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Abstract Interval-valued hesitant fuzzy set is a generaliza-
tion of classical interval-valued fuzzy set by returning a fam-
ily of the interval-valuedmembership degrees for each object
in the universe. By combining interval-valued hesitant fuzzy
set and rough set models, the concept of an interval-valued
hesitant fuzzy rough set is explored in this paper. Both con-
structive and axiomatic approaches are considered for this
study. In constructive approach, by employing an interval-
valued hesitant fuzzy relation, a pair of lower and upper
interval-valued hesitant fuzzy rough approximation opera-
tors is first defined. The connections between special interval-
valued hesitant fuzzy relations and interval-valued hesitant
fuzzy rough approximation operators are further established.
In axiomatic approach, an operators-oriented characteriza-
tion of the interval-valued hesitant fuzzy rough set is pre-
sented, that is, interval-valued hesitant fuzzy rough approx-
imation operators are defined by axioms, and then, different
axiom sets of lower and upper interval-valued hesitant fuzzy
set-theoretic operators guarantee the existence of different
types of interval-valued hesitant fuzzy relations producing
the same operators. Finally, a practical application is pro-
vided to illustrate the validity of the interval-valued hesitant
fuzzy rough set model.
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1 Introduction

The concept of rough sets, proposed by Pawlak (1982, 1991)
as a framework for the construction of approximations of
concepts, is a formal tool for modeling and processing insuf-
ficient and incomplete information. Using the concepts of
lower and upper approximations in rough set theory, knowl-
edge hidden in information systems may be unraveled and
expressed in the form of decision rules. There are mainly two
methods for the development of this theory (Yao 1998a; Lin
1996), namely the constructive and axiomatic approaches.

In the constructive approach, binary relations on the uni-
verse of discourse, partition (or coverings) of the universe of
discourse, neighborhood systems, and Boolean algebras are
all primitive notions (Pawlak 1991; Yao 1998a, b; Wu and
Zhang 2002). The lower and upper approximation operators
are constructed by means of these notions. Recently, rough
set approximations have been developed into the fuzzy envi-
ronment, and the results are called rough fuzzy sets (Dubois
and Prade 1990; Li and Zhang 2008; Thiele 2001b; Wu et
al. 2006) and fuzzy rough sets (Dubois and Prade 1990;
Radzikowska and Kerre 2002; Yeung et al. 2005; Wu et al.
2005, 2003; Tiwari and Srivastava 2013). Moreover, many
authors also extended rough set theory into interval-valued
fuzzy sets and intuitionistic fuzzy (IF) sets (Cornelis et al.
2003; Chakrabarty et al. 1998; Jena and Ghosh 2002; Rizvi
et al. 2002; Samanta and Mondal 2001; Zhou and Wu 2008,
2009; Zhang et al. 2012; Zhang 2012a, b, 2013). For exam-
ple, according to fuzzy rough sets in the sense of Nanda and
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Majumda (1992), Jena and Ghosh (2002), Chakrabarty et
al. (1998), and Samanta and Mondal (2001) presented the
concept of IF rough sets that are not defined by an approxi-
mation space. Comparing with the above approaches, Rizvi
et al. (2002) proposed the concept of rough IF sets base on
a Pawlak approximation space (U, R) in which the lower
and upper approximations are not IF sets in the universe of
discourse U , but IF sets in the family of equivalence classes
derived by equivalence relation R. To remedy this difficulty,
on the basis of an IF triangular normTL and IF implicator IL ,
Cornelis et al. (2003) introduced a concept of (TL , IL) IF
rough sets in which the lower and upper approximation oper-
ators are both IF sets in the universe. However, they have not
investigated the essential properties of the lower and upper
approximation operators generated by other relations, such as
reflexive relation, symmetric relation, and transitive relation.
Therefore, in Zhou andWu (2008), various relation-based IF
rough approximation operators were discussed by Zhou and
Wu by using a special type of IF triangular norm min. Mean-
while, on the basis of IF implicator, Zhou and Wu (2009)
investigated IF rough approximations on one universe, but
they have not studied properties of (I, T )-IVF rough sets on
two universes of discourse. Therefore, Zhang et al. (2009)
studied (I, T )-IVF rough approximation operators on two
universes of discourse by the constructive and axiomatic
approaches. Very recently, rough set theory has been devel-
oped into hesitant fuzzy environment, and the result is called
hesitant fuzzy rough sets (Yang et al. 2014).

On the other hand, the axiomatic approach (Morsi and
Yakout 1998; Radzikowska and Kerre 2002;
Thiele 2001a, b, c;Wuet al. 2002, 2005;WuandZhang 2004;
Liu 2013) takes the lower and upper approximation opera-
tors as primitive notions. In this approach, a set of axioms
is used to characterize approximation operators produced by
the constructive approach. Under this point of view, lower
and upper approximation operators are strongly related to the
necessity (box) and possibility (diamond) operator in modal
logic, the interior and closure operators in topological space,
and the belief and plausibility functions in the Dempster–
Shafer theory of evidence (Chuchro 1994, 1993; Kortelainen
1994; Vakarelov 1991; Thiele 2000, 2001a, b, c; Yao 1998a,
1996; Yao and Lin 1996). Many authors explored and devel-
oped the axiomatic approach in the study of crisp rough set
theory (Comer 1991, 1993; Thiele 2000; Skardowska 1989;
Yang and Li 2006; Yao 1996, 1998a, b). The research of the
axiomatic approach has also been extended to approximation
operators in fuzzy environment (Morsi and Yakout 1998;
Radzikowska and Kerre 2002; Thiele 2001a, b; Wu et al.
2003, 2005; Wu and Zhang 2004; Yang 2007; Mi and Zhang
2004). For example, a set of axioms on fuzzy rough sets was
investigated by Morsi and Yakout (1998). Thiele (2001a, b)
explored axiomatic characterizations of fuzzy rough approx-
imation operators and rough fuzzy approximation operators

withinmodal logic. Furthermore,Wu et al. (2003, 2006),Wu
and Zhang (2002, 2004) studied various generalized fuzzy
approximation operators that are characterized by different
sets of axioms. Recently, the axiomatic approach to approxi-
mation operators has been investigated bymany authors in IF
environment (Zhang et al. 2009, 2012; Zhang 2012a, 2013;
Zhou and Wu 2008, 2009) and hesitant fuzzy environment
(Yang et al. 2014).

Another important concept used to cope with imperfect
and/or imprecise information is hesitant fuzzy (HF) set orig-
inated by Torra and Narukawa (2009), Torra (2010). It is an
intuitively straightforward extension of Zadeh’s fuzzy sets
(Zadeh 1965). Torra and Narukawa (2009), Torra (2010)
extended fuzzy sets to HF sets, because they found that under
a group setting, it is difficult to determine the membership
of an element to a set due to doubts between a few differ-
ent values (Torra 2010). For example, two decision makers
discuss the membership degree of x into A. One wants to
assign 0.4 and the other 0.6, and they cannot persuade with
each other; thus, the membership degrees of x into A can be
represented by {0.4, 0.6}. After it was introduced by Torra,
HF set theory has attracted more and more scholars’ atten-
tion (Rodrguez et al. 2012; Xia and Xu 2011; Xu and Xia
2011). Very recently, the study of hybrid models combining
HF sets with other mathematical structures is also emerging
as an active research topic of HF set theory. By combining
HF set with rough set models, Yang et al. (2014) introduced
the concept of HF rough sets and proposed an axiomatic
approach to the model. Babitha and John (2013) defined a
hybrid model called HF soft sets and investigated some of
their basic properties. They also presented an algorithm to
solve decision-making problems based on HF soft sets.

In many real decision-making problems, due to insuffi-
ciency in available information, it may be difficult for deci-
sion makers to exactly quantify their opinions with a crisp
number, but they can be represented by an interval num-
ber within [0, 1]. Based on this consideration, Chen et al.
(2013a, b) introduced the concept of interval-valued hesitant
fuzzy (IVHF) sets, which permits the membership degrees of
an element to a given set to have a few different interval val-
ues. Since IVHF sets were introduced, IVHF set theory has
been applied in dealing with fuzzy decision-making prob-
lems Chen et al. (2013b), Wei et al. (2013). Very recently,
similarity, distance, and entropy measures for IVHF sets
have been investigated by Farhadinia (2013). On the one
hand, although Yang et al. (2014) proposed HF rough set
theory that can deal with some decision making problems to
exactly quantify decisionmakers’ opinions with a crisp num-
ber, one of themain characteristics of decision-making events
is incomplete and inaccuracy of available data information.
So when facing the problem, the decision makers are easy to
lose information and cannot supply correct policies by using
HF rough set theory. Instead, the basic characteristics of the
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decision-making problems described by an interval number
within [0, 1] can overcome such a situation. So, it is very
natural to extend concepts from HF rough set theory to their
generalizations in IVHF set theory. On the other hand, up to
now, many of researches about IVHF sets are mainly focus-
ing on IVHF set itself. The discussions about fusions of IVHF
set theory and other mathematical structures are rarely found
in the related literatures. Meanwhile, we know that IVHF set
and rough set can both capture particular facets of the impre-
cision. Considering the above facts, we are mainly focusing
on the combination of IVHF set and rough set in this paper.
Because the new hybrid model includes both ingredients of
IVHF set and rough set, it is more flexible and effective to
cope with imperfect and imprecise information than IVHF
set and rough set. Therefore, the research about fusions of
IVHF set and rough set is important and necessary to us. The
purpose of the present paper is to present a new hybrid model
called IVHF rough sets by combining IVHF set and rough
set. Then, we are mainly devoted to investigating axiomatic
approaches to IVHF rough set and its application in medical
diagnosis.

In the next section, we review some basic notions related
to HF sets and IVHF sets. In Sect. 3, we define rough approx-
imations of IVHF sets with respect to arbitrary IVHF approx-
imation spaces. Then, properties of the IVHF rough approx-
imation operators are examined. Further, the connections
between special IVHF relations and IVHF rough approxima-
tion operators are established. Section 4 explores axiomatic
characterizations of the IVHF relation-based approximation
operators in which various classes of IVHF approximation
operators are characterized by different sets of axioms. In
Sect. 5, a general approach to decision making based on
IVHF rough sets over two universes is established under
the background of application in medical diagnosis. Sec-
tion 6 illustrates the principal steps of the proposed deci-
sion method by a numerical example. We then conclude the
paper with a summary and outlook for further research in
Sect. 7.

2 Preliminaries

2.1 Lattice and hesitant fuzzy sets

First, we recall briefly a special complete lattice on [0, 1]2
with its logical operations originated by Cornelis et al. (2003,
2004). These concepts may be seen as generalizations of the
logical connectives in ([0, 1],≤).

Definition 2.1 (Cornelis et al. 2004) Let L I = {[μ, ν] ∈
[0, 1] × [0, 1]|μ ≤ ν} and denote [μ1, ν1] ≤L I [μ2, ν2] ⇔
μ1 ≤ μ2 and ν1 ≤ ν2,∀[μ1, ν1], [μ2, ν2] ∈ L I . Then, the
pair (L I ,≤L I ) is called a complete, bounded lattice.

The operators ∧ and ∨ on (L I ,≤L I ) are defined as fol-
lows:

[μ1, ν1] ∧ [μ2, ν2] = [min{μ1, μ2},min{ν1, ν2}],
[μ1, ν1] ∨ [μ2, ν2] = [max{μ1, μ2},max{ν1, ν2}],
for [μ1, ν1], [μ2, ν2] ∈ L I .

Obviously, a complete lattice on L I has the smallest ele-
ment 0L I = [0, 0] and the greatest element 1L I = [1, 1].
The definitions of fuzzy logical operators can be straightfor-
wardly extended to the interval-valued fuzzy case. The strict
partial order <L I is defined by

[μ1, ν1] <L I [μ2, ν2] ⇔ [μ1, ν1] ≤L I [μ2, ν2]
and [μ1, ν1] �= [μ2, ν2].
Next, we review some basic concepts related to HF sets

introduced by Torra and Narukawa (2009), Torra (2010):

Definition 2.2 (Torra and Narukawa 2009; Torra 2010) Let
U be a nonempty and finite universe of discourse; a HF set
Ã on U is in terms of a function h Ã(x) that when applied to
U returns a subset of [0, 1], that is,
Ã = {〈x, h Ã(x)〉|x ∈ U },
where h Ã(x) is a set of some different values in [0, 1], rep-
resenting the possible membership degrees of the element
x ∈ U to Ã.

For convenience, we call h Ã(x) a HF element.

Example 2.3 Let U = {x1, x2, x3} be a universe set,
h Ã(x1) = {0.7, 0.4, 0.5},h Ã(x2) = {0.2, 0.4}, andh Ã(x3)=
{0.3, 0.1, 0.7, 0.6}, be the HF elements of xi (i = 1, 2, 3) to
a set Ã, respectively. Then, Ã can be considered as a HF set,
that is,

Ã = {〈x1, {0.7, 0.4, 0.5}〉, 〈x2, {0.2, 0.4}〉,
〈x3, {0.3, 0.1, 0.7, 0.6}〉}.

2.2 Interval-valued hesitant fuzzy sets

2.2.1 Concept of interval-valued hesitant fuzzy sets

In the subsection, we review some basic concepts related to
IVHF sets introduced by Chen et al. (2013a).

Definition 2.4 (Chen et al. 2013a) LetU be a nonempty and
finite universe of discourse, and Int[0, 1] be the set of all
closed subintervals of [0, 1]. An IVHF set A onU is defined
as

A = {〈x, hA(x)〉|x ∈ U },
where hA(x) : U → Int[0, 1] denotes all possible interval-
valued membership degrees of the element x ∈ U to A.
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For convenience, we call hA(x) an IVHF element. The set
of all IVHF sets on U is denoted by IVHF(U ).

Remark 2.5 (1) From Definition 2.4, we can note that an
IVHF set A can be seen as an interval-valued fuzzy set if
there is only one element in hA(x), which indicates that
interval-valued fuzzy sets are a special type of IVHF sets.

(2) It should be noted that when the upper and lower limits
of the interval values in hA(x) are identical, IVHF set
A degenerates to HF set Ã, indicating that the latter is a
special case of the former.

Example 2.6 Let U = {x1, x2} be a universe set, hA(x1) =
{[0.2, 0.3], [0.4, 0.6], [0.5, 0.6]} and hA(x2) = {[0.3, 0.5],
[0.4, 0.7]} be the IVHF elements of xi (i = 1, 2) to a set A,
respectively. Then, A can be considered as an IVHF set, that
is,

A = {〈x1, {[0.2, 0.3], [0.4, 0.6], [0.5, 0.6]}〉,
〈x2, {[0.3, 0.5], [0.4, 0.7]}〉}.

Here,wedefine several special IVHFsets as follows:∀A ∈
IVHF(U ),

1. A is referred to as an empty IVHF set if and only if
hA(x) = {[0, 0]} for all x ∈ U . In that case, the empty
IVHF set is denoted by ∅;

2. A is referred to as a full IVHF set if and only if hA(x) =
{[1, 1]} for all x ∈ U . In that case, the full IVHF set is
denoted by U;

3. A is referred to as a constant IVHF set if and only
if hA(x) = {[aL1 , aU1 ], [aL2 , aU2 ], . . . , [aLm, aUm ]} for all
x ∈ U , where [aLi , aUi ] ∈ Int[0, 1], i = 1, . . . ,m, i.e.,
hA(x) ∈ 2Int[0,1]. In this case, the constant IVHF set is

denoted by ̂[aL1,...,m, aU1,...,m].

Meanwhile, for any y ∈ U , several special IVHF sets:
IVHF singleton set [1, 1]y , its complement [1, 1]U−y , and
IVHF mediocre set [1, 1]M are, respectively, defined as fol-
lows: For x ∈ U

h[1,1]y (x) =
{

{[1, 1]}, x = y,

{[0, 0]}, x �= y.

h[1,1]U−{y}(x) =
{

{[0, 0]}, x = y,

{[1, 1]}, x �= y.

h[1,1]M (x) =
{

{[1, 1]}, x ∈ M,

{[0, 0]}, otherwise.

2.2.2 Operations of interval-valued hesitant fuzzy sets

Given two IVHF sets represented by A and B, Chen et al.
(2013a) defined some operations on them as follows:

Definition 2.7 Let U be a nonempty and finite universe of
discourse. Suppose that A and B are two IVHF sets, namely,
∀A, B ∈ IVHF(U ), then, for all x ∈ U

(1) the complement of A, denoted by A
c, is given by

hAc(x) =∼ hA(x) = {[1 − γ +, 1 − γ −]|γ ∈ hA(x)};

(2) the union of A and B, denoted by A � B, is given by

hA�B(x) = hA(x) � hB(x)

= {[γ − ∨ μ−, γ + ∨ μ+]|γ ∈ hA(x), μ ∈ hB(x)};

(3) the intersection of A and B, denoted by A � B, is given
by

hA�B(x) = hA(x) � hB(x)

= {[γ − ∧ μ−, γ + ∧ μ+]|γ ∈ hA(x), μ ∈ hB(x)};

(4) the ring sum of A and B, denoted by A � B, is given by

hA�B(x) = hA(x) ⊕ hB(x)

= {[γ −+μ−−γ −μ−, γ ++μ+ − γ +μ+]|γ ∈hA(x),

μ∈hB(x)};

(5) the ring product of A and B, denoted by A � B, is given
by

hA�B(x) = hA(x) ⊗ hB(x)

= {[γ −μ−, γ +μ+]|γ ∈ hA(x), μ ∈ hB(x)}.

It should be noticed that inDefinition 2.7, operations�,�,
c,�, and � are defined on IVHF sets, respectively, while
operations �,�, ∼,⊕, and ⊗ are defined on the correspond-
ing IVHF elements, respectively.

Further,Chen et al. (2013a) established some relationships
for the above operations on IVHF sets and IVHF elements.

Theorem 2.8 Let U be a nonempty and finite universe of
discourse. Suppose that A and B are two IVHF sets; then,
we have

(1) (A�B)c = A
c �B

c,∼ (hA(x)�hB(x)) = (∼ hA(x))�
(∼ hB(x)),

(2) (A�B)c = A
c �B

c,∼ (hA(x)�hB(x)) = (∼ hA(x))�
(∼ hB(x)),

(3) (A�B)c = A
c�B

c,∼ (hA(x)⊕hB(x)) = (∼ hA(x))⊗
(∼ hB(x)),

(4) (A � B)c = A
c � B

c, ∼ (hA(x) ⊗ hB(x)) = (∼
hA(x)) ⊕ (∼ hB(x)).
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Example 2.9 Let A and B be two IVHF sets. Suppose that
hA(x) = {[0.5, 0.6], [0.3, 0.8], [0.3, 0.6]} and hB(x) =
{[0.4, 0.5], [0.4, 0.7]} are two IVHF elements of x to A and
B, respectively. By the operational laws of IVHF elements
given in Definition 2.7, we have

hA�B(x) = hA(x) � hB(x)

= {[γ − ∨ μ−, γ + ∨ μ+]|γ ∈ hA(x), μ ∈ hB(x)}
= {[0.5 ∨ 0.4, 0.6 ∨ 0.5],

[0.5 ∨ 0.4, 0.6 ∨ 0.7], [0.3 ∨ 0.4, 0.8 ∨ 0.5],
[0.3 ∨ 0.4, 0.8 ∨ 0.7], [0.3 ∨ 0.4, 0.6 ∨ 0.5],
[0.3 ∨ 0.4, 0.6 ∨ 0.7]}

= {[0.5, 0.6], [0.5, 0.7],
[0.4, 0.8], [0.4, 0.8], [0.4, 0.6], [0.4, 0.7]},

hA�B(x) = hA(x) � hB(x)

= {[γ − ∧ μ−, γ + ∧ μ+]|γ ∈ hA(x), μ ∈ hB(x)}
= {[0.5 ∧ 0.4, 0.6 ∧ 0.5],

[0.5 ∧ 0.4, 0.6 ∧ 0.7], [0.3 ∧ 0.4, 0.8 ∧ 0.5],
[0.3 ∧ 0.4, 0.8 ∧ 0.7], [0.3 ∧ 0.4, 0.6 ∧ 0.5],
[0.3 ∧ 0.4, 0.6 ∧ 0.7]}

= {[0.4, 0.5], [0.4, 0.6], [0.3, 0.5],
[0.3, 0.7], [0.3, 0.5], [0.3, 0.6]},

hA�B(x) = hA(x) ⊕ hB(x)

= {[γ − + μ− − γ −μ−, γ + + μ+ − γ +μ+]|γ
∈ hA(x), μ ∈ hB(x)}

= {[0.5 + 0.4 − 0.5 · 0.4, 0.6 + 0.5 − 0.6 · 0.5],
[0.5 + 0.4 − 0.5 · 0.4, 0.6 + 0.7 − 0.6 · 0.7],
[0.3 + 0.4 − 0.3 · 0.4, 0.8 + 0.5 − 0.8 · 0.5],
[0.3 + 0.4 − 0.3 · 0.4, 0.8 + 0.7 − 0.8 · 0.7],
[0.3 + 0.4 − 0.3 · 0.4, 0.6 + 0.5 − 0.6 · 0.5],
[0.3 + 0.4 − 0.3 · 0.4, 0.6 + 0.7 − 0.6 · 0.7]}

= {[0.7, 0.8], [0.7, 0.88], [0.58, 0.9],
[0.58, 0.94], [0.58, 0.8], [0.58, 0.88]},

hA�B(x) = hA(x) ⊗ hB(x)

= {[γ −μ−, γ +μ+]|γ ∈ hA(x), μ ∈ hB(x)}
= {[0.5 · 0.4, 0.6 · 0.5],

[0.5 · 0.4, 0.6 · 0.7], [0.3 · 0.4, 0.8 · 0.5],
[0.3 · 0.4, 0.8 · 0.7], [0.3 · 0.4, 0.6 · 0.5],
[0.3 · 0.4, 0.6 · 0.7]}

= {[0.2, 0.3], [0.2, 0.42], [0.12, 0.4],
[0.12, 0.56], [0.12, 0.3], [0.12, 0.42]}.

It is noted that the number of interval values in different
IVHF elements may be different and the interval values are

usually out of order. In order to rank the interval values, Xu
and Da (2002) gave the definition as follows:

Definition 2.10 (Xu and Da 2002) Let a = [aL , aU ], and
b = [bL , bU ]; then, the degree of possibility of a ≥ b is
defined as

p(a ≥ b) = max

{
1 − max

(
bU − aL

aU − aL + bU − bL
, 0

)
, 0

}
(1)

Similarly, the degree of possibility of b ≥ a is defined
as:

p(b ≥ a) = max

{
1 − max

(
aU − bL

aU − aL + bU − bL
, 0

)
, 0

}
(2)

Equations (1) and (2) are proposed in order to compare two
interval values and to rank all the input arguments. Further
details could be found in Xu and Da (2002).

Suppose that l(hA(x)) stands for the number of interval
values in the IVHFelement hA(x). To operate correctly,Chen
et al. (2013a) gave the following assumptions:

(A1) All the elements in each IVHF element hA(x) are
arranged in increasing order by Eq. (1). Let hσ(k)

A
(x) stands

for the kth largest interval numbers in the IVHF element
hA(x). In this case, hσ(k)

A
(x) is denoted by

hσ(k)
A

(x) =
[
hσ(k)L

A
(x), hσ(k)U

A
(x)

]
,

wherehσ(k)L
A

(x)= inf hσ(k)
A

(x) andhσ(k)U
A

(x)=suphσ(k)
A

(x),

respectively, represent the lower and upper limits of hσ(k)
A

(x).
(A2) If, for two IVHFelementshA(x), hB(x), l(hA(x)) �=

l(hB(x)), then l = max{l(hA(x)), l(hB(x))}. To have a cor-
rect comparison, the two IVHF elements hA(x) and hB(x)
should have the same length l. If there are fewer elements
in hA(x) than in hB(x), an extension of hA(x) should be
considered optimistically by repeating its maximum element
until it has the same length with hB(x).

From Example 2.9, we can see that the dimension of the
derived IVHF element may increase as the addition or multi-
plicative operations are done, which may increase the com-
plexity of the calculations. To overcome the difficulty, we
develop some new methods to decrease the dimension of
the derived IVHF element when operating the IVHF ele-
ments on the premise of assumptions given by Chen et
al. (2013a). The adjusted operational laws are defined as
follows.

Definition 2.11 Let U be a nonempty and finite universe of
discourse. Suppose that A and B are two IVHF sets, namely
∀A, B ∈ IVHF(U ), then, for all x ∈ U
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(1) the complement of A, denoted by A
c, is given by

hAc(x) =∼ hA(x)

=
{[

1 − hσ(k)U
A

(x), 1−hσ(k)L
A

(x)
]∣∣∣ k=1, 2, . . . , l

}
,

(2) the union of A and B, denoted by A � B, is given by

hA�B(x) = hA(x) � hB(x)

=
{[

hσ(k)L
A

(x) ∨ hσ(k)L
B

(x),

hσ(k)U
A

(x) ∨ hσ(k)U
B

(x)
]∣∣∣ k = 1, 2, . . . , l

}
,

(3) the intersection of A and B, denoted by A � B, is given
by

hA�B(x) = hA(x) � hB(x) =
{[

hσ(k)L
A

(x) ∧ hσ(k)L
B

(x),

hσ(k)U
A

(x) ∧ hσ(k)U
B

(x)
]∣∣∣ k = 1, 2, . . . , l

}
,

(4) the ring sum of A and B, denoted by A � B, is given by

hA�B(x) = hA(x) ⊕ hB(x)

=
{[

hσ(k)L
A

(x) + hσ(k)L
B

(x) − hσ(k)L
A

(x)hσ(k)L
B

(x),

hσ(k)U
B

(x) + hσ(k)U
B

(x)

−hσ(k)U
A

(x)hσ(k)U
B

(x)
]∣∣∣ k = 1, 2, . . . , l

}
,

(5) the ring product of A and B, denoted by A � B, is given
by

hA�B(x) = hA(x) ⊗ hB(x) =
{[

hσ(k)L
A

(x)hσ(k)L
B

(x),

hσ(k)U
A

(x)hσ(k)U
B

(x)
]∣∣∣ k = 1, 2, . . . , l

}
,

where l = max{l(hA(x)), l(hB(x))}.

It is noted that Theorem 2.8 is still valid for the new oper-
ations above.

Example 2.12 Reconsider Example 2.9. By Eq. (1) and the
assumptions given by Chen et al. (2013a), then hA(x) =
{[0.3, 0.6], [0.3, 0.8], [0.5, 0.6]} and hB(x) = {[0.4, 0.5],
[0.4, 0.7], [0.4, 0.7]}. By virtue of Definition 2.11, we have

hA�B(x) = hA(x) � hB(x)

=
{[

hσ(k)L
A

(x) ∨ hσ(k)L
B

(x), hσ(k)U
A

(x)

∨hσ(k)U
B

(x)
]∣∣∣ k = 1, 2, 3

}
= {[0.3 ∨ 0.4, 0.6 ∨ 0.5], [0.3 ∨ 0.4, 0.8 ∨ 0.7],

[0.5 ∨ 0.4, 0.6 ∨ 0.7]}

= {[0.4, 0.6], [0.4, 0.8], [0.5, 0.7]},
hA�B(x) = hA(x) � hB(x) =

{[
hσ(k)L

A
(x) ∧ hσ(k)L

B
(x),

hσ(k)U
A

(x) ∧ hσ(k)U
B

(x)
]∣∣∣ k = 1, 2, 3

}
= {[0.3 ∧ 0.4, 0.6 ∧ 0.5],

[0.3 ∧ 0.4, 0.8 ∧ 0.7], [0.5 ∧ 0.4, 0.6 ∧ 0.7]}
= {[0.3, 0.5], [0.3, 0.7], [0.4, 0.6]},

hA�B(x) = hA(x) ⊕ hB(x) =
{[

hσ(k)L
A

(x) + hσ(k)L
B

(x)

− hσ(k)L
A

(x)hσ(k)L
B

(x), hσ(k)U
B

(x) + hσ(k)U
B

(x)

−hσ(k)U
A

(x)hσ(k)U
B

(x)
]∣∣∣ k = 1, 2, 3

}
= {[0.3 + 0.4 − 0.3 · 0.4, 0.6 + 0.5 − 0.6 · 0.5],

[0.3 + 0.4 − 0.3 · 0.4, 0.8 + 0.7 − 0.8 · 0.7],
[0.5 + 0.4 − 0.5 · 0.4, 0.6 + 0.7 − 0.6 · 0.7]}

= {[0.58, 0.8], [0.58, 0.94], [0.7, 0.88]},
hA�B(x) = hA(x) ⊗ hB(x) =

{[
hσ(k)L

A
(x)hσ(k)L

B
(x),

hσ(k)U
A

(x)hσ(k)U
B

(x)
]∣∣∣ k = 1, 2, 3

}
= {[0.3 · 0.4, 0.6 · 0.5], [0.3 · 0.4, 0.8 · 0.7],

[0.5 · 0.4, 0.6 · 0.7]}
= {[0.12, 0.3], [0.12, 0.56], [0.2, 0.42]}.

Comparing with Examples 2.9 and 2.12, we can note that
the adjusted operational laws given in Definition 2.11 indeed
decrease the dimension of the derived IVHF element when
operating the IVHF elements, which brings grievous advan-
tage for the practicing application.

In this study, unless otherwise stated, the comparisons and
operations on IVHF elements are carried out by using Defin-
ition 2.11 and the assumptions given by Chen et al. (2013a).

In what follows, we will introduce the concept of IVHF
subset to compare two IVHF sets.

Definition 2.13 Let U be a nonempty and finite universe of
discourse. For all A, B ∈ IVHF(U ), A is said to be an IVHF
subset of B, if hA(x) � hB(x) holds for any x ∈ U such that

hA(x) � hB(x) ⇔ [hσ(k)L
A

(x), hσ(k)U
A

(x)]
≤L I [hσ(k)L

B
(x), hσ(k)U

B
(x)] ⇔ hσ(k)L

A
(x)

≤ hσ(k)L
B

(x), hσ(k)U
A

(x) ≤ hσ(k)U
B

(x), k=1, 2, . . . , l.

We denote it by A � B.

Obviously, we can note that � is reflexive, transitive, and
antisymmetric on IVHF(U).
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Remark 2.14 If the upper and lower limits of all the interval
values in the IVHF elements hA(x) and hB(x) are identical,
it should be noted that A, B degenerate to two HF sets. In
such case, Definition 2.13 will degenerate to the form such
that

A � B ⇔ hσ(k)
A

(x) ≤ hσ(k)
B

(x), ∀x ∈ U,

where hσ(k)
A

(x) and hσ(k)
B

(x) stand for the kth largest values
in the HFEs hA(x) and hB(x), respectively. In that case, the
notation � is reflexive, transitive, and antisymmetric. That
is, A � B, B � A ⇒ A = B.

Yang et al. (2014) proposed the concept of the HF subset.
Subsequently, they pointed out that the notation � is not
necessarily antisymmetric. However, when IVHF sets A, B

degenerate to two HF sets, the notation� given in Definition
2.13 is antisymmetric. Therefore, the comparison of two HF
sets in Definition 2.13 is more reasonable than the one by
Definition 4 in Yang et al. (2014).

3 Construction of interval-valued hesitant fuzzy rough
approximation operators

It is generally known that Pawlak’s rough set model is based
on the equivalence relation. However, the equivalence rela-
tion is a very stringent condition that could limit the appli-
cation of rough sets in practical problems. Therefore, many
authors have generalized the notion of approximation oper-
ators by using non-equivalence binary relations. This has
lead to various other approximation operators, such as gen-
eralized rough set approximation operators in fuzzy envi-
ronment, intuitionistic fuzzy rough approximation operators
induced from an arbitrary intuitionistic fuzzy relation, and
so on. HF set is a generalization of the classical fuzzy set
by returning a family of the membership degrees for each
object in the universe. Yang et al. (2014) introduced the
concept of HF rough sets by combining HF set with rough
set models. Just like HF sets, HF rough sets can also be
applied to multiple attribute decision making. However, due
to insufficiency in available information, it may be diffi-
cult for decision makers to exactly quantify their opinions
with a crisp number in HF environment. To overcome the
difficulty, in the section, we will extend HF rough sets to
the case of IVHF and construct IVHF rough approximation
operators.

3.1 Interval-valued hesitant fuzzy rough sets

In the subsection, inspired by the concept of the HF relation
in Yang et al. (2014), we will further extend the HF relation
into IVHF environment and first introduce the concept of
an IVHF relation which is used to construct IVHF rough
approximation operators.

Definition 3.1 Suppose thatU is a nonempty and finite uni-
verse of discourse. An IVHF relation R on U is an IVHF
subset of U ×U , namely R is given by

R = {〈(x, y), hR(x, y)〉|(x, y) ∈ U ×U },
where hR : U × U → Int[0, 1] is a set of interval values in
Int[0, 1], denoting the possible membership degrees of the
relationships between x and y.

For convenience, we denote by IVHFR(U×U ) the family
of all IVHF relations on U .

Yang et al. (2014) first introduced several special HF rela-
tions and pointed out that a HF relation having special prop-
erty, such as reflexivity, symmetry, and transitivity, can be
characterized by the essential properties of the lower and
upper HF rough approximation operators. In what follows,
following the line of exploration in Yang et al. (2014), we
intend to further extend several special HF relations into
IVHF environment and propose the concepts of several spe-
cial IVHF relations. What we could do are to establish the
connection between special IVHF relations and properties of
IVHF approximation operators.

Definition 3.2 Let R ∈ IVHFR(U ×U ).

(1) R is serial, if for any x ∈ U , there exists a y ∈ U such
that hR(x, y) = {[1, 1]};

(2) R is reflexive, if hR(x, x) = {[1, 1]} for all x ∈ U ;
(3) R is symmetric, if for all (x, y) ∈ U × U, hR(x, y) =

hR(y, x);
(4) R is transitive if, hR(x, y) � hR(y, z) � hR(x, z) for all

(x, z) ∈ U ×U.

Alternatively, R is transitive if the following conditions
are satisfied:

hσ(k)L
R

(x, y) ∧ hσ(k)L
R

(y, z) ≤ hσ(k)L
R

(x, z),

hσ(k)U
R

(x, y)∧hσ(k)U
R

(y, z)≤hσ(k)U
R

(x, z), k=1, 2, . . . , l,

with l = max{l(hR(x, y)), l(hR(y, z)), l(hR(x, z)).}
In modal logic, different systems can be constructed by

using various types of binary relations. So various types of
IVHF relations can construct different systems inmodal logic
so that it is possible to construct different rough set mod-
els with respect to various modal logic systems. The classic
rough set model may be extended by using an arbitrary IVHF
relation in the same way modal operators are defined. This
is something we are working on for the future.

In the following, IVHF rough approximation operators
will be introduced and induced from an IVHF approximation
space.

Definition 3.3 Let U be a nonempty and finite universe of
discourse and R ∈ IVHFR(U ×U ); the pair (U, R) is called
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an IVHF approximation space. For any A ∈ IVHF(U ), the
lower and upper approximations ofAwith respect to (U, R),
denoted by R(A) and R(A), are two IVHF sets and are,
respectively, defined as follows:

R(A) = {〈x, hR(A)(x)〉|x ∈ U }, (3)

R(A) = {〈x, h
R(A)

(x)〉|x ∈ U }, (4)

where

hR(A)(x) = �y∈U {hRc(x, y) � hA(y)},
h

R(A)
(x) = �y∈U {hR(x, y) � hA(y)}.

R(A) and R(A) are, respectively, called the lower and
upper approximations of A with respect to (U, R). The pair
(R(A), R(A)) is called the IVHF rough set of A with respect
to (U, R), and R, R : IVHF(U ) → IVHF(U ) are referred
to as lower and upper IVHF rough approximation operators,
respectively.

Clearly, the above definition implies equivalences of the
following form:

hR(A)(x) =
⎧⎨
⎩
⎡
⎣∧

y∈U

(
hσ(k)L

Rc (x, y) ∨ hσ(k)L
A

(y)
)

,

∧
y∈U

(
hσ(k)U

Rc (x, y) ∨ hσ(k)U
A

(y)
)⎤⎦

∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭ ,

h
R(A)

(x) =
⎧⎨
⎩
⎡
⎣∨

y∈U

(
hσ(k)L

R
(x, y) ∧ hσ(k)L

A
(y)

)
,

∨
y∈U

(
hσ(k)U

R
(x, y) ∧ hσ(k)U

A
(y)

)⎤⎦
∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭ ,

where l = max{l(hR(x, y)), l(hA(y))}.
Remark 3.4 When the upper and lower limits of all the inter-
val values in the IVHF elements hR(x, y) and hA(y) are
respectively identical, that is, IVHF elements degenerate to
HF elements, the IVHF rough set (R(A), R(A)) degenerates
to a HF rough set introduced by Yang et al. (2014) on the
basis of Definition 2.11 and the assumptions given by Chen
et al. (2013a), which indicates that HF rough sets are a special
type of IVHF rough sets.

Example 3.5 We assume that if IVHF elements degenerate
to HF elements, the comparisons and operations on HF ele-

ments are still carried out by using Definition 2.11 and the
assumptions given by Chen et al. (2013a).

Let (U, R) be a HF approximation space, where U =
{x1, x2, x3}. Suppose that there are three judges who are
invited to evaluate the possible membership degrees of the
relationships between xi and x j with a crisp number. In that
case, R is a HF relation defined by the matrix as follows:

R =
⎛
⎝

x1 x2 x3
x1 {1} {0.4, 0.7} {0.6, 0.8}
x2 {0.4, 0.7} {1} {0.3, 0.7, 0.8}
x3 {0.6, 0.8} {0.3, 0.7, 0.8} {1}

⎞
⎠

For example, we cannot present the precise membership
degrees of the relationships between x2 and x1, but we have
a certain hesitancy in providing two possible crisp numbers
0.4 and 0.7 to depict the possible membership degrees of the
relationships between x2 and x1.

Let a HF set

A = {〈x1, {0.3, 0.5}〉, 〈x2, {0.4, 0.6}〉, 〈x3, {0.5, 0.6, 0.9}〉};

then by the definition of HF approximation operators intro-
duced by Yang et al. (2014) and the above assumption, we
have

hR(A)(x1) = {0.3, 0.5, 0.5}, hR(A)(x2) = {0.3, 0.6, 0.6},
hR(A)(x3) = {0.3, 0.5, 0.5};

h
R(A)

(x1) = {0.5, 0.6, 0.8}, h
R(A)

(x2) = {0.4, 0.6, 0.8},
h

R(A)
(x3) = {0.5, 0.6, 0.9}.

Hence, we can conclude that

R(A) = {〈x1, {0.3, 0.5, 0.5}〉, 〈x2, {0.3, 0.6, 0.6}〉,
〈x3, {0.3, 0.5, 0.5}〉},

and

R(A) = {〈x1, {0.5, 0.6, 0.8}〉, 〈x2, {0.4, 0.6, 0.8}〉,
〈x3, {0.5, 0.6, 0.9}〉}.

However, as wementioned above that due to insufficiency
in available information, it may be difficult for decision
makers to exactly quantify their opinions with a crisp num-
ber. Instead, the basic characteristics of the decision-making
problems are described by an interval number within [0, 1].
In that case, R is an IVHF relation instead of a HF relation
and is defined by the matrix as follows:

R =
x1 x2 x3

x1
x2
x3

⎛
⎝ {[1, 1]}

{[0.4, 0.6], [0.7, 0.8]}
{[0.5, 0.7], [0.6, 0.9]}

{[0.4, 0.6], [0.7, 0.8]}
{[1, 1]}

{[0.3, 0.4], [0.5, 0.8], [0.7, 0.8]}

{[0.5, 0.7], [0.6, 0.9]}
{[0.3, 0.4], [0.5, 0.8], [0.7, 0.8]}

{[1, 1]}

⎞
⎠
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For example, due to insufficiency in available information,
we cannot present the precise membership degrees of the
relationships between x2 and x1, but we have a certain hesi-
tancy in providing two possible interval values [0.4,0.6] and
[0.7,0.8] to depict the possible membership degrees of the
relationships between x2 and x1.

If an IVHF set

A = {〈x1, {[0.3, 0.5], [0.4, 0.6]}〉, 〈x2, {[0.3, 0.4], [0.3, 0.7]}〉,
〈x3, {[0.5, 0.5], [0.5, 0.7], [0.8, 0.9]}〉},

then by Definition 3.3, we have

hR(A)(x1) = �y∈U {hRc(x1, y) � hA(y)}
= ({[0, 0]} � {[0.3, 0.5], [0.4, 0.6]})

� ({[0.2, 0.3], [0.4, 0.6]} � {[0.3, 0.4], [0.3, 0.7]})
� ({[0.1, 0.4], [0.3, 0.5]} � {[0.5, 0.5],
[0.5, 0.7], [0.8, 0.9]})

= {[0.3, 0.5], [0.4, 0.6]} � {[0.3, 0.4], [0.4, 0.7]}
� {[0.5, 0.5], [0.5, 0.7], [0.8, 0.9]}

= {[0.3, 0.4], [0.4, 0.6], [0.4, 0.6]}.

Similarly, we can obtain

hR(A)(x2) = {[0.3, 0.4], [0.3, 0.6], [0.3, 0.6]},
hR(A)(x3) = {[0.3, 0.4], [0.3, 0.6], [0.4, 0.6]};
h

R(A)
(x1) = {[0.5, 0.5], [0.5, 0.7], [0.8, 0.9]},

h
R(A)

(x2) = {[0.3, 0.5], [0.5, 0.7], [0.7, 0.8]},
h

R(A)
(x3) = {[0.5, 0.5], [0.5, 0.7], [0.8, 0.9]}.

Hence, we can conclude that

R(A) = {〈x1, {[0.3, 0.4], [0.4, 0.6], [0.4, 0.6]}〉,
〈x2, {[0.3, 0.4], [0.3, 0.6], [0.3, 0.6]}〉,
〈x3, {[0.3, 0.4], [0.3, 0.6], [0.4, 0.6]}〉},

and

R(A) = {〈x1, {[0.5, 0.5], [0.5, 0.7], [0.8, 0.9]}〉,
〈x2, {[0.3, 0.5], [0.5, 0.7], [0.7, 0.8]}〉,
〈x3, {[0.5, 0.5], [0.5, 0.7], [0.8, 0.9]}〉}.

Comparing with the results of HF approximation oper-
ators and IVHF approximation operators, we note that the
available information in IVHF rough sets is more compre-
hensive than HF rough sets, and HF rough approximation
operators are indeed a special type of IVHF rough approxi-
mation operators.

Remark 3.6 In Definition 3.3, if there is only one element
in the IVHF elements hR(x, y) and hA(y), respectively, we

can note that the IVHF rough set (R(A), R(A)) degenerates
to an interval-valued fuzzy rough set (Sun et al. 2008). That
is to say, IVHF rough sets in Definition 3.3 are an extension
of interval-valued fuzzy rough sets proposed by Sun et al.
(2008).

Example 3.7 Let (U, R) be an interval-valued fuzzy approx-
imation space, whereU = {x1, x2, x3}. Suppose that there is
only a expert who is invited to evaluate the possible member-
ship degrees of the relationships between xi and x j with an
interval number within [0, 1]. In that case, R is an interval-
valued fuzzy relation defined by the matrix as follows:

R =
x1 x2 x3

x1
x2
x3

⎛
⎝ [1, 1]

[0.7, 0.8]
[0.6, 0.9]

[0.7, 0.8]
[1, 1]

[0.3, 0.4]

[0.6, 0.9]
[0.3, 0.4]

[1, 1]

⎞
⎠

If an interval-valued fuzzy set

A = {〈x1, [0.4, 0.6]〉, 〈x2, [0.3, 0.4]〉, 〈x3, [0.5, 0.7]〉},

then by the definition of interval-valued fuzzy approximation
operators in Sun et al. (2008), we obtain

R(A)(x1) = [0.3, 0.4], R(A)(x2) = [0.3, 0.4],
R(A)(x3) = [0.4, 0.6];

R(A)(x1) = [0.5, 0.7], R(A)(x2) = [0.4, 0.6],
R(A)(x3) = [0.5, 0.7];

Hence, we can conclude that

R(A) = {〈x1, [0.3, 0.4]〉, 〈x2, [0.3, 0.4]〉, 〈x3, [0.4, 0.6]〉},

and

R(A) = {〈x1, [0.5, 0.7]〉, 〈x2, [0.4, 0.6]〉, 〈x3, [0.5, 0.7]〉}.

However, in decision-making problems, multiple factors
should be considered and the evaluation of these factors are
often carried out by several experts. So it is unreasonable
to invite only a expert to supply the policy with an interval
number in decision-making events. Thus, we should need
several experts participating inmaking the policy in decision-
making events. Only in this way may the decision results be
more reasonable and accurate. In that case, R is an IVHF
relation and is given in Example 3.5 above. Meanwhile, A is
an IVHF set defined in Example 3.5.

Thus, we have

R(A) = {〈x1, {[0.3, 0.4], [0.4, 0.6], [0.4, 0.6]}〉,
〈x2, {[0.3, 0.4], [0.3, 0.6], [0.3, 0.6]}〉,
〈x3, {[0.3, 0.4], [0.3, 0.6], [0.4, 0.6]}〉},
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and

R(A) = {〈x1, {[0.5, 0.5], [0.5, 0.7], [0.8, 0.9]}〉,
〈x2, {[0.3, 0.5], [0.5, 0.7], [0.7, 0.8]}〉,
〈x3, {[0.5, 0.5], [0.5, 0.7], [0.8, 0.9]}〉}.

From the above discussions, it should be noted that IVHF
rough sets in Definition 3.3 contain more information than
interval-valued fuzzy rough sets and are indeed an extension
of interval-valued fuzzy rough sets proposed by Sun et al.
(2008).

Remark 3.8 If there is only one interval value in the IVHF
elements hR(x, y) and hA(y)whose the upper and lower lim-
its are identical, the IVHF rough set (R(A), R(A)) in Defin-
ition 3.3 degenerates to a classical fuzzy rough set presented
byWu and Zhang (2004). That is, fuzzy rough sets presented
by Wu and Zhang (2004) are a special case of IVHF rough
sets defined by us.

Example 3.9 Let (U, R) be a fuzzy approximation space,
where U = {x1, x2, x3}. Suppose that there is only a expert
who is invited to evaluate the possible membership degrees
of the relationships between xi and x j with a crisp number.
In that case, R is a fuzzy relation defined by the matrix as
follows:

R =
x1 x2 x3

x1
x2
x3

⎛
⎝ 1

0.4
0.8

0.4
1
0.7

0.8
0.7
1

⎞
⎠

If a fuzzy set

A = 0.5

x1
+ 0.4

x2
+ 0.9

x3
,

then by the definition of fuzzy approximation operators in
Wu and Zhang (2004), we obtain

R(A)(x1) = 0.5, R(A)(x2) = 0.4, R(A)(x3) = 0.4;
R(A)(x1) = 0.8, R(A)(x2) = 0.7, R(A)(x3) = 0.9;

Hence, we can conclude that

R(A) = 0.5

x1
+ 0.4

x2
+ 0.4

x3
, R(A) = 0.8

x1
+ 0.7

x2
+ 0.9

x3
.

Now, we reconsider this example. On the one hand, it is
unreasonable to invite only a expert to make the policy in
decision-making events. The number of experts is added to
make the decision result more objective and comprehensive.
On the other hand, due to the shortage of the experts’ experi-
ence and available information, it may be difficult for experts
to exactly quantify their opinions with a crisp number, but
they can be represented by an interval number within [0, 1].
Considering these facts, it is necessary for us to extend a fuzzy
relation to an IVHF relation. In that case, R is an IVHF rela-
tion and is defined in Example 3.5 above. Meanwhile, A is
an IVHF set defined in Example 3.5.

By Example 3.5, we have

R(A) = {〈x1, {[0.3, 0.4], [0.4, 0.6], [0.4, 0.6]}〉,
〈x2, {[0.3, 0.4], [0.3, 0.6], [0.3, 0.6]}〉,
〈x3, {[0.3, 0.4], [0.3, 0.6], [0.4, 0.6]}〉},

and

R(A) = {〈x1, {[0.5, 0.5], [0.5, 0.7], [0.8, 0.9]}〉,
〈x2, {[0.3, 0.5], [0.5, 0.7], [0.7, 0.8]}〉,
〈x3, {[0.5, 0.5], [0.5, 0.7], [0.8, 0.9]}〉}.

Comparing with the results of two type approximation
operators, we can see that the available information in IVHF
rough sets is more comprehensive and objective than fuzzy
rough sets, and fuzzy rough sets presented byWu and Zhang
(2004) are indeed a special case of IVHF rough sets in Defi-
nition 3.3.

Theorem 3.10 Let (U, R) be an IVHFapproximation space.
Then, the lower and upper IVHF rough approximation oper-
ators induced from (U, R) satisfy the following properties:
∀A, B ∈ IVHF(U ),

(IVHFL1) R(Ac) = (R(A))c, (IVHFU1) R(Ac) = (R(A))c,

(IVHFL2) A � B ⇒ R(A) � R(B), (IVHFU2) A � B ⇒ R(A) � R(B),

(IVHFL3) R(A � B) = R(A) � R(B), (IVHFU3) R(A � B) = R(A) � R(B),

(IVHFL4) R(A � B) � R(A) � R(B), (IVHFU4) R(A � B) � R(A) � R(B),

(IVHFL5) R

(
A � ̂

[
aL1,...,m, aU1,...,m

])
= R(A) � ̂

[
aL1,...,m, aU1,...,m

]
,

(IVHFU5) R

(
A � ̂

[
aL1,...,m, aU1,...,m

])
= R(A) � ̂

[
aL1,...,m, aU1,...,m

]
,

(IVHFL6) R(U) = U, (IVHFU6) R(∅) = ∅.

Proof Since IVHF rough approximation operators R and R

are dual to each other, we only investigate the case of R.
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(IVHFL1) By Eq. (3) and Theorem 2.8, we obtain

hR(Ac)(x) = �y∈U {hRc(x, y) � hAc(y)}
= �y∈U {(∼ hR(x, y)) � (∼ hA(y))}
= �y∈U {∼ (hR(x, y) � hA(y))}
=∼ (�y∈U {(hR(x, y) � hA(y)}) = h

(R(A))c
(x),

which implies that

R(Ac) = (R(A))c.

(IVHFL2) Since A � B, then by Definition 2.13, we have
hσ(k)L

A
(y) ≤ hσ(k)L

B
(y), hσ(k)U

A
(y) ≤ hσ(k)U

B
(y) for all y ∈

U . So it follows that∧
y∈U

(
hσ(k)L

A
(y) ∨ hσ(k)L

Rc (x, y)
)

≤
∧
y∈U

(
hσ(k)L

B
(y) ∨ hσ(k)L

Rc (x, y)
)

,

and∧
y∈U

(
hσ(k)U

A
(y) ∨ hσ(k)U

Rc (x, y)
)

≤
∧
y∈U

(
hσ(k)U

B
(y) ∨ hσ(k)U

Rc (x, y)
)

.

Hence, for each x ∈ U, hR(A)(x) � hR(B)(x), which means
that R(A) � R(B).

(IVHFL3) ∀x ∈ U, by Eq. (3), we have

hR(A�B)(x) = �y∈U {hRc(x, y) � hA�B(y)}
= �y∈U {hRc(x, y) � (hA(y) � hB(y))}

=
⎧⎨
⎩
⎡
⎣∧

y∈U

(
hσ(k)L

Rc (x, y) ∨
(
hσ(k)L

A
(y)

∧hσ(k)L
B

(y)
))

,
∧
y∈U

(
hσ(k)U

Rc (x, y)

∨
(
hσ(k)U

A
(y) ∧ hσ(k)U

B
(y)

))]∣∣∣ k = 1, 2, . . . , l
}

=
⎧⎨
⎩
⎡
⎣∧

y∈U

(
hσ(k)L

Rc (x, y) ∨ hσ(k)L
A

(y)
)

∧
∧
y∈U

(
hσ(k)L

Rc (x, y) ∨ hσ(k)L
B

(y)
)

,

∧
y∈U

(
hσ(k)U

Rc (x, y) ∨ hσ(k)U
A

(y)
)

∧
∧
y∈U

(
hσ(k)U

Rc (x, y) ∨ hσ(k)U
B

(y)
)⎤⎦

∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭

= hR(A)(x) � hR(B)(x) = hR(A)�R(B)(x),

where l = max{l(hRc(x, y)), l(hA(y)), l(hB(y))}.

Hence, it follows that (IVHFL3) holds.
(IVHFL4) It can be directly followed from (IVHFL2).
(IVHFL5) ∀x ∈ U, by Eq. (3), we have

h
R

(
A� ̂

[
aL1,...,m ,aU1,...,m

])(x)

= �y∈U

⎧⎨
⎩hRc (x, y) � h(

A� ̂
[
aL1,...,m ,aU1,...,m

])(y)

⎫⎬
⎭

= �y∈U
{
hRc (x, y) �

(
hA(y) �

{[
aL1,...,m , aU1,...,m

]})}

=
⎧⎨
⎩
⎡
⎣∧

y∈U

(
hσ(k)L

Rc (x, y) ∨
(
hσ(k)L

A
(y) ∨ aσ(k)L

1,...,m

))
,

∧
y∈U

(
hσ(k)U

Rc (x, y) ∨
(
hσ(k)U

A
(y) ∨ aσ(k)U

1,...,m

))⎤⎦
∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭

=
⎧⎨
⎩
⎡
⎣∧

y∈U

(
hσ(k)L

Rc (x, y) ∨ hσ(k)L
A

(y)
)

∨ aσ(k)L
1,...,m ,

∧
y∈U

(
hσ(k)U

Rc (x, y) ∨ hσ(k)U
A

(y)
)

∨ aσ(k)U
1,...,m

⎤
⎦
∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭

= hR(A)(x) � h ̂
[
aL1,...,m ,aU1,...,m

](x) = h
R(A)� ̂

[
aL1,...,m ,aU1,...,m

](x),

where l=max{l(hRc(x, y)), l(hA(y)), l( ̂[aL1,...,m, aU1,...,m])}.
Hence, we conclude that (IVHFL5) holds.
(IVHFL6) It can be directly obtained from Eq. (3). ��

Properties (IVHFL1) and (IVHFU1) show that IVHF
rough approximation operators R and R are dual to each
other. Properties with the same number may be also consid-
ered as dual properties. Properties (IVHFL6) and (IVHFU6)
can be induced, respectively, from (IVHFL5) and (IVHFU5)

when we set ̂[aL1,...,m, aU1,...,m] = {[1, 1]}.

Theorem 3.11 Let R ∈ IVHFR(U × U ). If R is reflexive,
the following properties hold:

(1) R(∅) = R(∅) = ∅,

(2) R(U) = R(U) = U,

(3) R(A) � A � R(A), ∀A ∈ IVHF(U ).

Proof (1) For all x ∈ U , h∅(x) = {[0, 0]}. Then by Eq. (3),
we have

hR(∅)(x) = �y∈U {hRc(x, y) � {[0, 0]}} = �y∈UhRc(x, y)

= hRc(x, x) � (�y �=xhRc(x, y)) = {[0, 0]}.

Thus, it follows thatR(∅) = ∅.By (IVHFU6), we can obtain
R(∅) = ∅.
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(2) For all x ∈ U , hU(x) = {[1, 1]}. Then by Eq. (4), we
obtain

h
R(U)

(x) = �y∈U {hR(x, y) � {[1, 1]}} = �y∈UhR(x, y)

= hR(x, x) � (�y �=xhR(x, y)) = {[1, 1]},

which implies that R(U) = U. By (IVHFL6), we can obtain
R(U) = U.

(3) ∀x ∈ U , by Eq. (3), then we obtain

hR(A)(x) = �y∈U {hRc (x, y) � hA(y)}

=
⎧⎨
⎩
⎡
⎣∧

y∈U

(
hσ(k)L

Rc (x, y) ∨ hσ(k)L
A

(y)
)

,

∧
y∈U

(
hσ(k)U

Rc (x, y) ∨ hσ(k)U
A

(y)
)⎤⎦

∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭

=
{[(

hσ(k)L
Rc (x, x) ∨ hσ(k)L

A
(x)

)

∧
⎛
⎝∧

y �=x

(
hσ(k)L

Rc (x, y) ∨ hσ(k)L
A

(y)
)⎞⎠ ,

(
hσ(k)U

Rc (x, x) ∨ hσ(k)U
A

(x)
)

∧
⎛
⎝∧

y �=x

(
hσ(k)U

Rc (x, y) ∨ hσ(k)U
A

(y)
)⎞⎠

⎤
⎦
∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭

=
⎧⎨
⎩
⎡
⎣hσ(k)L

A
(x) ∧

⎛
⎝∧

y �=x

(
hσ(k)L

Rc (x, y) ∨ hσ(k)L
A

(y)
)⎞⎠ , hσ(k)U

A
(x)

∧
⎛
⎝∧

y �=x

(
hσ(k)U

Rc (x, y) ∨ hσ(k)U
A

(y)
)⎞⎠

⎤
⎦
∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭

�
{[

hσ(k)L
A

(x), hσ(k)U
A

(x)
]∣∣∣ k = 1, 2, . . . , l

}
= hA(x).

From the above discussions, we can conclude thatR(A) �
A holds. Similarly, we can prove that A � R(A) holds. ��
Theorem 3.12 Let U be a nonempty and finite universe of
discourse. Suppose that R1, R2 ∈ IVHFR(U × U ) are two
IVHF relations. If R1 � R2, then the following holds:

(1) R1(A) � R2(A), ∀A ∈ IVHF(U ),

(2) R1(A) � R2(A), ∀A ∈ IVHF(U ).

Proof (1) Since R1 � R2, then for any (x, y) ∈ U ×
U , we have hσ(k)L

R
c
1

(x, y) ≥ hσ(k)L
R
c
2

(x, y), hσ(k)U
R
c
1

(x, y) ≥
hσ(k)U

R
c
2

(x, y).

On the other hand, by Eq. (3), for all x ∈ U , we obtain

hR1(A)(x) = �y∈U {hR
c
1
(x, y) � hA(y)}

=
⎧⎨
⎩
⎡
⎣∧

y∈U

(
hσ(k)L

R
c
1

(x, y) ∨ hσ(k)L
A

(y)
)

,

∧
y∈U

(
hσ(k)U

R
c
1

(x, y) ∨ hσ(k)U
A

(y)
)⎤⎦

∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭

�
⎧⎨
⎩
⎡
⎣∧

y∈U

(
hσ(k)L

R
c
2

(x, y) ∨ hσ(k)L
A

(y)
)

,

∧
y∈U

(
hσ(k)U

R
c
2

(x, y) ∨ hσ(k)U
A

(y)
)⎤⎦

∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭

= hR2(A)(x).

From the above discussions, it follows that R1(A) � R2(A).

Similarly, by Eq. (4), we can easily prove that R1(A) �
R2(A) holds.

3.2 Connections between special interval-valued hesitant
fuzzy relations and approximation operators

In rough set theory, many authors started from the proper-
ties of binary relations, for instance, reflexivity, symmetry,
and transitivity, to investigate the essential properties of the
lower and upper approximation operations generated by such
relations and achieved a lot. For example, Yao (1998c), Yao
and Lin (1996) studied generalized rough sets and estab-
lished the connections between a binary relation and gen-
eralized approximation operators in which various classes
of algebraic rough set model can be derived by the prop-
erties satisfied by a binary relation, such as serial, reflex-
ive, symmetric, transitive, and Euclidean. Wu et al. (2003,
2005, 2006), Wu and Zhang (2004) investigated the connec-
tions between fuzzy relations and fuzzy rough approximation
operators in fuzzy environment. Subsequently, the connec-
tions between special intuitionistic fuzzy relations and intu-
itionistic fuzzy rough approximation operators are further
established in Zhou and Wu (2008, 2009) where Zhou et al.
pointed out that an intuitionistic fuzzy relation having spe-
cial property, such as reflexivity, symmetry, and transitivity,
can be characterized by the essential properties of the lower
and upper intuitionistic fuzzy rough approximation opera-
tors. More recently, generalizations of rough set have devel-
oped to HF environment. By combining HF set with rough
set models, Yang et al. (2014) first proposed the concept of
the HF rough sets in which the relationships between HF
rough approximations and several special HF relations are
further discussed.

In this subsection, along the lines of the above-mentioned
rough set models, we will show that some special IVHF rela-
tions could be characterized by IVHF rough approximation
operators.

Theorem 3.13 Let R ∈ IVHFR(U × U ); then ∀x ∈
U, (x, y) ∈ U ×U, M ⊆ U,
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(1) hR([1,1]M )(x) = �y /∈MhRc(x, y),
(2) h

R([1,1]M )
(x) = �y∈MhR(x, y),

(3) hR([1,1]U−{y})(x) = hRc(x, y),
(4) h

R([1,1]y)(x) = hR(x, y).

Proof (1) For all x ∈ U , using Eq. (3), we have

hR([1,1]M )(x) = �y∈U {hRc(x, y) � h[1,1]M (y)}
= {[1, 1]} � (�y /∈MhRc(x, y))

= �y /∈MhRc(x, y)

(2) It follows immediately from (1) and the duality.
(3) For all x ∈ U , by virtue of Eq. (3), we obtain

hR([1,1]U−{y})(x) = �z∈U {hRc(x, z) � h[1,1]U−{y}(z)}
= hRc(x, y) � {[1, 1]} = hRc(x, y).

(4) It follows immediately from (3) and the duality.
��

Theorem 3.13 above shows that an IVHF relation can be
represented by the IVHF rough approximation operators.

Now we discuss the relationships between the proper-
ties of several special IVHF relations and the properties of
IVHF rough approximation operators. The following Theo-
rems 3.14 and 3.15 show that an IVHF relation having special
property, such as serializability, reflexivity, symmetry, and
transitivity, can be characterized by the essential properties
of the lower and upper IVHF rough approximation operators.

Theorem 3.14 Let R ∈ IVHFR(U × U ). Suppose that R

and R are the lower and upper IVHF rough approximation
operators given in Definition 3.3; then, R is serial iff one of
the following properties holds:

(IVHFL0) R(∅) = ∅,

(IVHFU0) R(U) = U,

(IVHFLU0) R(A) � R(A), ∀A ∈ IVHF(U ),

(IVHFL0)′ R

(
̂

[
aL1,...,m, aU1,...,m

])
= ̂

[
aL1,...,m, aU1,...,m

]
,

(IVHFU0)′ R

(
̂

[
aL1,...,m, aU1,...,m

])
= ̂

[
aL1,...,m, aU1,...,m

]
.

Proof First, we can deduce from the dual properties ofR and
R that (IVHFL0) and (IVHFU0) are equivalent. Similarly,
(IVHFL0)′ and (IVHFU0)′ are also equivalent.

Second, we are to prove that R is serial ⇐⇒ (IVHFU0).
Assume that R is serial. For any x ∈ U , there exists a

z ∈ U such that hR(x, z) = {[1, 1]}. By virtue of Eq. (4), we
have

h
R(U)

(x) =
⎧⎨
⎩
⎡
⎣∨

y∈U

(
hσ(k)L

R
(x, y) ∧ hσ(k)L

U
(y)

)
,

∨
y∈U

(
hσ(k)U

R
(x, y) ∧ hσ(k)U

U
(y)

)⎤⎦
∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭

=
⎧⎨
⎩
⎡
⎣∨

y∈U

(
hσ(k)L

R
(x, y) ∧ 1

)
,
∨
y∈U

(
hσ(k)U

R
(x, y) ∧ 1

)⎤⎦
|k = 1, 2, . . . , l }

=
⎧⎨
⎩
⎡
⎣hσ(k)L

R
(x, z) ∨

⎛
⎝∨

y �=z

hσ(k)L
R

(x, y)

⎞
⎠ ,

hσ(k)U
R

(x, z) ∨
⎛
⎝∨

y �=z

hσ(k)U
R

(x, y)

⎞
⎠
⎤
⎦

|k = 1, 2, . . . , l} = {[1, 1]},

which implied that R(U) = U.

Assume that (IVHFU0) holds, then ∀x ∈ U , h
R(U)

(x) =
{[1, 1]}. If R is not serial, then ∃x ∈ U,∀y ∈ U such that
hR(x, y) �= {[1, 1]}. Since hU(y) = {[1, 1]} for all y ∈ U,

then hR(x, y) � hU(y) = hR(x, y) �= {[1, 1]}.
From the above discussions, it follows that h

R(U)
(x) �=

{[1, 1]}, which contradicts the assumption.
Third, we are to prove that R is serial ⇐⇒ (IVHFLU0).

If R is serial, then ∀x ∈ U , there exists a z ∈ U such that
hR(x, z) = {[1, 1]}, which implies that hRc(x, z) = {[0, 0]}.
By Eq. (3), we have

hR(A)(x) = �y∈U {hRc (x, y) � hA(y)}

=
⎧⎨
⎩
⎡
⎣∧

y∈U

(
hσ(k)L

Rc (x, y) ∨ hσ(k)L
A

(y)
)

,

∧
y∈U

(
hσ(k)U

Rc (x, y) ∨ hσ(k)U
A

(y)
)⎤⎦

∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭

=
⎧⎨
⎩
⎡
⎣(

hσ(k)L
Rc (x, z) ∨ hσ(k)L

A
(z)

)
∧
⎛
⎝∧

y �=z

(
hσ(k)L

Rc (x, y)

∨hσ(k)L
A

(y)
))

,
(
hσ(k)U

Rc (x, z) ∨ hσ(k)U
A

(z)
)

∧
⎛
⎝∧

y �=z

(
hσ(k)U

Rc (x, y) ∨ hσ(k)U
A

(y)
)⎞⎠

⎤
⎦

| k = 1, 2, . . . , l}

=
⎧⎨
⎩
⎡
⎣hσ(k)L

A
(z) ∧

⎛
⎝∧

y �=z

(
hσ(k)L

Rc (x, y) ∨ hσ(k)L
A

(y)
)⎞⎠ ,

hσ(k)U
A

(z) ∧
⎛
⎝∧

y �=z

(
hσ(k)U

Rc (x, y) ∨ hσ(k)U
A

(y)
)⎞⎠

⎤
⎦
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| k = 1, 2, . . . , l}
�

{[
hσ(k)L

A
(z), hσ(k)U

A
(z)

]∣∣∣ k = 1, 2, . . . , l
}

= hA(z).

Moreover, by Eq. (4), we have

h
R(A)(x) = �y∈U {hR(x, y) � hA(y)}

=
⎧⎨
⎩
⎡
⎣∨

y∈U

(
hσ(k)L

R
(x, y) ∧ hσ(k)L

A
(y)

)
,

∨
y∈U

(
hσ(k)U

R
(x, y) ∧ hσ(k)U

A
(y)

)⎤⎦
∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭

=
⎧⎨
⎩
⎡
⎣(

hσ(k)L
R

(x, z) ∧ hσ(k)L
A

(z)
)

∨
⎛
⎝∨

y �=z

(hσ(k)L
R

(x, y)

∧hσ(k)L
A

(y)
))

,
(
hσ(k)U

R
(x, z) ∧ hσ(k)U

A
(z)

)

∨
⎛
⎝∨

y �=z

(
hσ(k)U

R
(x, y) ∧ hσ(k)U

A
(y)

)⎞⎠
⎤
⎦
∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭

=
⎧⎨
⎩
⎡
⎣hσ(k)L

A
(z) ∨

⎛
⎝∨

y �=z

(
hσ(k)L

R
(x, y) ∧ hσ(k)L

A
(y)

)⎞⎠ ,

hσ(k)U
A

(z) ∨
⎛
⎝∨

y �=z

(
hσ(k)U

R
(x, y) ∧ hσ(k)U

A
(y)

)⎞⎠
⎤
⎦

|k = 1, 2, . . . , l }
�

{[
hσ(k)L

A
(z), hσ(k)U

A
(z)

]∣∣∣ k = 1, 2, . . . , l
}

= hA(z).

From the above discussions, we can conclude that hR(A)

(x) � h
R(A)

(x), which means that R(A) � R(A).

Conversely, supposing that (IVHFLU0) holds, then for
any x ∈ U , we have hσ(k)L

R(A)
(x) ≤ hσ(k)L

R(A)
(x) and hσ(k)U

R(A)
(x) ≤

hσ(k)U
R(A)

(x), fromwhich it follows that hσ(k)L
R(∅)

(x) ≤ hσ(k)L
R(∅)

(x)

and hσ(k)U
R(∅)

(x) ≤ hσ(k)U
R(∅)

(x).

On the other hand, by Eqs. (3) and (4), we have

hR(∅)(x) = �y∈UhRc(x, y)

=
⎧⎨
⎩
⎡
⎣∧

y∈U
hσ(k)L

Rc (x, y),
∧
y∈U

hσ(k)U
Rc (x, y)

⎤
⎦

∣∣∣∣∣∣k = 1, 2, . . . , l

⎫⎬
⎭

and h
R(∅)

(x) = {[0, 0]}. Hence, for any x ∈ U , there exists

a y ∈ U such that hσ(k)L
Rc (x, y) = 0, and hσ(k)U

Rc (x, y) = 0,
which implies that hR(x, y) = {[1, 1]}. So R is serial.

At last, we are to prove that R is serial ⇐⇒ (IVHFL0)′.
Assume that R is serial. For any x ∈ U , there exists a z ∈

U such that hR(x, z) = {[1, 1]}. By virtue of Eq. (3), we
have

h
R

(
̂

[
aL1,...,m ,aU1,...,m

])(x) = �y∈U

{
hRc (x, y) � h

̂
[
aL1,...,m ,aU1,...,m

](y)
}

=
⎧⎨
⎩
⎡
⎣(

hσ(k)L
Rc (x, z) ∨ aσ(k)L

1,...,m

)
∧
⎛
⎝∧

y �=z

(
hσ(k)L

Rc (x, y) ∨ aσ(k)L
1,...,m

)⎞⎠ ,

(
hσ(k)U

Rc (x, z) ∨ aσ(k)U
1,...,m

)
∧
⎛
⎝∧

y �=z

(
hσ(k)U

Rc (x, y) ∨ aσ(k)U
1,...,m

)⎞⎠
⎤
⎦

|k = 1, 2, . . . , l }

=
⎧⎨
⎩
⎡
⎣aσ(k)L

1,...,m ∧
⎛
⎝∧

y �=z

hσ(k)L
Rc (x, y) ∨ aσ(k)L

1,...,m

⎞
⎠ ,

aσ(k)U
1,...,m ∧

⎛
⎝∧

y �=z

hσ(k)U
Rc (x, y) ∨ aσ(k)U

1,...,m

⎞
⎠
⎤
⎦
∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭

=
{[

aσ(k)L
1,...,m , aσ(k)U

1,...,m

]∣∣∣ k = 1, 2, . . . , l
}

= h
̂

[
aL1,...,m ,aU1,...,m

](x).

Hence, we conclude that R( ̂[aL1,...,m, aU1,...,m]) =
̂[aL1,...,m, aU1,...,m] holds.

Conversely, if we assume that (IVHFL0)′ holds, then for
any x ∈ U , we have

h
R

(
̂

[
aL1,...,m ,aU1,...,m

])(x) = �y∈U

{
hRc (x, y) � h ̂

[
aL1,...,m ,aU1,...,m

](y)
}

=
⎧⎨
⎩
⎡
⎣∧

y∈U

(
hσ(k)L

Rc (x, y) ∨ aσ(k)L
1,...,m

)
,

∧
y∈U

(
hσ(k)U

Rc (x, y) ∨ aσ(k)U
1,...,m

)⎤⎦
∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭

=
⎧⎨
⎩
⎡
⎣
⎛
⎝∧

y∈U
hσ(k)L

Rc (x, y)

⎞
⎠ ∨ aσ(k)L

1,...,m,

⎛
⎝∧

y∈U
hσ(k)U

Rc (x, y)

⎞
⎠ ∨ aσ(k)U

1,...,m

⎤
⎦
∣∣∣∣∣∣ k = 1, 2, . . . , l

⎫⎬
⎭

=
{[

aσ(k)L
1,...,m, aσ(k)U

1,...,m

]∣∣∣ k = 1, 2, . . . , l
}

,

which implies that
∧

y∈U hσ(k)L
Rc (x, y) ≤ aσ(k)L

1,...,m and∧
y∈U hσ(k)U

Rc (x, y) ≤ aσ(k)U
1,...,m for any 1 ≤ k ≤ l. If we

set aσ(k)L
1,...,m = aσ(k)U

1,...,m = 0, then ∀x ∈ U, there exists a y ∈ U
such that hR(x, y) = {[1, 1]}. Hence, R is serial. ��

Theorem 3.15 Let (U, R) be an IVHFapproximation space.
R and R are the IVHFapproximation operators induced from
(U, R), then
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(1) R is reflexive ⇐⇒ (IVHFLR) R(A) � A,

∀A ∈ IVHF(U ),

⇐⇒ (IVFHUR) A � R(A),

∀A ∈ IVHF(U ).

(2) R is symmetric ⇐⇒ (IVHFLS) hR([1,1]U−{x})(y)

= hR([1,1]U−{y})(x),

⇐⇒ (IVHFUS) h
R([1,1]x )(y)

= h
R([1,1]y)(x).

(3) R is transitive ⇐⇒ (IVHFLT) R(A) � R(R(A)),

∀A ∈ IVHF(U ),

⇐⇒ (IVHFUT) R(R(A)) � R(A),

∀A ∈ IVHF(U ).

Proof (1) By the dual properties of IVHF rough approxima-
tion operators, it is only to prove that

R is reflexive ⇐⇒ (IVHFLR) R(A) � A.

Assume that R is a reflexive IVHF relation; then by The-
orem 3.11, (IVHFLR) holds.

Conversely, if (IVHFLR) holds, then for any x ∈
U , we obtain hσ(k)L

R(A)
(x) ≤ hσ(k)L

A
(x) and hσ(k)U

R(A)
(x) ≤

hσ(k)U
A

(x). So hσ(k)L
R([1,1]U−{x})(x) ≤ hσ(k)L

[1,1]U−{x}(x) = 0 and

hσ(k)U
R([1,1]U−{x})(x) ≤ hσ(k)U

[1,1]U−{x}(x) = 0, from which we con-
clude that hR([1,1]U−{x})(x) = {[0, 0]}.

On the other hand, by Eq. (3), then

hR([1,1]U−{x})(x) = �y∈U
{
hRc(x, y) � h[1,1]U−{x}(y)

}
=

⎧⎨
⎩
⎡
⎣∧

y∈U

(
hσ(k)L

Rc (x, y) ∨ hσ(k)L
[1,1]U−{x}(y)

)
,

∧
y∈U

(
hσ(k)U

Rc (x, y) ∨ hσ(k)U
[1,1]U−{x}(y)

)⎤⎦
|k = 1, 2, . . . , l }

=
{[(

hσ(k)L
Rc (x, x) ∨ hσ(k)L

[1,1]U−{x}(x)
)

∧
⎛
⎝∧

y �=x

(
hσ(k)L

Rc (x, y) ∨ hσ(k)L
[1,1]U−{x}(y)

)⎞⎠ ,

(
hσ(k)U

Rc (x, x) ∨ hσ(k)U
[1,1]U−{x}(x)

)

∧
⎛
⎝∧

y �=x

(
hσ(k)U

Rc (x, y) ∨ hσ(k)U
[1,1]U−{x}(y)

)⎞⎠
⎤
⎦

|k = 1, 2, . . . , l }

=
⎧⎨
⎩
⎡
⎣hσ(k)L

Rc (x, x) ∧
⎛
⎝∧

y �=x

(
hσ(k)L

Rc (x, y) ∨ 1
)⎞⎠ ,

hσ(k)U
Rc (x, x) ∧

⎛
⎝∧

y �=x

(
hσ(k)U

Rc (x, y) ∨ 1
)⎞⎠

⎤
⎦

|k = 1, 2, . . . , l }
= {[hσ(k)L

Rc (x, x), hσ(k)U
Rc (x, x)]

|k = 1, 2, . . . , l }
= hRc(x, x) = {[0, 0]}.

So hR(x, x) = {[1, 1]}, which implies that R is reflexive.
(2) It follows immediately from Theorem 3.13.
(3) (IVHFLT) and (IVHFUT) are equivalent because of the

duality of IVHF rough approximation operators. We are only
to prove that the transitivity of R is equivalent to (IVHFLT).

Let us assume thatR is transitive. Sowe have hσ(k)L
R

(x, y)

∧ hσ(k)L
R

(y, z) ≤ hσ(k)L
R

(x, z), and hσ(k)U
R

(x, y) ∧ hσ(k)U
R

(y, z) ≤ hσ(k)U
R

(x, z). Moreover, by Eq. (3), we have

hR(R(A))(x) = �y∈U
{
hRc (x, y) � hR(A)(y)

}

=
⎧⎨
⎩
⎡
⎣∧

y∈U

(
hσ(k)L

Rc (x, y) ∨
(∧
z∈U

(
hσ(k)L

Rc (y, z)

∨hσ(k)L
A

(z)
)))

,
∧
y∈U

(
hσ(k)U

Rc (x, y)

∨
(∧
z∈U

(
hσ(k)U

Rc (y, z) ∨ hσ(k)U
A

(z)
)))]∣∣∣∣∣ k = 1, 2, . . . , l

}

=
⎧⎨
⎩
⎡
⎣∧

y∈U

∧
z∈U

(
hσ(k)L

Rc (x, y) ∨ hσ(k)L
Rc (y, z) ∨ hσ(k)L

A
(z)

)
,

∧
y∈U

∧
z∈U

(hσ(k)U
Rc (x, y) ∨ hσ(k)U

Rc (y, z)

∨hσ(k)U
A

(z)
)]∣∣∣ k = 1, 2, . . . , l

}

=
⎧⎨
⎩
⎡
⎣∧
z∈U

∧
y∈U

((
1 − hσ(k)L

R
(x, y)

)

∨
(
1 − hσ(k)L

R
(y, z)

))
∨ hσ(k)L

A
(z),∧

z∈U

∧
y∈U

((
1 − hσ(k)U

R
(x, y)

)
∨
(
1 − hσ(k)U

R
(y, z)

))

∨hσ(k)U
A

(z)
)]∣∣∣ k = 1, 2, . . . , l

}

=
⎧⎨
⎩
⎡
⎣∧
z∈U

⎛
⎝∧

y∈U

(
1 −

(
hσ(k)L

R
(x, y) ∧ hσ(k)L

R
(y, z)

))⎞⎠

∨hσ(k)L
A

(z)
)

,
∧
z∈U

⎛
⎝∧

y∈U

(
1 −

(
hσ(k)U

R
(x, y)

∧hσ(k)U
R

(y, z)
)))

∨hσ(k)U
A

(z)
)]∣∣∣ k = 1, 2, . . . , l

}
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�
{[∧

z∈U

(
hσ(k)L

Rc (x, z) ∨ hσ(k)L
A

(z)
)

,
∧
z∈U

(
hσ(k)U

Rc (x, z)

∨hσ(k)U
A

(z)
)]∣∣∣ k = 1, 2, . . . , l

}
= hR(A)(x).

Hence, it follows that (IVHFLT) holds.
Conversely, assume that hR(R(A)(x) � hR(A)(x) for all

A ∈ IVHF(U ). Then for any x ∈ U , hR(R([1,1]U−{y}))(x) �
hR([1,1]U−{y})(x). On the other hand, by virtue of Eq. (3) and
Theorem 3.13, we have

hR(R([1,1]U−{y}))(x) = �z∈U {hRc(x, z) � hR([1,1]U−{y})(z)}
= �z∈U {hRc(x, z) � hRc(z, y)},

and hR([1,1]U−{y})(x) = hRc(x, y), from which we can con-

clude that for any 1 ≤ k ≤ l,
∧

z∈U (hσ(k)L
Rc (x, z) ∨

hσ(k)L
Rc (z, y)) ≥ hσ(k)L

Rc (x, y) and
∧

z∈U (hσ(k)U
Rc (x, z) ∨

hσ(k)U
Rc (z, y)) ≥ hσ(k)U

Rc (x, y). That is, for ∀z ∈ U,

hσ(k)L
Rc (x, z) ∨ hσ(k)L

Rc (z, y) ≥ hσ(k)L
Rc (x, y) and hσ(k)U

Rc

(x, z) ∨ hσ(k)U
Rc (z, y) ≥ hσ(k)U

Rc (x, y). So it follows that

hσ(k)L
R

(x, z)∧hσ(k)L
R

(z, y) ≤ hσ(k)L
R

(x, y) andhσ(k)U
R

(x, z)∧
hσ(k)U

R
(z, y) ≤ hσ(k)U

R
(x, y), 1 ≤ k ≤ l with l =

max{l(hR(x, z)), l(hR(z, y)), l(hR(x, y))}. By the defini-
tion of transitivity, we know that R is transitive. ��

Combining (1) and (3) in Theorem 3.15, we can easily
obtain the conclusion as follows.

Corollary 3.16 Let R ∈ IVHFR(U × U ). If R is reflex-
ive and transitive, and R and R are the lower and upper
IVHF rough approximation operators defined in Definition
3.3, then

(IVHFLRT) R(A) = R(R(A)),∀A ∈ IVHF(U ),

(IVHFURT) R(R(A)) = R(A),∀A ∈ IVHF(U ).

4 Axiomatic characterization of interval-valued hesitant
fuzzy rough sets

In an axiomatic approach, rough sets are axiomatized by
abstract operators. In recent years, many scholars attach
great importance to the research on axiomatic approach and
achieved a lot. Themost important axiomatic studies for crisp
rough setsweremadebyYao (1998a, c)where various classes
of rough set algebras are characterized by different sets of
axioms. Morsi and Yakout (1998) studied a set of axioms on
fuzzy rough set, but their studies were restricted to fuzzy T -
rough sets. Subsequently, the studies of axiomatic researchon
various generalized approximation operators in fuzzy envi-
ronment weremade byWu et al. (2003, 2005, 2006),Wu and
Zhang (2004) in which various classes of fuzzy approxima-
tion operators are characterized by different sets of axioms.

Along the lines of fuzzy rough sets, Zhou and Wu (2008,
2009) explored and developed the axiomatic approach in the
study of intuitionistic fuzzy rough approximation operators.
More recently, rough set approximations were introduced
into HF sets. Yang et al. (2014) introduced the concept of the
HF rough sets and investigated axiomatic characterizations
of HF rough approximation operators.

In the section, we will extend the axiomatic approach to
HF rough approximation operators in IVHF environment.
The results may be viewed as the generalization counter-
parts of Yang et al. (2014). For the case of IVHF rough sets,
the primitive notion is a system (IVHF(U ),�,�,c , L , H),
where L , H : IVHF(U ) −→ IVHF(U ) are operators from
IVHF(U ) to IVHF(U ).

Definition 4.1 Let L , H : IVHF(U ) −→ IVHF(U ) be two
operators. L and H are referred to as dual operators if the
following axioms are satisfied: ∀A ∈ IVHF(U ),

(AL1) L(A) = (H(Ac))c,

(AU1) H(A) = (L(Ac))c.

Theorem 4.2 Let L , H : IVHF(U ) −→ IVHF(U ) be two
dual operators. Then, there exists an IVHF relation R on
U such that L(A) = R(A), and H(A) = R(A) for all
A ∈ IVHF(U ) iff L satisfies axioms (AL2) and (AL3), or
equivalently, H satisfies axioms (AU2) and (AU3): ∀A, B ∈
IVHF(U ), ̂[aL1,...,m, aU1,...,m] ∈ 2Int[0,1],

(AL2) L

(
A � ̂

[
aL1,...,m, aU1,...,m

])

= L (A) � ̂
[
aL1,...,m, aU1,...,m

]
,

(AL3) L (A � B) = L (A) � L (B) ,

(AU2) H

(
A � ̂

[
aL1,...,m, aU1,...,m

])

= H (A) � ̂
[
aL1,...,m, aU1,...,m

]
,

(AU3) H (A � B) = H (A) � H (B) .

Proof “�⇒” follows immediately from Theorem 3.10.
“⇐�” Assume that the operator H satisfies axioms (AU2)

and (AU3). Then, we can define an IVHF relation R =
{〈(x, y), hR(x, y)〉|(x, y) ∈ U ×U } on U by H as follows:

hR(x, y) = hH([1,1]y)(x), (x, y) ∈ U ×U.

Moreover, we can prove that for any A ∈ IVHF(U ),

A = �y∈U
(
[1, 1]y � ĥA(y)

)
.

In fact, for all x ∈ U, then

h�y∈U
(
[1,1]y�ĥA(y)

)(x) = �y∈Uh([1,1]y�ĥA(y)
)(x)

= �y∈U
(
h[1,1]y (x) � h

ĥA(y)
(x)

)
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= ({[1, 1]} � hA(x)) � {[0, 0]}
= hA(x),

which implies that A = �y∈U ([1, 1]y � ĥA(y)).
For any x ∈ U , by Eq. (4), (AU2), and (AU3), we have

h
R(A)

(x) = �y∈U {hR(x, y) � hA(y)}
= �y∈U

{
hH([1,1]y)(x) � h

ĥA(y)
(x)

}
= �y∈U

{
h
H([1,1]y)�ĥA(y)

(x)
}

= �y∈U
{
h
H
(
[1,1]y�ĥA(y)

)(x)
}

= h�y∈U H
(
[1,1]y�ĥA(y)

)(x)
= h

H
(
�y∈U

(
[1,1]y�ĥA(y)

))(x)
= hH(A)(x).

Thus, H(A) = R(A).
L(A) = R(A) follows immediately from the conclusion

H(A) = R(A) and the dual axioms (AL1) and (AU1). ��
FromTheorem4.2,we cannote that axioms (AL1), (AU1),

(AL2), and (AL3), or equivalently, axioms (AL1), (AU1),
(AU2), and (AU3) are considered as basic axioms to charac-
terize IVHF rough approximation operators. So we have the
following definition of IVHF rough set algebra.

Definition 4.3 Let L , H : IVHF(U ) −→ IVHF(U ) be two
dual operators. If L satisfies axioms (AL2) and (AL3), or
equivalently, H satisfies axioms (AU2) and (AU3), then the
system (IVHF(U ),�,�,c , L , H) is referred to as an IVHF
rough set algebra; L and H are called the lower and upper
IVHF approximation operators, respectively.

The following Theorems show that IVHF approximation
operators generated by special IVHF relations can be char-
acterized by axioms.

Theorem 4.4 Let L , H : IVHF(U ) −→ IVHF(U )beapair
of dual operators, i.e., L satisfies axioms (AL1), (AL2), and
(AL3), and H satisfies axioms (AU1), (AU2), and (AU3).
Then, there exists a serial IVHF relation R on U such that
L(A) = R(A), and H(A) = R(A) for all A ∈ IVHF(U ) iff
L satisfies axioms (ALS), or equivalently, H satisfies axioms
(AUS):

(ALS) L

(
̂

[
aL1,...,m, aU1,...,m

])
= ̂

[
aL1,...,m, aU1,...,m

]
,

(AUS) H

(
̂

[
aL1,...,m, aU1,...,m

])
= ̂

[
aL1,...,m, aU1,...,m

]
.

Proof “�⇒” follows immediately from Theorem 3.14, and
“⇐�” follows immediately from Theorems 4.2 and 3.14.

��

Remark 4.5 By Theorem 3.14, it can be easily seen that
axioms (ALS) and (AUS) can be replaced by one of the fol-
lowing axioms:

(ALS)′ L(∅) = ∅,

(AUS)′ H(U) = U,

(ALUS) L(A) � H(A).

Theorem 4.6 Let L , H : IVHF(U ) −→ IVHF(U )beapair
of dual operators, i.e., L satisfies axioms (AL1), (AL2), and
(AL3), and H satisfies axioms (AU1), (AU2), and (AU3).
Then, there exists a reflexive IVHF relation R on U such that
L(A) = R(A), and H(A) = R(A) for all A ∈ IVHF(U ) iff
L satisfies axioms (ALR), or equivalently, H satisfies axioms
(AUR):

(ALR) L(A) � A, ∀A ∈ IVHF(U ),

(AUR) A � H(A), ∀A ∈ IVHF(U ).

Proof “�⇒” follows immediately from Theorem 3.15, and
“⇐�” follows immediately from Theorems 4.2 and 3.15.

��

Theorem 4.7 Let L , H : IVHF(U ) −→ IVHF(U )beapair
of dual operators, i.e., L satisfies axioms (AL1), (AL2), and
(AL3), and H satisfies axioms (AU1), (AU2), and (AU3).
Then, there exists a symmetric IVHF relation R on U such
that L(A) = R(A), and H(A) = R(A) for allA ∈ IVHF(U )

iff L satisfies axioms (ALSY), or equivalently, H satisfies
axioms (AUSY):

(ALSY) hL([1,1]U−{x})(y) = hL([1,1]U−{y})(x),

∀(x, y) ∈ U ×U,

(AUSY) hH([1,1]x )(y) = hH([1,1]y)(x), ∀(x, y) ∈ U ×U.

Proof “�⇒” follows immediately from Theorem 3.15, and
“⇐�” follows immediately from Theorems 4.2 and 3.15.

��

Theorem 4.8 Let L , H : IVHF(U ) −→ IVHF(U ) be a
pair of dual operators, i.e., L satisfies axioms (AL1), (AL2),
and (AL3), and H satisfies axioms (AU1), (AU2), and (AU3).
Then, there exists a transitive IVHF relationR onU such that
L(A) = R(A), and H(A) = R(A) for all A ∈ IVHF(U ) iff
L satisfies axioms (ALT), or equivalently, H satisfies axioms
(AUT):

(ALT) L(A) � L(L(A)), ∀A ∈ IVHF(U ),

(AUT) H(H(A)) � H(A), ∀A ∈ IVHF(U ).

Proof “�⇒” follows immediately from Theorem 3.15, and
“⇐�” follows immediately from Theorems 4.2 and 3.15.

��
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5 Application of the IVHF rough set model in medical
diagnosis

Rough set theory was developed by Pawlak (1982, 1991) as
a mathematical approach to handle imprecision, vagueness,
and uncertainty in data analysis. This theory has been suc-
cessfully applied in solving a variety of problems, especially
in the areas of multi-criteria decisionmaking and group deci-
sion making. After it was introduced by Pawlak, rough set
theory has attracted more andmore scholars’ attention. Up to
now,manyof researches about rough sets aremainly focusing
on the same universe. But in reality, the possible two or more
different universes and their interrelationship may invalidate
rough set theory on the one universe, which makes the study
of two universes or multi-universes become a necessity. For
instance, in clinic, a patient maybe shows many symptoms
at the same time. Meanwhile, a concrete disease could also
include many basic symptoms in clinic. In that case, it is very
difficult for a doctor to determine whether a patient is suffer-
ing from a certain disease or not. Then, an effectively method
to describe this problem is to use two different universes in
which the one is the set of all patients and the other one is
the set of all possible symptoms in clinic.

In this section, we extend the IVHF rough set on one same
universe in Sect. 3 and give the concept of IVHF rough set
on two universes. Then, an approach to the decision making
based on the IVHF rough set is presented in order to illustrate
the validity of IVHF rough sets on two universes.

Firstly, we generalize the IVHF relation on one same uni-
verse in Sect. 3 and give an IVHF relation on two universes.

Definition 5.1 Let U, V be two nonempty and finite uni-
verses. An IVHF subset R of the universe U × V is called
an IVHF relation from U to V , namely R is given by

R = {〈(x, y), hR(x, y)〉|(x, y) ∈ U × V },
where hR : U × V → Int[0, 1] is a set of interval values in
Int[0, 1].

It is noted that if U = V , then R degenerates to an IVHF
relation on U given in Definition 3.1.

In generally, for any x ∈ U , y ∈ V , hR(x, y) denotes the
possible interval membership degrees of the relationships
between x and y. We denote by IVHFR(U × V ) the family
of all IVHF relations on U × V .

Based on the IVHF relation on two universes, we extend
the IVHF rough sets in Definition 3.3 and construct lower
and upper IVHF approximation operators induced from a
generalized IVHF approximation space over two universes.

Definition 5.2 Let U and V be two nonempty and finite
universes and R ∈ IVHFR(U × V ); the pair (U, V, R) is
called a generalized IVHF approximation space. For any
A ∈ IVHF(V ), the lower and upper approximations of A

with respect to (U, V, R), denoted by R(A) and R(A), are
two IVHF sets ofU and are, respectively, defined as follows:

R(A) = {〈x, hR(A)(x)〉|x ∈ U }, (5)

R(A) = {〈x, h
R(A)

(x)〉|x ∈ U }, (6)

where

hR(A)(x) = �y∈V {hRc(x, y) � hA(y)},
h

R(A)
(x) = �y∈V {hR(x, y) � hA(y)}.

R(A) and R(A) are, respectively, called the lower and upper
approximations of A with respect to (U, V, R). The pair
(R(A), R(A)) is called the IVHF rough set of A with respect
to (U, V, R), andR, R : IVHF(V ) → IVHF(U ) are referred
to as lower and upper IVHF rough approximation operators,
respectively.

To facilitate and to compare the magnitude of different
IVHFEs, Xu and Da (2002) gave the properties of interval
numbers.

Definition 5.3 (Xu and Da 2002) Let a = [aL , aU ], and
b = [bL , bU ] be two interval numbers, and λ ≥ 0, then

(1) a = b ⇔ aL = bL and aU = bU ;
(2) a + b = [aL + bL , aU + bU ];
(3) λa = [λaL , λaU ], especially, λa = 0, if λ = 0.

In Chen et al. (2013a), on the basis of Definition 5.3, Chen
et al introduced the score function of IVHF elements as fol-
lows:

Definition 5.4 (Chen et al. 2013a) For an IVHF element
hA(x),

s(hA(x)) =
∑

γ∈hA(x) γ

l(hA(x))

is called the score function of hA(x), where l(hA(x)) is the
number of the elements in hA(x), and s(hA(x)) is an interval
value belonging to [0, 1]. For two IVHFEs hA(x) and hB(x),
if s(hA(x)) ≥ s(hB(x)), then hA(x) ≥ hB(x).

Note that we can compare two score functions using Eq.
1. Moreover, by Definition 5.4, we can judge the magnitude
of two IVHFEs.

In what follows, we will apply IVHF rough set model
on two universes to medical diagnosis problems. Suppose
that the universe U = {x1, x2, . . . , xm} denotes a symptom
set, and the universe V = {y1, y2, . . . , yn} denotes a dis-
ease set. Let R ∈ IVHFR(U × V ) be an IVHF relation from
U to V . For any (xi , y j ) ∈ U × V , hR(xi , y j ) represents
interval membership degree of the relationships between the
symptom xi (xi ∈ U ) and the disease y j (y j ∈ V ), which
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Table 1 Symptoms
characteristic for the considered
diagnoses

R y1 y2 y3 y4

x1 {[0.3, 0.4], [0.5, 0.6]} {[0.2, 0.3], [0.4, 0.5]} {[0.5, 0.8], [0.6, 0.9]} {[0.6, 0.7], [0.7, 0.8]}

x2 {[0.4, 0.6], [0.5, 0.7]} {[0.7, 0.9], [0.8, 0.9]} {[0.6, 0.6], [0.7, 0.8]} {[0.4, 0.5], [0.6, 0.6]}

x3 {[0.4, 0.5], [0.4, 0.6]} {[0.3, 0.5], [0.4, 0.6]} {[0.4, 0.5], [0.5, 0.7]} {[0.3, 0.6], [0.5, 0.7]}

x4 {[0.4, 0.5], [0.5, 0.5]} {[0.7, 0.8], [0.9, 0.9]} {[0.3, 0.5], [0.2, 0.4]} {[0.2, 0.3], [0.1, 0.3]}

x5 {[0.8, 0.9], [0.7, 0.9]} {[0.4, 0.5], [0.3, 0.6]} {[0.5, 0.5], [0.5, 0.6]} {[0.5, 0.6], [0.3, 0.5]}

are evaluated by several doctors in advance. In clinical prac-
tice, a patient can see different doctors and may get different
diagnoses. To decrease the risk of misdiagnosis, we should
carefully consider all the doctors’ comments. In that case,
for any a patient set A who has some symptoms in universe
U , patient set A is an IVHF set on symptom set U . That is,
A = {〈xi , hA(xi )〉|xi ∈ U }, where hA(xi ) is a set of some
different interval values in [0, 1], representing the possible
membership degrees to the symptom xi ∈ U of A. Now, the
problem is that a decision maker needs to make a reason-
able decision about how to judge what kind of the disease y j
patient A is suffering from.

In the following, we present an approach to the decision
making for this kind of problem by using the IVHF rough set
theory over two universes with three steps.

First, according to Definition 5.2, we calculate the lower
and upper approximations R(A) and R(A) of IVHF set A

with respect to (U, V, R).
Second, from Definition 2.11, we can obtain

R(A) � R(A) = {〈y j , hR(A)�R(A)
(y j )〉 : y j ∈ V }

= {〈y j , hR(A)(y j ) ⊕ h
R(A)

(y j )〉 : y j ∈ V }.

Furthermore, on the basis of Definition 5.4, the score func-
tions of IVHF elements h

R(A)�R(A)
(y j ) are obtained by us.

Denote

λ j = s(h
R(A)�R(A)

(y j )) = s(hR(A)(y j ) ⊕ h
R(A)

(y j )).

Finally, the optimal decision is to select yl if λl =
max jλ j , j = 1, 2, . . . , |V |. In other words, if λl =
max jλ j , j = 1, 2, . . . , |V |, we conclude that patient A is
suffering from the disease yl . Note that if l has more than
one value, then all the yl may be chosen, which implies that
patient A is suffering from various diseases.

Therefore, we have established an approach to uncertainty
decisionmaking based on the IVHF rough set theory over two
universes. In the next section, the application of this method
will be shown by using a medical diagnosis decision-making
problem.

6 A numerical example

In this section, we will apply the decision approach proposed
in Sect. 5 to a medical diagnosis problem.

Let U = {x1, x2, x3, x4, x5} be five symptoms in clinic,
where xi stand for “temperature,” “headache,” “stomach
pain,” “cough,” and “chest-pain,” respectively, and the uni-
verse V = {y1, y2, y3, y4} be four diseases, where y j stand
for “viral fever,” “ malaria,” “typhoid,” and “stomach prob-
lem,” respectively. Let R be an IVHF relation from U to V .
And R is a medical knowledge statistic data of the relation-
ship of the symptom xi (xi ∈ U ) and the disease y j (y j ∈ V ).
The statistic data are given in Table 1.

In clinical practice, a patient can see different doctors and
may get different diagnoses. In this example, we suppose that
A represents a patient that can see two different doctors. To
decrease the risk of misdiagnosis, we should carefully con-
sider all the doctors’ comments. So the symptoms of patient
A are described by an IVHF set on the universe U . Let

A={〈x1, {[0.4, 0.5], [0.6, 0.9]}〉, 〈x2, {[0.1, 0.2], [0.5, 0.6]}〉,
〈x3, {[0.3, 0.5], [0.7, 0.9]}〉, 〈x4, {[0.2, 0.3], [0.4, 0.6]}〉,
〈x5, {[0.4, 0.6], [0.5, 0.7]}〉}.

For example, for hA(x3) = {[0.3, 0.5], [0.7, 0.9]}, doctors
cannot present the precise membership degree of how pain
the stomach of patient A is, but they have a certain hesitancy
in providing themembership degree of how pain the stomach
of patient A is. Because of different clinic experiences and
knowledge backgrounds, doctors may get different diagno-
sis for the same patient. Thus, one doctor provides possible
interval value [0.3,0.5] to depict the membership degree of
how pain the stomach of patient A is, and the other doctor
provides possible interval value [0.7,0.9] to depict the mem-
bership degree of how pain the stomach of patient A is.

In what follows, we give the decision-making process by
using the three steps given in Sect. 5 in detail.

First, by Definition 5.2, we calculate the lower and upper
approximations R(A) and R(A) of patient A as follows

R(A) = {〈y1, {[0.3, 0.5], [0.5, 0.6]}〉,
〈y2, {[0.1, 0.2], [0.4, 0.6]}〉,
〈y3, {[0.2, 0.3], [0.5, 0.6]}〉,
〈y4, {[0.3, 0.4], [0.5, 0.6]}〉},

R(A) = {〈y1, {[0.4, 0.6], [0.5, 0.7]}〉,
〈y2, {[0.4, 0.5], [0.5, 0.6]}〉,
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〈y3, {[0.4, 0.5], [0.6, 0.9]}〉,
〈y4, {[0.4, 0.6], [0.6, 0.8]}〉}.

Then, we have

R(A) � R(A) = {〈y1, {[0.58, 0.80], [0.75, 0.88]}〉,
〈y2, {[0.46, 0.60], [0.70, 0.84]}〉,
〈y3, {[0.52, 0.65], [0.80, 0.96]}〉,
〈y4, {[0.58, 0.76], [0.80, 0.92]}〉},

By virtue of Definition 5.4, we obtain the score functions
of IVHF elements h

R(A)�R(A)
(y j ) as follows:

h
R(A)�R(A)

(y1) = [0.665, 0.84],
h

R(A)�R(A)
(y2) = [0.58, 0.72],

h
R(A)�R(A)

(y3) = [0.66, 0.805],
h

R(A)�R(A)
(y4) = [0.69, 0.84].

So according to Eq. 1, it is clear that the maximum score
function is λ4 = [0.69, 0.84]. Hence, the optimal decision
is to select y4. That is, we can conclude that patient A is
suffering from the disease stomach problem (y4).

7 Conclusion

In this paper, we develop a general framework for the study
of IVHF rough approximation operators which includes both
constructive and axiomatic approaches. In our constructive
method, IVHF rough approximation operators are defined
in terms of IVHF relations. Properties of upper and lower
IVHF rough approximation operators are also investigated.
By the axiomatic approach, upper and lower IVHF approx-
imation operators are defined by abstract axioms. We prove
that axiom sets characterizing IVHF approximation opera-
tors guarantee the existence of certain types of IVHF rela-
tions which produce the same operators. Finally, the IVHF
rough approximation operators are extended to the case of
two universes. By using IVHF rough set theory over two
universes, we develop a general framework for dealing with
uncertainty decision making. Further, we use a medical diag-
nosis decision-making problem to demonstrate the principal
steps of the decision methodology.

In the future, we can further use the proposed rough set
model to address the applications to knowledge discovery
and reduction. Moreover, it is important and interesting to
further investigate relationships between IVHF rough set and
other mathematical structures, such as lattice structures and
topological structures.
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