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Abstract In this contribution, we propose an interactive
multicriteria optimisation framework for the time and space
assembly line balancing problem. The framework allows
decision maker interaction by means of reference points to
obtain the most interesting non-dominated solutions. The
principal components of the framework are the g-dominance
preference scheme and a state-of-the-art memetic multiob-
jective ant colony optimisation approach. In addition, the
framework includes a novel adaptive multi-colony mecha-
nism to be able to handle the preferences in an interactive
way. Results show how the multiobjective framework can
interactively obtain the most useful solutions with higher
convergence than previous a priori methods. The experimen-
tation alsomakes use of original data of theNissan Pathfinder
engine and practical bounds to define industrially feasible
solutions in a set of scenarios. By solving the problem in
these scenarios, we show the search guidance advantages of
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1 Introduction

A set of workstations forms an assembly line arranged either
in series or in parallel. Each workstation performs a spe-
cific set of tasks that require a specific amount of time to
complete. Assembly line balancing (ALB) efficiently assigns
these tasks to workstations, balance task times, and con-
sider constraints, such as precedence relationship (Boysen
et al. 2007; Battaïa and Dolgui 2013). The simple assembly
line balancing problem (SALBP) (Baybars 1986; Scholl and
Becker 2006) belongs to the ALB family of problems and
considers the assignment of a task to a station in such a way
that all the precedence constraints are satisfied and no station
workload time is greater than the line cycle time.

The time and space assembly line balancing problem
(TSALBP) is a realistic SALBP extension that considers
additional space constraints. It is based on the observation
of the Nissan plant of Barcelona (Bautista and Pereira 2007).
The TSALBP-m/A1 is one of the TSALBP variants that min-
imises the number of stations and the area of these stations.
The TSALBP-m/A has a multicriteria nature as many other
real-world problems that favours the application of multiob-
jective metaheuristics (MOMHs) (Chica et al. 2012).

Normally,whendealingwith these kinds of industrialmul-
ticriteria decision-making problems, it is necessary to estab-

1 Originally, this TSALBP variant is referred as TSALBP-1/3 (Bautista
and Pereira 2007).
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lish preferences that explicitly account for expert knowledge
to guide the search. Thework ofChica et al. (2011b) explored
how the decision maker can bias the search process using a
MOMH with a priori preference methods for the TSALBP-
m/A. This work also showed that when using a priori meth-
ods, the decision maker needs a deep understanding of the
problem beforehand. Some difficulties also arise if the expert
does not know the limitations of the problem instance and set
optimistic or pessimistic preferences.

Interactive methods are conceived to overcome these
drawbacks by allowing the decision maker to provide wiser
and more effective preferences, participate interactively in
the search process, and learn about the problem characteris-
tics on-line (Branke et al. 2008). These advantages are impor-
tant in the case of real-world problems such as the TSALBP
where the decision maker can even ignore the feasible space
of solutions.

In this work, we propose the use of an interactive frame-
work based on reference points for solving the TSALBP-
m/A. Our proposal allows decision makers to guide and
interact with the algorithm during the optimisation process.
g-dominance (Molina et al. 2009) is the preference elicitation
method of the framework which has shown a good behav-
iour in different real-world problems (Rodríguez et al. 2012;
Greiner et al. 2011). In conjunction with g-dominance, we
use an existing memetic multiobjective ant colony optimisa-
tion (MOACO) approach for the TSALBP. Particularly, we
analyse the performance of two MOACO algorithms, multi-
ple ant colony system (MACS) (Barán and Schaerer 2003)
and Unsort Bicriterion (Unsort) (Iredi et al. 2001), with the
incorporation of local search methods.

However, the majority of the interactive methods for
MOMHsare designed for evolutionary algorithms andnot for
MOACO. For instance, Kamalian et al. (2004) suggested an a
posteriori method followed by an interactive multiobjective
evolutionary algorithm. Another example is the evolution-
ary algorithm of Phelps and Koksalan (2003) that allows the
user to provide preference information about pairs of solu-
tions during the run. In Deb et al. (2010), authors propose an
interactive evolutionary scheme to use the function value for
directing the search to the preferred solutions.

Hence, the combined application of g-dominance to our
MOACO algorithms has also the singularity of being the
first interactive framework based on MOACO in the liter-
ature. Another important novelty of the work is that our
MOACO designs include a mechanism to adapt their multi-
colony approach to the selection of a specific reference point
during the interactive process. We present a novel method to
adapt these ants’ thresholds to the initial approximation of
the Pareto front and to the reference point selected by the
decision maker.

We carry out threemain experiments to validate the global
proposal. The experimentation employs a real industrial case

from the Nissan Pathfinder engine manufacturing process
obtained from the assembly line of Nissan in Barcelona,
Spain.

First, we analyse the performance differences between
MACS and Unsort with local search (MACS-LS and Unsort-
LS, respectively) when using g-dominance. The second
experiment compares, in terms of convergence, one of the
existing a priori methods for the TSALBP-m/A (Chica et al.
2011b) with respect to g-dominance. The latter is done keep-
ing in mind that we cannot measure by indicators the advan-
tages of the interactive methods (applicability and usability)
with respect to an a priori scheme.

Finally, we define two experimental scenarios where the
decision maker interacts with the interactive framework. The
evolution of the algorithm convergence is shown by attain-
ment surfaces (Fonseca and Fleming 1996). To facilitate the
interaction during the optimisation process, we have also
defined and computed new practical bounds for the problem
based on the industrial reality when configuring assembly
lines that consider spatial information.

The remainder of the paper is structured as follows. Sec-
tion 2 explains the TSALBP-m/A formulation and the main
components of the algorithms. Section 3 shows the advan-
tages and components of the novel interactive multiobjective
framework. InSects. 4 and5wefirst describe the designof the
experiments and then analyse the obtained results. Finally,
Sect. 6 highlights some concluding remarks.

2 Background

2.1 Time and space assembly line balancing

A set J of n tasks divides the manufacturing of a production
item. Each task j requires an operation time for its execu-
tion t j > 0 determined as a function of the manufactur-
ing technologies and the employed resources. Each station k
(k = 1, 2, . . . ,m) is assigned to a subset of tasks Sk (Sk ⊆ J ),
called workload. Each task j can only be assigned to a single
station k.

Each task j has a set of direct “preceding tasks” Pj which
must be accomplished before starting it. An acyclic prece-
dence graph represents these constraints where its vertices
are the tasks. A directed arc (i, j) of the graph indicates that,
on the production line, task i must finish before the start
of task j . Then, task j cannot be assigned to a station that
is ordered before the one where task i was assigned. Each
station k also presents a station workload time t (Sk) equals
to the sum of the processing times of the tasks assigned to
k. The optimisation problem focuses on grouping tasks in
workstations by an efficient and coherent way.

The need of introducing space constraints in the lat-
ter ALB model leads us to a family of problems called
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TSALBP (Bautista and Pereira 2007) (an extension of
SALBP). TSALBP defines temporal and spatial attributes
(t j and a j , respectively) for all the n tasks which are also
constrained by a precedence graph. A task must be assigned
to a single station such that: (i) we satisfy every precedence
constraint, (ii) the station workload time (t (Sk)) is lesser than
the cycle time (c), and (iii) the area required by any station
(a(Sk)) is lesser than the available area A.

TSALBP presents eight variants depending on three opti-
misation criteria. In this work, we tackle one multiobjective
variant, the TSALBP-m/A, that consists of minimising the
number of stations m and the station area A, given a fixed
value of the cycle time c. More information about the prob-
lem can be found in Chica et al. (2010a). Mathematically, the
TSALBP-m/A has the following two objectives:

f 0(x) = m =
UBm∑

k=1

max
j=1,2,...,n

x jk, (1)

f 1(x) = A = max
k=1,2,...,UBm

n∑

j=1

a j x jk, (2)

whereUBm is the upper bound for the number of stations m
(see Sect. 4.1 formore details about the bounds of themodel),
a j is the area information for task j , x jk is a decision variable
taking value 1 if task j is assigned to station k, and n is the
number of tasks.

2.2 Memetic MOACO algorithms for the TSALBP

A MOACO algorithm was the first successful proposal to
tackle the TSALBP-m/A (Chica et al. 2010a). Then, some
posterior studies presented the use of otherMOMHs (Chica et
al. 2010b, 2011a) and also showed that memetic algorithms
are the best approaches to solve the problem (Chica et al.
2012). In Sect. 2.2.1wefirst summarise twoMOACOdesigns
for the TSALBP-m/A, MACS and Unsort Bicriterion (Rada-
Vilela et al. 2013). Then, in Sect. 2.2.2, we explain their
memetic variants and the two local search operators (Chica et
al. 2012) that lead toMACS-LS and Unsort-LS, respectively.

2.2.1 MACS and Unsort Bicriterion

MACS (Barán and Schaerer 2003) is an extension of the ant
colony system (Dorigo and Gambardella 1997) to deal with
multiobjective problems. The algorithm uses a pheromone
trail matrix and several heuristic information functions.
Unsort Bicriterion (Iredi et al. 2001) is a bicriterion opti-
misation algorithm with multiple colonies where the number
of colonies is defined by the user and is independent from
the number of objectives. The pheromone updates of Unsort
are done by origin and performed by all ants.

Since the number of stations of the solutions is not fixed
in advance, both MOACO algorithms follow a constructive
and station-oriented scheme to face the precedence problem
(this is a typical approach to solve the SALBP Scholl and
Becker 2006). The process first opens a station and sequen-
tially selects tasks to fill the station using a transition rule.
The algorithm repeats this process for the current station until
a stopping criterion is reached. Then, the algorithm opens a
new station to be filled and iterates the loop until it assigns
all the tasks.

Regarding the heuristic information, the work of Rada-
Vilela et al. (2013) clearly showed that, to solve theTSALBP-
m/A, MOACO algorithms yield better performance when
they are only guided by pheromone trail information. There-
fore, we will not consider the heuristic information. The
pheromone information will have to memorise tasks that
are the most appropriate to be assigned to a specific station.
Hence, a pheromone trail associates a pair station-task (k, j).

The specific design of the algorithms for solving the
TSALBP-m/A introduces an additional mechanism in the
construction procedure. This mechanism randomly decides
when to close the current station by considering a station clos-
ing probability distribution and a filling threshold αi ∈ [0, 1]
for each ant i . The probability distribution is defined by a
station filling rate which is the overall processing time of its
assigned set of tasks.

At each construction step, the MOACO algorithm com-
putes the current station filling rate. If it is lower than the
ant’s filling threshold αi (i.e. when it is lower than αi · c), the
station remains opened. Otherwise, the algorithm updates the
station closing probability distribution and uniformly gener-
ates a random number in [0, 1] to decide whether the station
is closed or not. If the decision is to close the station, the algo-
rithm creates a new station to allocate the remaining tasks.

Once decided whether opening or closing a station, the
algorithm has to choose a task for current stations among all
the candidate tasks using the MOACO transition rule. The
procedure continues until it cannot assign any task. Thus,
the higher the ant’s threshold, the higher is the probabil-
ity of filling fully a station, and vice versa. Different ants’
filling thresholds make ants in the colony have a differ-
ent search behaviour and they lead a better intensification–
diversification trade-off. They also contribute to a highly
diverse search behaviour of the ant population.

2.2.2 Multicriteria local search structure and components

The integration of global and local search operators in the
memetic design of MACS-LS and Unsort-LS is done using
scalarisations of the objective function vector (Gandibleux
and Freville 2000; Jaszkiewicz 2002). The memetic algo-
rithm uses a weighted sum scalarisation of the two objectives
of our problem, A and m, calculated by min(λ1A + λ2m).
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The local search of the memetic MOACO algorithms has
to optimise this multicriteria function. The local search gen-
erates theweight vector λ = (λ1, λ2) at random for each con-
structed solution as usually done when designing memetic
algorithms (Jaszkiewicz 2002).

We consider two different neighbour generation operators
based on tasks moves. They are selected depending on the
weight vector λ. If λ1 > λ2, the local search will apply the
operator for minimising the A objective because the local
search is biased towards the improvement of this objective.
Otherwise, the algorithm will first consider the neighbour
operator focused on improving m. When the initial neigh-
bour operator does not succeedminimising theweighted sum
scalarisation, the algorithm will apply the other operator.

According to the study performed in Chica et al. (2012),
the best configuration of the memetic MOACO algorithms
for the TSALBP-m/A is to apply the local search to all the
generated solutions (as usual in MOACO with local search)
and generate an intermediate intensification–diversification
trade-off (some iterations are enough to lead to a proper con-
vergence). We will use this configuration for the memetic
algorithms considered in the current contribution.

3 The interactive framework proposal

3.1 The need for modelling interactive preferences

The way to incorporate the decision maker information into
the multiobjective search process is of great interest in the
MOMH research field (Coello et al. 2007). One of the most
important questions is when to inject preference information
in the multiobjective optimisation process. There are three
approaches: (a) prior to the search (a priori approaches), (b)
during the search (interactive approaches), and (c) after the
search (a posteriori approaches).

The main contribution to the use of preferences for solv-
ing the TSALBP is presented in Chica et al. (2011b). In that
work, authors proposed two different a priori approaches
and included them into the MACS algorithm: goals and
units of importance. Both elicitation schemes can provide
solutions of the Pareto front approximation close to her/his
preferences. For instance, the use of goals as a preferences
scheme modifies the goal programming problem to incorpo-
rate them into the objective function fi (x) using different
goal (t j ) relations: fi (x) ≤ t j , fi (x) ≥ t j , fi (x) = t j , or
fi (x) ∈ [t lj , tuj ] (Deb 1999).
However, these a priori methods have shown different

drawbacks. First, the decision maker has difficulties to a
priori express her/his preferences in real-world problems
and cannot control the search process interactively when
the results do not satisfy her/his aspirations. Also for the
TSALBP, the expert must operate on labour or industrial

Fig. 1 Illustrative graph to show how to calculate g-dominance flag
values from a reference point (Molina et al. 2009)

space costs and not directly with the objective values, this
makes the preference elicitation even more complex.

In contrast, interactive methods allow the user to adjust
preferences directly during the search and continue the opti-
misation process. They are simpler and require less expert
effort than a priori methods, need moderate computational
requirements, and the decision maker can effectively control
the search process (Branke et al. 2008). As already stated,
one of the most extended methods to introduce preferences
interactively in MOMHs is using reference points (Molina
et al. 2009; Ben Said et al. 2010; Figueira et al. 2010). The
advantage of this approach is that it can return an approxi-
mation to the Pareto set and not simply projected solutions.

In one of the latter works, Molina et al. (2009) defined
a new dominance relation, g-dominance, that can be easily
incorporated into differentMOMHs. Using g-dominance the
search process works without any scalarisation function and
the decision maker can interactively set her/his preferences
by specifying a reference point. That will be the scheme used
in our work.

3.2 The selected interactive method: g-dominance

g-dominance modifies the multiobjective Pareto dominance
definition. Being p the number of objectives, given a refer-
ence point v = (v1, . . . , vp) ∈ �p and a generic point w =
(w1, . . . , wp) ∈ �p, the g-dominance relation Flagv(w) is
defined as:

Flagv(w) =
⎧
⎨

⎩

1, if wi ≤ vi ,∀i = 1, . . . , p,
1, if vi ≤ wi ,∀i = 1, . . . , p,
0, otherwise.

(3)

This means that, given a reference point g, the dominance
relation divides the space into four sub-spaces with different
flag values (see Fig. 1). Based on the reference point and
these flags, the conventional dominance relation changes.
Given reference point g, two points w = (w1, ..., wp), w′ =
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(w′
1, ..., w

′
p) ∈ �p and assuming a minimisation problem,

w′ is g-dominated by w if either of the following Equations
holds:

Flagg(w) > Flagg(w
′), (4)

Flagg(w) = Flagg(w
′), satisfying that

wi ≤ w′
i ∀i = 1, . . . , p

∧ ∃ j : w j < w′
j .

(5)

Thanks to the transformation of the traditional dominance
scheme, g-dominance can drive the search to the desired area
of the Pareto front ignoring the feasibility of the reference
point. In a minimisation problem, a MOACO algorithm uses
g-dominance as shown in Algorithm 1. M has to be a big
enough number to make the solution dominated.

Algorithm1:The pseudo-code of the evaluationmethod
of a MOACO when using g-dominance.

1 Evaluate fi (x), ∀i = 1, ..., p
2 Compute Flagg( f )
3 if Flagg( f ) = 0 then
4 fi (x) = fi (x) + M ∀i = 1, ..., p
5 end

3.3 Adaptive multi-colony thresholds for using interactive
preferences in a MOACO

One of the advantages of using g-dominance is the absence
of changes in the algorithm design. However, driving the
search towards a certain region of the search space may
cause conflicts with one of the most important components
of MOACO for TSALBP: the multi-colony approach based
on filling thresholds.

As explained in Sect. 2.2.1, the station filling threshold of
each ant (αi ) determines the probability of closing a station
in the constructive station-oriented scheme. This threshold
modifies the search behaviour of the ants of the multi-colony
algorithm to achieve a correct intensification–diversification
trade-off. The interactive preferences guide the algorithm to
a certain region, but not all the ants are biased to explore
that region in the original MOACO design. We need a new
mechanism to adapt the ants’ thresholds to the preferences of
the decision maker regardless the approach followed to elicit
these preferences.

Theproposed adaptivemethod is to divide the search space
into a user-dependent parameter φ of sub-spaces to focus
the ants’ search in one of them depending on the preference
location (reference point, goals, etc.). Then, each sub-space
will have a specific colony to explore this region.

Fig. 2 Flowchart of the novel adaptive mechanism for MOACO

The run of the algorithm is based on cycles. A cycle stands
for a certain number of evaluations of the MOACO to show
the non-dominated solutions found until this moment allow-
ing the decision maker to interact and resume the algorithm.
Therefore, the interaction cycle length, specified by the user,
sets the interaction frequency; i.e. it determines how often an
user action is required.

Mainly, the adaptive mechanism is composed of the fol-
lowing six components (see Fig. 2 for a flowchart of the
proposal):

1. Initial MOACO run: The memetic MOACO algorithm
runs for the first cycle length without using any prefer-
ences.

2. Space division: The space division method calculates φ

sub-spaces by taking into account the non-dominated
solutions of the initial run. More details of the method
are given at the end of this section.

3. Show Pareto front: The current approximation to the
Pareto-optimal set given by the algorithm is shown. Infor-
mation about the practical bounds of the problem is also
presented (see Sect. 4.1).

4. Ask decision maker for a reference point: While the
search process is stopped, the framework lets the deci-
sion maker to interactively indicate her/his preferences.
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Fig. 3 Search space division using φ = 3 and δ = 0.5. Each of the
three regions has different ants’ filling thresholds to make the MOACO
algorithm adaptive

For the case of g-dominance, (s)he just has to choose a
reference point in the search space.

5. Adapt ants’ thresholds: The reference point is located in
one of the φ sub-spaces. Consequently, the colony will
be modified with the ants’ thresholds assigned to this
specific sub-space.

6. Resume MOACO run: Once the MOACO algorithm
is adapted, it continues for the next cycle. The algo-
rithm will be again stopped every time an interaction is
required. Then, the new approximation to the Pareto front
is shown, the decision maker will select a new reference
point and the process will continue.

We should remark that the algorithm only calculates
the space division once, before the first interaction. A 2D
search space is considered for our bi-objectiveTSALBP-m/A
although the mechanism can be extended to higher dimen-
sional problems.

The space division of themethod (step 2)works as follows.
First, the algorithmcalculates a straight line between themost
extreme non-dominated solutions of the current Pareto set
approximation. Then, we calculate, with the support of the
latter line, φ −1 perpendicular lines to the initial approxima-
tion to the Pareto front to divide the space in φ sub-spaces.
After a preliminary study, we considered φ = 3 sub-spaces.

A parameter (δ) modifies the width of the sub-spaces by
adjusting the width of the central sub-space with respect to
the totalwidth of the space enclosed by the extreme solutions.
The width of the other sub-spaces is proportionally obtained
from the remaining (1− δ)/2. Figure 3 shows an example of
space division with φ = 3 and δ = 0.5.

The algorithmwill assign a colony (i.e. ants having similar
filling thresholds) to each sub-space. Depending on these
thresholds, the colony will intensify or diversify the search

by closing the stations earlier or later. Although there are
different methods to distribute the ants’ thresholds within
the colony we have chosen a fixed uniform distribution of the
filling thresholdswithin a range. Other options to be explored
are: (a) generating thresholds’ at random or (b) overlapping
the threshold ranges of the sub-spaces.

4 Experimental design

4.1 Practical bounds to ease the interactive process

Some solutions found by the algorithms are theoretically fea-
sible, but industrially infeasible. The definition and visual-
isation of practical bounds for the TSALBP-m/A can save
decision-making efforts by focusing the search and facilitat-
ing the interactive process. In this section, wewill mathemat-
ically define them for the interactive experiments. Following
the notations of Sect. 2.1, we obtain the theoretical upper and
lower bounds for objectives m and A by:

LBm = 1, UBm = n,

LBA = max j=1,...,n a j , UBA = ∑n
j=1 a j .

(6)

We note the upper and lower practical bounds for the
objectives of TSALBP-m/A by [m∗

min,m
∗
max] and [A∗

min,

A∗
max]. Practical bounds for the TSALBP-m/A come from the

definition of “acceptable area” for the stations of the assem-
bly line in an industrial context. Basically, this “acceptable
area” of an assembly line depends on (a) workers’ move-
ments through the continuous transportation system (limit
the area to an upper bound A∗

max); and (b) ergonomic factors
that make stations comfortable for workers (limit stations’
area to a lower bound A∗

min).
To determine the practical minimum number of stations

m∗
min for a TSALBP-m/A instance, we computationally solve

the TSALBP-m/A when A → ∞ (equivalent to solve the
SALBP-1 Scholl and Klein 1999). The solution of this prob-
lem will output an assembly line configuration having m∗

min

stations:
−→
S∗ = (S∗(1), . . . , S∗(m∗

min)). Using this configu-

ration
−→
S∗ , we obtain A∗

max by calculating the maximum area
of its workstations: A∗

max = maxk=1,...,m∗
min

(
∑

j∈S∗(k) a j ).
The other two practical bounds,m∗

max and A∗
min, will have

the same values as their theoretical counterparts, UBm and
LBA, because in some cases it is industrially feasible to have
one task per station being carried out by the associatedworker
or work team.

4.2 General set-up and problem instances

We run all the algorithms 20 times. Theywere launched using
the same framework (programmed in C++) and the same
computer (Intel CoreTM i5-2400with four CPUs at 3.10GHz
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Table 1 Configuration of the memetic MOACO algorithms

Parameter Value

General parameters

Runs (different seeds) 20

Stopping criteria 200,000 evaluations

Interaction cycle length 20,000 evaluations

β 2

ρ 0.2

q0 0.2

MACS

Number of ants 10

Unsort Bicriterion

Number of colonies 10

Ants per colony 10

Adaptive multi-colony ants’ thresholds

Number of regions (φ) 3

Width of central sub-space (δ) 0.75

Thresholds αi for ants (two ants per threshold value)

� When no preference point is defined {0.2, 0.4, 0.6, 0.7, 0.9}
� When point is in sub-space 1 {0, 0.08, 0.15, 0.22, 0.3}
� When point is in sub-space 2 {0.3, 0.4, 0.5, 0.6, 0.7}
� When point is in sub-space 3 {0.7, 0, 78, 0.85, 0.92, 1}

LS configuration

Application criteria Always

No. of iterations 50

and Scientific Linux 6.2 as operating system). The number
of evaluations is set as stopping criterion. All the parameter
values of the algorithms considered in the experimentation
are shown in Table 1.

We have selected three real-like problem instances with
different features for the experimentation (Chica et al. 2012):
barthol2 and c = 85, lutz2 and c = 16, scholl and
c = 1394.We have also considered a fourth real-world prob-
lem instance corresponding to the assembly process of the
Nissan Pathfinder engine, developed at the Nissan industrial
plant in Barcelona, Spain. The assembly of these engines is
divided into 378 operation tasks (grouped into 140). Formore
details about the instances the interested reader is referred to
Chica et al. (2012).

4.3 Performance indicators

An experimentation with interactive methods needs interac-
tion during the run. To allow this behaviour, we will define a
“cycle” as a run of the algorithm for a certain number of eval-
uations (fixed by the user). When a cycle ends, the method
shows the non-dominated solutions found by the algorithm
so far to allow the decision maker to define a reference point

in the search space of the problem and resume the run of the
algorithm.

Experimentation uses the multiplicative Iε indicator (Zit-
zler et al. 2003) to compare the behaviour of the algorithms.
To facilitate the analysis of the Iε multiobjective perfor-
mance indicator we have represented its values in box-plots.
Each plot contains pairs of coloured and non-coloured box-
plots that show the distribution of the Iε values for each
pair of algorithms (Iε indicator is not symmetric). Given
Fig. 4 as an example, the first plot shows the box-plots com-
paring MACS-LS and Unsort-LS for barthol2 instance
using two reference points. As Iε is a binary indicator,
two box-plots (non-coloured and coloured) are drawn for
each comparison. The non-coloured box-plots represent the
Iε (MACS,UNSORT)distribution in 20 runs,while coloured
ones represent the Iε (UNSORT,MACS).

Together with numerical performance indicators we use
attainment surfaces in the interactive scenarios to provide
visual and qualitative information, sometimes more useful
than numerical values (Fonseca and Fleming 1996).

5 Analysis of the results

In Sect. 5.1, the MOACO algorithms are compared to see if
there is any significant convergence difference when using
g-dominance. Then, in Sect. 5.2, we will observe the con-
vergence performance of a MOACO algorithm under two
preference elicitation schemes: using g-dominance and a pri-
ori schemes. Finally, the proposed interactive framework is
evaluated in two interactive scenarios (Sect. 5.3).

5.1 A comparison between MACS-LS and Unsort-LS when
using g-dominance

InFig. 4,we show the Iε box-plots of the comparisonbetween
MACS-LS and Unsort-LS to analyse performance differ-
ences (if any) when using the g-dominance method. Each
plot corresponds to one of the four used instances. In addi-
tion, we have defined two different kinds of reference points
for each problem instance which are presented in Table 2.
Half of these points falls outside the industrially feasible area
determined by the practical bounds of Sect. 4.1. The other
half is located inside the feasibility area.

The results of the Iε indicator show that there is no
big difference between both algorithms. The 20 runs of
the algorithms achieved almost the same Pareto fronts for
barthol2 and scholl instances for the first reference
point of lutz2. For the rest of the instances, the difference
is found in the statistical distribution of the runs as the upper
and lower ends of the box-plots are practically in similar
places.
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Fig. 4 Iε box-plots comparing the performance of MACS-LS and Unsort-LS when using g-dominance for the four problem instances

Table 2 List of reference points used for the experimentation

Problem Ref. point 1 Ref. point 2
instance (industrially feasible) (industrially infeasible)

barthol2 (52, 115) (65, 80)

lutz2 (33, 20) (35, 8)

scholl (59, 1386) (50, 1200)

nissan (24, 3) (16, 5)

Although Unsort Bicriterion was found to achieve bet-
ter results than MACS in previous works (Rada-Vilela et al.
2013), this experimentation has shown no significant differ-
ence between them. The integration of the algorithms in a
memetic scheme (MACS-LS and Unsort-LS) and the use of
a common interactive framework (g-dominance method and
the adaptive thresholds mechanism) alleviate the minor dif-
ferences previously found. Therefore, to reduce the excess
of comparisons during the next experiments, we will use
MACS-LS from now on.

5.2 Convergence analysis of the g-dominance-based
framework against a priori goals

In this section, we will compare how the proposed interac-
tive framework based on g-dominance behaves, in terms of

convergence, with respect to the existing a priori preferences
scheme (based on goals). We have used the instances and
reference points shown in the previous section (Table 2).

During this experiment, no user interaction is included
during the run of the interactive method as both approaches
in comparison have a fixed reference point (a goal for the a
priori approach). In our case and for a fair comparisonwith g-
dominance, we will use the goal relation fi (x) = t j for each
defined reference point. We will check if the convergence
obtained by the interactive framework is, at least, competitive
with respect to the a priori approach.

We show the Iε values comparing both approaches in the
box-plots of Figs. 5, 6, 7, 8. The performance indicator is
checked every cycle (20,000 evaluations). Note that for the
interactive approach we apply g-dominance from the start of
the run of the algorithm as there is no user interaction and no
need to show a first approximation to the Pareto front.

The different cycles in the box-plots show how the
Pareto front approximations of the interactive framework
(MACS-LS and g-dominance) evolve through the run of both
approaches. By analysing these box-plots, we observe the
following facts:

• Usually, the g-dominance method obtains better results
although the solutions generated by the g-dominance and
a priori schemes are similar for all the problem instances.
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Fig. 5 Iε box-plots comparing the performance of an a priori and g-dominance approaches with two different reference points for the barthol2
instance
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Fig. 6 Iε box-plots comparing the performance of an a priori and g-dominance approaches with two different reference points for the lutz2
instance
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Fig. 7 Iε box-plots comparing the performance of an a priori and g-dominance approaches with two different reference points for the scholl
instance
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Fig. 8 Iε box-plots comparing the performance of an a priori and g-dominance approaches with two different reference points for the nissan
case study

If we evaluate the Iε values in both directions (pair of
coloured and non-coloured box-plots), we see that g-
dominance obtains the best results for barthol2 and
nissan considering both reference points (Figs. 5, 8),
and lutz2 when selecting reference point 1 (left plot
of Fig. 6). g-dominance also outperforms the a priori
scheme in scholl (Fig. 7), but differences are lower
than in other instances.

• The interactive framework has the worst behaviour in
lutz2whenusing reference point 2 (right plot of Fig. 6).
During the first five cycles, the convergence of the a priori
method is better although after the fifth cycle results are
practically the same. Therefore, the g-dominancemethod
presents a slower convergence speed than the a priori
method in this specific scenario.

• The latter behaviour also appears in schollwhen using
reference point 1 (see left plot of Fig. 7). Initially, the a
priori method obtains better convergence in the first three
cycles, but the interactive method finally yields better
Pareto front approximations from the fourth cycle until
the end of the run.

As a global analysis we can say that the convergence of
the method is better than when using a priori goals in almost
all the cases of the experimentation. In some cases, we have
noticed that the convergence speed of g-dominance is slightly
slower than goals. Despite these facts, the real advantage of
using g-dominance does not just reside in its convergence,
but mainly in the interaction and better control of the region
of interest.

5.3 Using the framework in interactive scenarios

In this section, we have defined two interactive scenarios
for two instances: barthol2 and nissan. We have not

defined fixed reference points as in the previous section
since the decision maker interactively selects the reference
points according to her/his interest and the information (s)he
receives from the algorithm in an on-line fashion. Again, we
divide the run of the algorithm in cycles. The first cycle is run
without preferences to show an initial approximation to the
Pareto front and the representation of the practical bounds
for the problem instance. Then, the decision maker interacts
with the interactive framework at every cycle.

Figures 9 and 10 show the attainment surfaces of the inter-
action evolution for barthol2 and nissan, respectively.
To show statistically significant results we have plotted the
non-dominated solutions obtained by all the 20 runs at every
interaction cycle.

For the first scenario of barthol2, the algorithm is set to a
length cycle of 20,000 evaluations. The decision maker first
chooses (56, 90) as reference point. This first reference point
has a balance betweenm and A (it is in the central part of the
Pareto front; see the first plot of Fig. 9). We remind that the
position of the reference point conditions the calculation of
ants’ thresholds in the multi-colony approach.2 In this case,
those thresholds are αi ∈ [0.3, 0.7].

After the first cycle, the decision maker decides to explore
solutions with a lower number of stations. Therefore, (s)he
chooses (53, 115) as the second reference point (second
plot of Fig. 9). The MACS-LS algorithm has to adapt the
thresholds of the colony again because the reference point
influences the search direction towards solutions having a
lower number of stations. Now, ants’ thresholds become
αi ∈ [0.7, 1.0].

2 Please note that the space division and, therefore, the ants’ thresholds
depend on the first Pareto front approximation and this front can vary
among the 20 runs. For simplicity, we refer here to the most common
thresholds of the runs.
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Fig. 9 Attainment surfaces of MACS-LS using g-dominance in a interactive scenario for barthol2. The three figures show the selection of the
three reference points and their resulting Pareto fronts

This search exploitation originates new solutions with
m = 53 in the left-most hand part of the Pareto front approx-
imation that were not found beforehand. The last reference
point (52, 120) determines the next search direction of the
algorithm and finds solutions with m = 53 and lower station
area A (see the third plot of Fig. 9). When the algorithm has
finished, the obtained Pareto set approximation has almost
satisfied the expert preferences by returning solutions with
53, 54 or 55 stations with less than 150 m.

For the second scenario, we defined two reference points
for the nissan instance through cycles of 5,000 evalu-
ations. Both reference points ((27, 3) and (24, 2)) follow
the same search direction. That means the decision maker
does not change the balance of objectives during the run
of the algorithm as it happened in the previous barthol2
scenario. Although the last reference point (24, 2) is not a
feasible solution the performance of the algorithm is not
affected. The convergence of the returned Pareto set approx-
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Fig. 10 Attainment surfaces of MACS-LS using g-dominance in a interactive scenario for nissan. Two reference points were chosen and their
resulting Pareto fronts are shown

imations increases through the cycles even when the refer-
ence point is infeasible (see both plots of Fig. 10). Notice
the help provided by showing the industrial feasibility area
as the expert can increase the search intensification in a spe-
cific search space region by knowing the practical bounds
beforehand.

6 Concluding remarks and future works

We have combined a memetic MOACO approach, using the
MACS-LS and Unsort-LS algorithms, with an interactive
preference elicitation method (g-dominance) for solving the
TSALBP-m/A model. The combination formed a multiob-
jective interactive framework that allows the decision maker
to interactively find a set of industrial solutions close to
her/his point of preference. Up to our knowledge, the inte-
gration of an interactive preferences scheme into a MOACO
algorithm is the first of its kind.

First, we compared the performance of two different
MOACO algorithms when using g-dominance. Results
showed hardly any difference. Then, we presented a com-
parison between an existing a priori preference elicitation

method and our proposed framework based on g-dominance.
g-dominance obtained better convergence to the preference
area for almost all the instances, an additional advantage to
its better process control properties.

The definition of different interactive scenarios for solving
theTSALBP-m/Aallowedus to validate the framework inter-
action in the third part of the experimentation. One of these
scenarios defined the real-world case of theNissan Pathfinder
engine. Interactive experiments showed that the framework
correctly manages to converge towards the reference point.
The interactive method in addition behaved well when the
search direction of the expert preferences changed during
the algorithm run.

Despite the good g-dominance performance we noticed
the need of a user parameter to control the spread of the
region of interest where preferred solutions might be found.
This fact suggests us a future work focused on extending
the capabilities of the current g-dominance definition. Addi-
tional future research lines can be to extend the searching for
the most robust solutions with interactive preferences and to
create more sophisticated graphical models to enrich visual-
isation and interaction (see the work proposed in Chica et al.
2013).
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