
Soft Comput (2015) 19:3221–3235
DOI 10.1007/s00500-014-1477-4

METHODOLOGIES AND APPLICATION

A directed search strategy for evolutionary dynamic
multiobjective optimization

Yan Wu · Yaochu Jin · Xiaoxiong Liu

Published online: 17 October 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Many real-world multiobjective optimization
problems are dynamic, requiring an optimization algorithm
that is able to continuously track the moving Pareto front
over time. In this paper, we propose a directed search strat-
egy (DSS) consisting of two mechanisms for improving the
performance of multiobjective evolutionary algorithms in
changing environments. The first mechanism reinitializes the
population based on the predicted moving direction as well
as the directions that are orthogonal to the moving direction
of the Pareto set, when a change is detected. The second
mechanism aims to accelerate the convergence by generat-
ing solutions in predicted regions of the Pareto set accord-
ing to the moving direction of the non-dominated solutions
between two consecutive generations. The two mechanisms,
when combined together, are able to achieve a good bal-
ance between exploration and exploitation for evolution-
ary algorithms to solve dynamic multiobjective optimiza-
tion problems. We compare DSS with two existing predic-
tion strategies on a variety of test instances having differ-

Communicated by V. Loia.

Y. Wu
School of Mathematics and Statistics, Xidian University,
Xian 710071, China
e-mail: wuyan@mail.xidian.end.cn

Y. Jin
Department of Computing, University of Surrey, Guildford
GU2 7XH, UK

Y. Jin (B)
College of Information Sciences and Technology, Donghua
University, Shanghai 201620, China
e-mail: yaochu.jin@surrey.ac.uk

X. Liu
School of Automation, Northwestern Polytechnical University,
Xian 710072, China

ent changing dynamics. Empirical results show that DSS is
powerful for evolutionary algorithms to deal with dynamic
multiobjective optimization problems.

Keywords Dynamic multiobjective optimization ·
Evolutionary algorithm · Prediction · Local search

1 Introduction

In many real-world optimization problems, the fitness func-
tions to be optimized may change over time, which are
known as dynamic optimization problems (DOPs). Like sta-
tionary optimization problems, DOPs can also be catego-
rized into dynamic single-objective optimization problems
(DSOPs) and dynamicmultiobjective optimization problems
(DMOPs), see detailed discussions in Farina et al. (2004), Jin
and Branke (2005) and Nguyen et al. (2012). In recent years,
solving dynamicmultiobjective optimization problems using
evolutionary algorithms (EAs) has attracted increasing atten-
tion (Farina et al. 2004; Jin and Branke 2005; Nguyen et al.
2012) due to its practical significance in awide range of appli-
cations, such as scheduling (Abello et al. 2011a, b; Deb et al.
2007), control (Zhang 2008), airspace sectorization (Tang
et al. 2012), vehicle motion planning (Wu et al. 2011) and
wireless network design (Martins et al. 2009), althoughmany
challenges remain (Nguyen et al. 2012).

In this paper, we focus on the following class of DMOPs:

min f (x, t) = (f1(x, t), f2(x, t), . . . , fm(x, t)),

subject to x ∈ [L ,U], (1)

where t = 0, 1, 2, . . . ∈ T is the time instant and x =
(x1, . . . , xn) is the decision vector.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-014-1477-4&domain=pdf

3222 Y. Wu et al.

[L ,U] = {x = (x1, . . . , xn)|li ≤ xi ≤ ui , i =
1, 2, . . . , n} defines the decision space, where L = (l1, . . . ,
ln), U = (u1, . . . , un) are the lower and upper bounds,
respectively. The objective vector consists ofm time-varying
objective functions fi (x, t), (i = 1, 2, . . . ,m).

For DMOPs defined in (1), the Pareto front (PF) and/or
Pareto set (PS) may change over time. Typically, dynamic
multiobjective optimization evolutionary algorithms (DMO-
EAs) aim to track moving PF (PS) as closely as possible
when environment changes.

However, EAs usually lose the ability to find a new opti-
mum once the population has converged. A straightforward
idea to address this problem is to increase the population
diversity so that the population will not fully converge even
if the current optimum has been found. Based on this idea,
many approaches have been proposed to adapt EAs to solv-
ing DMOPs. Hyper mutation methods (Deb et al. 2007;
Zhou et al. 2007; Zheng 2007; Liu et al. 2011) promote
diversity by increasing the mutation rate drastically after
a change is detected. Random immigrants and other immi-
grantsmethods (Deb et al. 2007;Aragon et al. 2005;Azevedo
and Araujo 2011) maintain diversity by inserting new immi-
grants throughout the evolutionary optimization. There are
also other methods to increase diversity, such as employing
multiple populations and parallel computing (Camara et al.
2009, 2010) and applying different crossover and mutation
operator (Yang et al. 2008; Jin and Sendhoff 2004) after a
change.

In addition to enhancing population diversity, acceler-
ating convergence is another important issue for dynamic
MOEAs to trace the moving PF(PS), as the time for relocat-
ing the changed optimum is typically rather short. Unfortu-
nately, most methods for increasing population diversity are
likely to disrupt convergence, e.g., the random initialization
method (Deb et al. 2007; Zhang 2008; Greeff and Engel-
brecht 2008; Liu and Wang 2006, 2009). To alleviate this
problem, ideas of using history information about previous
optimums have been proposed to speed up convergence, such
as the memory-based methods (Zhang 2008; Hatzakis and
Wallace 2006a, b; Wang and Li 2009; Manriquez et al. 2010;
Vinek et al. 2011; Helbig and Engelbrecht 2012), among oth-
ers. However, memory-based approaches are most effective
only when the changes are periodic.

History information of the previous optimums can be used
to predict their future behavior, more or less, so long as the
changes in the fitness functions are not fully random. Vari-
ous prediction strategies have been suggested to demonstrate
that they can accelerate convergence of dynamic MOEAs
(Zhou et al. 2007; Liu et al. 2011; Hatzakis and Wallace
2006a, b; Wei and Zhang 2011; Ma et al. 2011; Wei and
Wang 2012; Zhou et al. 2014). A feed-forward prediction
strategy (FPS) was studied in Hatzakis andWallace (2006b),
where an autoregressive model was used to estimate the new

position of an individual once a change occurs based on the
position of a number of previous optimums that are consid-
ered to be related to this individual. The difficulty is that
it is non-trivial to identify the right previous optimums that
are really associated with the current individual. In Zhou et
al. (2014), a population prediction strategy (PPS) has been
investigated, which was shown to be able to enhance the
performance of MOEAs in dynamic environments thanks to
the predicted initial population after a change. Comparative
studies indicated that PPS (Zhou et al. 2014) can converge
faster than FPS (Hatzakis and Wallace 2006b). However, as
a linear regression model was used in PPS, the performance
of PPS will severely degrade if the changes are irregular or
nonlinear.

In solving DOPs, it is essential for EAs to achieve a
good balance between maintaining a high degree of popula-
tion diversity and accelerating convergence. To this end, we
design a new prediction based method to take both diversity
and convergence into account. The proposed method con-
sists of two mechanisms. The first mechanism reinitializes
the population based on the predicted moving direction and
the orthogonal directions of the moving Pareto set. The sec-
ond mechanism guides the search by adding a small number
of individuals generated according to themoving direction of
the non-dominated solutions between two consecutive gener-
ations. Among thesemechanisms, generating candidate solu-
tions along the predicted moving direction of the Pareto or
non-dominated set is meant for speeding up convergence,
whereas the solutions generated along the orthogonal direc-
tions of the moving direction can enhance the diversity in
the beginning of an environmental change. It is noted that
if the change severity is large, the new problem is less rel-
evant to the previous problem and a restart strategy may be
better.

The paper is structured as follows. Section 2 presents the
proposed algorithm in detail. The test instances and perfor-
mancemetric are presented inSect. 3. InSect. 4, experimental
results are reported. Finally, conclusions are drawn in Sect. 5.

2 The proposed algorithm

2.1 Directed search strategy (DSS)

The basic idea of the proposed method is to predict the pos-
sible regions in decision space where new PSmay be located
once an environmental change is detected. The main idea
here is to take advantage of the predicted information about
the moving directions of non-dominated solutions between
two consecutive environments and between two consecutive
generations. For the sake of convenience, we term the pro-
posed method directed search strategy (DSS). DSS contains

123

A directed search strategy 3223

two mechanisms, one used when an environmental change
is detected (DSS1 for short), and the other used in each gen-
eration (DSS2).

– DSS1 Reinitialize the population based on the predicted
moving direction of the Pareto set and a local search along
the directions orthogonal to the moving direction of PS
between two consecutive environments once a change
occurs.

– DSS2Guide the search by introducing the promising indi-
viduals generated in the regions predicted based on rel-
ative positions of the non-dominated solutions between
two consecutive generations.

The first mechanism, DSS1, is used to reinitialize the popu-
lation after an environmental change. After a change occurs,
part of the population is reinitialized with individuals gen-
erated in the predicted regions where the new PS may be
located. In addition, the rest of the individuals are generated
by performing a local search along the orthogonal directions
of the predicted Pareto set, aiming to enhance the diversity of
the population and to dealwith inaccurate prediction and sud-
den irregular changes. By contrast, the second mechanism,
DSS2, aims to improve the speed of convergence to PS. At
every generation, some individuals generated around the PS
region predicted using the history information of the PSs are
inserted into the population to speed up the convergence.

2.2 DSS1

2.2.1 Prediction upon an environmental change

The prediction in this work plays a similar role as other meth-
ods (Hatzakis and Wallace 2006b; Zhou et al. 2014), which
aims to make a good guess of the location of the new opti-
mum so that solutions close to the new PS can be generated
and the new PS can be obtained more quickly than random
initialization. Themain assumption in predicting the location
of the new PS is that the moving direction of PS at time t +1
can be estimated based on the changes of the non-dominated
solutions in t − 1 and t . The prediction we used here is very
coarse, which however, offers the benefit of a more explo-
rative search than the finer prediction in FPS and PPS, as
illustrated in Fig. 1.

Let Ct be the centroid of PSt , PSt is the non-dominated
solutions obtained by the algorithm at the end of time step t ,
then Ct can be calculated as follows:

Ct = 1

|PSt |
∑

x∈PSt
x, (2)

where |PSt | is the cardinality of PSt , x = (x1, . . . , xn) ∈ PSt .
Then the moving direction of the non-dominated set at time

tC

1
tD

1
tx D

1 (0,)t tx D N d S

(0,1) (1)t
ix N D i

Prediction set

Directed local search

2tC

1tC

Fig. 1 Population initialization after a change

t , denoted by Dt
1 can be estimated as follows:

Dt
1 = Ct − Ct−1. (3)

Then the predicted moving direction Dt
1 is used to generate

individuals according to the following formulas for initializ-
ing the population after the environmental change:

St = sgn(Dt
1), (4)

y = x + Dt
1 + N (0, d) × St , (5)

where x is any individual in the population before the
environmental change, sgn(·) is the sign function, d is
the Euclidian distance between centroid Ct and Ct−1 and
N (0, d) denotes a normally distributed one-dimensional ran-
dom number with mean of zero and standard deviation d. In
the above equation, the noise is added for compensating pos-
sible errors in the prediction. Noted that St results in a bias
towards the original moving direction, refer to Fig. 1.

2.2.2 Directed local search

The predicted individuals focus on generating solutions in the
predicted new PS area after an environmental change. As the
population might have converged before the environmental
change, the diversity of the new population may be insuffi-
cient if all individuals are reinitialized with individuals based
on prediction. For this reason, part of the population will be
reinitializedwith individuals generated in the regions orthog-
onal to Dt

1. We will show in the empirical studies that the
proposed local search along the direction orthogonal to the
moving direction of the non-dominated sets in two consecu-
tive environments works better than a random local search.

There aremany directions which are orthogonal to Dt
1 and

here we choose the orthogonal basis of the null space of Dt
1

as the orthogonal directions to Dt
1. Let D

t
1 = (v1, . . . , vn),

the null space of Dt
1 is defined as

Null(Dt
1) = {w ∈ Rn : Dt

1w = 0}.

123

3224 Y. Wu et al.

According to singular value decomposition, the orthogonal
basis of Null(Dt

1) is as follows:

Dt
i =

(
− vi

v1
, 0, . . . , 0, 1, 0, . . . , 0

)
, i ∈ {2, . . . , n}.

Given Dt
i , i ∈ {2, . . . , n} as calculated above are orthogonal

to Dt
1, new candidate solutions can be generated as follows

from any individual (x) in the population before the environ-
mental change:

y = x + N (0, 1) × Dt
i , i ∈ {2, . . . , n}, (6)

where N (0, 1) denotes a normally distributed random num-
ber with mean zero and standard deviation 1.

The main steps of DSS1 are summarized in Algorithm 1.

Algorithm 1 The pseudo code of the DSS1
1: Input PSt , N and the previous centroid Ct−1;
2: Calculate the centroid Ct of PSt , and Dt

i , i = 1, . . . , n and St

according to (2),(3) and (4);
3: for i = 1, . . . , r1 × N do
4: Randomly select a solution x from PSt ;
5: Generate a new point y according to (5);
6: Boundary check and put y into Pt ;
7: end for
8: for i = 1, . . . , (1 − r1) × N do
9: Randomly select a solution x from PSt ;
10: Randomly select a direction from Dt

i , i = 2, . . . , n;
11: Generate a new solution y according to (6);
12: Boundary check and put y into Pt ;
13: end for

In line 1 of Algorithm 1, N is population size, set C0 =
(0, . . . , 0), assuming that the starting location of the centroid
is at the origin. In line 3, 0 < r1 < 1 is a ratio. Typically,
we set r1 = 0.5 in this paper. In lines 6 and 12, Pt is the
reinitialized population. Boundary check is to see if the gen-
erated solutions arewithin the given boundary of the decision
variable and if not, a repairing operation will be performed
as follows:

yi =
⎧
⎨

⎩

xi if li ≤ xi ≤ ui
0.5(li + xi) if yi < li
0.5(ui + xi) if yi > ui

(7)

where i = 1, . . . , n.

2.3 DSS2

In tracking a moving Pareto front, the convergence speed
is central to the performance since the time period between
two environmental changes can be very short. DSS1 aims
to improve the tracking performance by generating an ini-
tial population close enough to and widely distributed along

the Pareto set. Clearly, these one-shot measures based on a
very rough prediction are inadequate for reliably and sig-
nificantly improving the search performance in a changing
environment. DSS2 is therefore designed to accelerate the
convergence speed of DMOEAs by inserting promising indi-
viduals into the current population at every generation. These
promising individuals are generated according to the moving
direction of centroid of PSiter of the non-dominated solutions
between two consecutive generations, where iter is the gener-
ation index. Here, the assumption is that themoving direction
of centroid between two consecutive generations indicates
the direction of true PS to head for. The moving direction
Diter
1 is estimated as in Eq. (3) with t being replaced by iter.

Thus, promising individuals are generated as follows:

y = x + Diter
1 + N (0, d ′) × Siter, (8)

where x ∈ PSiter is a randomly selected non-dominated indi-
vidual from the current population, d ′ is the Euclidian dis-
tance between centroid C iter and C iter−1, N (0, d ′) denotes
a normally distributed random number with mean zero and
standard deviation d ′, d ′ is used to control the range of search,
and Siter is calculated as (4) to maintain the original increas-
ing or decreasing direction. The main components of DSS2
are summarized in Algorithm 2.

Algorithm 2 The pseudo code of the DSS2

1: Input PSiter, N , and the previous centroid C iter−1;
2: Calculate the centroid C iter of PSiter, and Diter

1 and Siter, accord-
ing to (2) (3) (4);

3: for i = 1, . . . , r2 × N do
4: Randomly select a solution x from PSiter;
5: Generate a new point y according to (8);
6: Boundary check and repair according to (7) if necessary;
7: end for
8: Randomly replace the individuals in Piter with generated individu-

als.

In line 1, N is the population size. Set C0 = (0, . . . , 0),
assuming that the starting location of centroid is at the origin.

In DSS2, the new individuals are generated according to
the moving direction to search the most promising area of
PS. This can be seen as a sort of “gradient” and is expected
to provide useful information for the EA to converge to the
changed Pareto front more rapidly.

2.4 Overall framework of the proposed algorithm

The proposed directed search strategy (DSS) is incorpo-
rated into the most widely used Pareto-based MOEA, the
elitist non-dominated sorting algorithm, NSGA-II (Deb et
al. 2002). However, the crossover operator used in the origi-
nal NSGA-II, simulated binary crossover (SBX) is replaced

123

A directed search strategy 3225

by the DE operator (Li and Zhang 2009; Iorio and Li 2005).
Thus, themain procedure of the proposed algorithm, denoted
by NSGA-II/DE+DSS, is described in Algorithm 3:

Algorithm 3 The main procedure of NSGA-II/DE+DSS

1: iter ← 0 t ← 0 , Initialize a population Piter, iter is generation, t
is time step;

2: If an environmental change is detected, reinitialize the population
Piter using DSS1;

3: Apply tournament selection and crossover and mutation operator,
and get population Qiter;

4: Select the population Piter+1 from Piter
⋃

Qiter using non-
dominated rank and crowd distance;

5: Adjust Piter+1 using DSS2;
6: If the termination is satisfied, then stop, otherwise iter ← iter + 1,

turn to Step 2.

The DE operator in line 4 of Algorithm 3 is described as
follows:

yi = xk1i + F × (xk2i + xk3i), (9)

where F is a control parameter, F = 0.5 and k1, k2, k3 are
mutually exclusive integers randomly generated within the
range [1, N].

3 Test instances and performance indicators

3.1 Test instances

Twelve dynamic multiobjective test instances as listed in
Table 1 are adopted here to examine the performance of
NSGA-II/DE+DSS in dynamic environments. The first ten
test problems are taken from Farina et al. (2004), Goh and
Tan (2009) and Zhou et al. (2014). The last two problems are
newly proposed to include two additional challenging envi-
ronmental changes. Among these test problems, F1–F4 have
linearly correlated decision variables, while F5–F12 have
nonlinearly correlated decision variables. As to environmen-
tal changes, F1–F8 are subject to continuous environmental
changes, whereas F9–F12 have irregular and sharp environ-
mental changes. So F9–F12 are the most difficult problems
among the twelve test functions. As indicated in Zhou et al.
(2014), the Pareto fronts of F9 will have a large shift between
two consecutive environments, which occurs occasionally.
For F10, the shape of two consecutive PFs is substantially
changed.By contrast, the PSof F11 suffers from rapid reverse
movements near the boundary. F12’s Pareto front will have
both abrupt large shifts and big rotations, especially when nT
is small. Figure 2 plots the projections of the PSs of F9–F12
on lower dimensional spaces. Details about the changes in

PFs and PSs of other test problems can be found in Zhou et
al. (2014).

3.2 Performance indicators

IGD Zhang et al. (2008) is a widely used metric in sta-
tic MOEAs, which can be used to measure both diversity
and convergence of non-dominated optimums to true Pareto
front. In this paper, we adopt a modified IGD metric to mea-
sure the performance of DMOEAs. Let Pt∗

f be a set of uni-
formly distributed Pareto optimal points in PFt and Pt

f be an
approximation of PFt . The original IGD metric is defined as
Zhang et al. (2008)

IGD(Pt∗
f , Pt

f) =
∑

v∈Pt∗
f
d(v, Pt

f)

|Pt∗
f | ,

where d(v, Pt
f) is the minimum Euclidian distance between

v and the point in Pt
f . |Pt∗

f | is the cardinality of Pt∗
f .

The objective of DMOEAs is to track moving PF (PS) as
closely as possible, to find a particular single PF (PS). To
consider all PF (PS), the average IGD, which is denoted as
MIGD (Zhou et al. 2014) over the time steps in the whole
run can be defined as follows:

MIGD = 1

|T |
∑

t∈T
IGD(Pt∗

f , Pt
f),

where T is a set of discrete time instances in a run and |T | is
the cardinality of T . The lower a MIGD value is, the better
the tracking performance.

In our experiments, 2,500 uniformly distributed points in
the PFs of F4 and F8 and 500 uniformly distributed points
in the PFs of the rest test problems are taken to form Pt∗

f for
computing IGD.

4 Experimental results

4.1 Compared algorithms and parameter settings

For fair comparative studies, two existing prediction strate-
gies for handling dynamic MOEAs, namely, FPS (Hatzakis
andWallace 2006b) and PPS (Zhou et al. 2014) are chosen to
be incorporated into NSGA-II/DE. For simplicity, the three
algorithms under comparison are denoted as DSS, FPS and
PPS, respectively.

The parameter settings for the test problems and different
algorithms are as follows. The severity of changes is set to
be nT = 10. The dimensions of the test problems are n = 20.
The population size is set to be N = 100 for all test prob-
lems. For change detection, at every generation, 5 % ran-
domly selected points from the population are reevaluated
to detect environmental changes. The environments change

123

3226 Y. Wu et al.

Table 1 Test instances used in our experiments

Test instance Search space Objectives, PS and PF Remarks

F1 [0, 1] × [−1, 1]n−1 f1(x, t) = x1, f2(x, t) = g
(
1 −

√
f1
g

)
, FDA1

g = 1 + ∑n
i=2(xi − G(t))2,G = sin

(
0.5π t

nT

)
PF is fixed

PS(t) : 0 ≤ x1 ≤ 1, xi = G, f or i = 2, . . . , n PS changes

PF(t) : f2 = 1 − √
f1, 0 ≤ f1 ≤ 1 Two objectives

F2 [0, 1] × [−1, 1]n−1 f1(x, t) = x1, f2(x, t) = g
(
1 − (

f1
g)H

)
, dMOP1

g = 1 + 9
∑n

i=2(xi)
2, H = 1.25 + 0.75sin

(
0.5π t

nT

)
PF changes

PS(t) : 0 ≤ x1 ≤ 1, xi = 0, f or i = 2, . . . , n PS is fixed

PF(t) : f2 = 1 − f H1 , 0 ≤ f1 ≤ 1 Two objectives

F3 [0, 1] × [−1, 1]n−1 f1(x, t) = x1, f2(x, t) = g
(
1 − (

f1
g)H

)
,G = sin(0.5π t

nT
), dMOP2

g = 1 + ∑n
i=2(xi − G(t))2, H = 1.25 + 0.75sin(0.5π t

nT
) PF changes

PS(t) : 0 ≤ x1 ≤ 1, xi = G, for i = 2, . . . , n PS changes

PF(t) : f2 = 1 − f H1 , 0 ≤ f1 ≤ 1 Two objectives

F4 [0, 1]2 × [−1, 1]n−2 f1(x, t) = (1 + g)cos(0.5πx2)cos(0.5πx1), FDA4

f2(x, t) = (1 + g)cos(0.5πx2)sin(0.5πx1), PF is fixed

f3(x, t) = (1 + g)sin(0.5πx2), PS changes

g(x, t) = | ∑n
i=3(xi − G(t))2|,G = sin(0.5π t

nT
) Three objectives

PS(t) : 0 ≤ x1, x2 ≤ 1, xi = G, for i = 3, . . . , n

PF(t) : f1 = cos(u)cos(v), f2 = cos(u)sin(v), f3 = sin(u)

0 ≤ u, v ≤ π/2

F5 [0, 5]n f1(x, t) = |x1 − a|H + ∑
i∈I1 y

2
i , F5

f2(x, t) = |x1 − a − 1|H + ∑
i∈I2 y

2
i , PF changes

yi = xi − b − 1 + |x1 − a|H+ i
n , H = 1.25 + 0.75sin(π t

nT
) PS changes

a = 2cos(π t
nT

) + 2, b = 2sin(2π t
nT

) + 2 Two objectives

I1 = {i |2 ≤ i ≤ n, i is odd}, I2 = {i |2 ≤ i ≤ n, i is even}
PS(t) : a ≤ x1 ≤ a + 1, xi = b + 1 − |x1 − a|H+ i

n , for i = 2, . . . , n

PF(t) : f1 = sH , f2 = (1 − s)H , 0 ≤ s ≤ 1

F6 [0, 5]n f1(x, t) = |x1 − a|H + ∑
i∈I1 y

2
i , F6

f2(x, t) = |x1 − a − 1|H + ∑
i∈I2 y

2
i , PF changes

yi = xi − b − 1 + |x1 − a|H+ i
n , H = 1.25 + 0.75sin(π t

nT
) PS changes

a = 2cos(1.5π t
nT

)sin(0.5π t
nT

) + 2, b = 2cos(1.5π t
nT

)cos(0.5π t
nT

) + 2 Two objectives

I1 = {i |2 ≤ i ≤ n, i is odd}, I2 = {i |2 ≤ i ≤ n, i is even}
PS(t) : a ≤ x1 ≤ a + 1, xi = b + 1 − |x1 − a|H+ i

n , for i = 2, . . . , n

PF(t) : f1 = sH , f2 = (1 − s)H , 0 ≤ s ≤ 1

F7 [0, 5]n f1(x, t) = |x1 − a|H + ∑
i∈I1 y

2
i , F7

f2(x, t) = |x1 − a − 1|H + ∑
i∈I2 y

2
i , PF changes

yi = xi − b − 1 + |x1 − a|H+ i
n , H = 1.25 + 0.75sin(π t

nT
) PS changes

a = 1.7(1 − sin(π t
nT

))sin(π t
nT

) + 3.4 Two objectives

b = 1.4(1 − sin(π t
nT

))cos(π t
nT

) + 2.1

I1 = {i |2 ≤ i ≤ n, i is odd}, I2 = {i |2 ≤ i ≤ n, i is even}
PS(t) : a ≤ x1 ≤ a + 1, xi = b + 1 − |x1 − a|H+ i

n , for i = 2, . . . , n

PF(t) : f1 = sH , f2 = (1 − s)H , 0 ≤ s ≤ 1

123

A directed search strategy 3227

Table 1 continued

F8 [0, 1]2 × [−1, 2]n−2 f1(x, t) = (1 + g)cos(0.5πx2)cos(0.5πx1), F8

f2(x, t) = (1 + g)cos(0.5πx2)sin(0.5πx1), PF changes

f3(x, t) = (1 + g)sin(0.5πx2), PS changes

g(x, t) = | ∑n
i=3(xi − (x1+x2

2)H − G)2| Three objectives

G = sin(0.5π t
nT

), H = 1.25 + 0.75sin(π t
nT

)

PS(t) : 0 ≤ x1, x2 ≤ 1, xi = (x1+x2
2)H + G, for i = 3, . . . , n

PF(t) : f1 = cos(u)cos(v), f2 = cos(u)sin(v), f3 = sin(u)

0 ≤ u, v ≤ π/2

F9 [0, 5]n f1(x, t) = |x1 − a|H + ∑
i∈I1 y

2
i , F9

f2(x, t) = |x1 − a − 1|H + ∑
i∈I2 y

2
i , PF changes

yi = xi − b − 1 + |x1 − a|H+ i
n , H = 1.25 + 0.75sin(π t

nT
) PS changes

a = 2cos
((

t
nT

−
⌊

t
nT

⌋)
π

)
+ 2, b = 2sin

(
2

(
t
nT

−
⌊

t
nT

⌋)
π

)
+ 2, Two objectives

I1 = {i |2 ≤ i ≤ n, i is odd}, I2 = {i |2 ≤ i ≤ n, i is even}
PS(t) : a ≤ x1 ≤ a + 1, xi = b + 1 − |x1 − a|H+ i

n , for i = 2, . . . , n

PF(t) : f1 = sH , f2 = (1 − s)H , 0 ≤ s ≤ 1

F10 [0, 5]n f1(x, t) = |x1 − a|H + ∑
i∈I1 y

2
i , F10

f2(x, t) = |x1 − a − 1|H + ∑
i∈I2 y

2
i , PF changes

yi =
{
xi − b − |x1 − a|H+ i

n if t is odd

xi − b − 1 + |x1 − a|H+ i
n otherwise

PS changes

H = 1.25 + 0.75sin(π t
nT

), a = 2cos(π t
nT

) + 2, b = 2sin(2π t
nT

) + 2 Two objectives

I1 = {i |2 ≤ i ≤ n, i is odd}, I2 = {i |2 ≤ i ≤ n, i is even}

PS(t) : a ≤ x1 ≤ a + 1, xi =
{
b + |x1 − a|H+ i

n if t is odd

b + 1 − |x1 − a|H+ i
n otherwise

for i = 2, . . . , n

PF(t) : f1 = sH , f2 = (1 − s)H , 0 ≤ s ≤ 1

F11 [0, 5]n f1(x, t) = |x1 − a|H + ∑
i∈I1 y

2
i ,

f2(x, t) = |x1 − a − 1|H + ∑
i∈I2 y

2
i , PF changes

yi = xi − b − 1 + |x1 − a|H+ i
n , H = 1.25 + 0.75sin(π t

nT
) PS changes

a = 4|cos(π t
nT

)|, b = 4|sin(π t
nT

)| Two objectives

I1 = {i |2 ≤ i ≤ n, i is odd}, I2 = {i |2 ≤ i ≤ n, i is even}
PS(t) : a ≤ x1 ≤ a + 1, xi = b + 1 − |x1 − a|H+ i

n , for i = 2, . . . , n

PF(t) : f1 = sH , f2 = (1 − s)H , 0 ≤ s ≤ 1

F12 [0, 5]n f1(x, t) = |x1 − a|H + ∑
i∈I1 y

2
i ,

f2(x, t) = |x1 − a − 1|H + ∑
i∈I2 y

2
i , PF changes

yi = xi − b − 1 + |x1 − a|H+ i
n , H = 1.25 + 0.75sin(π t

nT
) PS changes

a = 1.76cos(π t
nT

) + 0.88cos(2π t
nT

) + 1.32, b = 1.5sin(π t
nT

)(1 − cos(π t
nT

)) + 1.05 Two objectives

I1 = {i |2 ≤ i ≤ n, i is odd}, I2 = {i |2 ≤ i ≤ n, i is even}
PS(t) : a ≤ x1 ≤ a + 1, xi = b + 1 − |x1 − a|H+ i

n , for i = 2, . . . , n

PF(t) : f1 = sH , f2 = (1 − s)H , 0 ≤ s ≤ 1

F11, F12 are newly proposed test instances, where x = (x1 . . . , xn) is decision vector, t = 0, 1, . . . is time instances and nT is an environmental
parameter

for every K = 5,500 function evaluations. As a result, the
environment changes every 50 generations for DSS and 52.5
generations for FPS and PPS. For simplicity, the change fre-

quency for FPS and PPS is set to be 55 generations. The
crossover and mutation probability are set to be 0.9 and 0.1,
respectively. Twenty independent simulation runs are per-

123

3228 Y. Wu et al.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x1

x2 t=0

t=1

t=2
t=3

t=4

t=5

t=6

t=7t=8

t=9

t=10

t=11

t=12
t=13

t=14

t=15

t=16

t=17t=18

t=19

F9

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x1

x2 t=0

t=1

t=2t=3
t=4

t=5

t=6
t=7t=8

t=9

t=10

t=11

t=12 t=13

t=14

t=15

t=16

t=17 t=18

t=19

F10

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x1

x2

t=0

t=1

t=2

t=3

t=4t=5
t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14
t=15

t=16

t=17

t=18

t=19

F11

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x1

x2

t=0t=1t=2
t=3

t=4

t=5
t=6t=7
t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17
t=18

t=19

F12

Fig. 2 Projections of the PSs on the lower dimensional space for F9–F12 with t = 0, 1, . . . , 19. The parameters are nT = 10 and n = 20

formed for each of the test problems. The parameter settings
for different algorithms are listed as follows.

– Parameters in DSS: r1 = 0.5 in DSS1 and r2 = 0.05 in
DSS2

– Parameters in FPS Hatzakis and Wallace (2006b): The
reinitialized population is composed of three parts, which
are 3(m+1) predicted points, 30%(N−3(m+1)) inher-
ited points from the previous population, and 70 %(N −
3(m + 1)) randomly sampled points from the search
space. The AR(p) model order is p = 3 and the length
of history mean point series is M = 23. The probability
in the prediction model is 0.9.

– Parameters in PPS (Zhou et al. (2014)): In the origi-
nal PPS, the reinitialized population contains prediction
points only. In this paper, since NSGA-II/DE is not as
powerful as RM-MEDA (Zhang et al. 2008), in which
the PPS was originally embedded (Zhou et al. 2014), we
slightly modify the setup, i.e., when t < 23, the initial-
ized populationwill combine 50%predicted points, 30%
randomly sampled points and 20% inherited points from
the previous population. When t ≥ 24, PPS is exactly
the same as in the original algorithm Zhou et al. (2014).
The AR(p) model used here is the same as in Zhou et al.
(2014).

4.2 Experimental results

Table 2 gives the mean and standard deviation values of the
MIGD of each algorithm on each instance. These results are
presented with t = 0, 1 ≤ t ≤ 20, 21 ≤ t ≤ 40, 41 ≤ t ≤
80. Figure 3 shows the average IGD values versus the time on
F1–F12. Figure 4 plots the Pareto front of final populations
obtained by FPS, PPS and DSS at different time steps. From
the above results, we can make the following observations.

1. From the Table 2, we see that DSS performs better than
FPS and PPS at t = 0, except for F1, F3 and F4, while
DSS performs comparably with FPS and PPS on F1, F3
and F4. The difference between DSS, FPS and PPS at
t = 0 may be attributed to the fact that DSS introduces
some promising individuals to guide the search by DSS2.
This indicates that DSS2 does accelerate the convergence
of the proposed algorithm.Wewill further investigate the
influence of DSS2 in Sect. 4.4.

2. From Table 2 and Fig. 3, we can see that DSS has better
performance than FPS and PPS on all test instances when
1 ≤ t ≤ 20. Both FPS and PPS need a long history to sen-
sibly predict the new points in a changed environment to
improve the algorithm.However, when 1 ≤ t ≤ 20, there
is little history information available, which degrades the

123

A directed search strategy 3229

Table 2 Mean and standard deviation of MIGD for FPS, PPS and DSS on F1–F12 over 20 runs

Instance Strategy t = 0 1 ≤ t ≤ 20 21 ≤ t ≤ 40 41 ≤ t ≤ 80
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

F1 FPS 0.0335 (0.0119) 0.0110 (7.3987e−004) 0.0074 (3.3263e−004) 0.0068 (2.2259e−004)

PPS 0.0299 (0.0094) 0.0113 (8.8305e−004) 0.0082 (6.2491e−004) 0.0074 (4.2087e−004)

DSS 0.0307 (0.0074) 0.0077 (2.2167e−004) 0.0070 (1.2797e−004) 0.0070 (9.7054e−005)

F2 FPS 0.6146 (0.2118) 0.0475 (0.0249) 0.0055 (6.3386e−005) 0.0054 (5.5716e−005)

PPS 0.6869 (0.1604) 0.0517 (0.0274) 0.0059 (8.5134e−004) 0.0057 (3.1957e−004)

DSS 0.6895 (0.1742) 0.0088 (0.0010) 0.0070 (1.1261e−004) 0.0069 (8.8621e−005)

F3 FPS 0.0497 (0.0153) 0.0148 (0.0013) 0.0080 (4.6996e−004) 0.0071 (2.9066e−004)

PPS 0.0408 (0.0097) 0.0158 (0.0013) 0.0090 (6.7933e−004) 0.0093 (7.1135e−004)

DSS 0.0477 (0.0192) 0.0084 (3.7780e−004) 0.0072 (1.2601e−004) 0.0073 (1.1522e−004)

F4 FPS 0.2846 (0.0564) 0.1223 (0.0066) 0.0979 (0.0030) 0.0960 (0.0020)

PPS 0.2873 (0.0630) 0.1188 (0.0062) 0.0929 (0.0021) 0.0886 (0.0013)

DSS 0.3001 (0.0649) 0.1076 (0.0030) 0.1016 (0.0022) 0.1032 (0.0012)

F5 FPS 0.6371 (0.3793) 0.5924 (0.1290) 0.2857 (0.1090) 0.2154 (0.1041)

PPS 0.6878 (0.4294) 0.5508 (0.1925) 0.2662 (0.1893) 0.1594 (0.2207)

DSS 0.3957 (0.1461) 0.0236 (0.0016) 0.0221 (0.0020) 0.0227 (0.0014)

F6 FPS 2.4267 (0.9857) 0.3384 (0.1220) 0.0956 (0.0246) 0.0791 (0.0136)

PPS 3.0655 (1.3283) 0.3729 (0.1489) 0.0674 (0.0156) 0.0547 (0.0055)

DSS 0.8267 (0.9751) 0.0262 (0.0035) 0.0242 (0.0023) 0.0249 (0.0012)

F7 FPS 2.0235 (0.5762) 0.2523 (0.0799) 0.0796 (0.0333) 0.0585 (0.0060)

PPS 2.1944 (1.1508) 0.2494 (0.1320) 0.0664 (0.0147) 0.0724 (0.0422)

DSS 0.4602 (0.5020) 0.0267 (0.0050) 0.0200 (0.0017) 0.0206 (0.0010)

F8 FPS 0.5475 (0.1115) 0.1501 (0.0056) 0.1189 (0.0037) 0.1239 (0.0023)

PPS 0.4988 (0.0744) 0.1439 (0.0061) 0.1167 (0.0043) 0.1273 (0.0054)

DSS 0.4489 (0.1059) 0.1338 (0.0036) 0.1240 (0.0036) 0.1265 (0.0019)

F9 FPS 0.5246 (0.1826) 0.6453 (0.2361) 0.3028 (0.1131) 0.2597 (0.0806)

PPS 0.6849 (0.3724) 0.6374 (0.1218) 0.6904 (0.3118) 0.6843 (0.6271)

DSS 0.4205 (0.1722) 0.0304 (0.0056) 0.0316 (0.0045) 0.0309 (0.0040)

F10 FPS 0.5916 (0.2503) 0.6283 (0.1173) 0.4246 (0.1747) 0.3494 (0.0701)

PPS 0.6355 (0.2780) 0.6237 (0.2153) 1.4666 (0.3209) 1.8133 (0.3109)

DSS 0.4772 (0.3732) 0.0391 (0.0078) 0.0393 (0.0112) 0.0372 (0.0043)

F11 FPS 5.0034 (1.9732) 0.6744 (0.2487) 0.3724 (0.1178) 0.3256 (0.0741)

PPS 5.2397 (2.1149) 0.3606 (0.1347) 0.9110 (0.1406) 1.4834 (0.2291)

DSS 2.8563 (2.5362) 0.0586 (0.0246) 0.0421 (0.0102) 0.0392 (0.0058)

F12 FPS 0.5732 (0.2715) 0.2870 (0.1079) 0.1269 (0.0509) 0.0796 (0.0226)

PPS 0.6191 (0.3356) 0.2460 (0.1231) 0.1415 (0.0975) 0.1691 (0.1880)

DSS 0.4814 (0.3454) 0.0333 (0.0041) 0.0267 (0.0023) 0.0281 (0.0024)

The bold denotes the best performance of the three compared algorithms (FPS/PPS/DSS)

performance of FPS andPPS.On the contrary,DSSneeds
the moving direction of the centroid in the previous envi-
ronment and no other history information is needed.

3. When t ≥ 21, as shown in Table 2 and Fig. 3, the mean
and deviation values ofMIGD of DSS are better than that
of FPS and PPS on most of test problems except for F1,
F2, F4 and F8. Recall that F1–F4 are the easiest problems
that have the linear correlation between the decision vari-

ables and are subject to smooth environmental changes.
Therefore, DSS, FPS and PPS all perform well on these
test problems. FPS and PPS perform better when t ≥ 21
than when 1 ≤ t ≤ 20 because the quality of history
information stored by FPS and PPS improves. F5–F8
can be considered to be of medium difficulty because
they have the nonlinear correlation between the decision
variables and smooth changes in the environment. DSS
outperforms FPS and PPS except on F8. FPS and PPS

123

3230 Y. Wu et al.

0 10 20 30 40 50 60 70 80
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

time

IG
D

DSS
FPS
PPS

(a) F1

0 10 20 30 40 50 60 70 80
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

time

IG
D

DSS
FPS
PPS

(b) F2

0 10 20 30 40 50 60 70 80
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

time

IG
D

DSS
FPS
PPS

(c) F3

0 10 20 30 40 50 60 70 80
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time

IG
D

DSS
FPS
PPS

(d) F4

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

time

IG
D

DSS
FPS
PPS

(e) F5

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

time

IG
D

DSS
FPS
PPS

(f) F6

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

time

IG
D

DSS
FPS
PPS

(g) F7

0 10 20 30 40 50 60 70 80
0.05

0.1

0.15

0.2

0.25

0.3

time

IG
D

DSS
FPS
PPS

(h) F8

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

time

IG
D

DSS
FPS
PPS

(i) F9

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

time

IG
D

DSS
FPS
PPS

(j) F10

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

time

IG
D

DSS
FPS
PPS

(k) F11

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

IG
D

DSS
FPS
PPS

(l) F12

Fig. 3 Average IGD values over 20 runs versus time for DSS, FPS and PPS on F1–F12

are slightly worse than DSS on F6 and F7 and outper-
form DSS on F8. The reason might be that DSS, FPS
and PPS can all predict well the new location in the pres-
ence of smooth changes in the environment. However,
as observed on F1–F4, the statistical results for FPS and

PPS on F5–F8 when t ≥ 21 are better when 1 ≤ t ≤ 20.
It indicates that history information can help improve the
prediction accuracy of FPS and PPS. For DSS, it per-
forms similarly well when t < 21. The results from PPS
on F6 are similar to those presented in Zhou et al. (2014).

123

A directed search strategy 3231

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

f1

f2
FPS

t=70

t=73

t=75

t=78

t=80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

f1

f2

PPS

t=70

t=73

t=75

t=78

t=80

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

f1

f2

DSS

t=70

t=73

t=75

t=78

t=80

F3

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

f1

f2

FPS

t=65

t=67

t=69

t=71

t=73

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

f1

f2
PPS

t=65

t=67

t=69

t=71

t=73

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

f1

f2

DSS

t=65

t=67

t=69

t=71

t=73

F6

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

f1

f2

FPS

t=65

t=67

t=69

t=71

t=73

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

f1

f2

PPS

t=65

t=67

t=69

t=71

t=73

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

f1

f2

DSS

t=65

t=67

t=69

t=71

t=73

F9

Fig. 4 Average IGD values over 20 runs versus time for DSS, FPS and PPS on F1–F12

F9–F12 are the most difficult problems as they have non-
linear correlation between the decision variables and they
experience sharp environmental changes. From Table 2
and Fig. 3, we can see that DSS consistently shows bet-
ter performance than FPS and PPS on F9–F12. For PPS,
the reinitialized population completely depends on the
prediction. When there is a severe environmental change
such as a large shift and rotation in the Pareto front, PPS
often gets trapped in a local optimum if the whole reini-
tialized population based on a poor estimation is far away
from the true new location of the PS and if the diversity of
the reinitialized population is not large enough. Although

the reinitialized population in FPS includes individuals
randomly sampled from the whole space to address inac-
curate prediction, FPS incursmore computational cost for
convergence due to an overly large search space. Sowhen
t ≥ 21, the history information cannot help improve the
performance of PPS and FPS. By contrast, DSS aims to
achieve good diversity resulting from the fact that half of
the reinitialized population is based on a rough prediction
of the new position of the Pareto set and the rest based
on the local search along the directions orthogonal to the
moving direction of the Pareto set. The convergence is
further speed up by adding promising solutions generated

123

3232 Y. Wu et al.

Table 3 Mean and standard deviation of MIGD metric for DSS with different severity of changes nT , on F9–F12 over 20 runs

F9 F10 F11 F12

t = 0 1 ≤ t ≤ 80 t = 0 1 ≤ t ≤ 80 t = 0 1 ≤ t ≤ 80 t = 0 1 ≤ t ≤ 80

nT = 15 0.3957 0.0241 0.4360 0.0324 3.5122 0.0294 0.4695 0.0249

(0.1461) (0.0016) (0.1336) (0.0037) (2.1679) (0.0049) (0.1954) (0.0016)

nT = 10 0.4205 0.0309 0.4772 0.0382 2.8563 0.0448 0.4814 0.0290

(0.1722) (0.0028) (0.3732) (0.0046) (2.5362) (0.0072) (0.3454) (0.0017)

nT = 5 0.4216 0.0255 0.3957 0.0337 2.3070 0.0902 0.4422 0.0417

(0.2127) (0.0028) (0.1461) (0.0053) (1.5099) (0.0123) (0.1749) (0.0033)

nT = 2 0.4299 0.1004 0.4607 0.1110 2.9113 0.0642 0.3961 0.1134

(0.2050) (0.0077) (0.2026) (0.0172) (1.8599) (0.0304) (0.1227) (0.0169)

Table 4 Mean and standard deviation of MIGD metric for DSS with different parameter of r2 on F9–F12 over 20 runs

F9 F10 F11 F12

t = 0 1 ≤ t ≤ 80 t = 0 1 ≤ t ≤ 80 t = 0 1 ≤ t ≤ 80 t = 0 1 ≤ t ≤ 80

r2 = 0 0.7664 0.0529 0.5707 0.0582 5.5522 0.0602 0.8451 0.0301

(0.3388) (0.0044) (0.1605) (0.0075) (2.6407) (0.0091) (0.4213) (0.0016)

r2 = 0.05 0.4205 0.0309 0.4772 0.0382 2.8563 0.0448 0.4814 0.0290

(0.1722) (0.0028) (0.3732) (0.0046) (2.5362) (0.0072) (0.3454) (0.0017)

r2 = 0.1 0.3477 0.0278 0.3563 0.0357 1.4961 0.0378 0.3558 0.0293

(0.1023) (0.0022) (0.1195) (0.0038) (1.2303) (0.0053) (0.1014) (0.0012)

r2 = 0.2 0.2902 0.0278 0.2902 0.0349 0.4369 0.0378 0.2675 0.0343

(0.1185) (0.0016) (0.1185) (0.0028) (0.3292) (0.0024) (0.0723) (0.0019)

r2 = 0.5 0.3037 0.0368 0.3037 0.0407 0.1140 0.0591 0.2281 0.0561

(0.0911) (0.0020) (0.0911) (0.0045) (0.0592) (0.0035) (0.0683) (0.0020)

along the moving direction of the non-dominated front
in two consecutive generations, which is similar to the
derivative information in single-objective optimization.

4. From the overall MIGD results of DSS, FPS and PPS,
we can see that DSS has robust performance except for
t = 0, even when the environment changes irregularly.
Meanwhile, from Table 2 and Fig. 4, we can see that
the statistical results from the complex test problems are
worse than those from the simple test problems.

4.3 Influence of severity of changes

To investigate the influence of the severity of changes, nT ,
on the performance of DSS, we conduct additional tests on
F9–F12 by setting nT = 2, 5, 10, 15. The other parameters
are the same as in Sect. 4.1.

Table 3 shows the mean and standard deviation values of
MIGD over 20 runs for DSS with different settings of nT .
From the statistical results, we can see that the performance
of DSS becomes better as nT increases. It means that DSS
performs betterwhen the severity of change becomes smaller.
This is fairly expected, indicating that DSS is able to focus
more on convergence when the change is milder.

4.4 Influence of DSS2 and the parameter of r2

We are also interested in examining the influence of r2 on the
search performance of DSS. When r2 = 0, it means that the
proposed algorithm does not apply DSS2 mechanism. Table
4 shows the mean and standard deviation of MIGD metric
for DSS with different settings for r2 = 0, 0.05, 0.1, 0.2, 0.5
on F9–F12 over 20 runs. We can observe that the proposed
algorithm performs the worst when r2 = 0, which indi-
cates that DSS2 can help enhance the exploitation of DSS.
For other values of r2, the obtained results are similar when
r2 = 0.05, 0.1, 0.2. DSS performs increasingly reliably with
the increase of r2. However, the performance deteriorates
again when r2 = 0.5, indicating that introducing too many
individuals by DSS2 may reduce the diversity thus degrade
the performance. In this paper, we choose r2 = 0.05, also
taking computational time into consideration.

4.5 The influence of the local search in DSS1

Local search in DSS plays an important role in finding good
and diverse individuals especially when prediction is inac-
curate. Here we test the influence of the local search along

123

A directed search strategy 3233

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

time

IG
D

orthogonal direction local search
random local search

(a) F9

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time

IG
D

orthogonal direction local search
random local search

(b) F10

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

time

IG
D

orthogonal direction local search
random local search

(c) F11

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time

IG
D

orthogonal direction local search
random local search

(d) F12

Fig. 5 Average IGD values over 20 runs versus time for DSS with different local search strategy on F9–F12

the direction orthogonal to themoving direction of the Pareto
front in comparisonwith a random local search. For a random
local search, a new solution is generated as follows:

yi = xi + N (0, 1), (10)

where x = (x1, . . . , xn) ∈ PSt . Then we use formula (10)
replace formula (6)when a random local search is performed.
All other parameters are the same as in Sect. 4.1.

Figure 5 plots the average IGD values over 20 runs over
time when a local search along the orthogonal directions of
the moving Pareto set and a random local search are car-
ried out for optimization of F9–F12, respectively. It demon-
strates that the algorithm with the orthogonal local search
performs better than that with a random local search. This
clearly shows that the local search along the orthogonal direc-
tion contributes to the diversity better than the random local
search.

5 Conclusion

For MOEAs tracking a moving Pareto front, it is extremely
important to achieve a good balance between maintaining
diversity and accelerating convergence. In this paper, we
propose a DSS to improve the performance of MOEAs in
dynamic environments. DSS includes two mechanisms aim-
ing to encourage exploration and enhance convergence. The
proposed DSS is embedded into a variant of NSGA-II with
SBX being replaced by a DE operation. DSS has been com-
pared with FPS and PPS, two state-of-the-art prediction-
based strategies on twelve test problems having smooth or
nonsmooth environmental changes. Our experimental results
show that DSS performs better than FPS and PPS on most of
the test problems considered in this work.

Although DSS has showed very promising performance
in dealing with DMOPs, several ideas remain to be verified.
For example, due to the good performance ofDSS in the early
stage of the search, DSS can be combined with FPS or PPS

123

3234 Y. Wu et al.

to improve the performance of FPS or PPS. In addition, DSS
only uses the information in the previous environments and it
may be of interest to explore additional history information.
Embedding DSS in other MOEAs such as MOEA/D (Zhang
and Li 2007) is of potential interest. Finally, as indicated in
Jin et al. (2013), how DSS can contribute to finding trade-off
solutions that are robust over time is another future work.

Acknowledgments This work was supported in part by the National
Natural ScienceFoundationofChina (No. 61105065andNo.11326188),
the Fundamental Research Funds for the Central Universities (No.
K5051270009), and the Joint Research Fund for Overseas Chinese,
Hong Kong and Macao Scholars of the National Natural Science Foun-
dation of China (Grant No. 61428302).

References

Abello M, Bui L, Michalewicz Z (2011a) An adaptive approach for
solving dynamic scheduling with time-varying number of tasks:
part I. In: Proceedings of IEEE CEC. IEEE Press, New York, pp
1703–1710

Abello M, Bui LT, Michalewicz Z (2011b) An adaptive approach for
solving dynamic scheduling with time-varying number of tasks:
part II. In: Proceedings of IEEE CEC. IEEE, New York, pp 1711–
1718

Aragon V, Esquivel S, Coello CC (2005) Evolutionary multiobjective
optimization in non-stationary environments. J Comput Sci Tech-
nol 5(3):133–143

Azevedo C, Araujo A (2011) Generalized immigration schemes for
dynamic evolutionary multiobjective optimization. In: Proceed-
ings of IEEE CEC. IEEE, New York, pp 2033–2040

Camara M, Ortega J, de Toro F (2009) A single front genetic algorithm
for parallel multiobjective optimization in dynamic environments.
Neurocomputing 72(16–18):3570–3579

Camara M, Ortega J, de Toro F (2010) Generalized immigration
schemes for dynamic evolutionarymultiobjective optimization. In:
Proceedings of advances multi-objective nature inspired compu-
tation. Springer, Berlin, pp 63–86

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput
6(2):182–197

Deb K, Rao U, Karthik S (2007) Dynamic multiobjective optimization
and decision-making using modified NSGA-II: A case study on
hydro-thermal power scheduling. In: Evolutionary multi-criterion
optimization: 4th international conference, EMO.Springer, Berlin,
pp 803–817

Farina M, Deb K, Amato P (2004) Dynamic multiobjective optimiza-
tion problems: test cases, approximations, and applications. IEEE
Trans Evol Comput 8(5):425–442

Goh CK, Tan K (2009) A competitive-cooperative coevolutionary par-
adigm for dynamic multiobjective optimization. IEEE Trans Evol
Comput 13(1):103–127

Greeff M, Engelbrecht A (2008) Solving dynamic multiobjective prob-
lems with vector evaluated particle swarm optimisation. In: Pro-
ceedings of IEEE CEC. IEEE Press, New York, pp 2922–2929

Hatzakis I, Wallace D (2006a) Dynamic multiobjective optimization
with evolutionary algorithms: a forward-looking approach. In: Pro-
ceedings of GECCO. ACM Press, New York, pp 1201–1208

Hatzakis I, Wallace D (2006a) Topology of anticipatory populations for
evolutionary dynamic multiobjective optimization. In: Proceed-
ings of 11th AIAA/ISSMO multidisciplinary analysis and opti-
mization conference, AIAA, pp 1944–1950

Helbig M, Engelbrecht A (2012) Analyses of guide update approaches
for vector evaluated particle swarm optimisation on dynamic mul-
tiobjective optimisation problems. In: Proceedings of IEEE CEC.
IEEE Press, New York, pp 2621–2628

Iorio A, Li X (2005) Solving rotated multi-objective optimization prob-
lems using differential evolution. In: Advances in artificial intelli-
gence. LNAI 3339. Springer, Berlin, pp 861–872

Jin Y, Branke J (2005) Evolutionary optimization in uncertain environ-
ments: a survey. IEEE Trans Evol Comput 9(3):303–317

Jin Y, TangK, YuX, Sendhoff B, YaoX (2013) A framework for finding
robust optimal solutions over time. Memet Comput 5(1):3–18

Jin Y, Sendhoff B (2004) Constructing dynamic test problems using the
multi-objective optimization concept. In: Applications of evolu-
tionary computing. LNCS 3005. Springer, Berlin, pp 525–536

Li H, Zhang Q (2009) Multiobjective optimization problems with com-
plicated pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol
Comput 13(2):284–302

Liu C, Wang Y (2009) Multiobjective evolutionary algorithm for
dynamic nonlinear constrained optimization problems. J Syst Eng
Electron 20(1):204–210

Liu C, Wang Y (2006) New evolutionary algorithm for dynamic multi-
objective optimization problems. In: Advances in natural compu-
tation, LNCS 4221. Springer, Berlin, pp 889–892

Liu R, Zhang W, Jiao L, Liu F, Ma J (2011) A sphere-dominance based
preference immune-inspired algorithm for dynamicmultiobjective
optimization. In: Proceedings of GECCO. ACM Press, New York,
pp 423–430

MaY, Liu R, Shang R (2011) A hybrid dynamicmultiobjective immune
optimization algorithm using prediction strategy and improved
differential evolution crossover operator. In: Neural information
processing. LNCS 7063. Springer, Berlin, pp 435–444

Manriquez A, Pulido G, Torres J (2010) Handling dynamic multiobjec-
tive problems with particle swarm optimization. In: Proceedings
of the international conference on agents and artificial intelligence,
ICAART, pp 337–342

Martins F, Carrano E, Wanner E, Takahashi R, Mateus G (2009) A
dynamic multiobjective hybrid approach for designing wireless
sensor networks. In: Proceedings of IEEE CEC. IEEE Press, New
York, pp 1145–1152

NguyenT,YangS,Branke J (2012)Evolutionary dynamic optimization:
a survey of the state of the art. Swarm Evol Comput 6:1–24

Tang J, Alam S, Lokan C, Abbass H (2012) A multiobjective evolu-
tionary method for dynamic airspace re-sectorization using sec-
tors clipping and similarities. In: Proceedings of IEEE CEC. IEEE
Press, New York, pp 3565–3572

Vinek E, Beran P, Schikuta E (2011) A dynamic multiobjective opti-
mization framework for selecting distributed deployments in a het-
erogeneous environment. Procedia Comput Sci 4:166–175

Wang Y, Li B (2009) Investigation of memory-based multiobjective
optimization evolutionary algorithm in dynamic environment. In:
Proceedings of IEEE CEC. IEEE Press, New York, pp 630–637

Wei J, Wang Y (2012) Hyper rectangle search based particle swarm
algorithm for dynamic constrained multiobjective optimization
problems. In: Proceedings of IEEE CEC. IEEE Press, New York,
pp 259–266

Wei J, Zhang M (2011) Simplex model based evolutionary algorithm
for dynamic multiobjective optimization. In: Advances in artificial
intelligence, LNCS 7106. Springer, Berlin, pp 372–381

Wu PY, Campbel D, Merz T (2011) Multiobjective four-dimensional
vehicle motion planning in large dynamic environments. IEEE
Trans Syst Man Cybern B Cybern 41(3):621–634

Yang M, Kang L, Guan J (2008) Multialgorithm co-evolution strategy
for dynamic multiobjective TSP. In: Proceedings of IEEE CEC.
IEEE Press, New York, pp 466–471

123

A directed search strategy 3235

Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary
algorithm based on decomposition. IEEE Trans Evol Comput
11(6):712–731

Zhang Q, Zhou A, Jin Y (2008) RM-MEDA: a regularity model based
multiobjective estimation of distribution algorithm. IEEE Trans
Evol Comput 12(1):41–63

Zhang Z (2008) Multiobjective optimization immune algorithm in
dynamic environments and its application to greenhouse control.
Appl Soft Comput 8(2):959–971

Zheng B (2007) A new dynamic multiobjective optimization evolu-
tionary algorithm. In: Third international conference on natural
computation (ICNC). IEEE Press, New York, pp 565–570

Zhou A, Jin Y, Zhang Q (2014) A population prediction strategy for
evolutionary dynamic multiobjective optimization. IEEE Trans
Cybern 44(1):40–53

Zhou A, Jin Y, Zhang Q, Sendhoff B, Tsang E (2007) Prediction based
population re-initialization for evolutionary dynamic multiobjec-
tive optimization. In: Evolutionary multi-criterion optimization.
LNCS 4403. Springer, Berlin, pp 832–846

123

	A directed search strategy for evolutionary dynamic multiobjective optimization
	Abstract
	1 Introduction
	2 The proposed algorithm
	2.1 Directed search strategy (DSS)
	2.2 DSS1
	2.2.1 Prediction upon an environmental change
	2.2.2 Directed local search

	2.3 DSS2
	2.4 Overall framework of the proposed algorithm

	3 Test instances and performance indicators
	3.1 Test instances
	3.2 Performance indicators

	4 Experimental results
	4.1 Compared algorithms and parameter settings
	4.2 Experimental results
	4.3 Influence of severity of changes
	4.4 Influence of DSS2 and the parameter of r2
	4.5 The influence of the local search in DSS1

	5 Conclusion
	Acknowledgments
	References

