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Abstract Learning vector quantization (LVQ) algorithms
as powerful classifier models for class discrimination of vec-
torial data belong to the family of prototype-based classi-
fiers with a learning scheme based on Hebbian learning as
a widely accepted neuronal learning paradigm. Those clas-
sifier approaches estimate the class distribution and gen-
erate from this a class decision for vectors to be classi-
fied. The estimation can be done by the determination of
class-typical sensitive prototypes inside the class distribu-
tion area like in LVQ or by detection of the class borders for
class discrimination as preferred by support vector machines
(SVMs). Both strategies provide advantages and disadvan-
tages depending on the given classification task. Whereas
LVQs are very intuitive and usually process the data during
learning in the data space, frequently equipped with variants
of the Euclidean metric, SVMs implicitly map the data into
a high-dimensional kernel-induced feature space for better
separation. In this Hilbert space, the inner product is com-
pliant to the kernel. However, this implicit mapping makes a
vivid interpretation more difficult. As an alternative, we pro-
pose in this paper two modifications of LVQ to make it com-
parable to SVM: first border-sensitive learning is introduced
to achieve border-responsible prototypes comparable with
support vectors in SVM. Second, kernel distances for differ-
entiable kernels are considered, such that prototype learning
takes place in a metric space isomorphic to the feature map-
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ping space of SVM. Combination of both features gives a
powerful prototype-based classifier while keeping the easy
interpretation and the intuitive Hebbian learning scheme of
LVQ.
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1 Introduction

Classification of vectorial data is still a challenging topic. For
example, classification of hyper-spectral vectors in remote
sensing image analysis requires precise learning of classifier
models for frequently overlapping or non-linear class dis-
tributions (Villmann et al. 2003). Discrimination of patient
records in medicine may demand subtle differentiation of
features for correct disease diagnosis (Schleif et al. 2009;
Villmann 2002; Wutzler et al. 2009). Adaptive models from
machine learning such as learning vector quantizers (LVQ,
Kohonen 1997), support vector machines (SVMs, Schölkopf
and Smola 2002) or multilayer perceptrons (MLP, Haykin
1994) promise alternatives to traditional multivariate data
analysis approaches like linear or quadratic discriminant
analysis (LDA/QDA) (Duda and Hart 1973; Sachs 1992),
when these classical statistical methods do not deliver results
with sufficient precision.

LVQs as well as SVMs belong to prototype-based classi-
fiers. LVQ algorithms generate under certain conditions class
typical prototypeswhereas for SVMs the resulting prototypes
determine the class borders and are here called support vec-
tors. These support vectors are always data points. They are
identified by convex optimization providing a unique solu-
tion. Yet, LVQs as introduced by Kohonen (1986, 1990)
realize an intuitive learning based on the Hebbian princi-
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ple. A cost function-based variant was proposed by Sato
and Yamada and denoted as generalized LVQ (GLVQ, Sato
and Yamada 1996). Here, optimization is realized as sto-
chastic gradient descent learning such that an optimum is
achieved only with high probability instead of a unique solu-
tion obtained from SVMoptimization. Further, LVQs handle
the prototypes in the data space, usually equipped with the
Euclidean metric, such that they are easy to interpret. In con-
trast, SVMs implicitly map the data into the feature mapping
space (FMS) associated with the used kernel. This FMS is
high dimensional, maybe infinite, and the mapping is gener-
ally non-linear. These SVM properties frequently lead to a
superior performance compared to other classification mod-
els (Schölkopf andSmola 2002).Yet, there are other powerful
classifiers in play including decision trees, random forest and
deep architectures (Bengio 2009). A good comparison can be
found in Caruana et al. (2006).

However, we restrict ourself to the aspect of precise learn-
ing of the class borders as one important aspect for good
classification performance. In this sense, SVM still plays an
important role. Yet, the number of support vectors in SVM,
which can be taken as a measure for model complexity, may
become large and cannot be explicitly controlled or deter-
mined in advance. The model complexity is only implicitly
controlled by regularization and additional slack variables
(Schölkopf and Smola 2002).

For LVQ approaches, in general the number of prototypes
has to be fixed before model adaptation, i.e. before training.
This might be an advantage, if restrictions to the complexity
of the model appear as it might be the case in onboard techni-
cal systemswith restrictedmemory like in robotics (Klingner
et al. 2014). Yet, the basic LVQ scheme with fixed prototype
number can be easily combined with growing networks like
growing neural gas (GNG, Fritzke 1995) allowing a con-
trolled increase of model complexity (Hammer et al. 2005a).

As mentioned above, support vectors detect the class bor-
ders such that SVMs maximize the class separation margin
(Hastie et al. 2001) whereas GLVQ optimizes the hypothesis
margin (Crammer et al. 2003). The border-sensitive behavior
as well as the kernel feature mapping of SVMs contributes
to their superior performance for many applications. Several
attempts were made to integrate the kernel idea into GLVQ
using approximation techniques in the related FMS (Qin and
Suganthan 2004; Schleif et al. 2011).

In this paper, we deal with the other aspect—the border-
sensitive learning for LVQmodels. In particular, we propose
two different methods to establish class border sensitivity in
GLVQ. Thereby, the aim of the investigation is not to show
better performance for the new LVQ variants compared to
SVM. Rather than this goal we would like to show these
variants as a matter of principle to border sensitive SVM, if
explicit control ofmodel complexity is demanded. This focus
is triggered by the assumption that frequently class separation

is favored versus class description. In general, both aspects
are difficult to combine (Hammer et al. 2014).

The first one of those border-sensitive LVQ variants uses
an additional penalty term for the cost function of GLVQ
forcing explicitly the prototypes to move closer to the class
borders such that a better sensibility is achieved. The second
approach achieves the border sensitivity implicitly by a para-
meter control for the classifier function already implemented
inside the standard GLVQmodel. This latter strategy leads to
an adaptation of prototypes only for those data points, which
are close to the class borders and can be related to active
learning schemes (Hasenjäger and Ritter 1998; Schleif et al.
2007). Hence, the prototypes learn only those data near the
class borders and, therefore, are implicitly sensitized for the
class decision boundaries. Yet, as pointed out in Hammer et
al. (2014), border sensitivity does not automatically implies
class-typical prototypes.

Both approaches are demonstrated for artificial, illustrat-
ing data sets as well as real world data.

2 Generalized learning vector quantization (GLVQ)

In this section, we briefly give the basic variants of LVQ
according to Kohonen and Sato and Yamada to justify nota-
tions and descriptions. In particular, we assume a given
training data set of vectors v ∈ V ⊆ R

n . The cardinal-
ity of V is denoted as #V . The prototypes wk ∈ R

n of
the LVQ model for data representation are collected in the
set W = {wk ∈ R

n, k = 1, . . . , M}. Each training vector v
belongs to a predefined class x (v) ∈ C = {1, . . . ,C} out of
C classes. The prototypes are labeled by y (wk) ∈ C such
that at least one prototype is responsible for each class. Fur-
ther, we suppose a dissimilarity measure d (v,wk) in the data
space, frequently but not necessarily chosen as the squared
Euclidean distance.

2.1 Kohonen’s LVQ

LVQs as introduced by Kohonen (1992) are prototype-based
classifiers with a predefined set of prototypes, which is opti-
mized during learning and then serving as reference set for
classification. The optimization takes place by attraction
and repulsion of the prototypes for presented training sam-
ples in compliance with a nearest prototype principle (NPP).
According to this principle, let w+ denote the nearest pro-
totype for a given data sample (vector) v with respect to the
dissimilarity measure d and, additionally, y

(
w+) = x (v)

is valid. Thus, w+ is the best matching prototype with cor-
rect class label also shortly denoted as best matching correct
prototype. We define d+ (v) = d

(
v,w+)

as the respective
dissimilarity degree. Analogously, w− is the best matching
prototype with a class label y

(
w−)

different from x (v), i.e.
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Fig. 1 Illustration of the winner determination of w+, the best match-
ing correct prototype and the best matching incorrect prototype w−
together with their distances d+ (v) and d− (v), respectively. The over-
all best matching prototype here is w∗ = w+

best matching incorrect prototype, and d− (v) = d
(
v,w−)

is again the assigned dissimilarity degree, see Fig. 1.
Further, let

w∗ = argminwk∈W (d (v,wk)) (1)

be the overall best matching prototype (winner) without any
label restriction and d∗ (v) = d (v,w∗) the respective dis-
similarity degree and y∗ = y (w∗) indicates the respective
class label of the winner. Hence,w∗ ∈ W ∗ = {

w+,w−}
and

W ∗ is denoted as the winner subset of the prototype set W .
With these notations, the basic learning scheme in LVQ can
be formulated as:

�w∗ = ε · Ψ
(
x (v) , y∗) · (

v − w∗) (2)

with 0 < ε � 1 being the learning rate (Biehl et al. 2014).
The label evaluation function

Ψ
(
x (v) , y∗) = δx(v),y∗ − (

1 − δx(v),y∗
)

(3)

determines the direction of the vector shift v − w∗ where
δx(v),y∗ is the Kronecker symbol, such that δx(v),y∗ = 1 holds
for x (v) = y∗ and zero elsewhere. This heuristic adapta-
tion scheme leads to an approximation of a Bayes decision
scheme (Kohonen 1997).

An improved convergence behavior is obtained for slight
modifications of this basic scheme regarding, for example,
an adaptive learning rate or an update also for the second
winning prototype

w∗
2nd = argminwk∈W\{w∗} (d (v,wk))

additionally to the overall winner w∗. If w∗ and w∗
2nd con-

stitute the winner subset W ∗ Kohonen suggested a window

rule

min

(
d+ (v)
d− (v)

,
d− (v)
d+ (v)

)
≥ 1 − ω

1 + ω
(4)

in the variant LVQ2.1. Prototype adaptation only takes place
if this relation is fulfilled for a predefined value 0 < ω < 1
(Kohonen 1997), i.e. if the data sample v falls into a window
around the decision border. Yet, this rule does not work for
very high-dimensional data as explained in Witoelar et al.
(2010).

After training, the response y∗ of the LVQ yields the pre-
dicted classification of a data sample. According to the win-
ner determination (1) for each data sample, the prototype set
W determines a partition of the data space into the so-called
receptive fields defined as:

R (wk) = {
v ∈ V |wk = w∗} (5)

also known as Voronoi tesselation. The dual graph G, also
denoted as Delaunay- or neighborhood graph, with proto-
type indices taken as the graph vertices, determines the class
distributions via the class labels y (wk) and the adjacency G
matrix of G with elements gi j = 1 iff R (wi ) ∩ R

(
w j

) 	= ∅
and zero elsewhere. For given prototypes and data sample,
the graph can be estimated usingw∗ andw∗

2nd (Martinetz and
Schulten 1994).

It turns out that the window rule (4) may destabilize the
learning process and, therefore, it was suggested to apply this
rule only for a few learning steps after usual LVQ1 training
to improve the performance (Kohonen 1997). This unstable
behavior can be prevented or at least reduced, if the window
rule is only applied if the receptive fields R(w+) and R(w−)

are neighbored, i.e. R(w+)∩R(w−) 	= ∅ (Kaden et al. 2014).

2.2 The basic GLVQ model

The aim of the Generalized LVQ introduced by Sato and
Yamada Sato and Yamada (1996) was to keep the basic prin-
ciple of attraction and repulsion in prototype-based classifi-
cation learning but vanquishing the problemof the adaptation
heuristic. In particular, stochastic gradient descent learning
related to a well-defined cost function was identified as a
powerful alternative. For this purpose, a classifier function

μ (v) = d+ (v) − d− (v)
d+ (v) + d− (v)

(6)

is considered, where μ (v) ∈ [−1, 1] is valid and correct
classification of a training samplev corresponds toμ (v) ≤ 0.
Then, a cost function
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EGLVQ (W ) = 1

#V

∑

v∈V
f (μ (v)) (7)

is defined with a monotonically increasing transfer or
squashing function f . The squashing function is commonly
chosen as a sigmoid function like

f (x) = 1

1 + exp (−x)
(8)

or as the identity function f (x) = id (x) = x .
Learning in GLVQ takes place as stochastic gradient

descent on EGLVQ (W ). In particular, we have

�w+ ∼ ξ+ (v) · ∂d+ (v)
∂w+ and �w− ∼ ξ− (v) · ∂d− (v)

∂w−
(9)

with the scaling factors

ξ+ (v) = f ′ (μ (v)) · 2 · d− (v)
(
d+ (v) + d− (v)

)2

and

ξ− (v) = − f ′ (μ (v)) · 2 · d+ (v)
(
d+ (v) + d− (v)

)2

For the squared Euclidean metric, we obtain a vector shift
according to

∂d± (v)
∂w± = −2

(
v − w±)

(10)

for the prototypes.
As shown in Crammer et al. (2003), GLVQmaximizes the

hypothesis margin

M (v, x (v)) = d+ (v) − d− (v) (11)

which refers to the distance of the closest prototype labeled
with a different class from v. Thus, it describes a ‘security’
of classification, i.e. it is related to the distance that the pro-
totypes can be altered without changing the classification
decision (Nova and Estévez 2013; Kaden et al. 2014). The
hypothesis margin is associated with the generalization error
bound independent of the data dimension but depending on
the number of prototypes (Hammer et al. 2005b). Further, we
remark that minimizing the cost function EGLVQ (W ) from
(7) approximates the minimization of the misclassification
rate (Kaden et al. 2014).

Fig. 2 Visualization of the relationship between the original data space
V , the kernel mapping � and the kernel data space V . The metric space
V is isometric to the image Iκ� of V under the kernel map � under
certain conditions, which itself uniquely corresponds to the kernel κ�

in a canonical manner

2.3 GLVQ and non-Euclidean distances

Depending on the classification task, other (differentiable)
dissimilarity measures than the Euclidean may be more
appropriate (Hammer and Villmann 2002; Villmann and
Haase 2011). Quadratic forms d
 (v,w) = (v,w)� 
(v,w)

are discussed in Bunte et al. (2012), and Schneider et al.
(2009a, b, 2010). Here, the positive semi-definite matrix

 is decomposed into 
 = ��� with arbitrary matrices
� ∈ R

m×D which can be adapted during the training. For
classification visualization, the parameter m has to be two
or three, the full problem is obtained for m = D. If data
are matrices, distances based on Schatten norms or general
matrix norms come into play (Horn and Johnson 2013; Schat-
ten 1950), which show very good discriminative behavior
(Gu et al. 2012). Alternatively, SVMs implicitly map the
data and prototypes into a high-, maybe infinite-,dimensional
function Hilbert spaceH by a generally non-linear mapping
� : V → Iκ� ⊆ H to achieve better class separability (Cris-
tianini and Shawe-Taylor 2000; Shawe-Taylor and Cristian-
ini 2004). This mapping corresponds uniquely in canonical
manner to positive-definite universal kernels1 κ� (v,w) (PU-
kernels), such that 〈�(v) ,� (w)〉H = κ� (v,w) is valid for
the inner product 〈•, •〉H (Aronszajn 1950; Mercer 1909;
Steinwart 2001) (Fig. 2). By means of this inner product, the
metric dH is determined and for the image Iκ� of the map-
ping � the equality dH (� (v) ,� (w)) = dκ� (v,w) holds
with

dκ� (v,w) = √
κ� (v, v) − 2κ� (v,w) + κ� (w,w) (12)

is the so-called kernel distance (Villmann et al. 2013). In
context of GLVQ, it is interesting to consider differentiable

1 The theory of universal kernels is out of the focus of this paper, we
explicitly refer toSteinwart (2001) andMicchelli et al. (2006) for precise
definition and consideration of there properties. Here, we only remark
that exponential kernels belong to the set of universal kernels.
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PU-kernels (DPU-kernels), for which the derivative ∂κ�(v,w)
∂w

exists. We can define an accompanying formal data transfor-
mation � : V −→ V , where V is the data space equipped
with the kernel metric dκ� . The formal map � is bijective,
continuous and non-linear iff � does (Steinwart 2001). Fur-
ther, V is isometric and isomorphic to Iκ� and, hence, offers
the same topological structure and richness as the image Iκ�

as known from SVMs.
The differentiability of the kernel ensures the applicability

of the stochastic gradient learning of GLVQ in V , replacing
the distance d (v,w) from the data space V contained in
the calculation of the classifier function μ (v) from (6) by
the kernel distance dκ� (v,w) (Villmann et al. 2014). We
denote this new data space V as kernelized data space and
the respective GLVQ in V as kernel-GLVQ (KGLVQ). We
remark that this approach does not require any approximation
techniques as suggested in earlier kernelized GLVQ variants
proposed in Qin and Suganthan (2004) and Schleif et al.
(2011).

3 Class border sensitive learning in GLVQ

Aswe have seen in the previous section, KGLVQ is an exten-
sion of usualGLVQ to kernel data spacesV . However, in gen-
eral, the prototypes of KGLVQ as well as for GLVQ are not
particularly sensitized to detect the class borders. This might
be a disadvantage for KGLVQ compared to SVMs, if precise
classification decisions are favored. In this section, we pro-
vide two possibilities to integrate class border sensitivity in
GLVQ and, hence, also for KGLVQ. The first choice applies
an additive attraction force for prototypes with different class
responsibilities, such that the prototypes move closer to each
other, which implicitly leads to an improved class border sen-
sitivity. The second approach supposes a parametrized sig-
moid transfer functions fθ (μ) in (7), where the θ parameter
controls the class border sensitivity via the so-called active
sets. These active sets appear as subsets of the whole training
data set containing only those data samples close to the class
borders. It turns out that only the data contained in the active
set contribute to the prototype learning and, hence, the pro-
totypes become particularly sensitive to these data subsets.

3.1 Border sensitive learning in GLVQ by an additive
penalty function

Penalizing an undesirable behavior of a learning system is a
common strategy in machine learning. In this context, class
border sensitivity learning by an additive penalty term for
unsupervised fuzzy-c-means models was proposed in Vill-
mann et al. (2012) and Yin et al. (2012). Here, we adopt
these ideas for class border sensitive learning in GLVQ, i.e.
we also consider a penalty strategy for classification learning

(P-GLVQ). For this purpose, we extend the cost function of
GLVQ (7) by an additive penalty term Fneigh (W, V ) such
that

EP−GLVQ (W, γ ) = (1 − γ )·EGLVQ (W )+γ ·Fneigh (W, V )

(13)

is a convex sum. The parameter γ ∈ [0, 1) is the sensitiv-
ity control parameter. The penalty term Fneigh (W, V ) is a
neighborhood-attentive attraction force (NAAF)

Fneigh (W, V )

=
∑

v∈V

∑

k:wk∈W−(v)

hNG
σ

(
k,w+,W− (v)

)
d

(
w+,wk

)
(14)

depending on the subset W− (v) ⊂ W of all prototypes with
incorrect class labels for a given data vector v. The term
d

(
w+,wk

)
explicitly penalizes large distances between the

best matching prototypes of the correct and incorrect class,
i.e. large distances of these prototypes to the class borders.

This distance is weighted with the neighborhood function

hNG
σ−

(
k,w+,W− (v)

)

= cNG
σ− · exp

(

−
(
rkk

(
w+,W− (v)

) − 1
)2

2σ 2−

)

(15)

determining a rank-neighborhood between the prototypes in
W− (v) via the dissimilarity rank function

rkk
(
w+,W− (v)

) =
∑

wl∈W−(v)

H
(
d

(
w+,wk

) − d
(
w+,wl

))

(16)

known from Neural Gas (NG, Martinetz et al. 1993). Here,
H is the Heaviside function

H (x) =
{
0 if x ≤ 0

1 else.
(17)

The NAAF causes an additional gradient term

∂Fneigh (W, V )

∂w j
= hNG

σ−
(
j,w+,W− (v)

) · ∂d
(
w+,w j

)

∂w j

(18)

for a given input vector v and w j ∈ W− (v), i.e. all incor-
rect prototypes are gradually moved towards the correct best
matching prototype w+ according to their dissimilarity rank
with respect to w+ but into the direction defined by the

derivative
∂d(w+,w j)

∂w j
. For the squared Euclidean distance,

this gives a gradual usual vector shift. In consequence, the
closer the neighborhood is to the correct winning prototype
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w+, the stronger is the resulting neighborhood attraction but
controlled by the neighborhood range σ− > 0. Further, the
weighting coefficient γ regulates the overall influence of bor-
der sensitive learning in this model. Because, all prototypes
in W− (v) belong to another class than w+, the introduced
attraction force enhances prototypes positions close to the
decision borders between classes. Hence, an implicit better
class border sensitivity is achieved.

Otherwise, two new parameters have to be involved for
the realization of such a strategy, which requires additional
control in applications. Moreover, the margin optimization
strategy is lost due to the penalty term Fneigh (W, V ) from
(14) contributing to the over all costs (13). From this point
of view, a more GLVQ-inherent approach is desired.

3.2 Class border sensitive learning by parametrized transfer
functions fθ in GLVQ

In this section, we provide an alternative approach for class
border sensitive learning in GLVQ, which is more consistent
to standard GLVQ than the previously penalty strategy. It
uses a more inherent modification of standard GLVQ than
P-GLVQ and, therefore, does not need an additional external
force. For this purpose, we seize the thought presented in
Strickert (2011) and Witoelar et al. (2010) that the shape
of the transfer function f in (7) sensitively influences the
decision certainty at the class borders. Therefore, we suppose
f to be of the sigmoid type (8) as the usual opposite to the
identity already suggested in the very first presentation of the
GLVQ approach (Sato and Tsukumo 1994; Sato and Yamada
1995). Particularly, we can pay attention to the sensitivity
behavior introducing the respective parametrized variant

fθ (x) = 1

1 + exp
(
− x

2θ2

) (19)

with the parameter θ determining the slope of fθ , see Fig. 3.
The derivative f ′

θ (μ (v)) of the logistic function can be
expressed in terms of the sigmoid function itself and reads
as:

f ′
θ (μ (v)) = fθ (μ (v))

2θ2
· (1 − fθ (μ (v))) , (20)

which appears in the scaling factors ξ± occuring in the
updates (9) for the winning prototypes w±. Considering this
derivative (see Fig. 4), we observe that

∣
∣ξ±∣

∣ � 0 holds only
for |μ (v)| � 1, i.e. a significant prototype update only takes
place for a small range of the classifier values μ in (6). This
range also depends on the slope parameter θ . Therefore, we
introduce the active set of the data contributing significantly
to a prototype update during learning to be the set

Fig. 3 Visualization of the parametrized sigmoid function fθ (x)
depending on the slope parameter θ

�̂ =
{
v ∈ V |μ (v) ∈

[
−1 − μθ

1 + μθ

,
1 − μθ

1 + μθ

]}
(21)

with μθ chosen such that f ′
θ (μ) ≈ 0 is valid for μ ∈ � =

V \�̂. Thus,
∣∣ξ±∣∣ ≈ 0 is valid for all training sample not

belonging to the active set. Hence, these data do not con-
tribute to prototype learning; see Fig. 4.

Otherwise, data samples contained in the active set yield
moderate prototype updates such that the prototypes become
sensitized for them. Obviously, the active set �̂ is distributed
along the class decision boundaries, because f ′

θ (μ) � 0 is
valid only here. Therefore, the active set �̂ is characterized
by values μ (v) ≈ 0 for v ∈ �̂. Hence, this active set �̂

can be understood as another formulation of the window rule
for LVQ2.1 given in (4) and taking there ω = μθ (Koho-
nen 1997). The learning of the parameter θ in GLVQ was
explicitly addressed in Witoelar et al. (2010). Optimization
for accuracy improvement was discussed in Strickert (2011).

These observations lead to the idea to control the bor-
der sensitivity of the GLVQ algorithm by the parameter θ ,
which obviously determines the width of the active set sur-
rounding the class borders. Large values correspond to an
overall learning whereas small θ values define small stripes
as active sets. In consequence, only these data contribute to
the prototype updates. In other words, according to (21), the
active set is crisp but the possibilities for control are smooth
such that we could speak about thresholded active sets �̂θ .
Therefore, border sensitivity leads to prototypes sensitized to
those data points close to the class borders depending on the
control parameter θ . In this sense, the active set learning can
be seen as a kind of attention based or learning (Hermann
et al. 1994) or active learning (Hasenjäger and Ritter 1998;
Hasenjäger et al. 1999; Schleif et al. 2007). We refer to this
border sensitive approach as BS-GLVQ.
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Fig. 4 Left derivatives f ′
θ (μ)

for several θ values. Right
visualization of the active set �̂
(green circles) for a illustrative
two-class example with one
prototype per class. The
prototypes are the big dots. Only
data points belonging to the
active set contribute
significantly to prototype
learning such that they become
sensitive for them (color figure
online)

It should be explicitly mentioned at this point that BS-
GLVQ is still optimizing the hypothesis margin M (v, x (v))
from (11) because the transfer function is still monotonically
increasing.

Last but not least, we emphasize another advantage of this
border sensitive approach: For thismethodology,we can state
that in the limit θ ↘ 0 the respective cost function

EBS−GLVQ (W, θ) = 1

#V

∑

v∈V
fθ (μ (v)) (22)

reflects the classification error (Kaden et al. 2014). This fact
is based on the observation that in the limit θ → 0 the sig-
moid fθ from (19) becomes the Heaviside function H(x)
(17) (Kaden et al. 2014).

4 Illustrative example and application

In this section, we demonstrate the desired properties of the
border sensitive variants of GLVQ. For this purpose, we start
with two-dimensional artificial data sets such that the results
can be easily visualized. Thereafter, we present results from
a medical application. After this, we move to more sophisti-
cated real-world examples and applications, one from image
segmentation, the other one being a medical application in
neurology. For all experiments, using a GLVQ-variant, the
prototypes were initialized randomly as data points of the
respective classes.

4.1 Illustrative toy examples

The first two-dimensional artificial data set is a three-class
problem. The data classes are uniformly distributed as in the
Czech-flag, see Fig. 5.

For each class, we generated 1,000 data points for train-
ing and 1,000 for testing. All GLVQ variants were trained
in 2,000 epochs with constant learning rate ε = 0.01. The
results are reported for the test data.

We compare both border sensitive GLVQ approaches P-
GLVQ and BS-GLVQ with a standard GLVQ network. We
refer to standardGLVQ for the variant with the identity trans-
fer function f (μ) = μ. In case of the parametrized trans-
fer function fθ , we used the initial parameter θinit = 1.0
decreased to θfin = 0.1 during learning (BS-GLVQ). The
balancing parameter γ for P-GLVQ was set permanently to
γ = 0.5.

We observe that both border sensitive models place the
prototypes closer to the class borders than standard GLVQ,
see Fig. 5.Moreover, the classification accuracy is improved:
For the BS-GLVQ, we achieved 91.1% and the sigmoid vari-
ant results 97.2%whereas standard GLVQ gets only 89.7%.
Thus, class border sensitivemodels detect the noisy class bor-
ders more accurately.

The second artificial two-dimensional data set, depicted
in Fig. 6, is a non-linear two-class problem denoted as Palau
flag.

Again we generated for each class 1,000 data for training
and 1,000 for testing. As before, the learning rate was fixed
to be ε = 0.01 during the learning within 2,000 epochs and
the results are reported for the test data. If standard GLVQ is
appliedwith two prototypes, i.e. one prototype for each class,
and the Euclidean distance used as dissimilarity measure, a
test accuracy of only 67.1% is obtained. If we switch in this
standard GLVQ to a kernel distance dκ� (v,w) according to
(12) with an exponential kernel

κ� (v,w) = exp

(
− (v − w)

2σ 2

)
(23)
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Fig. 5 Border sensitive learning for the class distribution example ‘Czech-flag’: Obtained prototype positions for standard GLVQ (top), P-GLVQ
(middle) and BS-GLVQ (bottom). The Euclidean distance was used

Fig. 6 Palau flag data set

the performance is increased to 95.5%. The kernel width
was automatically adapted according to the gradient learning
∂EBS−GLVQ(W,θ)

∂σ
as described in Villmann et al. (2014). We

refer to this kernelized GLVQ as KGLVQ.
In the next step, we used 2 prototypes for the inner

class and 4 for the surrounding. Again we started with the
Euclidean variant. Standard GLVQ achieved 97.1% accu-
racy. Applying BS-GLVQ with slowly linearly decreasing
θ parameter down to θfin = 0.16, the performance is fur-
ther increased to 99.1%. Subsequently, we applied again the
KGLVQas before. For standardKGLVQ, a slightly improved
accuracy of 97.4% compared to standard GLVQ is obtained.
The resulting prototype and incorrectly classified data points
are visualized in Fig. 7.

However, the BS-GLVQ performance is not achieved.
Incorporating now the border sensitive learning, i.e BS-

KGLVQ is applied, BS-GLVQ is outperformed by a fur-
ther improved accuracy of 99.5% for a final θ parameter
θfin = 0.11. Yet, the prototypes move closer to the class bor-
ders to realize better sensitivity. In comparison to this BS-
KGLVQ with the predefined number of only 6 prototypes,
SVM approach (LIB-SVM, vers. 3.17, Chang and Lin 2011)
yields an accuracy of 99.9% but requires 16 support vec-
tors serving as prototypes, see Fig. 8. Here, the kernel with
was determined manually to be σ = 0.7 with regularizing
parameter C = 500 for best performance.

4.2 Real-world datasets

4.2.1 Image segmentation data set

The image segmentation data set (ISDS) is from the UCI
Repository (Blake and Merz 1998). It consist of 2, 310 data
vectors of dimension n = 16 feature values of instances
drawn from a database of 7 outdoor images. Each instance is
a 3×3 region. The features describe structural and statistical
properties of the instances like saturation, intensity, RGB
values, hedge values and others. Each data vector is assigned
to the original outdoor image as the respective class label.
Thus, classification of these vector is a 7-class problem with
300 samples for each class.

The data were preprocessed applying a z-score trans-
formation, i.e. normalized according to the variance. The
mean is set to the zero vector, accordingly. The data set was
processed by tenfold cross-validation. In each fold, the lower
amount of 10% of the data was taken as training samples, the
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Fig. 7 Application of KGLVQ with 2+ 4 prototypes to the Palau flag
data set (top).Wrongly classified data points aremarked by crosses. BS-
KGLVQ achieves an improvement (bottom). Prototypes move closer to
the class borders

Fig. 8 Application of SVM to the Palau flag data set. Support vectors
are marked by diamonds. BS-KGLVQ achieves an improvement (bot-
tom). Prototypes move closer to the class borders compared to KGLVQ

remaining data were applied for testing. All reported results
refer to the averaged test outcomes.

The main concern of these simulations is to verify exper-
imentally the convergence of the cost function value to
the classification error in case of decrease in the border-
sensitivity control parameter θ .

We applied BS-GLVQ, with two prototypes per class.
During the learning, the control parameter θ was fixed to
θini = 0.7 during the first training phase. For this value,
fθ (μ) ≈ id (μ) = μ holds, i.e. BS-GLVQ behaves like
standard GLVQ (quasi-linear activation). After this initial
phase, the sensitivity parameter θ is slowly decreased to zero
(Fig. 9).

We observe that the classification error rate, i.e. the ratio
of the number of misclassified test data and the overall num-
ber of test data, decreases from 0.15 without border sensitive
learning to 0.04 if the border sensitivity is considered. Fur-
ther, for θ ↘ 0 the cost function value EBS−KGLVQ (W, θ)

approaches the classification error as predicted by the theory.
Replacing the Euclidean distance by the kernel distance

with self-adapting kernel width and keeping the remaining
parameter settings unchanged lead to a slightly deteriorated
classification error rate of 0.16 and 0.05, respectively.

4.2.2 Classification of Wilson’s disease based
on electrophysiological data

The last data set is regarded to detection of neurological
manifestation of Wilson’s disease. Wilson’s disease is an
autosomal-recessive disorder of copper metabolism, which
shows disturbances in the liver function. This liver impair-
ment leads to an accumulation of copper in the brain. In
consequence, a reduced glucose metabolism is observed in
several parts of the brain, the basal ganglia show hepatic and
extrapyramidal motor symptoms and movement disorders
are apparently for patients suffering from Wilson’s disease
(Barthel et al. 2001; Hermann et al. 2003, 2005). According
to a clinical scheme suggested by Konovalov, patients can be
divided into twomain groups: patients with neurological and
without neurologicalmanifestations denoted as the neurolog-
ical and the non-neurological group, respectively (Hermann
et al. 2002). In addition to hepatolenticular degeneration in
Wilson’s disease, sensory and extrapyramidal motoric sys-
tems are also disturbed. The impairments of these nervous
pathways can be detected by investigation of the latencies
for evoked potentials in different brain regions (Günther et
al. 2011). Collecting several evoked potentials according to
a pre-defined medical examination yields a so-called electro-
physiological impairment profile (EIP) for the patient. Yet, it
is not clear so far, whether a precise classification of the EIPs
according to their underlying neurological type is possible
(Hermann et al. 2005).
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Fig. 9 BS-GLVQ with
Euclidean distance for the ISDS.
Starting with a quasi-linear
activation corresponding to
θ ≈ 0.7 (standard GLVQ), the
sensitivity control parameter θ is
slowly decreased in steps of
0.01. Each level is trained
during 1,000 epochs with
constant learning rate ε = 0.01.
The process is accompanied by
a decreasing classification error
(red square). For θ ↘ 0, the cost
function value EBS−GLVQ(W, θ)

approaches the classification
error. Curves were obtained
from tenfold cross-validation

The aim of the study was to find a hint, whether such a
distinction can bemade. For this purpose, a database contain-
ingM = 122 five-dimensional EIPswas provided, generated
according to the conditions defined in Hermann et al. (2003).
Classic discriminant analysis did not reveal any significant
distinction (Hermann et al. 2005).

We applied both border sensitive GLVQ algorithms. P-
GLVQ was trained with balancing parameter γ = 0.5. BS-
KGLVQ was applied with several θ parameter. For all mod-
els, we used 3,000 training epochs with constant learning
rate ε = 0.01 and 6 prototypes per class. For comparison,
an SVM with radial basis function kernel (rbf) was trained.
The kernel width σrbf and the regularizing parameter C were
manually tuned for best performance (σ = 0.015,C = 200).
The data were preprocessed by a z-score transformation and
classification results are obtained as tenfold cross validation.
The respective results are depicted in Table 1.

BS-KGLVQ achieves drastically improved accuracies
compared to standardKGLVQ,which accords approximately
the BS-KGLVQ for θ = 1√

2
, see Table 1. With increasing

sensitivity (decreasing θ parameter), better accuracies are
obtained. However, if the θ value drops down, the best perfor-
mance of 89.2% test accuracy is lost. This may be dedicated
to the fact that the active set �̂ becomes too small for pre-
cise learning in those cases. For comparison, we also applied
SVM to achieve a test accuracy of 87.4%. Hence, without
the border sensitivity feature, SVMs would be superior. Yet,
incorporating border sensitive learning into GLVQ, KGLVQ
variants outperform SVMs in this application. Further, we
remark at this point that model complexity of the SVMs is
at least three times larger (in average 45.5 support vectors
for SVM) in comparison to the 12 prototypes used for the
KGLVQ models.

Table 1 Accuracies and respective standard deviations for the Wil-
son’s disease classification for the applied classifier models obtained
by tenfold cross-validation

Dataset BS-KGLVQ SVM

θ = 1√
2

θ = 1√
5

θ = 1√
7

θ = 1√
10

P-GLVQ σrbf

Training 87.8% 91.9% 90.0% 90.4% 90.1% 87.5%

(±0.013) (±0.015) (±0.015) (±0.014) (±0.011) (±0.015)

Test 81.9% 82.6% 89.2% 87.4% 91.0% 87.4%

(±0.086) (±0.086) (±0.083) (±0.090) (±0.090) (±0.137)

Thereby, ‘training’ refers to the averaged training accuracy whereas
‘test’ is dedicated to the averaged test performance

Regarding the medical question, we have to state that
although we achieved a quite high performance using BS-
GLVQ, the obtained classification accuracies are not suffi-
ciently high for a secure clinical discrimination. For this pur-
pose, further investigations including an improved database
and/or other dissimilarity measures are mandatory.

5 Conclusion and outlook

In this paper, we introduced two strategies for class border
sensitive learning in GLVQ. The first one adds a penalty
term to the cost function to force class border sensitivity of
the prototypes, the second uses a parameter control of the
sigmoid transfer function defining implicitly the so-called
active sets as subsets of the whole training data, which only
contribute significantly to prototype adaptation. The latter
approach adopts an observation about certainty of class deci-
sion boundaries already investigated earlier but not utilized
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for improved learning so far. Thismethodology realizes some
kind of attention based or active learning as earlier proposed.
The proposed strategies for border sensitive learning together
with a kernelized variant of GLVQ offer a powerful alterna-
tive to SVMs. An advantage of the introduced approaches
compared to SVM is the explicit control of the model com-
plexity in GLVQ/KGLVQ, because the number of prototypes
has to be chosen in advance for these models whereas in
SVMs the number of support vector may become quite large
in case of difficult classification tasks and cannot be explicitly
controlled.

We applied and compared the new border sensitive GLVQ
approaches for several data set: Artificial data sets were con-
sidered for illustration whereas real-world data set offers
more challenging difficulties to be surmounted. In partic-
ular, a medical data set of neurophysiological data in case
of Wilson’s disease patients was investigated. Border sensi-
tive KGLVQ variants achieve better results than SVMs with
significant lower model complexity. Further, the classifica-
tion results indicate that a discrimination between neurolog-
ical and non-neurological type of Wilson’s disease can be
performed on the basis of electrophysiological impairment
profiles. However, this hypothesis needs further (medical)
investigations.
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