In
this initial exploration of the RRO algorithm we have placed
most focus on gaining insight into the relative importance
of each of the components of the RRO algorithm. Accord-
ingly, we design and test a canonical version of the algorithm
(denoted as RRO0) and 13 variants of this (the thirteen vari-
ants are denoted as RRO1–RRO12 and RROv, respectively)
to undertake an analysis of the relative importance of differ-
ent parameter settings and of each of the key mechanisms in
the algorithm. Details of these variants are set out in Table 3
and are discussed in detail below.

4.1 Overview of experiments

In the first set of experiments we undertake an initial assess-
ment of the performance of the canonical version (or ‘full’
version) of the RRO algorithm (RRO0) on the four test prob-
lems.Webenchmark these results against those of a canonical
version of the PSO algorithm (Ganesan et al. 2012; Kennedy
and Eberhart 1995; Kennedy et al. 2001), and against random
search (RS). Our rationale for selecting the PSO algorithm
is that, like the RRO algorithm, it explicitly incorporates a
concept of social and private information and blends this
information in the search process. In our implementation we
use the canonical version of the PSO algorithm, with the
following update steps:

vi (t) = ωvi (t − 1) + c1rand(0, 1)(pbest(t − 1)−xi (t−1))

+ c2rand(0, 1)(gbest(t − 1) − xi (t − 1)) (2)

xi (t) = xi (t − 1) + vi (t), (3)

where xi (t) and vi (t) are the position and velocity of particle
i at time t ,ω is the inertiaweight (initially set to 1), and c1 and
c2 are set to 2.Many variants of the PSOalgorithm exist in the
literature and could have been chosen for implementation in
our study. The focus of these experimentswas to obtain initial
insight into the performance of RRO0 and assess whether it
appears reasonably competitive against other heuristics. No

Table 2 Optimisation problems
Name Function Search space Optima

DeJong F(x) = ∑n
i=1 x2i [−5.12 5.12]n 0.0n

Griewank F(x) = 1 + ∑n
i=1

x2i
4000 − ∏n

i=1 cos(
xi√

i
) [−600 600]n 0.0n

Rastrigin F(x) = 10n + ∑n
i=1 [x2i − 10 cos(2πxi )] [−5.12 5.12]n 0.0n

Rosenbrock F(x) = ∑n−1
i=1 [100(xi+1 − x2i )2 + (1 − xi )

2] [−30 30]n 1.0n
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Table 3 Parameter setting of algorithms

Algorithm Radius of percep-
tion (Rpcpt)

Radius of leader
(Rleader)

Perceptions
(Npcpt)

Steps (Nsteps) Proportion of fol-
lowers (Percfollow)

Probability of stop-
ping (Probstop)

RRO0 R
3.6 D√N

R
3.6 D√N

10 10 0.2 0.1

RRO1 R
3.6 D√N

R
1.8 D√N

10 10 0.2 0.1

RRO2 R
1.8 D√N

R
3.6 D√N

10 10 0.2 0.1

RRO3 R
1.8 D√N

R
1.8 D√N

10 10 0.2 0.1

RRO4 R
3.6 D√N

R
3.6 D√N

5 10 0.2 0.1

RRO5 R
3.6 D√N

R
3.6 D√N

20 10 0.2 0.1

RRO6 R
3.6 D√N

R
3.6 D√N

10 5 0.2 0.1

RRO7 R
3.6 D√N

R
3.6 D√N

10 20 0.2 0.1

RRO8 R
3.6 D√N

R
3.6 D√N

10 10 0.4 0.1

RRO9 R
3.6 D√N

R
3.6 D√N

10 10 0.6 0.1

RRO10 R
3.6 D√N

R
3.6 D√N

10 10 0.8 0.1

RRO11 R
3.6 D√N

R
3.6 D√N

10 10 0.2 0.2

RRO12 R
3.6 D√N

R
3.6 D√N

10 10 0.2 0.4

R is the radius of the search space, D is the dimensionality of the test problem, N is the number of ravens (in RRO) or particles (in PSO)

claim is made that the canonical version of PSO used in this
study produces the best possible performance from the entire
family of PSO algorithms on the test problems.

These experiments are then followed by an investigation
of the importance of the perception mechanism in the RRO
algorithm. Accordingly, we test a variant of the RRO algo-
rithm in which the perception mechanism is switched ‘off’
(this variant of the RRO is denoted as RROv) and compare its
performance against that of the canonical RRO0 algorithm
which includes the perception mechanism. In RROv, the bird
still makes its multi-step flight, however, no perceptions are
made in the hypersphere surrounding each stopping location.

The next set of experiments examine the sensitivity of
RRO0 to changes in the values of six of its parameters.
In each case, we select two or three values for each of
these parameters, producing 12 variants of the RRO0 algo-
rithm (denoted as RRO1–RRO12). The specific values of
the parameters for each algorithm variant are set out in
Table 3. Whilst the values for the parameters are chosen
judgementally, we note that values chosen for the two radii
(Rpcpt and Rleader) are problem-specific, as they are influ-
enced by the choice of the number of ravens (N ), the
radius (size) of the search space (R), and the dimension-
ality of this space (D). In this study, the values of both
Rpcpt and Rleader for the canonical version of the algo-
rithm (RRO0) were chosen after initial experimentation as

R
3.6 D√N

. The choice of parameter settings for Rpcpt, Npcpt,

Nsteps and Probstop govern the importance of ‘perception’
in the algorithm. If all are set to low values, individual

Table 4 Parameter setting for experiments

Parameters Values

Trials 30

Size of population N = 30

Dimension of problem D = 20, 40, 60

perception by a bird will play little role in their forag-
ing and reliance will instead be placed on search around
the best point found by the LEADER or the bird’s pbest.
Conversely, if higher values are set for these parameters,
the emphasis on perception is increased, and the algo-
rithm will place less reliance on social information and
memory.

4.1.1 Stopping criteria

The experimental parameters are shown in Table 4. In each
experiment, 30 ravens in the case of RRO, or 30 particles
in the case of PSO, are used. When assessing the relative
effectiveness of multiple algorithms against one another,
particularly when the algorithms have distinctly different
internal processes, it is often not a trivial matter to design
a perfect basis for comparison. A common approach is to
allocate an equivalent number of fitness function evalua-
tions to each algorithm on the basis that each algorithm
then has access to the same amount of information from
the environment. While this approach appears reasonable,
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Table 5 Iteration settings for each trial

RRO0 RRO1 RRO2 RRO3 RRO4 RRO5 RRO6 RRO7 RRO8 RRO9 RRO10 RRO11 RRO12 RROv PSO RS

500 500 500 500 1,000 250 1,000 250 500 500 500 500 500 5,000 60,000 60,000

it ignores the issue that a more complex algorithm will
have a longer run time than a simpler one, for the same
number of fitness function evaluations. This is a particu-
lar issue when random search is used as a benchmark as
the computational overhead of a random search algorithm
(excluding the cost of fitness function evaluation) will be
low.

In our experiments we seek to provide a balance between
these issues. We adjust the number of iterations for which
each algorithm is run to produce a similar number of fit-
ness function evaluations across all experiments. Hence the
stopping criterion for each algorithm was set at a maxi-
mum number of fitness function evaluations in each case.
RRO has some additional computational overhead over and
above RS or PSO due to its implementation of a ‘step’
flight process. The computational overhead of this rela-
tive to the computational cost of fitness function evalua-
tion varies depending on the complexity of the fitness cal-
culation, which in turn is impacted by the complexity and
dimensionality of the test problems examined. In order to
present a conservative assessment of the performance of
RRO and its variants, we, therefore, allow RS and PSO to
undertake a slightly greater number of fitness function eval-
uations.

Table 5 sets out the number of iterations used for each algo-
rithm. As a baseline, we run RRO0–RRO4 for 500 iterations
as (with 30 ravens, this produces a maximum of approxi-
mately 3,300 fitness evaluations per iteration, leading to a
maximum of some 1,650,000 fitness function evaluations
over 500 iterations of the entire algorithm). In the case of
RRO5, the number of perception samples taken at each step
is halved (5 samples vs the 10 samples taken in RRO0-
RRO4) and hence we run the algorithm variant for 1,000
iterations (rather than 500 iterations). In the case of RS and
PSO, there are 30 fitness function evaluations per iteration
of the algorithm, and the maximum number of iterations
for each algorithm is set at 60,000 (giving a maximum of
1,800,000 fitness function evaluations). All reported results
are averaged over 30 independent experiments for each prob-
lem and algorithm pairing and we test the statistical signifi-
cance of all differences in performance at a 95% level using
a t test.

4.1.2 Type of computer system used

The experiments were undertaken on a PC Intel Core i7
(2.93GHz) system with 12GB RAM.

4.2 Hypotheses tested

In our tables of results, we provide a statistical analysis of
the difference in the mean performance of each algorithmic
variant against the canonical version of RRO0 and also of the
performance of each version of RRO against PSO and RS.
In all cases, the null hypothesis is that there is no difference
in performance. The notation used is as follows:

In assessing the performance of the 13 variants of RRO
with different parameter settings (RRO1–RRO12 andRROv)
against the performance of the canonical algorithm (RRO0):

– H0: the RROi (i :1–12) algorithm performs as well as the
RRO0 algorithm.

In considering the performance of the various versions of
RRO against PSO:

– HPSO: the RRO algorithm performs as well as the PSO
algorithm.

In considering the performance of the various versions of
RRO performs against RS:

– HRS: the RRO algorithm performs as well as the RS algo-
rithm.

4.3 Analysis of raven roost algorithm

Initially,we focus attention on comparing the results obtained
by RRO0 against those of PSO and RS. Figures 4 and 5 pro-
vide boxplots of the best-of-run results for each algorithm
over the 30 trials. Figures 2 and 3 provide a graphic showing
the evolution of the average best for each algorithm for the
40 and 60D cases (the illustrations for the 20D case are qual-
itatively similar and are, therefore, omitted to save space).

A practical issue in preparing Figs. 2 and 3 is that the
number of fitness function evaluations in each iteration varies
from one algorithmic variant to another. In order to produce
these figures we standardise the comparisons based on the
250 iterations of RRO5 and RRO7 and plot the best fitness
value obtained at the end of each of these 250 iterations (aver-
aged over all 30 runs) for RRO5 and RRO7. In the case of
RRO0–RRO3 and RRO8–RRO12 (which run for 500 itera-
tions), the best fitness is plotted every second iteration, and
for RRO4 and RRO6 the best fitness from each fourth iter-

123



534 A. Brabazon et al.

Fig. 2 Average best performance (averaged over 30 trials) of each algorithm variant on test problems (40D) case

ation is plotted. Hence, (for example) iteration 1 in Figs. 2
and 3 plots the average best performance after the first itera-
tion of algorithms RRO5/RRO7, after the second iteration of
algorithms RRO0–RRO3 and RRO8–RRO12, and after the
fourth iteration for algorithm RRO 4. Similarly, for RROv,
PSO, and RS, the plotted fitnesses are sampled and plotted
from an interval determined by dividing the total number of
iterations for that algorithm by 250.

4.3.1 Effectiveness and efficiency of canonical RRO

From the end-of-run boxplots (Figs. 4, 5) we can observe
that the RRO0 algorithm generally outperforms both ran-
dom search and PSO, and in eleven out of twelve cases the
difference is statistically significant for PSO (and in 12 out
of 12 cases for RS). The relevant p values are shown in the
two right-most columns in Tables 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16 and 17.

Examining the evolution of the performance of each algo-
rithm in Figs. 2 and 3, it can be noted that RRO0 quickly
outperforms both PSO and RS and hence appears to make
more efficient use of information on the search environment
gathered from fitness function evaluations.

4.3.2 Convergence and stability of canonical RRO

Theboxplots (Figs. 4, 5) indicate that the results for theRRO0
algorithm show reasonable convergence to similar values by
the end of the run (across all 30 trials) suggesting robustness
to the (random) initial raven positions for each trial and to
(random) choice of roosting site location. It is also noted that
the results from the RRO0 algorithm (see Figs. 2, 3) have
converged reasonably quickly across each problem exam-
ined. From the same figures it can also be observed that the
results for PSO and RS show a high degree of convergence
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Fig. 3 Average best performance (averaged over 30 trials) of each algorithm variant on test problems (60D) case

from quite early in their runs and hence, the results obtained
from these algorithms are not particularly sensitive to the
precise choice of number of iterations.

4.4 Analysis of perception mechanism in RRO

In order to assess the effect of the perception mechanism
on the performance of the RRO algorithm, two algorithms,
RRO0 with a perception mechanism and RROv (identical,
except for the removal of the perception mechanism), are
examined.

Figures 2 and 3 compare the evolution of the average best
fitness of the three algorithms for the tested problems, and
Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 show
the best fitness value obtained from all 30 runs (‘Best’), and
the average of the best fitnesses (‘Mean’) and its standard
deviation over all 30 runs. The results show that RRO0 out-

performs the RROv algorithm on all problems and that in
eleven out of twelve instances the difference is statistically
significant (the relevant p values are shown in the third from
right-most column in each Table). Hence, we conclude that
the perception mechanism is an important component of the
RRO algorithm.

4.5 Parameter sensitivity analysis

Figures 2 and 3 also enable us to visually assess the results of
sensitivity analysis of the six parameters of theRRO.Column
H0 in Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 show
the p values of the statistical tests used to determine whether
there are any differences in mean performance between the
RRO0 algorithm and the other variants of RRO algorithm.

Columns HPSO–HRS in Tables 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16 and 17 show the p values of the statistical tests used to
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Fig. 4 Boxplot of best results obtained by each algorithm variant (plotted over 30 runs) on DeJong and Rosenbrock Functions. The x axis shows
the algorithm variant identifier RRO0–RR012, RROv, RS and PSO
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Fig. 5 Boxplot of best results obtained by each algorithm variant (plotted over 30 runs) on Griewank and Rastrigin Functions. The x axis shows
the algorithm variant identifier RRO0–RR012, RROv, RS, and PSO
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Table 6 Results of algorithm comparison (DeJong 20D)

Algorithms Best Mean Std. H0 HPSO HRS

RRO0 1.1433 2.5694 1.1965 0.0000 0.0000

RRO1 1.3931 2.4239 0.7036 0.5683 0.0000 0.0000

RRO2 3.5274 6.8762 1.5374 0.0000 0.0000 0.0000

RRO3 3.8778 6.7870 1.2901 0.0000 0.0000 0.0000

RRO4 1.0977 3.2996 2.5732 0.1640 0.0000 0.0000

RRO5 1.2759 2.3970 0.7734 0.5101 0.0000 0.0000

RRO6 1.3882 2.9684 0.9849 0.1638 0.0000 0.0000

RRO7 1.1473 2.4024 1.1746 0.5876 0.0000 0.0000

RRO8 1.3734 3.6288 4.3107 0.1997 0.0000 0.0000

RRO9 1.2557 4.6890 3.5094 0.0027 0.0000 0.0000

RRO10 1.6098 7.7694 7.2951 0.0003 0.0000 0.0000

RRO11 1.1705 10.9890 8.6096 0.0000 0.0000 0.0000

RRO12 16.0196 26.3861 6.4034 0.0000 0.6162 0.0000

RROv 13.9676 21.5745 4.0803 0.0000 0.0679 0.0000

RS 22.3475 34.7632 4.0542

PSO 3.1221 28.2508 19.2281

Table 7 Results of algorithm comparison (DeJong 40D)

Algorithms Best Mean Std. H0 HPSO HRS

RRO0 10.5405 17.2223 9.2001 0.0000 0.0000

RRO1 11.4513 21.3832 11.8610 0.1344 0.0000 0.0000

RRO2 33.0629 41.6081 4.3000 0.0000 0.0000 0.0000

RRO3 34.7454 43.1591 4.4858 0.0000 0.0000 0.0000

RRO4 9.3906 16.4889 8.0312 0.7434 0.0000 0.0000

RRO5 9.0687 16.7350 6.7431 0.8158 0.0000 0.0000

RRO6 14.2764 23.5263 7.5739 0.0053 0.0000 0.0000

RRO7 9.7388 17.4518 9.0761 0.9229 0.0000 0.0000

RRO8 8.3576 24.1669 14.9873 0.0347 0.0000 0.0000

RRO9 10.3897 27.0794 18.6460 0.0119 0.0000 0.0000

RRO10 11.4622 43.7419 28.1358 0.0000 0.0000 0.0000

RRO11 13.9066 55.1106 23.1648 0.0000 0.0000 0.0000

RRO12 59.5071 89.3896 12.5065 0.0000 0.0000 0.0000

RROv 67.3813 88.8919 10.3705 0.0000 0.0000 0.0000

RS 106.0110 129.2142 10.0996

PSO 102.4266 145.9071 33.2386

test whether there is any difference between the performance
of the RRO algorithm variants and PSO and RS, respectively.

4.5.1 Impact of varying perception radius

Initially we compare the performance of RRO0 with three
variants (RRO1–RRO3) which have larger perception radii
for Rpcpt and/or Rleader. In general, across most problem
instances, the performance ranking on the four algorithm
variants is as follows:

RRO0, 1 > RRO2, 3

Relatively little difference is noted between the perfor-
mance of RRO0 and RRO1, or between RRO2 and RRO3
on the various problem instances. This indicates that the per-
formance of the RRO algorithm is sensitive to the changes
on parameter Rpcpt and not as sensitive to the changes in the
parameter Rleader. Comparing the performances of RRO1,
RRO2, and RRO3 against that of PSO, all are found to out-
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Table 8 Results of algorithm comparison (DeJong 60D)

Algorithms Best Mean Std. H0 HPSO HRS

RRO0 28.6655 51.3196 22.4168 0.0000 0.0000

RRO1 27.5026 49.3129 22.3908 0.7299 0.0000 0.0000

RRO2 75.4347 109.3080 9.8436 0.0000 0.0000 0.0000

RRO3 85.7726 108.1016 8.2982 0.0000 0.0000 0.0000

RRO4 29.7697 43.8796 25.4664 0.2346 0.0000 0.0000

RRO5 28.3357 49.2651 20.5080 0.7124 0.0000 0.0000

RRO6 37.7723 54.6793 13.6009 0.4856 0.0000 0.0000

RRO7 30.7351 52.6931 20.1475 0.8038 0.0000 0.0000

RRO8 27.3253 46.9927 20.8157 0.4416 0.0000 0.0000

RRO9 30.0976 63.3947 34.1911 0.1112 0.0000 0.0000

RRO10 33.1730 92.1664 45.9878 0.0001 0.0000 0.0000

RRO11 33.0007 112.6194 33.6566 0.0000 0.0000 0.0000

RRO12 105.6885 171.7069 24.3181 0.0000 0.0000 0.0000

RROv 119.6281 165.6292 15.2706 0.0000 0.0000 0.0000

RS 231.0031 254.2297 11.3885

PSO 230.8468 309.7660 42.5911

Table 9 Results of algorithm comparison (Griewank 20D)

Algorithms Best Mean Std. H0 HPSO HRS

RRO0 4.9201 11.1692 9.1849 0.0000 0.0000

RRO1 5.6865 9.4731 4.1299 0.3601 0.0000 0.0000

RRO2 16.1899 24.0840 3.6261 0.0000 0.0000 0.0000

RRO3 16.1379 23.8251 4.6714 0.0000 0.0000 0.0000

RRO4 4.0471 9.6061 4.1517 0.3992 0.0000 0.0000

RRO5 6.2308 10.9994 6.3156 0.9338 0.0000 0.0000

RRO6 6.5796 12.7668 7.4445 0.4622 0.0000 0.0000

RRO7 5.7474 10.2424 6.9608 0.6612 0.0000 0.0000

RRO8 5.7403 9.4787 3.3913 0.3482 0.0000 0.0000

RRO9 6.3332 20.1232 17.4931 0.0160 0.0000 0.0000

RRO10 6.8043 37.2083 28.4341 0.0000 0.0015 0.0000

RRO11 8.3011 37.9738 25.9648 0.0000 0.0016 0.0000

RRO12 43.6980 93.1524 19.2567 0.0000 0.2374 0.0000

RROv 48.8332 74.4491 11.0190 0.0000 0.7022 0.0000

RS 96.2830 119.9137 11.4135

PSO 15.1391 78.9007 62.4815

perform PSO, and the difference in mean performance is
statistically significant in virtually all problem instances.

4.5.2 Impact of varying the number of perception samples

Next, we consider the parameter which governs the number
of perception samples that the ravens can utilise. In essence,
this proxies elements of the animal’s cognitive processing
ability, as in addition to the radius of sensory perception
being finite, assessments of resource quality within the range

of sensory perception are likely to be imperfect due to time
and cognitive limitations. In RRO0, ten samplings are made
in each ‘perception’ and in algorithm variants RRO4 and
RRO5 this number is altered to 5 and 20, respectively. Tables
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 show that the perfor-
mances of the three algorithms,RRO0,RRO4, andRRO5, are
similar over all problem instances with no clear evidence that
increasing or decreasing the number of samplings (within the
range tested) makes a notable difference. This suggests that
the RRO algorithm is not highly sensitive to the changes in
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Table 10 Results of algorithm comparison (Griewank 40D)

Algorithms Best Mean Std. H0 HPSO HRS

RRO0 42.0067 61.6318 28.2116 0.0000 0.0000

RRO1 37.4196 66.6595 34.8635 0.5416 0.0000 0.0000

RRO2 113.5695 148.7497 16.7754 0.0000 0.0000 0.0000

RRO3 100.1396 144.8812 17.9930 0.0000 0.0000 0.0000

RRO4 30.4829 58.0296 33.1604 0.6521 0.0000 0.0000

RRO5 36.7204 63.0155 38.9499 0.8753 0.0000 0.0000

RRO6 50.3735 81.1179 32.7351 0.0165 0.0000 0.0000

RRO7 40.0386 68.7545 34.0277 0.3811 0.0000 0.0000

RRO8 38.4638 67.4838 37.1559 0.4948 0.0000 0.0000

RRO9 30.8743 95.7281 78.8665 0.0297 0.0000 0.0000

RRO10 43.5050 151.2932 102.3744 0.0000 0.0000 0.0000

RRO11 51.0081 192.8115 82.9302 0.0000 0.0000 0.0000

RRO12 245.5225 311.5603 42.4035 0.0000 0.0000 0.0000

RROv 218.4021 300.7273 31.8063 0.0000 0.0000 0.0000

RS 401.7900 456.9386 23.8332

PSO 167.0205 474.4007 151.7499

Table 11 Results of algorithm comparison (Griewank 60D)

Algorithms Best Mean Std. H0 HPSO HRS

RRO0 84.3365 178.4021 93.9705 0.0000 0.0000

RRO1 90.5712 156.2390 71.6040 0.3084 0.0000 0.0000

RRO2 306.5267 384.9607 29.7312 0.0000 0.0000 0.0000

RRO3 300.6642 373.2262 28.7739 0.0000 0.0000 0.0000

RRO4 83.4968 176.1740 104.9454 0.9313 0.0000 0.0000

RRO5 99.1501 147.9523 74.0430 0.1686 0.0000 0.0000

RRO6 135.4182 198.1581 44.3852 0.3021 0.0000 0.0000

RRO7 101.1797 152.7378 55.9668 0.2038 0.0000 0.0000

RRO8 109.6892 193.6979 97.1950 0.5379 0.0000 0.0000

RRO9 106.7870 190.9501 94.7350 0.6085 0.0000 0.0000

RRO10 121.4726 334.6285 173.1223 0.0001 0.0000 0.0000

RRO11 182.1786 399.0440 111.2215 0.0000 0.0000 0.0000

RRO12 365.1553 568.6470 76.4417 0.0000 0.0000 0.0000

RROv 452.0903 571.3513 49.1254 0.0000 0.0000 0.0000

RS 735.2996 843.2480 37.9307

PSO 559.5375 965.1286 170.0045

the parameter Npcpt. Both RRO4 and RRO5 outperform PSO
and RS on all problem instances, significantly so on eleven
of the twelve instances in the case of PSO (in all twelve in
the case of RS).

4.5.3 Impact of varying the number of flight steps

The parameter Nsteps governs the number of flight steps taken
by a raven. At the end of each step, a ‘perception’ is made of
the landscape by the bird. In RRO0 we set the value of this

parameter at ten. In order to examine the sensitivity to this
settingwe compare the results ofRRO0 (10 steps)withRRO6
(5 steps) and RRO7 (20 steps). Again we control for the
number of total fitness function evaluations of all algorithm
variants.

Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 show
that algorithm performance is slightly sensitive to changes in
the parameter Nsteps, as increasing the value of this parame-
ter tends to improve performance. However, the differences
between RRO0 and RRO7 are not found to be statistically
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Table 12 Results of algorithm comparison (Rastrigin 20D)

Algorithms Best Mean Std. H0 HPSO HRS

RRO0 61.6345 86.6571 10.9716 0.0000 0.0000

RRO1 66.1654 87.7620 10.0601 0.6858 0.0000 0.0000

RRO2 75.9237 91.9517 8.5941 0.0419 0.0000 0.0000

RRO3 72.2118 92.3292 9.4472 0.0361 0.0000 0.0000

RRO4 73.3173 89.6263 11.2907 0.3059 0.0000 0.0000

RRO5 70.9641 88.1040 9.1517 0.5812 0.0000 0.0000

RRO6 87.2707 104.2442 9.5035 0.0000 0.0000 0.0000

RRO7 65.1208 87.3773 8.8159 0.7803 0.0000 0.0000

RRO8 72.2482 91.4735 9.4268 0.0733 0.0000 0.0000

RRO9 65.6834 95.4169 15.5322 0.0144 0.0000 0.0000

RRO10 75.1167 112.9087 15.2423 0.0000 0.0000 0.0000

RRO11 81.0313 100.7231 10.4160 0.0000 0.0000 0.0000

RRO12 83.9045 106.0616 10.9475 0.0000 0.0000 0.0000

RROv 80.2567 96.1776 10.8675 0.0013 0.0000 0.0000

RS 142.7369 156.5669 8.5785

PSO 93.5700 149.1411 27.0457

Table 13 Results of algorithm comparison (Rastrigin 40D)

Algorithms Best Mean Std. H0 HPSO HRS

RRO0 242.0983 285.8088 20.8212 0.0000 0.0000

RRO1 239.9658 293.7275 21.0714 0.1486 0.0000 0.0000

RRO2 239.8915 311.3059 24.2634 0.0001 0.0000 0.0000

RRO3 269.2177 305.7641 14.8344 0.0001 0.0000 0.0000

RRO4 245.3586 285.5230 23.1231 0.9601 0.0000 0.0000

RRO5 257.4362 289.2121 16.3326 0.4840 0.0000 0.0000

RRO6 271.9300 323.9496 19.2015 0.0000 0.0000 0.0000

RRO7 220.3040 279.3972 22.2758 0.2542 0.0000 0.0000

RRO8 248.6233 300.5300 22.0478 0.0101 0.0000 0.0000

RRO9 256.8026 301.6179 21.3625 0.0052 0.0000 0.0000

RRO10 279.2941 319.9033 22.1380 0.0000 0.0000 0.0000

RRO11 260.2963 305.4708 21.9666 0.0008 0.0000 0.0000

RRO12 271.2305 317.5597 22.7900 0.0000 0.0000 0.0000

RROv 254.2242 312.2624 24.3679 0.0000 0.0000 0.0000

RS 388.8564 433.4854 15.2177

PSO 412.8650 465.2801 31.8425

significant. Both RRO6 and RRO7 are found to outperform
PSO and RS on all problem instances, with the difference in
mean performance being significant on 11 of the 12 instances
in the case of PSO (in all 12 in the case of RS).

4.5.4 Impact of varying the proportion of followers

The parameter Percfollower determines the proportion of the
population that follow the LEADER from the roost to its food

find and serves as a tunable ‘recruitment’ propensity para-
meter. The parameter setting also governs how intensively
the roost population ‘exploits’ the food find of the LEADER
or in other words, the level of reliance of the roost on social as
distinct from private information. In RRO0 the value of this
parameter is set to 0.2, compared with values of 0.4, 0.6, and
0.8 in RRO8, RRO9, and RRO10, respectively. Tables 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16 and 17 show that the performance
ranking across the algorithm variants is generally
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Table 14 Results of algorithm comparison (Rastrigin 60D)

Algorithms Best Mean Std. H0 HPSO HRS

RRO0 466.6402 514.9922 26.4103 0.0000 0.0000

RRO1 485.8427 536.7983 28.3844 0.0032 0.0000 0.0000

RRO2 451.7679 555.0060 28.8960 0.0000 0.0000 0.0000

RRO3 491.0995 544.8866 25.6993 0.0000 0.0000 0.0000

RRO4 463.6742 528.7501 27.9410 0.0548 0.0000 0.0000

RRO5 452.3285 522.0707 30.3623 0.3393 0.0000 0.0000

RRO6 495.7037 575.9629 28.0688 0.0000 0.0000 0.0000

RRO7 462.4604 516.3762 31.8793 0.8554 0.0000 0.0000

RRO8 455.1942 535.7413 33.9887 0.0106 0.0000 0.0000

RRO9 499.4521 542.3014 21.1436 0.0000 0.0000 0.0000

RRO10 494.6903 548.9187 32.2119 0.0000 0.0000 0.0000

RRO11 492.0794 542.9837 27.7475 0.0002 0.0000 0.0000

RRO12 463.5904 554.3203 36.0934 0.0000 0.0000 0.0000

RROv 457.8350 534.6582 40.4950 0.0298 0.0000 0.0000

RS 691.2642 730.1369 15.1548

PSO 682.3185 778.4898 59.7009

Table 15 Results of algorithm comparison (Rosenbrock 20D)

Algorithms Best Mean Std. H0 HPSO HRS

RRO0 34,063 89,710 52,383 0.1334 0.0000

RRO1 28,854 99,855 95,093 0.6107 0.1341 0.0000

RRO2 87,388 575,969 228,115 0.0000 0.1707 0.0000

RRO3 250,556 697,429 227,874 0.0000 0.1812 0.0000

RRO4 13,946 123,723 184,815 0.3362 0.1357 0.0000

RRO5 25,506 88,922 54,746 0.9547 0.1333 0.0000

RRO6 49,990 143,591 138,093 0.0504 0.1371 0.0000

RRO7 42,697 239,210 421,153 0.0586 0.1442 0.0000

RRO8 15,194 90,971 64,958 0.9343 0.1334 0.0000

RRO9 43,930 383,991 765,698 0.0401 0.1554 0.0000

RRO10 39,889 466,966 971,925 0.0380 0.1622 0.0000

RRO11 67,693 2,553,544 3,014,762 0.0000 0.4109 0.0000

RRO12 1,345,975 7,354,348 3,271,392 0.0000 0.6265 0.0000

RROv 2,412,261 6,764,762 2,233,833 0.0000 0.7426 0.0000

RS 6,424,540 13,631,012 3,668,334

PSO 186,917 5,569,390 19,715,022

RRO0 > RRO8 > RRO9 > RRO10

The results show that algorithmic performance is sensitive
to the setting of the parameter Percfollow, with increasing
reliance on social information leading to a degradation in the
performance of the algorithm. Plausibly this occurs as high
values of this parameter will encourage heavy exploitation
of LEADER information, thereby reducing the diversity of
the search process. All three variants (RRO8, RRO9, and
RRO10) outperform PSO and RS on all problem instances,
with the difference in mean performance being significant on

11 of the 12 instances in the case of PSO (in all twelve in the
case of RS).

4.5.5 Impact of varying the probability of stopping

The parameter Probstop governs the probability that a raven
will stop at a location that it ‘sees’ during flight if it has
better food resources than the bird’s personal best location.
In essence, this parameter governs the propensity of a bird to
change feeding location. It also proxies a ‘noisy’ assessment
of resource quality by a bird, as it allows for the case that a
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Table 16 Results of algorithm comparison (Rosenbrock 40D)

Algorithms Best Mean Std. H0 HPSO HRS

RRO0 716,077 2,662,908 4,136,681 0.0000 0.0000

RRO1 889,920 3,999,693 5,162,500 0.2730 0.0000 0.0000

RRO2 8,088,236 13,717,609 3,369,159 0.0000 0.0000 0.0000

RRO3 8,352,652 13,949,865 2,878,015 0.0000 0.0000 0.0000

RRO4 549,298 4,182,098 5,139,341 0.2123 0.0000 0.0000

RRO5 652,118 2,602,896 2,458,967 0.9458 0.0000 0.0000

RRO6 1,818,842 3,232,560 1,631,106 0.4857 0.0000 0.0000

RRO7 912,597 1,852,210 1,002,168 0.3012 0.0000 0.0000

RRO8 856,104 3,511,087 4,386,071 0.4441 0.0000 0.0000

RRO9 1,024,249 5,489,751 6,404,683. 0.0469 0.0000 0.0000

RRO10 1,189,280 21,976,222 18,885,477 0.0000 0.0000 0.0000

RRO11 1,152,772 21,593,279 15,408,112 0.0000 0.0000 0.0000

RRO12 18,022,327 57,361,336 20,024,847 0.0000 0.0000 0.0000

RROv 26,100,671 56,150,451 10,905,740 0.0000 0.0000 0.0000

RS 65,705,121 113,919,865 16,077,614

PSO 82,573,731 172,425,977 78,992,915

Table 17 Results of algorithm comparison (Rosenbrock 60D)

Algorithms Best Mean Std. H0 HPSO HRS

RRO0 4,763,486 14,053,562 12,753,026 0.0000 0.0000

RRO1 4,920,542 12,818,565 16,973,557 0.7512 0.0000 0.0000

RRO2 51,911,755 81,113,385 12,867,503 0.0000 0.0000 0.0000

RRO3 54,567,270 74,667,130 11,167,395 0.0000 0.0000 0.0000

RRO4 5,459,199 12,468,188 7,375,277 0.5579 0.0000 0.0000

RRO5 4,204,857 13,518,573 14,855,674 0.8815 0.0000 0.0000

RRO6 10,553,423 20,528,952 12,288,728 0.0499 0.0000 0.0000

RRO7 3,820,881 15,349,822 15,390,135. 0.7237 0.0000 0.0000

RRO8 5,251,040 13,079,222 1,242,0126 0.7654 0.0000 0.0000

RRO9 4,341,940 23,887,419 28,304,495 0.0881 0.0000 0.0000

RRO10 5,280,445 47,269,522 51,538,364 0.0011 0.0000 0.0000

RRO11 6,264,836 49,389,896 39,757,828 0.0000 0.0000 0.0000

RRO12 38,512,404 128,354,601 37,235,512 0.0000 0.0000 0.0000

RROv 93,952,140 142,348,286 20,047,512 0.0000 0.0000 0.0000

RS 219,505,672 278,966,021 22,691,611

PSO 181,252,077 376,232,029 110,060,401

good food source is found by a bird but is incorrectly assessed
as to its quality. Obviously, the value of this parameter can
vary between 0 and 1, the former case corresponding to the
situationwhere in-flight perception is (effectively) turned off,
the latter to a ‘greedy’ search under perfect assessment of
resource quality. In RRO0, the probability of stopping is set
at 0.1. Twovariants on this are examined,RRO11 andRRO12
where the value is 0.2 and 0.4, respectively.

Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 show
that the performance ranking across the algorithm variants is

RRO0 > RRO11 > RRO12

These results indicate that performance is enhanced when
the probability of stopping is low and that the performance of
the algorithm is sensitive to the parameter value for Probstop.
Whilst this may appear a counter-intuitive result, in that good
feeding sites are bypassed, a lower stopping probability will
encourage longer flights from the roost and, therefore, greater
traversal of the search space. Comparing the performance
of RRO11 and RRO12 with PSO and RS, the two variants
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of RRO generally outperform PSO and RS (except for two
instances of RRO12) with the differences being statistically
significant in most problem instances.

4.5.6 Effectiveness and efficiency of RRO variants

From the end-of-run boxplots in Figs. 4 and 5 we can see that
RRO0 typically performed as well or better than most of the
variants (RRO1–RRO12) tested, although the differences in
mean performance were usually only significant when com-
pared with the performance of RRO2–RRO3 and RRO10–
RRO12, as discussed in the subsections above. The differ-
ences in performance stem from theway that the fitness func-
tion evaluation budget is shared between the components of
each algorithmic variant, and in the case of RRO2 and RRO3
the radius of perception. The general conclusion that can be
drawn from the results is that the canonical version of the
algorithm is not outperformed by any of the variants of it
that were tested. Assessing the performance of the variants
(RRO1–RRO12) against that of PSO and RS, while there is
some variability in the results produced by each of the vari-
ants, most perform quite competitively against PSO and RS.
This suggests that the performance of RRO is reasonably
robust with respect to choice of parameter settings, at least
for the range of test problems and settings examined.

4.5.7 Convergence and stability of RRO variants

Figures 4 and 5 also allow us to assess the end-of-run conver-
gence of each of the RRO variants (RRO1–RRO12). In gen-
eral, most variants apart from RRO9–RRO12 show a good
degree of convergence. The greater dispersion in results pro-
duced by RRO9 and RRO10 is not unexpected, as these
variants allocate high portions of the raven population to
act as followers (60 and 80% respectively). As this propor-
tion increases, the balance of the algorithm shifts towards
exploitation around the location found by the LEADER and
this increases the risk of the algorithm becoming trapped in
a local optimum. In RRO11 and RRO12, the propensity of
a raven to stop during their flight if they perceive a better
location than their own pbest is increased. While on the one
hand this increases the chance that a new good location will
be harvested by a bird, it has the side-effect of reducing the
degree of exploration of the terrain. The results suggest that
the latter factor acts to increase the variability of the perfor-
mance of the algorithm.

5 Conclusions

A significant stream of literature which draws inspiration
from the foraging activities of various organisms to design
optimisation algorithmshas emergedover the past decade.As
with many natural computing algorithms, these algorithms

are populational in nature and a key component of them is a
social communication mechanism which transfers informa-
tion about good locations on the search landscape between
members of the population. To date, relatively little attempt
has been made to compare and contrast the communication
mechanisms embedded in the various foraging-inspired algo-
rithms.

In this study, drawing on the social foraging literature, we
outline a taxonomy to help categorise existing optimisation
algorithms which have been inspired by foraging metaphors
using the nature of the underlying communication mecha-
nism. In doing so, it is apparent that one mechanism, namely
‘recruitment at a central location and subsequently leading
followers back to the food site’ has not attracted much atten-
tion thus far for the design of optimisation algorithms. We
take inspiration fromone example of the use of this communi-
cation mechanism in nature, the social roosting and foraging
behavior of ravens, to develop a novel algorithm.

The performance of the resulting RRO algorithm is tested
on a number of standard benchmark optimisation problems
and is found to be competitive. A series of analyses were also
undertaken on the RRO algorithm to gain insight as to the
importance of its component elements. These experiments
indicate the importance of the perception mechanism. An
exploration of the sensitivity of the algorithm’s performance
to various parameter settings was also undertaken.

The study opens up a door for follow-on work in a num-
ber of areas. This study presents an initial examination of
the RRO algorithm and as already noted, no single study can
exhaustively examine and benchmark all aspects of a new
algorithm. Further work remains to be undertaken to expand
the range of target problems/performance benchmarks exam-
ined, to further explore the sensitivity of the results of the
RRO algorithm to the choice of parameter settings, and to
assess scalability. As described in Sect. 4.1, certain of these
such as perception range need to be scaled for the size of
the search space, and hence, we would expect the results to
be impacted by choice of parameter. With reference to the
mechanisms in the algorithm, it is evident that elements such
as perception could be operationalised in a variety of ways
and it would be interesting to examine the impact on the algo-
rithm’s performance of alternative implementations of these
mechanisms.
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