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Abstract Given an undirected, connected, edge-weighted
graph, the dominating tree problem (DTP) seeks on this graph
a tree of minimum weight such that each node of the graph
either belongs to the tree or is adjacent to a node in the tree.
This problem isN P-hard. In this paper, we present an evo-
lutionary algorithm with guided mutation (EA/G) to solve
the DTP. This problem has several practical applications in
the field of wireless sensor networks. EA/G is a recently
proposed evolutionary algorithm that tries to overcome the
shortcomings of genetic algorithms (GAs) and estimation of
distribution algorithms both, and has the characteristics of
both. We have compared the performance of our proposed
approach with the state-of-the-art approaches presented in
the literature. Computational results show the superiority of
our approach in terms of solution quality as well as execution
time.

Keywords Constrained optimization · Dominating tree ·
Estimation of distribution algorithm · Guided mutation ·
Heuristic

1 Introduction

Consider an undirected, connected, edge-weighted graph
G = (V, E), where V denotes the set of vertices or nodes
and E denotes the set of edges. The dominating tree problem
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(DTP) is concerned with finding a tree DT of minimum total
edge weight on G in such a way that each node v ∈ V either
belongs to DT or is adjacent to a node belonging to DT .
Nodes in DT are said to be dominating nodes, whereas nodes
which do not belong to DT are said to be non-dominating
nodes. DTP isN P-hard in general (Shin et al. 2010; Zhang
et al. 2008). However in some special cases DTP can be
solved in polynomial time, e.g. cases where the underlying
graph is complete or is a tree. In case of a complete graph,
each node is a minimum dominating tree in itself with cost
0. In case the underlying graph G is a tree, the minimum
dominating tree is the subgraph (subtree) of G induced by
non-leaf nodes.

The DTP, a relatively new problem, finds applications in
the area ofwireless sensor networks (WSNs).One such appli-
cation of the DTP is to provide a virtual backbone for routing
(Wu and Hailan 1999). In this scheme, routing information
are stored only on the dominating nodes after computing a
DT . Since non-dominating nodes are one hop away from
nodes of the DT , in order to forward a message from one
node (sender) to another node (receiver), the message can
always be first forwarded to the nearest dominating node of
the sender, then routed to the nearest dominating node of the
receiver with the help of the DT , and finally forwarded to the
receiver. Non-dominating nodes only need to know the near-
est dominating node. The advantage of this scheme is that
the number of dominating nodes is small in comparison to
the total nodes (Wu and Hailan 1999), thereby significantly
reducing the size of the routing tables. Such a scheme ismore
resilient to faults also as these tables need to be recalculated
only when topological changes in the network affect one of
the dominating nodes.

In the literature, the connected dominating set concept
has been widely used for constructing a routing backbone
in WSNs with minimum energy consumption (Thai et al.
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Fig. 1 Illustration of a disk
graph and a dominating tree.
a Edges in a disk graph. b A
WSN with 15 nodes. c Disk
graph corresponding to WSN of
b. d A dominating tree on disk
graph of c

(a) (b)

(c) (d)

2007; Wan et al. 2002; Guha and Khuller 1998; Park et al.
2007; Thaiand et al. 2008). However, these approaches focus
on the nodes instead of the edges in order to minimize the
energy consumption. Actually, the energy consumption at
each edge directly affects the energy consumption of rout-
ing. Therefore, one has to consider the energy consumption
by each edge to minimize the energy consumption of rout-
ing. With this intention, the DTP was formulated (Shin et al.
2010; Zhang et al. 2008). There exists another related prob-
lem called the tree cover problem that has been studied in
the literature (Arkin et al. 1993; Fujito 2001, 2006), but this
problem is different from the DTP. A tree in the tree cover
problem is defined as an edge dominating set, whereas a tree
in the DTP is defined as a node dominating set.

Actually, communication in wireless sensor networks can
be modelled using disk graphs where each disk around a
sensor node represents the transmission range of that node.
There exists an edge between a pair of nodes if these two
nodes lie in the intersection area of their respective disks.
In other words, an edge exists between a pair of nodes only
when these two nodes are within the transmission range of
each other. Obviously, only those nodes which are connected
by an edge can communicate directly with each other. Figure

1a explains this concept where three nodes A, B and C are
placed randomly in a 50×50m area. The transmission range
of each node is assumed to be 10m. AD, BD and CD are the
disks associated with nodes A, B and C, respectively. In this
figure, for the sake of clarity, each node and its associated
disk is represented with the same colour which is different
from the colours assigned to other nodes and their associated
disks. Nodes A and B lie in the intersection area of disks AD

and BD. Similarly, nodes B and C lie in the intersection area
of disks BD and CD. Hence, an edge exist between A and
B and another edge exists between B and C. On the other
hand, nodes A and C do not lie in the intersection area of
their respective disks, viz. AD and CD, and hence there exists
no edge between A and C. From this figure, it can also be
observed that if the radius of the disks increases, the number
of edges can increase.

Figure 1b shows a wireless sensor network consisting of
15 nodes, each with a transmission range of 20m, placed
randomly in a 50×50m area. The disks associated with each
nodes are also shown. This figure uses the same colouring
scheme as used in Fig. 1a. The corresponding disk graph is
shown in the Fig. 1c. A possible dominating tree on this disk
graph is shown in Fig. 1d with thick red colour edges.
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Shin et al. (2010) and Zhang et al. (2008) both proved the
N P-hardness of the DTP, provided the inapproximabil-
ity results and introduced an approximation framework for
solving the DTP. Since approximation algorithm is quasi-
polynomial (|V |O(lg|V |)), each of them developed a polyno-
mial time heuristic for the DTP. Later, Sundar and Singh
(2013) proposed one more heuristic and two metaheuris-
tic techniques, viz. artificial bee colony (ABC) algorithm
and ant colony optimization (ACO) algorithm for the DTP.
To the best of our knowledge, only these two metaheuristic
approaches have been proposed in the literature for the DTP.
The heuristic of Sundar and Singh (2013) outperformed the
heuristics proposed by Shin et al. (2010) and Zhang et al.
(2008).

In this paper, we present a heuristic and an evolution-
ary algorithm with guided mutation (EA/G) for the DTP.
Our heuristic is derived from the heuristic proposed by Sun-
dar and Singh (2013). EA/G is a relatively new evolutionary
technique that employs a guided mutation operator to create
offsprings (solutions). EA/G was developed by Zhang et al.
(2005). The guided mutation operator makes use of global
statistical information about the search space and location
information of the solutions found so far to generate the off-
springs. We have compared our approaches with the previ-
ously proposed approaches. Computational results show the
effectiveness of our approaches.

The organization of the remaining part of the paper is as
follows: Sect. 2 presents the formal problem formulation and
introduces the notational conventions used in this paper. Sec-
tion 3 describes themodifications proposed in the heuristic of
Sundar and Singh (2013). Overview of EA/G is provided in
Sect. 4, whereas Section 5 describes our EA/G approach for
the dominating tree problem. Computational results are pre-
sented in Sect. 6. Finally, Sect. 7 presents some concluding
remarks and directions for future research.

2 Problem formulation

Let G = (V, E) be an undirected connected graph, where V
is the set of vertices or nodes and E is the set of edges. Two
nodes u and v are called neighbors of each other or adja-
cent to each other, iff, there exists an edge between them,
i.e., (u, v) ∈ E . Similarly, two edges ei, j and ek,l are called
neighbors of each other or adjacent to each other, iff, they
have a node in common. Given a non-negative weight func-
tion w : E → �+ associated with the edges of G, the dom-
inating tree problem (DTP) seeks on G a tree DT such that
for each node v ∈ V , v is either in DT or adjacent to a node
in DT and has minimum total edge weight among all such
trees, i.e.,

∑
ei, j∈DT w(ei, j ) is minimum. Nodes in DT are

called dominating nodes, whereas nodes not in DT are called
non-dominating or dominatee nodes. In this paper, we will

Table 1 Notational convention

Notation Definition

eu,v Edge between nodes u and v, i.e.,
(u, v) ∈ E

w(eu,v) Weight of the edge eu,v

ON (v) ⊆ V {u : u ∈ V and (u, v) ∈ E} is called open
neighborhood of node v ∈ V

CN (v) ⊆ V ON (v) ∪ {v} is called closed
neighborhood of node v ∈ V .

wd(v) ⊆ CN (v) Set of WHITE nodes in the closed
neighborhood of node v ∈ V

c(i, j) has value 1 if at least one of i and j have
colour WHITE, 0 otherwise

also call any edge belonging to DT dominating edge, and,
any edge not in DT non-dominating or dominatee edge.

Throughout this paper, while constructing a dominating
tree, we will follow the convention that a node which is nei-
ther in the tree nor adjacent to a node in the tree is assumed
to have colour WHITE, a node which does not belong to the
tree, but is adjacent to a node in the tree is assumed to have
colour GREY, and a node belonging to the tree is assumed
to have colour BLACK. Initially, all nodes are assumed to
have colourWHITE.Whenconstructionof dominating tree is
complete then nodes belonging to the tree will have BLACK
colour and all other (non-dominating) nodeswill haveGREY
colour.

Important notational conventions used throughout this
paper are given in the Table 1. Additional notational con-
ventions will be introduced wherever those will be used.

3 Heuristic

This section describes our heuristic, which is an improved
version of the heuristic H_DT proposed in Sundar and Singh
(2013). We will refer to our heuristic as M_DT hereafter.
Similar to the H_DT, the M_DT consists of two phases. The
first phase is the initialization phase in which the shortest
path between all pairs of nodes in graphG are computed. The
second phase consists of an iterative procedure to construct a
dominating tree. At the beginning of the second phase of the
M_DT, all nodes are assumed to have colour WHITE, and,
we start with an empty tree DT . During each iteration, an
edge ei, j is selected using the following expression:

ei, j ← argmax
eu,v∈E

W (eu,v) × nc(eu,v)

w(eu,v)
(1)

whereW (eu,v) is (
∑

x∈ON (u) w(eu,x )×c(u, x)+∑
y∈ON (v)

w(ev,y) × c(v, y) − w(eu,v) × c(u, v)), i.e., W (eu,v) is the
sumof theweights of all those edgeswhich can potentially be
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avoided in DT in case the edge eu,v is selected and nc(eu,v)

is |wd(u) ∪ wd(v)|, i.e., nc(eu,v) gives the number of white
nodes in the closed neighborhood of nodes u and v. There-
fore, Expression 1 selects an edge considering not only its
own characteristics but also the characteristics of its adjacent
edges. The characteristics that are considered are the weight
of an edge and the colour of its end points. Further process-
ing in the iteration depends on the colour of the nodes i and
j . Depending on the colour of the nodes i and j , following
cases can occur:

Case A : If both the nodes i and j are WHITE. A shortest
path SP betweennodes {i, j} and the partially con-
structed dominating tree DT is searched in G. If
two or more than two shortest paths exist then the
tie is broken by selecting a pathwhich has themax-
imum number of WHITE nodes. If a tie occurs in
case of the number of WHITE nodes on the paths
as well, then arbitrarily one such path is selected.
All edges belonging to SP are added to DT and
all nodes belonging to SP are recoloured BLACK
(if not already) and all WHITE neighbors of such
nodes are recoloured GREY. The edge ei, j will
be added to DT only if one of the nodes among
i and j which does not lie on the shortest path
SP has at least one WHITE neighbor. Otherwise,
there is no point in adding the edge ei, j as both its
endpoint nodes are non WHITE after adding the
nodes of SP to DT . If the edge ei, j got added to
DT then nodes i and j are recoloured BLACK (if
not already) and all their WHITE neighbors are
recoloured GREY.

Case B : If one node is WHITE and the other is GREY.
Checkwhich one isWHITE node. Suppose node j
is WHITE. Now, find a shortest path SP between
partially constructeddominating treeDT andnode
j (ties are broken in the same manner as previous
case). Let k be the node which lies one hop away
from node j on SP . All edges belonging to SP
except ek, j are added to DT and all nodes belong-
ing to SP except j are recoloured BLACK (if not
already) and all WHITE neighbors of such nodes
are recoloured GREY. Now check whether node
j has any WHITE neighboring nodes, if yes, then
add the edge ek, j into DT and recolour node j
BLACK and also recolour GREY, all the WHITE
neighboring nodes of node j .

Case C : If both the nodes i and j are GREY.

C1 : If both the nodes have WHITE neighboring nodes.
Find, which one among i and j has shortest path SP
from DT (ties are broken arbitrarily). Suppose SP
connects i to DT . Add all the edges on the shortest

path SP into DT and recolour all the nodes lying on
SP BLACK and all the WHITE neighboring nodes
of such nodes GREY. Again recheck that node j still
has WHITE neighboring nodes, if yes, then proceed
as in case C2.

C2 : If only one has WHITE neighboring nodes. Suppose
node j has WHITE neighboring nodes. Now, find
the shortest path SP between partially constructed
dominating tree DT and node j . Add all the edges
on the shortest path SP into DT and recolour all
the nodes lying on SP BLACK and all the WHITE
neighboring nodes of such nodes GREY.

Case D : If one node is BLACK and the other is GREY with
at least one WHITE neighbor. Add the edge ei, j
into partially constructed dominating tree DT and
recolour BLACK the node whose colour is GREY
and also recolour GREY all its WHITE neighbor-
ing nodes.

After this another iteration begins. This process continues
till the construction of the dominating tree is complete, i.e.,
till no WHITE node remains.

After the completion of the second phase of the heuris-
tic, all nodes in DT are reconnected by computing a mini-
mum spanning tree (MST) (Prim 1957) on the subgraph ofG
induced by these nodes, thereby possibly reducing the cost
further as MST is a spanning tree of least cost among all
spanning trees over a graph with given set of nodes. After
computing MST, a pruning operator is called to remove all
the redundant nodes from DT . A redundant node is a node
such that if we remove that node from DT , DT still satisfy
the property of a dominating tree. Detail of pruning operator
can be found in Sect. 3.2.

The following points highlight the differences between the
H_DT of Sundar and Singh (2013) and our heuristic M_DT.

1. The determination of next edge ei, j to be added into DT
differs for the H_DT and the M_DT. In the H_DT, next
edge to be added is an edge whose edge weight is least
among all available edges, whereas in M_DT, next edge
is selected with the help of Expression 1.

2. In the heuristic H_DT, the edge ei, j is always included
into DT , but in case of heuristic M_DT, the edge ei, j
will be added to DT only when absolutely necessary as
explained already.

3. The heuristic H_DT applies two times pruning and two
times reconnection by computing a minimum spanning
tree (MST) in the following order: pruning → MST →
pruning → MST, whereas in our heuristic M_DT, we
applied only once the pruning and MST in the order of
MST followed by pruning. Actually, if we apply MST
first then we may get a dominating tree of lesser cost
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in comparison to applying the pruning first because we
may lose some nodes in pruningwhich are vital for reduc-
ing the cost of the dominating tree. Empirical observa-
tions also favoured this strategy. It is computationally less
expensive, as well.

Algorithm 1 provides the pseudo-code of M_DT.

Algorithm 1: The pseudo-code for heuristic M_DT

//Initially all nodes in V are coloured WHITE
Wn ← V ; DT ← ∅; Er ← E ; nd ← ∅;
Compute shortest path between all pairs of nodes in G;
ei, j ← argmaxek,l∈Er

W (ek,l )×nc(ek,l )
w(ek,l )

;
nd ← {p : p ∈ ON (i) ∪ ON ( j) ∩ Wn};
make i and j BLACK;
make all nodes ∈ nd GREY;
Wn ← Wn\(nd ∪ {i, j});
DT ← DT ∪ {ei, j };
while Wn 
= ∅ do

ei, j ← argmaxek,l∈Er

W (ek,l )×nc(ek,l )
w(ek,l )

;

if Both the nodes i and j are WHITE then
Apply Case A;

else if One is WHITE and the other is GREY then
Apply Case B;

else if Both the nodes i and j are GREY then
Apply Case C;

else if One is BLACK and the other is GREY then
Apply Case D;

Remove all BLACK and GREY nodes from Wn ;
Reconnect nodes in DT via a minimum spanning tree;
Apply Pruning operator on nodes in DT ;
return DT ;

3.1 Illustrating H_DT and M_DT with an example

With the help of the Fig. 2, we demonstrate the process of
construction of a dominating tree using the heuristic H_DT
of Sundar and Singh (2013). In the Fig. 2a, initially all the
nodes are assumed to have colour WHITE. The edge e1,5,
which has least weight among all the edges, is selected and
added into dominating tree DT . Now, the nodes {1, 5} are
recoloured BLACK and also their neighboring nodes {0, 2,
4} are recoloured GREY. This situation is shown in the Fig.
2b. In the next iteration, the edge e9,10 is added into DT .
As a result, the nodes {9, 10} are recoloured BLACK and
their WHITE neighboring nodes {6, 12, 13} are recoloured
GREY. The two sub-trees {e1,5} and {e9,10} are connected
via the shortest path between nodes 5 and 9. The node 4
which is on this shortest path is recoloured BLACK and the
edges {e5,4, e4,9} are included into DT . This situation is
depicted in the Fig. 2c where the shortest path between two
sub-trees is shown with thick and dotted line. Now, the edge
e7,11 is selected and included into DT which leads to the

recolouring of the nodes {7, 11} with BLACK colour and
their WHITE neighboring nodes {8, 14} with GREY colour.
The two resulting sub-trees, viz. {e1,5, e5,4, e4,9, e9,10} and
{e7,11} are connected via the shortest path between nodes
10 and 11. The node 6 which is on this shortest path is
recoloured BLACK and the edges e11,6 and e6,10 are added
into DT . This situation is shown in the Fig. 2d. In the last
iteration, the edge e2,3 is selected and included into DT
and the nodes {2, 3} are recoloured BLACK. The edge e2,6
which constitutes the shortest path between the two sub-
trees {e1,5, e5,4, e4,9, e9,10, e10,6, e6,11, e11,7} and {e2,3} is
included into DT yielding a total weight of 36 for DT
(Fig. 2e). Now, no WHITE node remains, and as a result,
the second phase of heuristic H_DT stops. Hereafter, a
pruning procedure (Sect. 3.2) is applied to remove all the
redundant edges as well as the redundant nodes. In the domi-
nating tree DT {e1,5, e5,4, e4,9, e9,10, e10,6, e6,11, e11,7, e2,6,
e2,3}, the nodes {3, 7} are redundant. After the removal of
these two redundant nodes and their corresponding redun-
dant edges {e2,3, e11,7}, DT becomes {e1,5, e5,4, e4,9,
e9,10, e10,6, e6,11, e6,2} with total weight 25. After the
pruning procedure , a minimum spanning tree (MST) is
constructed on the subgraph induced by the set of nodes in
DT to explore the possibility of reconnecting these nodes
via this MST in case it leads to reduction in cost. In this
example, nodes in DT are already connected via a MST, so
MST procedure fails to reduce the cost of DT any further.
Once again the pruning procedure is applied, but in vain
as there are no redundant nodes. Finally, MST procedure is
also applied unsuccessfully on the nodes of DT and then the
heuristic H_DT stops. The final dominating tree with weight
25 is shown in the Fig. 2f.

To illustrate the M_DT, the same input graph with 15
nodes as used for the H_DT is taken. Initially, all nodes are
assumed to have colour WHITE as shown in the Fig. 3a. At
the first iteration, the edge e7,11 is selected by the Expression
1 as this edge has the maximum ratio. Now, the edge e7,11 is
included into empty dominating tree DT. The nodes {7, 11}
are coloured BLACK and also all the WHITE neighboring
nodes {2, 6, 8, 13, 14} of the nodes {7, 11} are coloured
GREY. This situation is shown in the Fig. 3b. In the next
iteration, Expression 1 returns the edge e9,10. Here both the
nodes, viz. 9 and 10 areWHITE, and therefore, the Case A is
applicable. Now, to connect the sub-trees {e7,11} and {e9,10}
a shortest path between these two sub-trees is searched. Here
the shortest path is between the nodes 11 and 10 with node 6
as the only intermediate node. The edges lying on the short-
est path, viz. e11,6 and e6,10 are added into DT . The nodes 6
and 10 are recoloured BLACK. Now, thewd(9) is calculated
and wd(9) ≥ 1, therefore, the edge e10,9 is added into DT
and the node 9 is recoloured BLACK and also all theWHITE
neighboring nodes of the node 9, viz. 4 and 12 are recoloured
GREY. This situation is shown in Fig. 3c.
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Illustrating H_DT heuristic. a Initially, all nodes are coloured
WHITE and weight = 0. b Edge e1,5 is selected by heuristics H_DT
and weight = 1. c Edge e9,10 is selected by heuristics H_DT and

weight = 7.dEdge e7,11 is selected by heuristicsH_DT andweight =
19. eEdge e2,3 is selected by heuristicsH_DT andweight = 36. f After
pruning, MST, pruning and MST weight = 25

(a) (b) (c)

(d) (e) (f)

Fig. 3 Illustrating M_DT heuristic. a Initially, all nodes are coloured
WHITE and weight = 0. b Edge e7,11 is selected by heuristics
M_DT and weight = 2. c Edge e9,10 is selected by heuristics M_DT

and weight = 13. d Edge e1,5 is selected by heuristics M_DT
and weight = 19. e Edge e2,3 is selected by heuristics M_DT and
weight = 24. f After MST and pruning weight = 22

Next, the edge e1,5 is returned by the Expression 1 leading
to the Case A again. The edges e9,4, e4,5, e5,1 are added into
the partially constructed dominating tree DT, the nodes 4,
5 and 1 are coloured BLACK and their WHITE neighbors
GREY (in this case only the node 0). This is shown in the
Fig. 3d.

In the last iteration, the edge e2,3 is returned by the Expres-
sion 1, because the ratio of edges e2,3, e8,11, e3,8, e2,6, e1,2
and e2,7 are 2.11, 2, 1.9, 1.12, 0.81 and 0.75 respectively
and the remaining edges have ratio zero. Here the node
2 is GREY and the node 3 is WHITE. So the Case B is
applicable. As a result, the shortest path between neighbor-
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ing nodes {2, 8} of node 3 and the partially constructed tree
{e1,5, e5,4, e4,9, e9,10, e10,6, e6,11, e11,7} is computed. This
shortest path is between the nodes 11 and 8 without any
intermediate node. The edge e11,8 is included into DT, and,
the node 3, which is the only WHITE neighbor of the node 8
is recoloured GREY. Here wd(3) is zero; therefore the edge
e8,3 is not included into DT. At this point M_DT stops as no
WHITE node remained, and, the construction of the domi-
nating tree DT is complete. This dominating tree has cost 24
(Fig. 3e). Comparing Fig. 2e with Fig. 3e, we can see that the
cost of the dominating tree returned by the heuristic H_DT
is 36, whereas the M_DT returns a dominating tree with cost
24 on the same graph. Thus, we can say that our heuristic
M_DT can perform better than the heuristic H_DT of Sun-
dar and Singh (2013). Hereafter, we compute a minimum
spanning tree (MST) on the set of nodes in DT to reconnect
these nodes via this MST in a bid to reduce the cost of DT
further. As the nodes of DT are already connected via aMST
so cost of DT remains the same. Next the pruning operator is
applied to remove the redundant nodes as well as redundant
edges which removes the node 7 and the edge e11,7 leading
to the final DT with cost 22 as shown in Fig. 3f.

3.2 Pruning operator

Our Pruning operator is similar to the pruning procedure
of Sundar and Singh (2013). Pruning operator removes the
redundant nodes of dominating tree DT. Let DN be the set
of nodes belonging to DT . A node v ∈ DN is redundant
if |ON (v) ∩ DN | = 1 and CN (v) ⊆ (∪u∈DN\{v}ON (u)),
i.e., the degree of the node v in DN must be one and all the
non-dominating neighboring nodes of the node v are cov-
ered by some other dominating nodes (other than the node
v) in DN . If the node v is redundant then it can be removed
from DN without affecting the dominating tree characteris-
tic of DT . Our pruning operator begins by computing the set
Rn of redundant nodes and then an iterative process starts
where during each iteration a node is selected and removed
from DN and the set Rn is recomputed. We have selected a
node for removal from Rn according to the order in which
it is added into DN . We have also tried selecting a node
from Rn according to the non-increasing order of the cost of
their sole incident edge or according to the non-decreasing
order of the number of non-dominating nodes covered by
each node in Rn . Experimentally, we observed that solutions
obtained through different ordering schemes did not differ
much in quality and no ordering scheme has an ultimate
advantage over others. Therefore, we settled for a simpler
ordering scheme. Iterative process stops when the set Rn

becomes empty. The pseudo-code of the pruning operator is
presented in Algorithm 2where Select_Node(Rn) is a func-
tion that returns a node from Rn which was added first into
DN among all the nodes currently present in Rn .

Algorithm 2: The pseudo-code of Pruning operator
Rn ← {v : v ∈ DN and |ON (v) ∩ DN | = 1 and CN (v) ⊆
(∪u∈DN\{v}ON (u))};
while (Rn 
= ∅) do

v ← Select_Node(Rn);
DN ← DN\{v};
Rn ← {v : v ∈ DN and |ON (v) ∩ DN | = 1 and CN (v) ⊆
(∪u∈DN\{v}ON (u))};

return DN ;

4 Overview of the EA/G

The evolutionary algorithm with guided mutation (EA/G) is
a relatively new member in the class of evolutionary algo-
rithms. It was developed by Zhang et al. (2005) with a moti-
vation to overcome, as far as possible, the drawbacks of two
evolutionary algorithms, viz. genetic algorithms (GAs) and
estimation of distribution algorithms (EDAs).

The EA/G has the features of both GAs and EDAs. Con-
ventionally, GAs use genetic operators such as crossover and
mutation to generate an offspring from the selected parents.
GAs directly utilize only the location information of the solu-
tions and do not make use of global information about the
search space which can be collected by keeping track of all
the solutions generated since the beginning of the algorithm.
On the other hand, EDAs rely only on a probability model
to generate an offspring. The probability model characterizes
the distribution of the promising solutions in the search space
and is updated at each generation using the global statistical
information about the search space extracted from the pop-
ulation members present at that generation. An offspring is
generated by sampling this probability model. Contrary to
GAs, EDAs do not directly utilize the location information
of solutions. Here, by the location information of a solution,
we mean the information that can uniquely identify a solu-
tion in the search space of all solutions. For example, in case
of the DTP, the set of edges present in a dominating tree
constitutes its location information as this information can
uniquely identify a dominating tree.

Taking into the account this complementary aspect of
GAs and EDs, Zhang et al. (2005) developed an ideal algo-
rithm that utilizes the location information of the solutions
like GAs and the global statistical information about the
search space like EDAs while generating an offspring. This
algorithm was named evolutionary algorithm with guided
mutation (EA/G). EA/G uses a mutation operator, called
guided mutation (GM), to generate offsprings. Guidedmuta-
tion generates a new solution considering both the location
information about the parent solution aswell as the global sta-
tistical information about the search space, i.e., a solution is
generated partly by sampling a probability model character-
izing the global statistical information and partly by copying
elements from its parent.
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5 Hybrid EA/G approach for DTP

Our proposed hybrid approach for the dominating tree prob-
lem (DTP) is inspired by the approach of Zhang et al. (2005)
for the maximum clique problem (MCP). Success of the
EA/G in solving theMCPover standard benchmark instances
have motivated us to develop an EA/G approach for the DTP.
Solutions obtained through the EA/G approach are further
improved through the use of the same two procedures as used
inM_DT, i.e., reconnecting the nodes of the solution viamin-
imum spanning tree (MST) and pruning operator. However,
each of these procedures are applied twice in the order MST
→ pruning→MST→ pruning. Hereafter, our hybrid EA/G
approach with MST and pruning operator will be referred to
as EA/G-MP (EA/G with MST and pruning operator).

Before starting our EA/G-MP approach, we pre-compute
the set of neighboring nodes for each node v ∈ V and
the shortest paths between all pairs of nodes in V . Subse-
quent subsections describe other salient features of EA/G-
MP approach.

5.1 Solution encoding

Edge-set encoding has been used to represent a solution, i.e.,
each dominating tree is represented directly be the set of the
edges it contains. The edge-set encoding was introduced by
Raidl and Julstrom (2003) for representing a spanning tree. It
is to be noted that a spanning tree always has |V | − 1 edges,
whereas the number of edges in a dominating tree varies.

5.2 Initial solutions

Our initial solution generation method is derived from the
initial solution generation method used in Sundar and Singh
(2013). First we will describe the initial solution generation
method of Sundar and Singh (2013) and then introduce our
modifications. Let Wn be the set of WHITE nodes which is
initialized to V (Wn = V initially). Let Iu be the set of non-
dominating nodes, DN be the set of dominating nodes and
DT be the partially constructed dominating tree. Initially,
these three sets, viz. Iu , DN and DT are empty. Randomly,
a node say v is selected from Wn and added into DN and
recolouredBLACKandnode v is removed fromsetWn . Now,
consider a set nb of WHITE neighboring nodes of node v,
i.e., nb = ON (v) ∩ Wn . Remove the nodes in nb also from
Wn . After that all the nodes in nb are recoloured GREY and
added into the set Iu . From here onwards, at each step, an
edge is selected by following one of the two strategies. With
probability ϕ, first strategy is followed where a least cost
edge ev,u , connecting a node v in DN and a node u in Iu
is selected. Otherwise second strategy is followed where an
edge ev,u connecting a node v in DN to a node u in Iu is
selected randomly. Here ϕ is a parameter to be determined

Algorithm 3: The pseudo-code for initial solution

//Initially all nodes in V are coloured WHITE
Wn ← V ; DT ← ∅; DN ← ∅; Iu ← ∅;
v ← random(Wn);
DN ← DN ∪ {v};
make v BLACK;
nb ← ON (v) ∩ Wn ;
Wn ← Wn\(nb ∪ {v});
make all nodes ∈ nb GREY;
Iu ← nb;
while Wn 
= ∅ do

Generate a random number u01 such that 0 ≤ u01 ≤ 1;
if u01 < ϕ then

(v, u) ← argminv∈DN ,{u∈Iu , |ON (u)∩Wn |≥1} w(v, u);

else
v ← random(DN );
u ← {u : random(Iu) and |ON (u) ∩ Wn | ≥ 1};

DT ← DT ∪ {ev,u};
DN ← DN ∪ {u};
make u BLACK;
Iu ← Iu\{u};
nb ← {u : u ∈ ON (u) ∩ Wn};
make all nodes ∈ nb GREY;
Iu ← Iu ∪ nb;
Wn ← Wn\nb;

Apply pruning operator on nodes in DT ;
Reconnect nodes in DT via a minimum spanning tree;
return DT ;

empirically. Clearly, first strategy aims at quality, whereas
the latter strategy aims at diversity. Therefore, ϕ governs
the delicate balance between the quality and the diversity of
initial solutions. We have made two modifications in the ini-
tial solution generation method of Sundar and Singh (2013).
Our first modification here is that only those edges ev,u are
considered where u ∈ Iu has at least one WHITE neigh-
boring node, i.e., where |ON (u) ∩ Wn| ≥ 1. Whereas in
Sundar and Singh (2013), those nodes in Iu are also con-
sidered which have no WHITE neighboring node and as a
result some edges might be unnecessarily inserted into DT .
In addition, with probability 1−ϕ, we are selecting the edges
uniformly at random instead of using roulette wheel selec-
tion method like Sundar and Singh (2013). Now, the node
u is added into set DN and removed from Iu and an edge
ev,u is added into the set DT . Nodes in nb = ON (u) ∩ Wn

are added into Iu and nodes in nb are removed from Wn .
After that all the WHITE neighboring nodes of the node u
are recoloured GREY. This whole process is repeated until
the set Wn becomes empty. After construction of a feasi-
ble dominating tree DT , a pruning operator (as described
in Sect. 3.2) is applied to remove the redundant nodes from
DN and the redundant edges from DT . After an application
of the pruning operator, a MST is constructed on the set of
nodes in DN and these nodes are reconnected via this MST.
Pseudo-code of the construction of an initial solution is pre-
sented in theAlgorithm3.Here, we have applied pruning first
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and then MST with the intention of generating more diverse
solutions.

5.3 Initialization and update of the probability vector

Our EA/G-MP, as in Zhang et al. (2005), models the dis-
tribution of promising solutions in the search space through
the use of univariate marginal distribution (UMD) model.
In this model, a probability vector p = {p1, p2, . . . , p|V |} ∈
[0, 1]|V | is used to characterize the distribution of the promis-
ing solutions in the search space, where |V | is the cardinality
of the set V , i.e., the number of nodes in the graph G. pv is
the probability of the node v ∈ V to be present in a dominat-
ing tree. The probability vector is initialized using Np initial
solutions. The probability of each node is initialized to the
ratio of the number of initial solutions containing that node
to the total number of initial solutions. The pseudo-code for
initializing the probability vector p for the DTP is presented
in Algorithm 4.

Algorithm 4: The pseudo-code for initializing a proba-
bility vector p

Compute nv ← number of initial solutions containing
node v, ∀v ∈ V ;
Compute pv ← nv

Np
, ∀v ∈ V ;

At each generation g, a parent set parent(g) is formed
by selecting the best L solutions from current population
pop(g). Once parent(g) is formed, it is used for updating
the probability vector p. The pseudo-code for updating the
probability vector is given inAlgorithm5,whereλ ∈ (0, 1] is
the learning rate and it governs the contribution of solutions in
parent(g) to the updated probability vector p, i.e., higher the
value of λ, more is the contribution of solutions in parent(g).
The probability of a node increases after update if the ratio of
solutions containing this node inparent(g) to the total number
of solutions in parent(g) is more than its current probability.
The probability decreases in case this ratio is less than its
current value. The probability remains the same in case this
ratio is exactly equal to its current value.

Algorithm 5: The pseudo-code for updating the proba-
bility vector p in generation g

Compute nv ← number of solutions in parent(g)
containing node v, ∀v ∈ V ;
Compute pv ← (1 − λ)pv + λ nv

L , ∀v ∈ V ;

5.4 Guided mutation (GM) operator

As we have already discussed in Sect. 4, the GM oper-
ator uses both the global statistical information stored in

Algorithm 6: The pseudo-code of generating a solution
through GM operator

Set the colour of all nodes in V to WHITE;
DT ← ∅;
foreach node v ∈ V in some random order do

Generate a random number r1 such that 0 ≤ r1 ≤ 1;
if r1 < β then

Generate a random number r2 such that 0 ≤ r2 ≤ 1;
if (r2 < pv) and ((v is WHITE) or (v is GREY with at
least one WHITE neighbor)) then

Find the shortest path SP between node v and a node
u in DT ;
Add all the edges of SP into DT ;
Colour BLACK all the nodes on the path SP;
Colour GREY all the WHITE neighboring nodes of
nodes on the path SP;

else
if v is a dominating node in mi and v is GREY with at
least one WHITE neighbor then

Find the shortest path SP between node v and a node
u in DT ;
Add all the edges of SP into DT ;
Colour BLACK all the nodes on the path SP;
Colour GREY all the WHITE neighboring nodes of
nodes on the path SP;

return DT ;

the form of probability vector p and the location informa-
tion of the parent solution for generating new offsprings.
Zhang et al. (2005) applied GM operator M times on the
best solution of the current population to generate M off-
springs. On the other hand, our GM operator is applied on
M best solutions of current population pop(g) to generate
M new offsprings. In other words, on the set of M best
solutions {m1,m2, . . . ,mM }, GM is applied once on each
mi , i = 1, 2 . . . , M to generate {o1, o2, . . . , oM } offsprings.
The pseudo-code of our GM operator is presented in Algo-
rithm 6 where β ∈ [0, 1] is an adjustable parameter and DT
is a new offspring constructed through GM operator whose
nodes are either sampled randomly from the probability vec-
tor p or directly copied from the solution mi in pop(g). In
case of sampling from probability vector p, a node is copied
only when either its colour is WHITE according to partially
constructed DT or its colour is GREY and it has at least one
WHITE neighbor. Whereas in case a node is to be directly
copied from the solutionmi , it is copied onlywhen it is a dom-
inating node inmi , its colour is GREY according to partially
constructed DT and it has at least oneWHITE neighbor. The
reason behind such a policy lies in the fact that by copying
a node from mi only when its colour is GREY according to
DT will help in getting somemore edges in DT frommi . As
mi is among the bestM solutions, this may help in improving
the solution quality. There is no guarantee of the feasibility
of the offspring generated through GM operator, i.e., it may
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not be a dominating tree. Therefore, each infeasible offspring
generated through GM operator is passed through a repair
operator (Sect. 5.5) so that it can be made feasible.

5.5 Repair operator

Repair operator is applied only on an infeasible offspring
generated through GM operator. After the application of
GM operator, there is a possibility that some WHITE nodes
remain, i.e., some nodes may remain uncovered. Let Ucn

be the set of such WHITE nodes. Such WHITE nodes are
covered by making use of the repair operator which follows
an iterative procedure. During each iteration, a node with
the highest number of WHITE neighboring nodes is selected
fromUcn (ties are broken in favour of the node having lower
index). If none of the nodes in the setUcn hasWHITE neigh-
boringnodes, then the nodewith lowest index is selected from
Ucn . After selecting the node i from the set Ucn , a shortest
path between the node i and the partially constructed tree
DT is found, and, all the edges on this path are added into
DT . All the nodes on this path are recoloured BLACK (if
not already) and their neighboring nodes GREY. Then all
BLACK and GREY nodes are removed from the set Ucn .
After this another iteration begins. This whole process is
repeated until set Ucn becomes empty. The pseudo-code of
the repair operator is given in Algorithm 7.

Algorithm 7: The pseudo-code of repair operator

while Ucn 
= ∅ do
v ← argmaxu∈Ucn

(wd(u) > 0);
if v = ∅ then

Select a node v with lowest index from Ucn ;
Find a shortest path SP between node v and a node
u in DT ;
Add all the edges on the path SP into DT ;
Make BLACK all nodes ∈ SP;
Make GREY all WHITE neighboring nodes of
nodes ∈ SP;
Remove all BLACK and GREY nodes from Ucn ;

return DT ;

5.6 Others features

Zhang et al. (2005) kept best Np
2 solutions of pop(g) into

parent (g) and generated Np
2 new offsprings through GM

operator in each generation (iteration). The population of
the next generation is formed by using Np

2 newly created

offsprings through GM operator and best Np
2 solutions of

pop(g). Therefore, in each next generation the population
size remains the same as in previous generation. On the
other hand, in our approach parent (g) is formed by using
best L solutions of pop(g) and M new offsprings are gen-

erated through GM operator in each generation. The best
Np − M solutions of pop(g) along with M newly generated
offsprings constitute pop(g+1). Therefore, also in this case
population size remains the same throughout the execution
of the algorithm.

Unlike Zhang et al. (2005), we never found all the solu-
tions of the population to be same. We also observed that the
best solution does not improve for a large number of genera-
tions. Therefore, to avoid getting stuck into a local optimum,
if the best solution does not improve over Sc generations,
then, except for the best solution, we reinitialize the entire
population in the same manner as described in Sect. 5.2. So,
in a way, we have followed the 1-elitism policy as best solu-
tion is retained always.

The pseudo-code of our EA/G-MP approach for DTP is
given in Algorithm 8.

Algorithm 8: EA/G-MP Approach for DTP

At generation g ← 0, an initial population pop(g) consisting of1
Np solutions, is generated randomly;
Initialize the probability vector p for all nodes using Algorithm 4;2
Select best L solutions from pop(g) to form a parent set parent(g),3
and then update the probability vector p using Algorithm 5;
Apply the GM operator once on each of the M best solutions in4
pop(g) in order to generate M new solutions. A repair operator is
applied to each generated solution, if necessary, and then MST,
pruning operator, MST and pruning operator are applied to each
generated solution to improve its fitness. Add all M newly
generated solutions along with Np − M best solutions in pop(g)
to form pop(g+1). If the stopping condition is met, return the
dominating tree with minimum weight found so far ;
g ← g + 1 ;5
If the best solution of the population did not improve over Sc6
generations, then reinitialize entire pop(g) except for the best
solution, and then go to step 2 ;
Go to step 3 ;7

6 Computational results

Our approaches, viz. M_DT and EA/G-MP have been imple-
mented in C and executed on an Intel Core 2 Duo proces-
sor based system with 2 GB RAM running under Fedora
12 at 3.0GHz which is exactly the same system as used
for executing the approaches of Sundar and Singh (2013).
Likewise gcc 4.4.4-10 compiler with O3 flag has been
used to compile the C programs of our approaches. We have
used a super set of test instances used in Sundar and Singh
(2013) to test our approaches. Due to unavailability of the
test instances used in Zhang et al. (2008) and Shin et al.
(2010), Sundar and Singh (2013) generated a set of 18 test
instances in the same manner as in Zhang et al. (2008) and
Shin et al. (2010). These instances were generated consid-
ering a disk graph G = (V, E), where each disk around a
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node represents the transmission range of that node. There
exists an edge between a pair of nodes if these two nodes
are within the transmission range of each other. The weight
on each edge ei, j in E is assigned through a weight function
w : E → �+ which is defined as w(ei, j ) = d2i, j , where
di, j is the Euclidean distance between the nodes i and j .
It was assumed that nodes in |V | are randomly deployed in
a 500m × 500m area and transmission range of each node
is 100m. For each value of |V | in {50, 100, 200, 300, 400,
500}, three different test instances were generated leading to
a total of 18 instances. In addition to the transmission range of
100m,we consider twomore values for transmission range of
each node, viz. 125 and 150m and generated three different
test instances for each combination of values of V mentioned
above and one of these two values of transmission range. This
results in generation of 36 additional instances leading to a
grand total of 54 instances. All these 54 test instances can be
downloaded fromhttp://dcis.uohyd.ernet.in/~alokcs/dtp.zip.
Actually, density of a disk graph depends on the transmission
range of its constituent nodes. The longer the transmission
range of nodes, the higher will be the density of the corre-
sponding disk graph. Therefore, to show that effectiveness
of our proposed approaches is not limited to graphs with a
particular density, it is necessary to consider different val-
ues of transmission range. The values of transmission range
that we have considered leads to difficult randomly generated
feasible DTP instances. We have also considered the trans-
mission range of 75 and 200m. At the transmission range
of 75m, not all instances with 50 nodes were connected. At
the transmission range of 200m, generated instances were
highly dense, and therefore, all dominating trees on these
instances had few edges only, and as a result,finding a mini-
mum dominating tree among them was not that difficult. As
the C programs for the approaches considered in Sundar and
Singh (2013) were available, we have executed them on these
additional 36 instances under the same setup as used for our
approaches.

For EA/G-MP, we have used a population size of 60, i.e.,
Np = 60, generated M = 25 new solutions through guided
mutation and used L = 15 best solutions of current popu-
lation to update probability vector. The value of β is set to
0.50 in the guided mutation. The value λ = 0.50 is used
in the update of probability vector and the value ϕ = 0.20
is used in the initial solution generation. If the best solution
does not improve over Sc = 400 generations, entire popu-
lation minus the best solution and the probability vector are
reinitialized. We have allowed our EA/G-MP approaches to
execute till the best solution does not improve over 3,000
generations and it has executed at least for a total of 10,000
generations. All these parameters are set empirically after a
large number of trials. These parameter values provide good
results on all instances, though they may not be optimal for
all instances. Like ABC_DT and ACO_DT approaches of

Sundar and Singh (2013), EA/G-MP has been executed 20
independent times on each test instance.

We first present the results of M_DT and other problem
specific heuristics. Tables 2, 3 and 4 report the results of
M_DT on instances with transmission range 100, 125 and
150m respectively and compare them with previously pro-
posed heuristic approaches, viz. heuristics of Zhang et al.
(2008), Shin et al. (2010) and Sundar and Singh (2013),
which will be referred to as Heu_DT1, Heu_DT2 and H_DT
respectively. In addition, we have also included a simple
heuristic which computes a MST on the input graph and
then removes leaf nodes from the computed MST to obtain a
dominating tree. This heuristic, which will be referred to as
MST-L was used in Zhang et al. (2008) and Shin et al. (2010)
for comparison against their respective heuristics. For each
heuristic, these tables report the cost of the dominating tree
obtained (column labelled Value) and the number of nodes in
the dominating tree (column labelledNDN) on each instance.
In Table 2, data for Heu_DT1, Heu_DT2, H_DT and MST-
L are taken from Sundar and Singh (2013). Whereas Tables
3 and 4 contain the results obtained after executing vari-
ous approaches on 36 new instances. These three tables also
report the % improvement in cost of the dominating tree
obtained by M_DT over other approaches. Though not the
objective of DTP, we have reported the number of nodes in
the dominating tree due to past precedences. Zhang et al.
(2008), Shin et al. (2010) and Sundar and Singh (2013), all
reported the number of nodes in the dominating tree obtained
by various approaches. These tables clearly show the supe-
riority of M_DT over other approaches in terms of the cost
of the dominating tree obtained. Except for 8 instances (3
with transmission range 100m, 4 with transmission range
125m and 1 with transmission range 150m) where H_DT
has slightly better cost (as indicated by negative value for %
improvement ofM_DT over H_DT in Tables 2, 3 and 4), cost
of the dominating tree obtained by M_DT is always better
than all the other approaches. As far as number of dominat-
ing nodes in a solution is concerned, performance of M_DT
is far superior in comparison to Heu_DT1, Heu_DT2 and
MST-L on all instances. However, H_DT performs slightly
better on this count onmost of the instances. Execution times
of various heuristics are not reported as all of them hardly
need a second on any instance.

Tables 5, 6 and 7 report the results of EA/G-MP on
instanceswith transmission range 100, 125 and150m respec-
tively and compare them with ABC_DT and ACO_DT
approaches of Sundar and Singh (2013). For each test
instance, these tables report the best solution (column Best),
average solution quality (column Avg), standard deviation
of solution values (column SD), average number of dom-
inating nodes (column ANDN) and average total execu-
tion time in seconds (column ATET) obtained over 20 runs
for EA/G-MP, ABC_DT and ACO_DT. Data for ABC_DT
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Table 2 Results of MST_L, Heu_DT1, Heu_DT2, H_DT and M_DT on the instances with transmission range 100m

Instance MST_L Heu_DT1 Heu_DT2 H_DT M_DT % Improvement

Value NDN Value NDN Value NDN Value NDN Value NDN MST_L Heu_DT1 Heu_DT2 H_DT

50_1 1,860.67 38 1,608.11 30 1,819.91 35 1,321.83 20 1,288.80 20 30.73 19.86 29.18 2.50

50_2 1,780.66 37 1,564.05 33 1,795.89 35 1,427.65 26 1,467.03 26 17.61 6.20 18.31 −2.75

50_3 1,860.12 39 1,659.70 34 1,863.01 35 1,494.12 25 1,429.76 24 23.14 13.85 23.26 4.31

100_1 2,491.23 76 1,836.57 54 2,290.28 61 1,852.86 28 1,482.11 26 40.51 19.30 35.29 20.00

100_2 2,515.82 78 2,096.97 62 2,265.68 62 1,449.25 23 1,454.16 25 42.20 30.65 35.82 −0.32

100_3 2,670.84 77 2,213.15 60 2,488.15 59 1,732.35 29 1,704.19 31 36.17 22.97 31.48 1.58

200_1 3,652.20 154 2,530.57 110 3,093.01 115 1,880.50 30 1,766.97 35 51.62 30.18 42.87 6.04

200_2 3,597.99 150 2,709.42 113 3,437.79 125 1,909.86 32 1,695.43 34 52.88 37.42 50.68 11.23

200_3 3,592.74 152 2,561.99 110 3,132.56 112 1,587.48 27 1,589.81 31 55.75 37.95 49.25 −0.14

300_1 4,445.38 231 2,932.26 154 3,653.64 165 1,929.91 34 1,695.08 30 61.87 42.20 53.61 12.17

300_2 4,498.58 233 3,480.73 178 4,136.57 183 1,781.00 31 1,773.32 35 60.58 49.05 57.13 0.43

300_3 4,673.49 239 3,640.35 184 3,990.55 170 1,815.28 33 1,673.31 33 64.20 54.03 58.07 7.82

400_1 5,110.49 311 3,776.71 230 4,524.29 228 2,017.50 32 1,587.43 30 68.94 57.97 64.91 21.32

400_2 5,225.01 310 4,004.41 243 4,744.41 248 1,972.89 36 1,904.82 37 63.54 52.43 59.85 3.45

400_3 5,227.94 314 4,026.04 241 4,394.95 218 1,907.05 29 1,883.79 32 63.97 53.21 57.14 1.22

500_1 5,761.72 390 4,276.57 291 4,534.93 257 1,795.28 27 1,771.82 34 69.25 58.57 60.93 1.31

500_2 5,953.15 398 4,399.44 296 5,251.35 309 1,824.03 34 1,683.54 29 71.62 61.60 67.83 7.38

500_3 5,840.50 390 4,629.12 304 4,944.21 269 1,903.86 29 1,837.40 30 68.54 60.31 62.84 3.49

Table 3 Results of MST_L, Heu_DT1, Heu_DT2, H_DT and M_DT on the instances with transmission range 125m

Instance MST_L Heu_DT1 Heu_DT2 H_DT M_DT % Improvement

Value NDN Value NDN Value NDN Value NDN Value NDN MST_L Heu_DT1 Heu_DT2 H_DT

50_1 1,860.67 37 1,404.49 26 1,679.80 29 982.61 14 1,047.25 13 43.72 25.59 37.66 −6.58

50_2 1,780.66 36 1,407.53 26 1,705.67 31 1,165.63 16 1,179.19 19 33.78 16.22 30.87 −1.16

50_3 1,860.12 38 1,488.20 29 1,774.12 32 1,154.05 14 1,201.88 19 35.39 19.24 32.25 −4.14

100_1 2,517.76 75 1,737.47 50 2,258.10 56 1,442.11 18 1,331.99 20 47.10 23.34 41.01 7.64

100_2 2,515.82 77 1,969.81 59 2,372.79 60 1,511.53 21 1,238.10 20 50.79 37.15 47.82 18.09

100_3 2,670.84 76 2,213.15 59 2,402.43 59 1,445.39 20 1,311.60 21 50.89 40.74 45.41 9.26

200_1 3,652.20 153 2,510.88 109 2,990.67 100 1,639.11 20 1,355.67 24 62.88 46.01 54.67 17.29

200_2 3,597.99 149 2,733.43 113 3,074.32 115 1,436.93 23 1,367.08 20 62.00 49.98 55.53 4.85

200_3 3,592.74 151 2,540.70 108 3,118.57 109 1,345.50 21 1,307.22 20 63.61 48.55 58.08 2.85

300_1 4,445.38 230 2,899.16 153 3,537.02 150 1,454.30 19 1,516.07 26 65.90 47.71 57.14 −4.25

300_2 4,498.58 232 3,500.06 180 4,310.97 189 1,739.35 23 1,387.87 19 69.15 60.35 67.81 20.21

300_3 4,673.49 238 3,612.75 183 3,802.58 160 1,541.75 21 1,370.75 20 70.67 62.06 63.95 11.09

400_1 5,110.49 310 3,758.23 228 4,211.58 210 1,654.87 23 1,528.15 24 70.10 59.34 63.72 7.66

400_2 5,225.01 309 3,901.81 233 4,596.69 235 1,739.40 25 1,539.59 23 70.53 60.54 66.51 11.49

400_3 5,227.94 313 3,981.63 238 4,421.78 213 1,630.39 23 1,524.44 24 70.84 61.71 65.52 6.50

500_1 5,761.72 389 4,354.11 298 4,472.74 245 1,563.24 23 1,551.67 26 73.07 64.36 65.31 0.74

500_2 5,953.15 397 4,471.75 299 5,005.20 298 1,638.64 23 1,548.49 23 73.99 65.37 69.06 5.50

500_3 5,840.50 389 4,508.65 297 4,715.44 259 1,731.32 24 1,344.64 23 76.98 70.18 71.48 22.33

and ACO_DT is taken from Sundar and Singh (2013) for
Table 5. On the other hand, Tables 6 and 7 report the
results obtained after executing ABC_DT and ACO_DT on

36 new instances. These three tables also report the results
of Mann–Whitney U test between EA/G-MP and ABC_DT
(columnABC_EA/G) and between EA/G-MP and ACO_DT
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Table 4 Results of MST_L, Heu_DT1, Heu_DT2, H_DT and M_DT on the instances with transmission range 150m

Instance MST_L Heu_DT1 Heu_DT2 H_DT M_DT % Improvement

Value NDN Value NDN Value NDN Value NDN Value NDN MST_L Heu_DT1 Heu_DT2 H_DT

50_1 1,860.67 37 1,408.01 26 1,766.43 31 1,058.69 12 784.03 11 57.86 44.32 55.61 25.94

50_2 1,780.66 36 1,309.87 27 1,728.53 33 1,061.02 12 1,047.55 15 41.17 20.03 39.40 1.27

50_3 1,860.12 38 1,389.86 28 1,887.77 32 1,104.85 14 1,010.84 12 45.66 27.27 46.45 8.51

100_1 2,517.76 75 1,737.47 50 2,219.63 53 1,420.84 14 1,278.74 17 49.21 26.40 42.39 10.00

100_2 2,515.82 77 2,014.17 63 2,276.44 57 1,009.99 13 964.16 13 61.68 52.13 57.65 4.54

100_3 2,670.84 76 2,148.23 58 2,331.72 55 1,124.55 13 1,184.35 15 55.66 44.87 49.21 −5.32

200_1 3,652.20 153 2,530.52 109 2,911.73 95 1,319.86 15 1,286.15 16 64.78 49.17 55.83 2.55

200_2 3,597.99 149 2,703.77 114 3,327.77 112 1,300.02 19 1,203.19 15 66.56 55.50 63.84 7.45

200_3 3,592.74 151 2,561.99 109 3,112.19 108 1,258.29 16 1,224.62 17 65.91 52.24 60.65 2.68

300_1 4,445.38 230 2,908.12 153 3,344.34 143 1,170.23 16 1,144.65 15 74.25 60.64 65.77 2.19

300_2 4,498.58 232 3,493.12 180 3,740.08 160 1,324.59 19 1,224.33 13 72.78 64.95 67.26 7.57

300_3 4,673.49 238 3,589.75 183 4,016.39 151 1,382.82 18 1,195.94 13 74.41 66.68 70.22 13.51

400_1 5,110.49 310 3,790.75 231 3,704.20 187 1,295.98 15 1,166.44 17 77.18 69.23 68.51 10.00

400_2 5,225.01 309 4,017.53 243 4,350.94 218 1,174.12 13 1,171.00 17 77.59 70.85 73.09 0.27

400_3 5,227.94 313 4,006.47 238 4,304.85 197 1,335.58 17 1,272.84 17 75.65 68.23 70.43 4.70

500_1 5,761.72 389 4,253.35 288 4,540.70 249 1,252.10 15 1,089.90 18 81.08 74.38 76.00 12.95

500_2 5,953.15 397 4,379.35 296 5,269.14 303 1,286.67 15 1,279.42 17 78.51 70.79 75.72 0.56

500_3 5,840.50 389 4,618.27 300 4,767.25 250 1,474.32 17 1,300.60 16 77.73 71.84 72.72 11.78

(column ACO_EA/G) on each instance as best and aver-
age solution quality of these approaches are close to each
other. For Mann–Whitney U test, we have used the online
calculator available at http://www.socscistatistics.com/tests/
mannwhitney/Default2.aspx. For this test, we have used two-
tailed hypothesis and 5% significance criterion (p value
≤0.05) leading to a critical U value of 127.

6.1 Comparison of EA/G-MP, ABC_DT and ACO_DT
approaches on instances with transmission range 100m

Out of 18 test instances with transmission range 100m,
EA/G-MP is better than ABC_DT on 10 test instances and
equal to ABC_DT on 8 test instances in terms of quality of
the best solution found. Whereas in terms of average solu-
tion quality, EA/G-MP is better than ABC_DT on 12 test
instances and worse than ABC_DT on 3 test instances and on
the remaining3 test instancesEA/G-MP is equal toABC_DT.
Results of Mann–Whitney U test between EA/G-MP and
ABC_DT indicate that out of 18 test instances, results of
EA/G-MP is statistically significant on 12 test instances in
comparison to ABC_DT, whereas on 3 test instances (100_2,
200_1 and 200_2) results are not significant. On the remain-
ing three instances, results of Mann–Whitney U test are not
meaningful as both the approaches obtained the same results
in all 20 runs. As far as comparison in terms of average num-
ber of dominating nodes is concerned, EA/G-MP is better
than ABC_DT on 5 test instances, worse than ABC_DT on 9

test instances and equal to ABC_DT on 4 test instances. Our
EA/G-MP approach is much faster than ABC_DT approach.
On all 18 test instances the average total execution time
(ATET)ofEA/G-MP is better thanABC_DT.FromTable 5, it
can be observed that as the size of the input graph increases,
the gap in terms of computational time between ABC_DT
and EA/G-MP increases as well. On an average, EA/G-MP is
3 times faster than ABC_DT on the instances with 50 nodes,
3 times faster thanABC_DTon the instanceswith 100 nodes,
4 times faster thanABC_DTon the instanceswith 200 nodes,
5 times faster thanABC_DTon the instanceswith 300 nodes,
6 times faster than ABC_DT on the instances with 400 nodes
and 8 times faster than ABC_DT on the instance with 500
nodes.

Now, we compare EA/G-MP with ACO_DT. Out of 18
test instances, the best solution of EA/G-MP is better than
ACO_DT on 11 test instances, worse than ACO_DT on 2
test instances and on the remaining 5 test instances both
approaches obtained the same best solution. In terms of aver-
age solution quality, EA/G-MP is better than ACO_DT on 10
test instances, worse than ACO_DT on 5 test instances and
on the remaining 3 test instances both the approaches have
the same average solution quality. Results ofMann–Whitney
U test between EA/G-MP and ACO_DT show that out of 18
test instances, results of EA/G-MP is statistically significant
in comparison to ACO_DT on 12 test instances whereas on 3
test instances (100_1, 400_3 and 500_3) results are not sig-
nificant. On the remaining three instances, results of Mann–
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Whitney U test are not meaningful as both the approaches
obtained the same results in all 20 independent runs. As far
as comparison in terms of average number of dominating
nodes is concerned, EA/G-MP is better than ACO_DT on
10 test instances, worse than ACO_DT on 4 test instances
and equal to ACO_DT on 4 test instances. From Table 5, it
can be observed that as the size of the input graph increases,
the gap in terms of computational time between ACO_DT
and EA/G-MP increases as well. On an average, EA/G-MP
is 4 times faster than ACO_DT on the instances with 200
nodes, 10 times faster than ACO_DT on the instances with
300 nodes, 14 times faster than ACO_DT on the instances
with 400 nodes and 22 times faster than ACO_DT on the
instance with 500 nodes. On the other hand, EA/G-MP is 3
times slower than ACO_DT on the instances with 50 nodes
and slightly slower than ACO_DT on the instances with 100
nodes.

6.2 Comparison of EA/G-MP, ABC_DT and ACO_DT
approaches on instances with transmission range 125m

Out of 18 test instances with transmission range 125m, the
best solution obtained by EA/G-MP is better than ABC_DT
on 10 test instances, worse than ABC_DT on 1 test instances
and equal to ABC_DT on 7 test instances. Whereas in
terms of average solution quality, EA/G-MP is better than
ABC_DT on 11 test instances and worse than ABC_DT on
3 test instances and on the remaining 4 test instances EA/G-
MP is equal to ABC_DT. Results of Mann–Whitney U test
between EA/G-MP and ABC_DT indicate that out of 18 test
instances, results of EA/G-MP is statistically significant on
12 test instances in comparison to ABC_DT, whereas on 2
test instances (200_2 and 300_3) results are not significant.
On the remaining four instances, results ofMann–WhitneyU
test aremeaningless as both the approaches obtained the same
results in all 20 independent runs. As far as comparison in
terms of average number of dominating nodes is concerned,
EA/G-MP is better than ABC_DT on 6 test instances, worse
than ABC_DT on 6 test instances and equal to ABC_DT on
6 test instances. Our EA/G-MP approach is much faster than
ABC_DT approach. On all 18 test instances the average total
execution time (ATET) of EA/G-MP is better than ABC_DT.
From Table 6, it can be observed that as the size of the input
graph increases, execution time of ABC_DT increases at a
faster pace than EA/G-MP. On an average, EA/G-MP is 2
times faster than ABC_DT on the instances with 50 and 100
nodes, 4 times faster thanABC_DTon the instanceswith 200
nodes, 5 times faster thanABC_DTon the instanceswith 300
nodes, 7 times faster thanABC_DTon the instanceswith 400
nodes and 8 times faster than ABC_DT on the instance with
500 nodes.

As far as comparison between EA/G-MP and ACO_DT is
concerned, out of 18 test instances, the best solution obtained

by EA/G-MP is better than ACO_DT on 11 test instances,
worse thanACO_DTon 1 test instances and on the remaining
6 test instances both approaches obtained the same best solu-
tion. In terms of average solution quality, EA/G-MP is better
than ACO_DT on 16 test instances, worse than ACO_DT on
1 test instance and on the remaining 1 test instance both the
approaches have the same average solution quality. Results
of Mann–Whitney U test between EA/G-MP and ACO_DT
show that out of 18 test instances, results of EA/G-MP is
statistically significant in comparison to ACO_DT on 15
test instances whereas on 2 test instances (50_1 and 200_1)
results are not significant. On the remaining one instances,
result of Mann–Whitney U test is not meaningful as both
the approaches obtained the same results in all 20 indepen-
dent runs. As far as comparison in terms of average number
of dominating nodes is concerned, EA/G-MP is better than
ACO_DT on 10 test instances, worse than ACO_DT on 5 test
instances and equal to ACO_DT on 3 test instances. From
Table 6, it can be observed that as the size of the input graph
increases, execution time of ACO_DT increases at a faster
pace in comparison toEA/G-MP.Onan average, EA/G-MP is
3 times faster thanACO_DTon the instanceswith 200 nodes,
6 times faster thanACO_DTon the instanceswith 300 nodes,
9 times faster than ACO_DT on the instances with 400 nodes
and 10 times faster than ACO_DT on the instance with 500
nodes. On smallest instances with 50 nodes, EA/G-MP is 3
times slower than ACO_DT. On instances with 100 nodes,
EA/G-MP is slightly slower than ACO_DT.

6.3 Comparison of EA/G-MP, ABC_DT and ACO_DT
approaches on instances with transmission range 150m

On 18 test instances with transmission range 150m, EA/G-
MP is better than ABC_DT on 7 test instances, worse than
ABC_DT on 1 test instance and equal to ABC_DT on 10 test
instances in terms of quality of the best solution obtained.
On the other hand, average solution quality of EA/G-MP
is better than ABC_DT on 10 test instances, worse than
ABC_DT on 4 test instances and same as ABC_DT on the
remaining 4 instances. Results of Mann–Whitney U test
between EA/G-MP and ABC_DT indicate that out of 18 test
instances, results of EA/G-MP is statistically significant on
6 test instances in comparison to ABC_DT, whereas on 8
test instances (100_1, 100_2, 200_1, 200_2, 200_3, 300_1,
300_2 and 400_2) results are not significant. On the remain-
ing four instances, results of Mann–Whitney U test are not
meaningful as both the approaches obtained the same results
in all 20 independent runs. As far as comparison in terms of
average number of dominating nodes is concerned, EA/G-
MP is better than ABC_DT on 7 test instances, worse than
ABC_DT on 5 test instances and equal to ABC_DT on 6
test instances. Our EA/G-MP approach is much faster than
ABC_DT approach. On all 18 test instances the average total
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(a) (b)

(c)

Fig. 4 Average solution quality of various heuristics over all the instances of each size for different transmission ranges. a Transmission range
100m. b Transmission range 125m. c Transmission range 150m

execution time (ATET) of EA/G-MP is better than ABC_DT.
From Table 7, it can be observed that as the size of the
input graph increases, the gap in terms of computational time
between ABC_DT and EA/G-MP increases as well. On an
average, EA/G-MP is 2 times faster than ABC_DT on the
instances with 50 nodes, 3 times faster than ABC_DT on the
instances with 100 nodes, 5 times faster than ABC_DT on
the instanceswith 200 nodes, 8 times faster thanABC_DTon
the instances with 300 nodes, 11 times faster than ABC_DT
on the instances with 400 nodes and 16 times faster than
ABC_DT on the instance with 500 nodes.

Next, we compare EA/G-MP with ACO_DT. Out of
18 test instances, the best solution of EA/G-MP is bet-
ter than ACO_DT on 8 test instances and on the remain-
ing 10 test instances both approaches obtained the same
best solution. In terms of average solution quality, EA/G-
MP is better than ACO_DT on 8 test instances, worse
than ACO_DT on 5 test instances and on the remain-
ing 5 test instances both the approaches have the same
average solution quality. Results of Mann–Whitney U test

between EA/G-MP and ACO_DT show that out of 18 test
instances, results of EA/G-MP is statistically significant in
comparison to ACO_DT on 9 test instances whereas on
5 test instances (100_2, 200_2, 300_1, 400_1 and 500_3)
results are not significant. On the remaining four instances,
results of Mann–Whitney U test are meaningless as both
the approaches obtained the same results in all 20 indepen-
dent runs. As far as comparison in terms of average number
of dominating nodes is concerned, EA/G-MP is better than
ACO_DT on 10 test instances, worse than ACO_DT on 3
test instances and equal to ACO_DT on remaining 5 test
instances.

ACO_DT is also slower than EA/G-MP. From Table 7, it
can also be observed that as the size of the graph increases,
execution time of ACO_DT increases at a much faster rate
compared to EA/G-MP. On an average, EA/G-MP is 3 times
faster than ACO_DT on the instances with 200 nodes, 5
times faster than ACO_DT on the instances with 300 nodes,
7 times faster than ACO_DT on the instances with 400 nodes
and 10 times faster than ACO_DT on the instance with 500
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(a) (b)

(c)

Fig. 5 Average solution quality of ABC_DT, ACO_DT and EA/G-MP over all the instances of each size for different transmission ranges.
a Transmission range 100m. b Transmission range 125m. c Transmission range 150m

nodes. On the other hand, EA/G-MP is 3 times slower than
ACO_DT on the instances with 50 nodes and slightly slower
than ACO_DT on the instances with 100 nodes.

6.4 The overall picture

Figures 4 and 5 graphically compare the average solution
quality of various approaches over all the instances of each
size viz. 50, 100, 200, 300, 400 and 500 for different trans-
mission ranges. Figure 4 compares different problem spe-
cific heuristics, viz. MST-L, Heu_DT1, Heu_DT2, H_DT
and M_DT, whereas Fig. 5 compares various metaheuristic
approaches, viz. ABC_DT, ACO_DT and EA/G-MP. Figure
4 clearly shows that as the problem size increase, the cost
of the dominating tree grows rapidly for MST-L, Heu_DT1
and Heu_DT2, thereby restricting the utility of these three
heuristics to small size instances only. Like M_DT, H_DT
also scales well, but its results are always inferior on an aver-
age to those of M_DT. If we look at Fig. 4a–c together, it can
be observed that with the increase in transmission range, the

average cost of dominating tree returnedbyH_DTandM_DT
decreases for the same node size, which is also expected the-
oretically. On the other hand, average cost of the dominating
tree returned by other heuristics seem to remain unaffected
by the increase in transmission range.

Figure 5 shows that all the metaheuristic approaches scale
well with regard to average solution quality as size of the
problem increases. Except for instances of size 200 and range
100m, average solution quality of EA/G-MP is better than
ABC_DT and ACO_DT on all other sizes and transmission
ranges. Looking at the Fig. 5a–c together, we can observe
that the average cost of the dominating tree returned by all
the three metaheuristic approaches decreases with increase
in transmission range.

Figure 6 graphically compares the average total execu-
tion time of ABC_DT, ACO_DT and EA/G-MP over all the
instances of each size for the transmission range 100, 125
and 150m. The average total execution time of ABC_DT and
ACO_DT grows rapidly with increase in instance size. Only
EA/G-MP scales well with increase in instance size in terms
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(a) (b)

(c)

Fig. 6 Average total execution time of ABC_DT, ACO_DT and EA/G-MP over all the instances of each size for different transmission ranges.
a Transmission range 100 m. b Transmission range 125 m. c Transmission range 150m

of average total execution time. Some interesting observa-
tions can be made if we look at Fig. 6a–c together. Average
total execution time of ABC_DT increases with increase in
transmission range. On the other hand, average total execu-
tion time of ACO_DT decreases with increase in transmis-
sion range. For EA/G-MP also average total execution time
decreases, but only slightly when compared to ACO_DT.

To get an idea about the effect of increase in transmis-
sion range on number of dominating nodes, we have found
the best value among average number of dominating nodes
returned by ABC_DT, ACO_DT and EA/G-MP on each size
for different transmission ranges. We have plotted these best
values for each transmission range against node sizes. Result-
ing plot is shown in Fig. 7. This figure clearly shows that the
number of dominating nodes decreases on an average with
increase in transmission range. This is also expected the-
oretically as with increase in transmission range, degree of
underlying disk graphs increases, leading to dominating trees
with lesser number of nodes.

Though better than other approaches in their respective
classes in terms of solution quality, both of our approaches
obtain dominating tree with slightly more number of nodes
on some instances when we compare M_DT to H_DT, and,
EA/G-MP to ABC_DT and ACO_DT. Actually, sometimes
even when a pair of node is connected directly by an edge, it
may not be the shortest path between them. Instead a shortest
pathmay involve one ormore intermediate nodes. As a result,
a dominating tree which has lesser cost than another may not
have a lesser number of nodes as well. As our approaches
favour shortest paths over direct edges more often in com-
parison to corresponding previous approaches, dominating
trees obtained through our approaches aremore likely to have
more nodes.

7 Conclusions

In this paper we have presented two approaches, viz. a prob-
lem specific heuristic called M_DT and a hybrid approach
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Fig. 7 BestANDNamongABC_DT,ACO_DTandEA/G-MPon each
problem size for different transmission ranges

called EA/G-MP that combines evolutionary algorithm with
guided mutation with two improvement procedures for the
dominating tree problem (DTP). On 54 benchmark instances
of various sizes and transmission ranges, M_DT produced
better results in comparison to state-of-the-art problem spe-
cific heuristic approaches available in the literature. Simi-
larly, EA/G-MP is able to find better solutions on most of the
test instances when compared to two state-of-the-art meta-
heuristic approaches, viz. ABC_DT and ACO_DT in a much
shorter time.

As a futurework,we intend to extendour approach to other
related N P-hard problems like the connected minimum
weight dominating set problem and the capacitatedminimum
weight dominating set problem. Analogous approaches can
be developed for the set covering problem, the minimum
weight vertex cover problem and various target coverage
problems in wireless sensor networks etc.
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