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Abstract The clustering of high-dimensional data presents
a critical computational problem. Therefore, it is convenient
to arrange the cluster centres on a grid with a small dimen-
sional space that reduces computational cost and canbe easily
visualized. Moreover, in real applications there is no sharp
boundary between classes, real datasets are naturally defined
in a fuzzy context. Therefore, fuzzy clustering fits better for
complex real datasets to determine the best distribution. Self-
organizing map (SOM) technique is appropriate for cluster-
ing and vector quantization of high-dimensional data. In this
paperwe present a new fuzzy learning approach called FMIG
(fuzzy multilevel interior growing self-organizing maps).
The proposed algorithm is a fuzzy version ofMIGSOM(mul-
tilevel interior growing self-organizingmaps). Themain con-
tribution of FMIG is to define a fuzzyprocess of datamapping
and to take into account the fuzzy aspect of high-dimensional
real datasets. This new algorithm is able to auto-organize the
map accordingly to the fuzzy training property of the nodes.
In the second step, the introduced scheme for FMIG is clus-
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tered by means of fuzzy C-means (FCM) to discover the
interior class distribution of the learned data. The valida-
tion of FCM partitions is directed by applying six validity
indexes. Superiority of the new method is demonstrated by
comparing it with crisp MIGSOM, GSOM (growing SOM)
and FKCN (fuzzy Kohonen clustering network) techniques.
Thus, our new method shows improvement in term of quan-
tization error, topology preservation and clustering ability.

Keywords Fuzzy training · Multilevel interior growing
self-organizing maps · Quantization · Topology · Fuzzy
validy indexes

1 Introduction

Real datasets are generally defined in a fuzzy context. In fact,
there is no sharp boundary between classes so that fuzzy clus-
tering is better suited for the data classification. Therefore,
to classify such data is a very challenging task as in Ayadi
et al. (2007, 2010, 2011), Alimi (2000, 2003), Hamdani
et al. (2011a), Dhahri and Alimi (2005), Kohonen (1998),
Denaïa et al. (2007) and Chang and Liao (2006). The clus-
tering is an unsupervised classification mechanism where a
set of entities are classified into a number of homogeneous
clusters, with respect to a given similarity measure. Due to
the fuzzy nature of many classification problems, a number
of fuzzy clustering methods have been developed such as in
Ayadi et al. (2007, 2010, 2011), Alimi (2003), Hamdani et
al. (2008, 2011a, b), El Malek et al. (2002), Pascual et al.
(2000), Kohonen (1998, 2001), Denaïa et al. (2007), Fritzke
(1994), Petterssona et al. (2007) , Abraham and Nath (2001),
Aguilera and Frenich (2001) and Chang and Liao (2006).
Fuzzy clustering can be applied as an unsupervised learning
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technique to classify patterns (Alimi 2000, 2003; Alimi et
al. 2003).

In the unsupervised training, the network learns to form its
own classes of the training data without external adjustment.
Unsupervised systems of neural networks use a competitive
learning process which is based on similarity comparisons in
a continuous space. The resulting system associates similar
inputs close to each other in one- or two-dimensional grid.
Among the architectures suggested for unsupervised neural
networks, the self-organizingmap (SOM) (Kohonen 1982) is
the most efficient in creating specific organized internal rep-
resentations of input vectors and their abstractions. SOM is
an unsupervised learningmodel used to visualise and explore
linear and nonlinear relationships in high-dimensional data.
SOM was first used in speech recognition by Kohonen in
(1998, 2001). In literature researches, SOM is successful in
visualisation of rich and complex phenomena such as pat-
tern recognition tasks involving different criteria especially
in clustering mechanism (Denaïa et al. 2007; Fritzke 1994)
and (Hsu and Halgarmuge 2001). Then, SOM algorithms
have been implemented in various aspects of researches in
classification Kohonen (1998), managing ecosystems Chang
and Liao (2006) and GIS for addressing remediation Pet-
terssona et al. (2007). SOM approaches were also applied in
pattern recognition of big data (El Malek et al. 2002; Tlili et
al. 2012; Amarasiri et al. 2004).

Generally, in their training process SOMapproaches try to
preserve the geometric form of the data called topology with
the minimum error of quantization (Alimi et al. 2003; Ham-
dani et al. 2008; Pascual et al. 2000; Ayadi et al. 2012). How-
ever, the topology is not perfectly preserved with SOM algo-
rithms due to their predefined structure. Therefore, dynamic
variants of SOM are proposed to define the structure dynam-
ically during the training process.

In this paper we present a new fuzzy dynamic learning
method called FMIG (Fuzzy Multilevel Interior Growing
Self-Organizing Maps). This algorithm is a hybrid approach
in which both the MIGSOM technique (Multilevel Inte-
rior Growing Self-Organizing Maps) (Ayadi et al. 2010,
2012) and the FKCN algorithm (Fuzzy Kohonen Cluster-
ing Network) (Pascual et al. 2000) have been integrated. Our
approach introduces a new form of fuzzy growing process
and attempts to overcome some of the clustering difficulties
by taking advantage of the best features of the multilevel
structure given by MIGSOM and the fuzzy clustering model
presented by FKCN. In fact, MIGSOM develops its growing
process from the node that accumulates the highest Quan-
tization Error (Fig. 1) (Amarasiri et al. 2004; Ayadi et al.
2012). On the other hand, FKCN presents a fuzzy model
of clustering based on the Kohonen’s Self-Organizing Fea-
ture Maps (SOFM) (Kohonen 1997) and the Fuzzy C-Means
(FCM) (Bezdek 1981, 1987). Both of SOFM and FCM are
successfully applied in classification.

(a)         (b)

Node with high quantization error 
      New nodes

Fig. 1 New nodes insertion with MIGSOM growing process. a From
the boundary and b from the interior

One of the advantages of our approach is to introduce a
new Growing Threshold (GT) used to control the growth of
the map. In fact, we remarked that the GT structure used
in other algorithms such as MIGSOM becomes complicated
and takes big values as the training process grows (Ayadi et al.
2010;Alimi 2000, 2003;Alimi et al. 2003). In addition,when
the dataset is large the computing process becomes more
complicated at next iterations and takes more time with the
augmentation of GT values. For these reasons, we created a
new growing threshold applied in our powerful methodology
FMIG for big data clustering. The result is a new method
of fuzzy dynamic SOM, which maintains the topology of
patterns and considerably decreases the quantization error.

The rationale underlying the presented FMIG algorithm
is that both advantages of fuzzy clustering and MIGSOM
approaches are combined. It is worth to mention that FMIG
serves two purposes: first, it can be used to produce the best
fuzzy distribution of data by finding out the topology corre-
sponding to the fuzzy formof inputs. Second, it gives themin-
imum value of error quantization providing the best cluster
structure. In fact, FMIG is used to produce the best approxi-
mation to the real distribution of a given dataset. This algo-
rithm finds a set of codebook vectors to code compactly all
the input patterns. The topological FMIG maps introduce an
additional relation between the codebook vectors. This topo-
logical relationship is a constraint which has been proved
to produce robust results with the FMIG algorithm (Alimi
2000; Alimi et al. 2003; Hamdani et al. 2011a).

The classification of high-dimensional datasets presents a
computational problemand it increases dependingon thedata
size. Thus, to reduce the computational cost, two-steps have
been proposed. First, the datasets are trained using a neural
map to find the quantization prototypes. Then, the generated
prototypes are clustered using a clustering algorithm such as
FCM algorithm (Bezdek 1981, 1987). The choice of FCM
is based on its best clustering compared to SOM and hier-
archical algorithms (Mingoti and Lima 2006). However, the
challenge of big data clustering is how to evaluate the perfor-
mance of the resulting partition and finding the optimal num-
ber of clusters. Currently, some validity indexes are devel-
oped focusing on the geometric structure of the data subject
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of unsupervised classification. The validity function Dunn
(1974) is based on inter-cluster distance and the diameter of
a hyperspheric cluster. Inspired from the Xie-Beni validity
function, Kim and Ramakrishna developed in 2005 the Xie-
Beni Index (XBI) based on a fuzzy compactness criterion
(Mingoti and Lima 2006). In 2004, Tsekouras and Sarimveis
proposed an index based on a fuzzy measure of separation
called Separation Validity Index (SVI) (Wu and Yang 2005).
Lung and Yang proposed in 2004 a fuzzy index evaluating
noisy points in the dataset (Hu et al. 2004), called Partition
Coefficient And Exponential Separation (PCAES) that was
normalized by Tlili et al. (PCAESN) (2014). Wang and Lee
also presented a method which calculates the fuzzy degree
of overlapping clusters called Validity Overlap Separation
(VOS) (Pal and Bezdek 1992). In 2009, M. Tlili et al. pre-
sented a new cluster validity function called Fuzzy Validity
Index with Noise-Overlap Separation (FVINOS) for evalu-
ating fuzzy and crisp clustering (Tlili et al. 2014).

Our analysis is based on cluster validity indexes FVINOS,
PCAESN, VOS, SVI, Dunn and XBI. In fact, we have stud-
ied these indices in our previous research (Tlili et al. 2014)
(Appendix).

In a first step, we have undertaken extensive performance
comparisons with MIGSOM, GSOM and FKCN to estab-
lish the robustness of FMIG in mapping several synthetic
as well as real-world datasets. Then, we have proceeded by
the classification of the generated prototypes with the FCM
algorithm. Finally, we have applied some validity indexes on
the resulting partitions to evaluate FMIG clustering perfor-
mance.

This paper is organized as following: Sect. 2 reviews the
MIGSOM and FKCN functions. Section 3 introduces our
new approach FMIG and the details of its steps. Section 4
evaluates FMIG method compared with MIGSOM, GSOM
and FKCN algorithms in term of quantization and topologic
errors with a variety of synthetic and real datasets. In Sect.
5, we focus our experimentations on the robustness of our
approach in data clustering by validating the obtained parti-
tions with the validity indexes described above. Finally, Sect.
6 summarises and concludes our remarks.

2 Review of crisp and fuzzy SOM algorithms

2.1 Multilevel interior growing self-organizing maps
algorithm (MIGSOM)

Proposed by Ayadi et al. (2010) in 2012, this SOM heuristic
presents a new method of growing process. The MIGSOM
algorithm is based on three phases:

1. The initialization phase giving the values of the Growing
Threshold (GT) to control the growth of the map and
weight vectors.

2. The growing process is developed in the second phase
that increases the map size by adding new nodes from
the unit that presents the highest quantization error.

3. The smoothing phase is used to refine the resulting map
of the previous phase.

MIGSOM is given by

1. Initialize the map grid with (2 × 2) or (3 × 3) nodes
defined randomly and calculate the growth threshold
(GT) as shown:

GT = −ln (n) × ln (SF) (1)

The GT is used to decide when to initiate new node
growth. It specifies the spread of the feature map to gen-
erate. The GT value depends on the requirement for map
growth. Thus if we require only a very abstract picture of
the data, a large GTwill result in a mapwith fewer nodes.
Similarly, a smaller GT will result in the map spreading
outmore. For these reasons,we have integrated the size of
the database in the new form NGT to represent faithfully
and correctly Big Data.
SF is the Factor of Spread used to control the growth of
the map taken in [0, 1]. n is the size of the given dataset.

2. In the growing phase, six steps are developed:
Step 1-Present the input patterns to the network.
Step 2-Calculate the weight of the best vectors (winners)
that are close to the input data using Euclidean distance.
Step 3-Update weight vectors as following formula:

wi (t + 1) =

n∑

j=1
hci (t) × x j

n∑

j=1
hci (t)

(2)

with wi (t) the weight vector of unit i , x j is the input
pattern ( j = 1 . . . n).
hci (t) represents the neighbourhood kernel centred on
the BMU (Best Match Unit) given by

hci (t) = exp

(

− Ud2

2σ 2(t)

)

× l(σ (t) −Ud), (3)

where
Ud defines the distance between neuron i and thewinning
node c on the map,
σ(t) represents the degree towhich excited neurons in the
vicinity of the winning neuron. l(σi −Ud) is an evalu-
ating function taking two values:

l(σi −Ud) =
{
1 i f (σi ≥ Ud),

0 otherwise
(4)
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Step 4-Compute the error of each node. Calculate the
node presenting the highest quantization error called
node q with k units mapped in as follows:

Err =
k∑

j

∥
∥x j − wq

∥
∥ (5)

Step 5-If (Errq>GT), new nodes will be generated from
q.
Then initialize the new node weight vectors to match the
neighbouring node weights.
Step 6-Repeat steps 1–5 until the number of iterations is
reached.

3. Smoothing Phase:
Step 1-Fix the neighborhood radius to one.
Step 2-Training the map as the growing phase without
adding new nodes.

2.2 The fuzzy Kohonen clustering network: FKCN

Proposed by Pascual et al. (2000), FKCN presents a fuzzy
SOM heuristic. It consists of two layers: The input layer is
formed by n nodes, with n the number of input patterns.
The output layer is composed of c nodes, where c is the
number of the output map vectors. For each input node, it
is assigned a connection to all output units with a weight
vector νi (i = 1 . . . c). Based on a pre-defined learning rate,
the neurons in the output layer update their weights for an
input vector xk (k = 1 . . . n). FKCN approach integrates the
fuzzy degree of membership uik,t introduced by the fuzzy c-
means algorithm (Xie and Beni 1991). The weight vector νi,t
at iteration t is given by

νi,t = νi,t−1 + αik,t × (xk − νi,t−1) (6)

The learning rate α is defined as

αik,t = (
uik,t

)mt (7)

mt = m0 − t × �m (8)

�m = (m0 − 1)

tmax
, (9)

where tmax is the value of the iteration limit and m0 is a
positive constant greater than 1.

The membership degree uik,t is given by

uik,t =
⎡

⎣
c∑

j=1

[
(xk − νi,t )

(xk − ν j )

]2/(mt−1)
⎤

⎦

−1

(10)

3 FMIG: fuzzy multilevel interior GSOMs

We present a new form of fuzzy self-organizing algo-
rithm called FMIG (Fuzzy Multilevel Interior GSOMs). Our
approach is based on the MIGSOM algorithm (Ayadi et al.
2010, 2012) which adapts its structure according to the data
form. The fuzzy aspect of our method is inspired from the
FKCN algorithm (Pascual et al. 2000).

As MIGSOM, the training process of FMIG is com-
posed of three steps: initialization phase, growing phase and
smoothing phase. The main idea of FMIG is to present a
new parameter of Growing GT to ameliorate the control of
map growth and improve the training process. In fact, the GT
form used in MIGSOM algorithms becomes complicated as
the growing increases. In addition,with big datasets, the com-
puting process becomes more complex and takes more time
with the augmentation of GT values.

Our new approach FMIG shows two interesting proper-
ties:

• It produces the best distribution of data by finding out the
topology corresponding to the form of inputs.

• It gives the minimum value of error quantization provid-
ing the best cluster structure.

We define our FMIG algorithm as the following processes:

3.1 Initialisation

• Initialize the pre-defined values of the Spread Factor (SF)
used to control the growth of the map taken in [0, 1], and
m0 the fuzzifier factor.
The spread factor has to be specified to allow the data
analyst to control the growth of the training process. SF
is independent of the dimensionality of the given dataset.
This factor is used by the system to calculate theGrowing
Threshold (GT). Such first step of the training process
will act as a threshold value for initiating node generation.
A high GT value will result in less distribution (spread)
out map, and a low GT will produce a well-distributed
map.

• Taking into account the dimension of the training dataset
(n) and the number of its characteristics (D), the grow-
ing threshold gives an identical image of the specific data
aspects. Hence, mapping such data produces the best dis-
tribution and topology. The formula of our NewGrowing
Threshold (NGT) is defined as follows:

NGT = (−ln(D) × ln(SF))

n
(11)

• Initialize the map grid with (2 × 2) or (3 × 3) c0 nodes
randomly and the weight vectors ν0 = (ν1,0, ν2,0, νc0,0).
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Initialize randomly the membership matrix, with n the
number of data inputs:

U = ∣
∣ui j

∣
∣
(i=1...c0, j=1...n)

(12)

Fix tmax the limit of iterations.

3.2 Growing process

For t=1… tmax:

• Calculate the fuzzifier parameter mt as shown in (8).
• Determine the membership degree uik,t for the iteration

t using the Euclidean distance between the input pattern
xk and the weight vector νi , with ct being the number of
weight vectors at the iteration t as defined in (10).

• Compute the learning rate αik,t as defined in (7).
• The weight vectors are updated by the following formula
Pascual et al. (2000):

νi,t = νi,t−1 +

n∑

k=1
αik,t

(
xk − νi,t−1

)

n∑

s=1
αis,t

(13)

• Calculate the quantization error of each node i as Ayadi
et al. (2010):

QEi =
nbu∑

j

∥
∥x j − vi

∥
∥ (14)

with nbu, the number of units mapped by the node i.
TheQuantizationError (QE) is ameasure that completely
disregards map topology and alignment. The quantiza-
tion error is computed by determining the average dis-
tance of the sample vectors to the prototype vectors by
which they are represented.

• Compute the error of each node. Calculate the node pre-
senting the highest quantization errorQEmax called node
q with k units mapped in as shown in (5).

• If QEmax > NGT then generate new nodes from q as
(Ayadi et al. 2010).

3.3 Smoothing process

• Initialise the limit of smoothing iterations tsmax.
• Train themap as the growing process without adding new
nodes as (Ayadi et al. 2010).

4 FMIG map quality preservation

In order to present the performance of our technique, compar-
ative studies are made in terms of quantization and topologic

errors. These comparisons take place between the proposed
FMIG algorithm, MIGSOM, FKCN and an inspired version
of GSOM methods (Denaïa et al. 2007).

Wefirst executed FMIGconsidering two forms of growing
threshold NGT Eq. (11) and GT Eq. (1) to demonstrate the
performance of the new structure of NGT.

4.1 Experimental settings

The experimentations are realized by executing FMIG,
MIGSOM […], FKCN and GSOM algorithms in the test
context parameters of the Euclidean distance function, the
fuzzy factor value m0= 2 and the Spread factor SF = 0.05.
The limit of iterations in the growing process tmax is taken at
the values 30, 50 and 100. The smoothing process takes its
maximum of iterations tsmax at 10.

The comparison of the algorithms ismade in term of quan-
tization and topologic errors which are presented as follows:

• Topologic Error: the Final Topologic Error FTE is com-
puted identically to Ayadi et al. (2010) as follows:

FTE = 1

ct

ct∑

i=1

mu(νi ) (15)

mu(νi ) takes the values 1 if the first and the second Best
Matching Units (BMUs) of νi are adjacent, 0 otherwise.

• The Final Quantization Error: FQE is computed as the
normalized average distance between each input data and
its BMU.

FQE =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if no data point matches the unit

1
ct

ct∑

i=1

⎡

⎢
⎣

1
nbu

nbu∑

j=1
‖x j−νBMUt‖

norm(νi )

⎤

⎥
⎦

(16)

νBMUt is the weight vector of the BMU at the iteration t.

4.2 Datasets description

In order to test the effectiveness of the proposed algo-
rithm FMIG, we performed a sensitivity analysis in synthetic
datasets with different dimensions (Dataset1, Dataset2 and
Dataset3) and real datasets (IRIS, Ionosphere, MNIST, DNA
and NE) (Blake and Merz 1998). NE (Theodoridis 1996)
consists of postal addresses of three metropolitan cities in
US (New York, Philadelphia and Boston). All datasets are
described in Table 1.

• Dataset 1 is composed of 1,600 points, 2-Dimension and
distributed in 4 overlapping clusters.

• Dataset 2 presents 1,300 points, 2-Dimension and dis-
tributed in 13 noisy clusters.
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Table 1 Datasets description
Database Nb data points (n) Dimension Nb clusters (nbc) Characteristics

Dataset1 1, 600 2 4 Overlapping

Dataset2 1, 300 2 13 Noisy

Dataset3 700 2 3 High level of noise

IRIS 150 4 3 Overlapping

Ionosphere 351 34 2 Heterogeneous (noise+overlap)

MNIST 10, 000 85 10 Overlapping

DNA 2, 000 180 3 Heterogeneous (noise+overlap)

Letter 20, 000 16 26 Overlapping

NE 50, 000 2 3 Overlapping

(a)

Dataset 1 Grid structure by FMIG 

Dataset 1 Grid structure by FMIG NE Grid structure by FMIG 

Dataset 1 topologic map structure by FMIG
training with 2×2 initialized map 

Vi
Vi

Vi
Vi

Vi

Vi
Vi

Vi
Vi

Vi
Ve

Ve

Vi
Vi

Ve

S

Ve

S

Vi
Vi

Vi

Vi

Ve

ViS

ViVi

S

Ve

Vi

Ve

S

Vi

Ve

S

Ve

Vi

Vi

S
Vi

VeS
Vi

S

Ve

Vi
S

Ve
Ve

Ve

S
S

Ve

VeVe

Ve

Ve
S

Ve

S

Ve

Ve
Ve

S

Vi

S

Ve
Ve

S

Ve

S

Ve

S
S

Ve

S

Ve
Ve

1

1

1

0

1
1

1

2

1

1

0

1

1

0

1

0

1

2

1

1

2

1

1

2

1

1

0

1

0

1

2

1

2

1

1

2

2

1

1

0

2

1

1

0

1

2

1

0

2

2

1

2

20

1

200

1

0

2
2

2

0

0

2

222

1

2

1

0

2

2

0

2

0

2

2

1
1

0

2

2
2

0

2

2

0

22
2

2

1
1

2

0

2

1

2

0

2

1

0

1

2

0

1

22

1

0

1

1

1

2
2

1
1

1

1

1
11

1
1

1
1

1
1

1

(b) (c)

Fig. 2 Grid structure of FMIG algorithm for a dataset1, b IRIS and c NE datasets

4.3 Results and analyses

4.3.1 Multilevel map structure with FMIG

Figure 2 illustrates the labelled FMIG map structures for
Dataset1, IRIS and NE. These maps are the result of the exe-
cution of FMIGwith 50 iterations of growing phase. Thus, as
we show FMIG is able to produce grid structure with multi-

levels oriented maps. In addition, the maps present homoge-
nous clusters.

4.3.2 New growing threshold NGT

In order to prove the amelioration introduced by our new
structure of NGT (11) in quantization data and topology
preservation, we performed some tests on different datasets.
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Table 2 Comparison of growing thresholds NGT and GT

Algorithm FMIG (NGT) FMIG (GT)

Dataset FQE FTE FQE FTE

Dataset1 0.018 0.131 0.029 0.146

Dataset2 0.021 0.107 0.041 0.125

Dataset3 0.017 0.015 0.024 0.019

IRIS 0.132 0.111 0.209 0.127

Ionosphere 0.100 0.204 0.149 0.311

MNIST 0.497 0.146 0.554 0.261

DNA 0.277 0.110 0.307 0.288

Letter 0.325 0.202 0.433 0.309

NE 0.098 0.153 0.125 0.234

In fact, we executed our FMIG algorithm in two versions,
taking into account, respectively, the GT and NGT formula
to demonstrate the capacity of integrating the new parameter
NGT. Table 2 shows results of FQE and FTE by executing
FMIG 100 times, considering the two forms of GT and NGT.

Table 2 proves that the using of the NGT gives the mini-
mumvalues of quantization error FQE.Therefore, FQEusing
the NGT form that we propose is clearly smaller than FQE
resulting from the classic GT form for all datasets especially
when we have a big data (Letter and NE).

Based on results presented in Table 2, the topologic error
is improved by the new growing threshold. In fact, FTE with
NGT gives minimum values for the tested databases com-
pared to FTE usingGT. Theminimumvalues of the topologic
error lead to a well-distributed map.

This experimental study confirms that in iterative processes,
the number of iterations is important to evaluate the results
because it has the probability to give the global solution of
the problem. If the stop condition is chosen correctly, the
iterative process will have the ability to execute the max of
iterations and produce the optimal values of the algorithm.

For these reasons, we generated the new form of growing
parameter in FMIG algorithm that corresponds to the stop
condition of the growing process:

If QEmax < NGT then stops growing, else continue

generating new nodes.

When we have a small NGT, the probability to continue the
process is important. A high GT value will result in less
spread out map. However, a low GT will produce a well-
distributed map.

Our NGT is smaller than the interior GT that is why the
iterative process will continue until the maximum of itera-
tions leading to a well-spread map.

4.3.3 Comparison of FMIG with MIGSOM, GSOM and
FKCN

In this study, we executed our proposed algorithm FMIG
on different databases with different iterations values. The
experimental results of comparison with MIGSOM, GSOM
and FKCN are presented by Tables (3, 4, and 5), with, respec-
tively, 100, 200 and 500 iterations.

Table 3 shows that from 100 iterations, results of quan-
tization and topographic quality given by the two methods
FMIG and MIGSOM are similar for the synthetic databases.
In fact, the two methods give the same value of quantization
error for Dataset3 which is a small dataset. Whereas, applied
on real data that present different geometric aspects, FMIG
generates the best values compared to MIGSOM with sim-
ilar map size. Such improvement could be explained by the
combination ofMIGSOMadvantages inmultilevel maps and
the fuzzy aspect of FKCN to develop FMIG that produces a
well distributed map taking into account the characteristics
of the dataset. Results given by GSOM and FKCN are far
from the optimal values found by our method for synthetic
and real datasets.

Table 3 Experimental results with 100 iterations

Algorithm FMIG MIGSOM GSOM FKCN

Datasets FQE FTE FQE FTE FQE FTE FQE FTE

Dataset1 0.018 0.131 0.026 0.132 0.092 0.138 0.029 0.167

Dataset2 0.021 0.107 0.030 0.111 0.139 0.209 0.078 0.305

Dataset3 0.017 0.015 0.018 0.026 0.020 0.111 0.020 0.101

IRIS 0.132 0.111 0.260 0.191 0.204 0.289 0.293 0.310

Ionosphere 0.100 0.204 0.128 0.220 0.163 0.251 0.161 0.255

MNIST 0.497 0.146 0.559 0.153 0.664 0.305 0.602 0.344

DNA 0.277 0.110 0.346 0.167 0.378 0.305 0.380 0.311

Letter 0.325 0.202 0.353 0.240 0.477 0.404 0.500 0.402

NE 0.098 0.153 0.104 0.157 0.220 0.179 0.215 0.210
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Table 4 Experimental results with 200 iterations

Algorithm FMIG MIGSOM GSOM FKCN

Datasets FQE FTE FQE FTE FQE FTE FQE FTE

Dataset1 0.013 0.126 0.022 0.116 0.095 0.138 0.029 0.164

Dataset2 0.019 0.102 0.025 0.104 0.136 0.201 0.071 0.301

Dataset3 0.013 0.014 0.015 0.023 0.019 0.107 0.020 0.104

IRIS 0.110 0.106 0.251 0.177 0.148 0.249 0.244 0.306

Ionosphere 0.054 0.195 0.130 0.209 0.162 0.204 0.115 0.242

MNIST 0.349 0.121 0.508 0.110 0.646 0.307 0.599 0.335

DNA 0.205 0.092 0.303 0.144 0.370 0.300 0.311 0.304

Letter 0.304 0.202 0.309 0.208 0.477 0.399 0.479 0.403

NE 0.077 0.139 0.099 0.131 0.224 0.129 0.208 0.207

Table 5 Experimental results with 500 iterations

Algorithm FMIG MIGSOM GSOM FKCN

Datasets FQE FTE FQE FTE FQE FTE FQE FTE

Dataset1 0.012 0.124 0.021 0.115 0.092 0.136 0.027 0.161

Dataset2 0.017 0.101 0.025 0.104 0.136 0.201 0.071 0.300

Dataset3 0.011 0.013 0.014 0.021 0.017 0.100 0.019 0.100

IRIS 0.108 0.101 0.247 0.175 0.145 0.245 0.241 0.302

Ionosphere 0.053 0.199 0.128 0.207 0.160 0.202 0.113 0.240

MNIST 0.347 0.122 0.505 0.109 0.641 0.301 0.597 0.331

DNA 0.202 0.095 0.301 0.144 0.370 0.300 0.311 0.304

Letter 0.301 0.200 0.302 0.206 0.471 0.398 0.472 0.400

NE 0.075 0.134 0.095 0.129 0.220 0.127 0.206 0.205

The execution of the algorithms 200 and 500 iterations
proves that FMIG gives more precision in quantization and
topologic errors than MIGSOM, GSOM and FKCN (Tables
4, 5). Our fuzzy algorithm is able to generate the best distrib-
utionwhich produces theminimumvalues of FTE, especially
with big real datasets. With the new structure of NGT taking
into account the data size and its characteristics, in addition
to the update modifications applied for the predefined para-
meters, the values of FQE and FTE give their minimum to
improve the quantization factor of the map and preserve the
topographic aspect of datasets.

To analyse each database separately shown by Tables 4
and 5, we discus results given by FMIG compared to those
generated by MIGSOM, GSOM and FKCN. Dataset1 pre-
serves its distribution significantly with the minimum values
of quantization error and topologic error by themap structure
given by FMIG. It is the same case with datasets 2 and 3.

The real databases are more preserved by our new algo-
rithm in terms of quantization and topologic errors. In fact,
FMIG takes its minimum values with 100 and 200 iterations
compared to MIGSOM. We note that GSOM and FKCN
become inefficient to train big data and attain their limi-

tation for 200 and 500 iterations leading to unacceptable
errors.

As an example, MNIST is considered a big data with a
single aspect of data distribution that is why results given by
our FMIG are more explicit and fiddle to the reality.

As we shown in Tables 4 and 5, with the evolution of
growing iterations, the difference between crisp and fuzzy
algorithms is significant. Therefore, 200 and 500 iterations
of FMIG growing generate the best maps in parameters FQE
and FTE compared with crisp MIGSOM and GSOM. These
optimal results are returned due to the new fuzzy form of
the weight vectors (13) taking into account the fuzzy mem-
bership degree (10). It is worth mentioning that GSOM and
FKCN fail to map databases quite there preserving the topol-
ogy criterion. Furthermore, these algorithms take an impor-
tant execution time with big data to achieve their learn-
ing phase. Considering the GSOM and FKCN training, the
resulting maps present important errors compared to FMIG.
It could be explained by the drawback of GSOM (Ayadi
et al. 2007; Amarasiri et al. 2004) and FKCN to learn big
datasets. Therefore, it is clear that the results shown in the
tables above are influenced by the number of iterations in
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Table 6 Clustering evaluation with validity indexes

Database Validity index FMIG MIGSOM GSOM FKCN
nb. cluster nb. cluster nb. cluster nb. cluster

Dataset1 C = 4 FVINOS 4 4 4 4

PCAESN 4 4 4 4

SVI 4 5 6 5

VOS 4 4 4 4

Dunn 4 4 5 6

XBI 4 5 6 6

Dataset2 C = 13 FVINOS 13 13 13 13

PCAESN 13 13 13 13

SVI 13 14 15 15

VOS 13 13 14 14

Dunn 13 12 11 12

XBI 13 10 10 10

IRIS C = 3 FVINOS 3 3 3 3

PCAESN 3 2 2 2

SVI 3 4 4 4

VOS 3 3 3 3

Dunn 3 2 4 4

XBI 4 4 5 5

MNIST C = 10 FVINOS 10 10 10 10

PCAESN 10 9 8 9

SVI 11 11 12 11

VOS 10 11 9 9

Dunn 10 12 9 11

XBI 11 11 13 12

DNA C = 3 FVINOS 3 3 3 3

PCAESN 3 5 6 6

SVI 3 7 5 7

VOS 3 3 3 3

Dunn 3 4 4 5

XBI 3 6 5 7

Letter C = 26 FVINOS 26 26 26 26

PCAESN 26 26 25 23

SVI 28 28 30 28

VOS 26 26 31 32

Dunn 27 28 28 30

XBI 29 30 29 32

NE C = 3 FVINOS 3 3 3 3

PCAESN 3 4 5 6

SVI 3 4 7 9

VOS 3 3 4 5

Dunn 4 4 6 5

XBI 5 6 8 8
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the growing phase of FMIG, MIGSOM, GSOM and FKCN
algorithms.

5 Evalution of FMIG clustering using validity indexes

In this study, we applied three stages of the clustering process
to evaluate our method FMIG performance in a comparison
withMIGSOM,GSOMandFKCN.Wefirst trained synthetic
and real datasets I with the four algorithms for 100 iterations
of growing. The resulting prototypes were then clustered by
FCM algorithm. Finally, we applied five validity indexes:
FVINOS (Tlili et al. 2014), PCAESN (Hu et al. 2004), SVI
(Wu and Yang 2005), VOS (Pal and Bezdek 1992), Dunn
(Dunn 1974) and XBI (Mingoti and Lima 2006). Table 6
presents the clustering evaluation given by FMIG compared
with other algorithms.

Results given by Table 6 prove that FCM partitions
obtained by FMIG neural maps are optimal and produce the
best number of clusters which is evaluated by the validity
indexes. In fact, with different databases presenting multiple
geometric aspects described by Table 1, FVINOS detects the
optimal number of clusters given by FMIG training as well
as in MIGSOM, GSOM and FKCN training. In addition, the
majority of indexes give their best results with FMIG pro-
totypes that could be explained by the ability of FMIG to
produce well-distributed maps preserving the quality of data
characteristics. Moreover, with noisy Dataset2, FMIG maps
generate the best partition; all the indexes detect outliers and
give good estimate of 13 clusters. MIGSOM algorithm pro-
duces the best partition with FVINOS, PCAESN and VOS,
but the other indices are unable to detect the optimumnumber
of clusters. GSOM and FKCNmethods as presented in Table
6 return the best partition only with FVINOS and PCAESN
because these indexes are able to detect noise aspect (Tlili et
al. 2014).

Overlapping datasets such as Dataset1, IRIS and MNIST
are well clustered by FMIG maps. As shown in Table 6, all
the indexes discover the optimum number of clusters with
Dataset1. For IRIS, just XBI is unable to give good esti-
mate with FMIG; the other indices produce the best parti-
tion. MNIST is considered a big data and well trained with
FMIG that gives 10 clusters in the resulting partition. FVI-
NOS, VOS, Dunn and PCAESN indices are able to detect
the overlap aspect (Tlili et al. 2014) of MNIST. MIGSOM,
GSOM and FKCN produce the best partition just with FVI-
NOS and fail in detecting the optimum number of clusters in
the other cases.

Heterogeneous DNA is well clustered by FMIG partition-
ing that produces the optimum number of clusters evaluated
by each of the indices. MIGSOM, GSOM and FKCN give
good estimate with FVINOS and VOS, but the results of the
other indexes fail to detect the optimum result.

Huge databases such as Letter and NE clustering prove
that FMIG is able to produce the best distribution of pro-
totypes clustered by FCM. In fact, with FMIG, FVINOS,
PCAESN, VOS and SVI indexes detect the best partition.
MIGSOM, GSOM and FKCN give the optimum number of
clusters with FVINOS and fail to produce good results with
the other indexes because they are limited in mapping huge
data.

6 Conclusion

In this paper, we have presented a new form of fuzzy
dynamic self-organizing map algorithm called FMIG. This
new method improves the topology and quantization errors
and generates its structure according the data form. The fuzzy
aspect of our approach adapts its growing process to real
problems. In this study, we presented a new parameter of
Growing Threshold (GT) to ameliorate the control of themap
growth and improve the training process. In fact, we proved
that error values of quantization and topology are minimized
by applying our newGrowing Threshold (NGT). FMIG real-
izes the purposes of producing the best distribution of data by
finding out the topology corresponding to the form of inputs.
Also, FMIG gives the minimum value of quantization error
providing the best cluster structure. Furthermore, FMIG is
able to generate the best representations of big data.

Future research should focus on improving the perfor-
mance of FMIG algorithm over high-dimensional datasets
by incorporating some evolutionary techniques and provid-
ing a new form of Fuzzy evolutionary SOM.
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7 Appendix

7.1 Description of the used validity indexes

Let X = {x1, x2, ..., xn} be a dataset in an m-dimensional
Euclidean space Rm with its ordinary Euclidean norm ‖.‖
and let C, be the matrix of cluster centres with ci , the centre
of the cluster Ci (1 ≤ i ≤ nbc). In case of fuzzy clustering,
a pattern (point) may belong to all the clusters with a certain
fuzzy membership grade. Consider the matrix U = |uik |
where uik is the value of membership of the point k in cluster
i , and uik is in the interval [0,1] (1 ≤ k ≤ n).

We present below the validity indices studied in this work
depending on the geometric aspects of clusters (compactness,
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separation) and the data properties (noise, overlap) evaluated
by each index.

7.1.1 SVI index

SVI (SeparationValidity Index) (Wu andYang 2005) is given
by

SVI = π

S
(17)

π is a global compactness of the partition, it makes the
sum of πi , 1 ≤ i ≤ nbc.

The compactness of the cluster ci is defined by

πi = σi

ni
1 ≤ i ≤ nbc (18)

The variation σi and the cardinality ni of the cluster ci are
given, respectively, as

σi =
n∑

k=1

(uik)
m ‖xk −νi‖ 2 , ni =

n∑

k=1

uik, 1 ≤ i ≤ nbc

(19)

withuik , themembership degree of the vector xk to the cluster
ci and νi the centre of ci .

S is the global separation between the nbc clusters defined
as

S =
nbc+1∑

i=1

nbc+1∑

j=1
j �=i

(deνi j )
2 (20)

deνi j is the deviation between the centres of ci and c j .

deνi j = (μi j )
(2+ω)/2ω

∥
∥z j − zi

∥
∥ (21)

[
z1, z2, ..., znbc,znbc+1

] = [
ν1, ν2, ..., νnbc,x

]T
, where x is

the mean of X.

x =
n∑

k=1

xk/n (22)

μi j is the degree of membership of z j to the centre zi .

μi j = 1
nbc+1∑

l=1
l �= j

(‖z j−zi‖‖z j−zl‖
)ω

, 1 ≤ i ≤ nbc + 1;

1 ≤ j ≤ nbc + 1, j �= i (23)

7.1.2 XBI index

This index is normalized andgives the best number of clusters
at its minimum value (Mingoti and Lima 2006) as shown:

XBI(nbc) =
maxk=1,..,nbc

{
n∑

j=1

u2k j‖x j−ck‖2

nk

}

+ maxDiff(nbc)

mini, j �=i
∥
∥ci − c j

∥
∥2

(24)

where

maxk=1,..,nbc

{
n∑

j=1

u2k j‖x j−ck‖2

nk

}

gives the max fuzzy dis-

tance between points x j with membership degree ukj to the
center ck .

This index introduced the maxDiff(nbc) factor in order to
compare the nbc-partitions obtained by increasing nbc. Thus,
we can find out the best partition.

maxDiff(nbc) = maxnbcmax,...,nbc diffdw (25)

diffdw = dw(nbc) − dw(nbc + 1) (26)

with dw intra-cluster distance measured for different values
of nbc.

7.1.3 PCAESN index

Called Partition Coefficient And Exponential Separation
(PCAES) (Hu et al. 2004), this validity index takes into
account two factors with a normalized partition coefficient
and an exponential separation measure to validate separately
each fuzzy cluster i . PCAES is then defined as:

PCAES(nbc) =
nbc∑

i=1

PCAESi (27)

The validity index of cluster i is measured by:

PCAESi =
n∑

j=1

μ2
i j/μM− exp (−min{‖ai − ak‖2}/βT)

(28)

where
n∑

j=1
μ2
i j/μM : the compactness of the cluster i compared

to the most compact cluster with its value of compactness
μMmeasured by:

μM = min
1≤i≤nbc

⎧
⎨

⎩

n∑

j=1

μ2
i j

⎫
⎬

⎭
(29)
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μi j is the membership degree of vector j (1 ≤ j ≤ n) to
cluster i (1 ≤ k ≤ nbc),

exp (−min{ ‖ai − ak‖2 }/βT) is the separation measure
relative to the total average separation βT of the nbc clusters
given by:

βT =
∑nbc

l=1 ‖al − a‖2
nbc

(30)

ai is the center of cluster i , anda = ∑nbc
i=1 ai/nbc, the average

of center vectors ai.
Normalisation of PCAES index:
Basically, each validity index measure PCAESi (i =

1. . .nbc) is obtained by a subtraction between the compact-
ness and separation values which are defined in the interval
[0 1]. Consequently, we present PCAES values as

−nbc < PCAES (nbc) < nbc (31)

Thus, to obtain the value of PCAES in [0 1],we have specified
PCAESN Tlili et al. (2014) as following:

PCAESN(nbc) = 0.5 + [(PCAES(nbc)/nbc)/2] (32)

7.1.4 VOS index

Validity Overlap Separation (VOS) (Pal and Bezdek 1992)
gives its values in the interval [0 1] and reaches its best par-
tition for the minimum value.

This index is given by

VOS(nbc,U ) = OverlapN (nbc,U )

SepN (nbc,U )
, (33)

where OverlapN (nbc,U ) gives an inter-cluster overlap for
different values of nbc, normalized by the max overlap for
nbc = 2…nbcmax.

OverlapN (nbc,U ) = Overlap(nbc,U )

Overlapmax
(34)

SepN (nbc,U ) calculates the separation between clusters for
different values of nbc, normalized by the max separation for
nbc = 2…nbcmax.

SepN (nbc,U ) = Sep(nbc,U )

Sepmax
(35)

7.2 Overlap function

Overlap(nbc,U ) = 2

nbc(nbc − 1)

nbc−1∑

p=1

nbc∑

q=p+1

P(F p, Fq)

(36)

P(F p, Fq) defines the total overlap between two fuzzy clus-
ters F p and Fq :

P(F p, Fq) =
∑

μ

f (μ :F p, Fq) (37)

The function f (μ : F p, Fq) calculates the overlap degree
between two fuzzy clusters F p and Fq at a membership
degree μ given by

f (μ : F p, Fq) =
nbc∑

j=1

δ(x j ,μ : F p, Fq) (38)

δ(x j , μ : F p, Fq) indicates whether two clusters are over-
lapping at the membership degree μ for data point x j . It
returns an overlap value of ω(x j ) when the membership
degrees of two clusters are both greater than μ; otherwise
it returns 0.0:

δ(x j , μ : F p, Fq)

=
{

ω(x j ) if (μF p
(x j ) ≥ μ) and (μFq

(x j ) ≥ μ),

0 otherwise
(39)

ω(x j ) is a weight factor for each point x j between clusters.
ω(x j ) is a value in [0 1].

7.3 Separation function

The separation measure is obtained using the similarity dis-
tance S(F p, Fq) between two fuzzy clusters F p and Fq . It
is defined as

Sep(nbc,U ) = 1 − min︸︷︷︸
p �=q

S(F p, Fq) (40)

S(F p, Fq) is themaximummembership degree between two
clusters F p and Fq in the interval [0 1]:

S(F p, Fq) = max︸︷︷︸
x∈X

min(μF p(x), μFq(x)), (41)

whereμF p(x),μFq(x) are themembership degrees of vector

x , respectively, in F p and Fq .

7.3.1 Dunn index

The validity indice Dunn (1974) is based on inter-cluster
distance and the diameter of a hyperspheric cluster. Dunn
index is given as
Dunn(nbc) = mini=1,...,nbc

×
{

min j=i+1,...,nbc, j �=i

{
d(ci,c j )

maxk=1,...,nbc {diam(ck)}
}}

d(ci,c j ) = minx∈Ci ,y∈C j
{d(x, y)}

diam(ck) is the diameter of the cluster ck .
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7.3.2 FVINOS index

Fuzzy Validity Index with Noise-Overlap Separation (Tlili
et al. 2014) (FVINOS) is inspired from the Davies–Bouldin
validity index Mingoti and Lima (2006). FVINOS is defined
as

FVINOS(nbc) = 1

nbc

nbc∑

i=1

×
(
maxk=1,...,nbc,k �=i {Si + Sk} + maxDiff i (nbc)

minl=1,...,nbc,l �=i
{
di,l

}

)

(42)

minl=1,...,nbc,l �=i
{
di,l

}
calculates the minimum separation

between two clusters i and l.
maxDiff(nbc) factor is given to compare each two succes-

sive obtained partitions. In consequence, the best partition of
the dataset is found.

maxDiff i (nbc) = maxnbcmax,...,nbc diff i (nbc) (43)

diff i (nbc) = max
k=1,..,nbc,k �=i

{Si (nbc) + Sk(nbc)}
−maxk=1,..,nbc+1,k �=i {Si (nbc+1)+Sk(nbc+1)}

(44)

diff i (nbc) calculates the difference between max sums of
compactness in a pair of clusters i and k; this is calculated
for the obtained partition at nbc and nbc+1.

We define the average of fuzzy compactness relative to
cluster i as

Si = 1

ni

∑

x∈Ci

(ui (x)
m) × d(x, ci ), (45)

where ui (x) is the membership degree of point x to cluster
i , m is the fuzzifier factor.

d(x, ci ) is the Euclidean distance separating x from the
cluster centre ci .
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