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Abstract This paper proposes an improved gravitational
search algorithm (IGSA) to find the optimum solution for
short-term economic/environmental hydrothermal schedul-
ing (SEEHTS), which considers minimizing fuel cost as well
as minimizing pollutant emission. In order to improve the
performance of GSA, this paper firstly uses particle memory
character and population social information to update veloc-
ity. Secondly, a chaotic mutation operator is embedded into
GSA and a selection-operator-based greedy rule is adopted
to update population. When dealing with the constraints of
the SEEHTS, a modification strategy by dividing the viola-
tion water volume into several parts and randomly selecting
intervals to adjust the water discharge gradually is proposed
to handle the water dynamic balance constraints. Meanwhile,
a new symmetrical adjusting strategy is adopted to handle
reservoir storage constraints. Furthermore, the priority index
strategy based on thermal power output is applied to handle
system load balance constraints. To test the performance of
the proposed method, simulation results have been compared
with those obtained by particle swarm optimization, evolu-
tionary programming and differential evolution reported in
literature. The results show that the proposed IGSA provides
the optimum solution with less fuel cost and smaller emis-
sion. So it demonstrates that IGSA is effective for solving
SEEHTS problem.
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1 Introduction

The short-term hydrothermal scheduling plays an important
role in the economic operation of electric power systems
(Feroldi 2000; Yuan et al. 2011). The objective of the opti-
mization scheduling is to find out the optimal power out-
put of both hydroplants and thermal plants in order to mini-
mize the operating cost of hydrothermal system while satis-
fying various constraints. As the cost of hydroelectric plants
is insignificant, the objective of minimizing the operating
cost of hydrothermal system reduces to minimize the fuel
cost of the thermal plants during the scheduling period. The
short-term hydrothermal scheduling is a high dimension,
non-convex, nonlinear optimization problem with a lot of
equality and inequality constraints, which is concerned with
both hydroplants scheduling and thermal plants dispatching.
It is difficult to solve the hydrothermal scheduling problems,
especially because they deal with various constraints.

Many methods have been presented to solve the hydrother-
mal scheduling problems in the past decades. Some of these
are linear programming (Chang et al. 2001), nonlinear pro-
gramming (Catalão et al. 2010, 2011), dynamic program-
ming (Cheng et al. 2009; Santiago et al. 2012), genetic
algorithm (Gil et al. 2003; Senthil and Mohan 2011; Sushil
and Naresh 2007; Yuan et al. 2008a), artificial neural net-
works (Sharma et al. 2007), cultural algorithm (Yuan et
al. 2010), evolutionary programming (EP) (Basu 2004), ant
colony optimization (Wai et al. 2008), Tabu search (Nayak
and Rajan 2010), simulated annealing (Christober 2011),
differential evolution (DE) (Yuan et al. 2008c, 2009; Man-
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dal and Chakraborty 2008), and particle swarm optimization
(PSO) (Mandal and Chakraborty 2011; Yuan et al. 2011;
Mehdi et al. 2010). However, these studies only consid-
ered the fuel costs of the hydrothermal system; the emis-
sion produced by thermal plants was not considered. Owing
to increasing concerns about environmental protection, the
harmful, polluting emissions of thermal plants should be con-
sidered. Thus, it is necessary to take the emission as the objec-
tive of the hydrothermal scheduling.

Due to the increasing concerns about emission from
thermal plants, many researchers have developed vari-
ous methods to solve short-term economic/environmental
hydrothermal scheduling problems (SEEHTS). Blaže and
Marko (2013) applied genetic algorithm for the com-
bined economic-environmental power dispatch problem.
This paper used the weighted sum method to solve multi-
objective optimization, but the constraints handling of the
hydrothermal system was according to a penalization method
based on membership functions, which needed a lot of
computation. Basu (2004) used fuzzy satisfying evolu-
tionary programming procedure to solve multi-objective
short-term hydrothermal scheduling problem. Although this
method avoided selecting the plenty factor, the optimum
result relied on the reference membership values chosen by
users too much. Lu and Sun (2011) developed quadratic
approximation-based differential evolution with valuable
trade-off approach (QADEVT) to solve SEEHTS problem.
They converted the bi-objective programming into single
objective one by the valuable trade off. But in the article the
method to handle the reservoir storage volumes constraints
was based on feasible selection comparison. It needed much
time for computation, and at times, there was no feasible
solution. Mandal and Chakraborty (2011) utilized PSO to
solve the bi-objective hydrothermal scheduling problem and
used price penalty factors to transform the problem into a sin-
gle objective one. But the process of handling the constraints
was not given. Sun and Lu (2010) proposed an improved
quantum-behaved particle swarm optimization (IQPSO) to
solve the SEEHTS problem. The authors made the particles
have quantum behavior to find the global optimization solu-
tion and used heuristic strategies to handle the constraints of
hydrothermal system. But this approach was sensitive to the
value of parameter, and the shortcoming of premature conver-
gence was not overcome (Li et al. 2012). From descriptions
above, it is significant to find methods obtaining better per-
formance and more effective ways to deal with the constraints
for the SEEHTS problem.

Gravitational search algorithm (Rashedi et al. 2009) is
a new, heuristic optimization algorithm based on Newton’s
law of gravity, which finds the optimization search direc-
tion through gravitation interactions between particles. As
GSA is advantageous being simple and effective, researchers
have used it in order to solve different optimization problems.

Rashedi et al. (2011) presented a new linear and nonlinear fil-
ter modeling based on GSA. Mohammad et al. (2012) applied
GSA to search for the minimum factor of safety and mini-
mum reliability index in both deterministic and probabilistic
slope stability analysis. Güvenç et al. (2012) used GSA to
deal with the economic load dispatch problem of thermal
plants successfully. They formulated the economic emission
dispatch problem considered the valve point effect with trans-
mission loss. But this paper just considered the load dispatch
with only one time period. Duman et al. (2012) employed
GSA to find the best solution for optimal power flow prob-
lem in a power system. However, the application of GSA for
SEEHTS problem is rarely reported in literature so far.

This paper presents an improved GSA to solve SEEHTS
problem. In order to enhance the performance of GSA, par-
ticle individual memory character and group social infor-
mation are introduced to update velocity. And a mutation
procedure based on chaotic behavior is used in the improved
gravitational search algorithm (IGSA). Moreover, in the pre-
sented method, a modification strategy by dividing the viola-
tion water volume into several parts and randomly selecting
intervals to adjust the water discharge gradually is proposed
to handle the water dynamic balance constraints. A new strat-
egy is adopted to meet the reservoir storage volumes limit
constraints. Based on the violations of the reservoir storages,
it adjusts the water discharge of the hydroplant at previous
time intervals in feasible region. Meanwhile, it modifies the
equal amount to the corresponding discharge at the later time
intervals to keep water dynamic balance. A strategy based on
adjusting the output of the thermal power plants according
to their priority index is also applied to handle system load
balance constraints effectively. To make the particles always
move towards the optimum solution, the proposed method
adopts a selection operation based on a greedy rule in pop-
ulation evolution. Finally, in order to show IGSA is effec-
tive for solving SEEHTS problem, the proposed approach is
tested on a sample system with four cascaded hydroplants
and three thermal plants (Basu 2004). Simulation results
obtained by IGSA are compared with the results of quan-
tum PSO (Sun and Lu 2010), quadratic approximation based
differential evolution (Lu and Sun 2011), fuzzy satisfying
evolutionary programming (Basu 2004) and differential evo-
lution (Mandal and Chakraborty 2009) in the literatures, and
IGSA gets less fuel cost and smaller pollution emission. It
is found that the IGSA is more powerful and effective than
other algorithms for solving SEEHTS problem.

This paper is organized as follows: Section 2 provides
the mathematical formulation of SEEHTS problem. Sec-
tion 3 describes the standard GSA and the proposed IGSA.
Section 4 presents the IGSA for solving SEEHTS problem
in detail. Section 5 gives the numerical example. Section 6
outlines the conclusions and future work. Finally, acknowl-
edgments are given.
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2 Problem formulation of SEEHTS

The SEEHTS problem is a bi-objective optimization prob-
lem. It is aimed to minimize both the fuel cost and emission
of thermal plants while making full use of the availability
of hydro resources under various constraints of the systems
in the scheduling period. The formulation of the SEEHTS
problem is expressed as follows.

2.1 Objective functions

2.1.1 Minimization of fuel cost

The minimization objective of the total fuel cost produced by
the thermal plants in the scheduling horizon can be defined
by Eq. (1):

F = min
T∑

k=1

Ns∑

i=1

f
(

Pk
si

)
(1)

where F is the total fuel cost; f (Pk
si ) is the fuel cost function

of thermal plant i including valve-point loading effects; Pk
si

is the power generation of thermal unit i at time interval k; Ns

is the number of thermal plants; T is the total time intervals
over scheduling horizon.

The fuel cost function of a thermal plant with a consider-
ation of valve-point is described by Eq. (2) as follows:

f
(

Pk
si

)
= asi + bsi Pk

si + csi

(
Pk

si

)2

+
∣∣∣esi × sin

{
fsi ×

(
Pmin

si − Pk
si

)}∣∣∣ (2)

where asi , bsi , csi , esi , fsi are the fuel cost coefficients of
thermal plant i ; Pmin

si is the minimum power generation limit
of thermal plant i .

2.1.2 Minimization of emission

The minimization objective of total emission amount released
by the thermal plants during the scheduling period is defined
by Eq. (3):

E = min
T∑

k=1

Ns∑

i=1

e
(

pk
si

)
(3)

where E is the total emission amount; e(pk
si ) is the emission

function of thermal plant i .
The emission function of each thermal plant can be

described as the sum of a quadratic and an exponential func-
tion:

e
(

pk
si

)
= αsi + βsi Pk

si + γsi

(
pk

si

)2

+ ηsi exp
(
δsi × pk

si

)
(4)

where αsi , βsi , γsi , ηsi , δsi are the emission coefficients
of thermal plant i .

2.1.3 Bi-objective function of SEEHTS problem

The SEEHTS is a bi-objective problem which considers both
minimizing fuel cost and minimizing pollutant emission of
thermal plants simultaneously. The fuel cost f (Pk

si ) is evalu-
ated in $ and the emission amount e(Pk

si ) of thermal plants is
measured in lb. As the two functions are calculated in differ-
ent units, the objective of total operational cost cannot sum
the fuel cost and emission amount simply. By introducing
variable weights hk (Kulkarni et al. 2000) based on the time
interval, the bi-objective optimization problem can be con-
verted to a single objective one, which is defined by Eq. (5)
as follows:

TC = min
T∑

k=1

Ns∑

i=1

(
f
(

Pk
si

)
+ hk · e

(
Pk

si

))
(5)

where TC is the total operational cost of the hydrothermal
system and hk is the variable weight during time k.

In Eq. (5), the weight of fuel cost is set as 1 all through
the scheduling time, and hk is a ratio determined according
to the fuel cost and emission properties of thermal plants and
system load. By using the variable weight hk , the emission
amount can be calculated as some operation cost of the sys-
tem. The two different objectives are converted into a single
one to optimize the total operational cost of the hydrothermal
system. The process to calculate hk can be described briefly
as follows:

1. Calculate the ratio λik between the fuel cost and emission
of each thermal plant at its maximum power output.

λik = f (Pmax
si )

e(Pmax
si )

i = 1, 2, . . . , Ns . (6)

2. Arrange the thermal plants according to the value of λik

in ascending order.
3. Add the maximum output Pmax

si of thermal plants
starting from the unit with the smallest λik , until∑Ns

i=1 Pmax
si ≥ Pk

D is reached. Where Pk
D is the system

load demand at time interval k.
4. The λik belonging to the last thermal plants in the process

is chosen as hk for the system load at time interval k.

123



2786 H. Tian et al.

From the description above, it is clear that the value of hk is
dependent on the system load at each time interval and hence
it is variable in the scheduling period.

2.2 Constraints

1. System load balance constraints

Ns∑

i=1

Pk
si +

Nh∑

j=1

Pk
hj − Pk

D = 0 (7)

where Pk
D is the system load demand at time interval

k; Pk
hj is the power generation of hydroplant j at time

interval k; Nh is the number of hydroplants.
The hydropower generation is a function of water dis-
charge rate and reservoir storage volume, which can be
expressed as follows:

Pk
hj = C1 j

(
V k

j

)2 + C2 j

(
Qk

j

)2 + C3 j V k
j Qk

j

+C4 j V k
j + C5 j Qk

j + C6 j (8)

where C1 j , C2 j , C3 j , C4 j , C5 j , C6 j are the power
generation coefficients of hydroplant j ; V k

j is the water

volume of reservoir j at time intervalk; Qk
j is the water

discharge of hydroplant j at time interval k.
2. Thermal plant power generation limits

Pmin
si ≤ Pk

si ≤ Pmax
si (9)

where Pmin
si , Pmax

si are minimum and maximum power
generation limits of thermal plant i respectively.

3. Hydroplant power generation limits

Pmin
h j ≤ Pk

hj ≤ Pmax
h j (10)

where Pmin
h j , Pmax

h j are minimum and maximum power
generation limits of hydroplant j , respectively.

4. Reservoir storage volumes limits constraints

V min
j ≤ V k

j ≤ V max
j (11)

where V min
j , V max

j are minimum and maximum water
storage volumes of reservoir j .

5. Hydroplant discharge limits constraints

Qmin
j ≤ Qk

j ≤ Qmax
j (12)

where Qmin
j , Qmax

j are minimum and maximum water
discharge limits of hydroplant j .

6. Water dynamic balance constraints

V k
j = V k−1

j + I k
j − Qk

j − Sk
j

+
Ru j∑

m=1

(
Q

k−τmj
m + S

k−τmj
m

)
(13)

where I k
j is the inflow of hydro reservoir j at time inter-

val k; Sk
j is the water spillage of hydroplant j at time

interval k; τmj is the water transport delay from reservoir
m to j ; Ru j is the number of upstream hydroplants above
reservoir j .

7. Initial and final reservoir storage volumes constraints

V 0
j = V begin

j , V T
j = V end

j (14)

where V begin
j is the initial water storage volume of reser-

voir j ; V end
j is the final water storage volume of reservoir

j at the end of scheduling period.

3 Gravitational search algorithm

3.1 Standard GSA

Gravitational search algorithm is a novel heuristic optimiza-
tion algorithm based on Newton’s law of gravity proposed
by Rashedi et al. (2009). In GSA, the solution to problem
is expressed as the particle’s position. The performances of
particles are measured by their masses, the particles with
higher fitness values have heavier masses. Due to the gravity
force, all particles attract the others and they move towards
heavier particles. The movement of particles follows New-
ton’s law of motion, the heavier particles move slower and
the lighter ones move faster. At last all the particles would
move to the area near the heaviest one, which represents the
optimum solution to the problem. The following describes
the standard GSA briefly:

Without loss of generality, it assumes that an optimization
problem can be expressed as:

min
X∈RD

f (X).

The particle’s position represents the solution to the opti-
mization problem. The position of particle i is defined as:

Xi =
(

x1
i , . . . xd

i , . . . , x D
i

)
, i = 1, 2, . . . , NP, (15)

where n is the dimension of the problem and xd
i is the position

of particle i in the dth dimension, NP is the number of the
populations.
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At time t the gravitational force acting on particle i from
particle j is defined as follows:

Fd
i j (t) = G(t)

Mi (t) × M j (t)

Ri j (t) + ε

(
xd

j (t) − xd
i (t)

)
(16)

where Mi (t) and M j (t) are masses of particle i and j ; ε is a
small constant; and Ri j (t) is the Euclidean distance between
particle i and j described as follows:

Ri j (t) = ∥∥Xi (t), X j (t)
∥∥

2 . (17)

G(t) is the gravitational constant at time t defined as follows:

G(t) = G0 exp(−αt/tmax) (18)

where G0 is the initial value of the gravitational constant; α

is a constant to control the decay rate of G(t); t is the current
iteration; tmax is the total number of iteration.

The total force acting on particle i in dimension d at time
t is described as follows:

Fd
i (t) =

NP∑

j∈kbest, j �=i

rand j Fd
i j (t) (19)

where kbest is set of first k particles which have the better
fitness value and heavier mass, kbest(t) ’s initial value is the
population number NP, which express that all the particles
attract each other. And the final value of it is a small integer,
which express that only a few heavier particles attract the
others at last. rand j is a random number between 0 and 1.

The masses of the agents are calculated by their fitness
values. In GSA, the masses are updated as follows:

mi (t) = fiti (t) − worst(t)

best(t) − worst(t)
(20)

Mi (t) = mi (t)∑N
j=1 mi (t)

(21)

where fiti (t) is the fitness value of particle i at time t . best(t)
and worst(t) are the minimum fitness and maximum fitness
of all the particles. They are defined as follows:

best(t) = min
j∈{1,2,...,N } fit j (t) (22)

worst(t) = max
j∈{1,2,...,N } fit j (t). (23)

According to the laws of motions, the acceleration of the
particle i in dimension d at time t is described as follows:

ad
i (t) = Fd

i (t)

Mi (t)
. (24)

In GSA, the particle i would updates its position and velocity
in each iteration as follows:

vd
i (t + 1) = randi × vd

i (t) + ad
i (t) (25)

xd
i (t + 1) = xd

i (t) × vd
i (t + 1) (26)

where randi is a random number in range of [0, 1]; vd
i (t) is

the velocity and xd
i (t) is the position of the particle i in the

dth dimension at time t .

3.2 Improved GSA

In standard GSA, the optimization solution is obtained by
the particles movement based on the attraction of other parti-
cles. The particle with better fitness value is heavier and has a
bigger attraction to others. The attractions make the popula-
tion move towards the optimum solution. But in the velocity
update procedure only the gravitational force from particles
works, it lacks the memory of the best position of particle and
sharing of social information. And the particle may move to
a worse position by the attraction force, which makes the
convergence of algorithm slower. Due to the characters of
SEEHTS problem and its various constraints, there are many
local optimum solutions which standard GSA is easy to fall
into. In order to improve the performance of the method for
SEEHTS problem, this paper proposes IGSA, which uses
particle memory character and population social information
to update velocity. And taking advantage of ergodicity and
stochastic property of chaotic behavior, a chaotic mutation
procedure is introduced into IGSA to enhance the ability to
search the global optimum solution. Moreover, this approach
adopts the selection operation based on a greedy rule in popu-
lation evolution to insure the particles always evolve to better
ones.

3.2.1 Velocity update based on particle memory character
and population social information

In standard GSA, the moving direction of a particle is based
on the total force provided by other particles. Only the cur-
rent position of the particle plays a role in the velocity and
position update procedure, it does not make full use of the
particle memory character and population social information.
Inspired by the PSO algorithm, this paper introduces the par-
ticle memory character and population social information to
GSA, the improved rules of motion are based on the new strat-
egy: the movement not only obeys Newton’s law of motion,
and also takes the particle memory and sharing of social infor-
mation into account. The memory means the best position
Pbesti = (pbest1

i , . . . , pbestd
i , . . . , pbestD

i ) where particle i
has reached so far, and social information means the global
best position Gbesti = (gbest1, . . . , gbestd , . . . , gbestD)

where all the particles have reached so far. The velocity
update equation is redefined as follows:

vd
i (t + 1) = rand1 × vd

i (t) + ad
i (t)

+c1 × rand2 ×
(

pbestd
i (t) − xd

i (t)
)

+c2 × rand3 ×
(

gbestd(t) − xd
i (t)

)
(27)
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xd
i (t + 1) = xd

i (t) + vd
i (t + 1)

i = 1, 2, . . . , NP d = 1, 2, . . . , D (28)

where rand1, rand2 and rand3 are random numbers which
obey uniform distribution in the range [0–1]; c1 and c2 are
constants; pbestd

i (t) is the best position in dimension d where
the particle i has reached at time t ; gbestd(t) is the best
position in dimension d where all particles have moved to
at time t . By changing the value of c1 and c2, it can balance
the impact of gravity with the impact of memory and social
information on the performance of IGSA.

3.2.2 Mutation operator based on chaotic behavior

Although GSA has a strong ability in exploration, there is
still some room for enhancing the exploitation capacity in
local space. Similar to other optimization algorithms, GSA
has shortcomings of premature convergence. Because of the
ergodicity and stochastic property of chaotic behavior, it can
improve the performance of GSA in searching the global
optimum solution by utilizing the chaotic mutation opera-
tor. This paper introduces a chaotic mutation operator after
the velocity update procedure. By mutating the best particle
based on chaotic sequences, it enlarges the search space of
the approach from the region near the local optimum solution
to the global space, which can overcome premature conver-
gence of GSA. To ensure the mutation operator would not
make the fitness of populations worse, only if the new par-
ticle created by mutation is better than the worst particle in
populations, it will replace the worst one in next generation.

In this paper, the chaotic sequence is based on logistic
map, which is one of the simplest dynamic systems evidenc-
ing chaotic behavior (Yuan et al. 2008b). In the reference,
the chaotic behavior has been applied in combination with
PSO algorithm to improve the performance successfully. The
logistic map can be described as Eq. (29):

y(t + 1) = μ · y(t) · (1 − y(t)) y(t) ∈ (0, 1) (29)

where μ is a control parameter. And if μ = 4, the sequence
would be in chaotic state and the generated value will traverse
from 0 to 1. At the beginning of iteration, y(0) is randomly
generated in [0, 1] and y(0) /∈ {0, 0.25, 0.5, 0.75, 1} .

The chaotic mutation operator procedure is described as
follows:

1. Create a new particle Xnew = (x1
new, . . . , xd

new, . . . , x D
new)

and let it be the best particle Gbest in populations as:
Xnew = Gbest.

2. Set mutation iteration count g = 0.
3. Convert the position of Xnew in the dth dimension of

search space to the range of [0, 1] to generate the initial
chaotic variables as follows:

ξd(0) = xd
new − xd

min

xd
max − xd

min

d = 1, 2, . . . , D. (30)

where xd
min and xd

max are the minimum and maximum
limit of Xnew in d dimension.
As the description above the chaotic variable vector
ξ(0) = (ξ1(0), . . . , ξd(0), . . . ξ D(0)) is obtained.

4. Compute the chaotic variable vector ξ(g + 1) in next
iteration according to logistic map as follows:

ξd(g + 1) = 4 · ξd(g) · (1 − ξd(g)). (31)

5. Update the position of the new mutated particle in dth
dimension by the chaotic variable ξd(g + 1) as follows:

xd
new = xd

min + ξd(g + 1) · (xd
max − xd

min)

d = 1, 2, . . . , D. (32)

6. After the new positions in all D dimensions are generated,
the new mutated particle Xnew is obtained.

7. If the new mutated particle Xnew has a better fitness than
the worst particle Gworst at t iteration, replace Gworst
by Xnew in next generation. Where Gworst is the particle
with the worst fitness value in current population.

8. If the maximum iteration gmax is not reached, set g =
g + 1 and go to (4) to continue the next iteration. Else if
g = gmax, the chaotic mutation procedure is over.

3.2.3 Population evolution based on selection operation

In standard GSA, the particle may move to a worse position
by the gravitational force. In order to ensure the population
evolution is toward the optimum solution throughout, this
paper adopts a greedy selection operation based on the rule
of elimination similar to differential evolution (Yuan et al.
2008a). This method compares the fitness of the moved par-
ticle with fitness of the current particle correspondingly. If
the moved particle has a better fitness than the current one,
the moved particle would replace the current one as a member
in the next generation. On the contrary, if the moved particle
is worse than the current one, the current one would be kept
in the next generation. The selection operation is described
as follows:

Firstly, according to the improved velocity update Eqs.
(27) and (28), compute the position in each dimension of the
particle i after moving.

The moved particle
�

Xi (t + 1) can be expressed as:

�

Xi (t + 1) =
(

x1
i (t + 1), . . . , xd

i (t + 1), . . . , x D
i (t + 1)

)
,

d = 1, 2, . . . , D. (33)
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Then adopt the selection operation based on elimination rule
to update population:

Xi (t + 1)

=
⎧
⎨

⎩

�

Xi (t + 1) if f

(
�

Xi (t + 1)) < f (Xi (t)

)

Xi (t) otherwise
. (34)

After all the particles and the corresponding moved ones are
compared and selected, the selection operation is finished
and the new generation is created.

4 IGSA for solving SEEHTS problem

In this section, the procedures of the proposed IGSA for
solving SEEHTS problem are explained in detail. Especially,
rules will be given to handle the various constraints of the
problem. The processes can be described as follows:

4.1 Structure of individual

For the SEEHTS problem, the decision variables are water
discharges Qk

j of the hydroplants and power generations Pk
si

of thermal plants at each time interval. The structure of indi-
vidual is composed of those decision variables. It is defined
as follows:

Xa =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q1
1 , . . . , Q1

j , . . . , Q1
Nh

, P1
s1 , . . . , P1

si , . . . , P1
s Ns

.

.

. . . .
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .
.
.
.

Qk
1 , . . . , Qk

j , . . . , Qk
Nh

, P1
s1 , . . . , Pk

si , . . . , Pk
s Ns

.

.

. . . .
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .
.
.
.

QT
1 , . . . , QT

j , . . . , QT
Nh

, PT
s1 , . . . , PT

si , . . . , PT
s Ns

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a = 1, 2, . . . , NP. (35)

4.2 Initialization individuals

In the initialization process, each initial individual is obtained
by creating all the decision variables randomly in feasible
range. The equation of initialization is defined as follows:

Qk
j = Qmin

j + randh ×
(

Qmax
j − Qmin

j

)
(36)

Pk
si = Pmin

si + rands ×
(

Pmax
si − Pmin

si

)
(37)

where randh and rands are random numbers uniformly dis-
tributed in range [0–1].

4.3 Rules to handle constraints of SEEHTS problem

In the process of solving the SEEHTS problem with IGSA,
the initial and renewed solutions of individuals may not sat-

isfy various constraints of the problem. The rules to handle
the various constraints can be summarized as follows:

4.3.1 Handling water dynamic balance constraints

To deal with the water dynamic balance constraints, this
paper adopts a randomly adjustment strategy, which divides
the violation water volume into several parts and randomly
selects intervals to adjust the water discharge gradually.

Assume the water spillage in Eq. (13) is zero. Based on
the Eqs. (13) and (14), we can get the differences between the
total water discharge volume and the water volume available
in restriction of hydroplant j during the schedule horizon,
which can be described as follows:

�Q( j) = V begin
j − V end

j +
T∑

k=0

I k
j +

Ru∑

m=1

T∑

k=1

Q
k−τmj
m

−
T∑

k=0

Qk
j . (38)

And then divide the water volume differences into num parts,
select a time interval l randomly to adjust the water discharge
in feasible region. Repeat the selection and adjustment proce-
dure until the equality constraint is satisfied. The procedures
for handling water dynamic balance constraint of hydroplant
j are given as follows:

Step 1: Calculate the differences between the total water
discharge volume and the water volume available in
restriction of hydroplant j by (38). Set num = 30,
count = 0. And the average water adjustment volume
is calculated by:

AvgQ = �Q( j)/num.

Step 2: Select a time interval l randomly.
Step 3: Adjust the water discharge in l interval to satisfy the

constraint. Calculate
�

Q
1

j = Q1
j +AvgQ, if Qmin

j ≤
Q1

j ≤ Qmax
j , then let Ql

j = Q̂l
j , count = count + 1.

If the modified discharge Q̂l
j cannot satisfy the con-

straint (12), then select another new interval to adjust
randomly.

Step 4: If count < num, go to step 2, if count = num, go to
next step.

Step 5: The procedures of handling water dynamic balance
constraints are over.

4.3.2 Handling reservoir storage volumes limit constraints

The modified discharge sequences have satisfied water
dynamic balance constraints, but the reservoir storage vol-
umes at each time interval V k

j may violate the constraint (11).
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Assume the water spillage in Eq. (13) is zero, the reservoir
storage volumes can be calculated by (13) and (14).

This paper proposes a new strategy to handle reservoir
storage volumes limit constraints. It picks out the storage
volumes which violate the constraints and calculates the vio-
lation of them. And then based on the violations, it adjusts
the water discharge of the hydroplant at current and previ-
ous time interval in feasible region to satisfy the constraint
(11). That is to say, if V k

j < V min
j , reduce the discharge

Qk−1
j in previous interval k − 1 and correspondingly add the

same amount to discharge Qk
j in current interval t , which

can increase the volume V k
j to satisfy the constraint (11);

if V k
j > V max

j , add Qk−1
j and correspondingly subtract the

same amount to Qk
j , which decrease the volume V k

j to satisfy
the constraint (11). And if the violation water volume cannot
be adjusted in one time interval, the adjustment will be used
in previous time intervals until the constraints are satisfied.
Because the strategy has not changed the total discharges
of hydroplant in whole schedule period, it can modify the
discharge sequences to satisfy the reservoir storage volumes
limit constraints without break water dynamic balance. The
procedures for handling the reservoir storage volumes limit
constraints of hydroplant j are described as follows:

Step 1: Set k = 1.
Step 2: Calculate the storage volume V k

j of reservoir j at

time interval t , if V k
j satisfies the constraint (11), go

to step 10. If V k
j violates (11), go to step 3.

Step 3: If V k
j > V max

j , go to step 4. If V k
j < V max

j , go to
step 7.

Step 4: Calculate the adjust amount �Q according to the
violations by

�Q =
(

V k
j − V max

j

)
/�k

where �k is the time span during one time interval.
Set Qk−1

j = Qk−1
j + �Q, Qk

j = Qk
j − �Q. If

the adjusted discharge Qk−1
j , Qk

j satisfy constraint

(12), then go to step 10. Else if Qk−1
j > Qmax

j or

Qk
j > Qmin

j , go to step 5.

Step 5: If Qk−1
j > Qmax

j . And if k = 1, means there is
no room to adjust the discharges to previous time
interval according to the proposed strategy, go to
step 10, else calculate �Q1 = �Q − (Qk

j − Qmax
j ),

setQk−1
j = Qmax

j , Qk−2
j = Qk−2

j +�Q1, it means
to adjust the water discharge violating constraint
(12) to the discharge before time interval k − 1. If
Qk−2

j = Qmax
j , adjust the discharge Qk−2

j similarly
as step5. Else due to the water storage at time k − 1
has changed, let k = k − 1, go to step 2.

Step 6: If Qk
j = Qmax

j . And if k = T − 1, means there
is no room to adjust the discharges to latter time
interval according to the proposed strategy, go to
step 11, else calculate �Q2 = �Q − (Qmin

j − Qk
j ),

set Qk
j = Qmin

j , Qk+1
j = Qk+1

j 0 −�Q2, means to
adjust the water discharge violating constraint (12)
to the discharge after time interval k. If Qk+1

j <

Qmax
j , adjust the discharge Qk+1

j similarly as step
6. Else go to step 10.

Step 7: Calculate the adjust amount according to the viola-
tions by

�Q =
(

V min
j − V k

j

)
/�k.

Set Qk−1
j = Qk−1

j − �Q, Qk
j = Qk

j + �Q. If

the adjusted discharge Qk−1
j , Qk

j satisfy constraint

(12), and then go to step 10. Else if Qk−1
j < Qmin

j

or Qk
j > Qmax

j , go to step 8.

Step 8: If Qk−1
j < Qmin

j . And if k = 1, means there is no
room to adjust the discharges to previous time inter-
val according to the proposed strategy, go to step 10,
else calculate �Q2 = �Q − (Qmin

j − Qk−1
j ), set

Qk−1
j = Qmin

j , Qk−2
j = Qk−2

j − �Q2, it means
to adjust the water discharge violating constraint
(12) to the discharge before time interval k − 1. If
Qk−2

j < Qmin
j , adjust the discharge Qk−2

j similarly
as step8. Else due to the water storage at time k − 1
has changed, let k = k − 1, go to step 2.

Step 9: IfQk
j > Qmax

j . And if k = T − 1, means there
is no room to adjust the discharges to latter time
interval according to the proposed strategy, go to
step 11, else calculate �Q1 = �Q − (Qk

j − Qmax
j ),

set Qk
j = Qmax

j , Qk+1
j = Qk+1

j − �Q1, it means
to adjust the extra water violating constraint (12) to
the discharge after time interval k. If Qk+1

j > Qmax
j ,

adjust the discharge Qk+1
j similarly as step 9. Else

go to step 10.
Step 10: If k < T , set k = k + 1, go to step 2. If k = T , go

to next step.
Step 11: The adjustment procedures are over.

On the basis of the rules described above, handle the con-
straints of the cascade hydroplants from upstream to down-
stream, the discharge sequences can be modified to satisfy
the water dynamic balance constraints and reservoir storage
volumes limit constraints.

4.3.3 Handling system load balance constraints

After the procedures for handling the constraints of
hydroplants, this paper uses a strategy by adjusting the output

123



IGSA effectively solves SEEHTS problem 2791

of the thermal power plants according to their priority index
to handle system load balance constraints. System load bal-
ance constraints are defined as:

Nh∑

i=1

Pk
si +

Nh∑

i=1

Pk
h f − Pk

D = 0. (39)

Firstly, calculate the total power load demand of thermal
plants Pk

S in restriction at time interval k as follows:

Pk
S = Pk

D −
Nh∑

j=1

Pk
hj . (40)

Then, according to the priority index of thermal plants (Sun
and Lu 2010), adjust the violation power of system load bal-
ance to the thermal plants.

Priority index is obtained according to the average fuel
cost and emission of each thermal plant at its full load oper-
ating. The priority index αik of thermal plant i at time interval
k is defined as:

αik = f (Pmax
si ) + hk × e(Pmax

si )

Pmax
si

(41)

where hk is the variable weight during time interval k in Eq.
(5).

During the whole scheduling horizon, the thermal plants
are ranked by their priority index αik in ascending order to
get the priority list. In this list, thermal plant with the smaller
αik is arranged to adjust more power load. The procedures
for handling system load balance constraints are described
as follows:

Step 1: Calculate the priority index αik of each thermal plant
in schedule period by (41), and rank them in ascend-
ing order to get the priority list.

Step 2: Set k = 1.
Step 3: Calculate the violations of system load balance in

each time interval by:

�Pk =
Ns∑

i=1

Pk
si − Pk

S . (42)

Step 4: If �Pk =0, go to step 13; if �Pk < 0, go to step 5;
if �Pk > 0, go to step 9.

Step 5: Set n = 1.
Step 6: Select the thermal plant m with the smallest αik in

the priority list, set the output of thermal plant m at
time interval k to be Pk

m = Pmax
sm , and delete thermal

plant m from the priority list.
Step 7: Calculate the violations again by (42). If �Pk >

0, set Pk
m = Pmax

sm − �Pk , then go to step 13. If
�Pk < 0, go to step 8.

Step 8: Set n = n + 1, if n ≤ Ns , go to step 6; if n > Ns ,
go to step 13.

Step 9: Set n = 1.
Step 10: Select the thermal plant m with the biggest αik in

the priority list, set the output of thermal plant m at
time interval k to bePk

m = Pmin
sm , and delete thermal

plantm from the priority list.
Step 11: Calculate the violations again by (42). If�Pk < 0,

set Pk
m = Pmin

sm −�Pk , then go to step 13. If �Pk >

0, go to step 12.
Step 12: Set n = n + 1, if n ≤ Ns , go to step 10; if n > Ns ,

go to step 13.
Step 13: Set k = k + 1, if k ≤ T , go to step 3; if k > T , go

to step 14.
Step 14: The procedures of handling system load balance

constraints are over.

4.4 Calculate the sum of violation and fitness of individuals

Sometimes due to some reasons, which includes the inflow
of upstream reservoirs is too large or too small, the outputs
of hydroplants are too much or not enough, etc., the solution
of individual after modified still violates the constraints such
as reservoir storage volumes limits and system load balance
etc. This paper checks the violation of the modified indi-
viduals. If the individual cannot satisfy the constraints after
the constraints handling procedure, the violation will be cal-
culated to be a criterion of the individual for evolutionary
selection. The violation calculation takes hydroplant power
generation limits (10) and reservoir storage volumes limits
(11) into account.

With the volume of reservoir storage and the power gen-
eration of hydro in each time interval, we can calculate the
violations of every individual by:

violV k
j =

⎧
⎪⎨

⎪⎩

V min
j − V k

j if V k
j < V min

j
0 if V min

j ≤ V k
j ≤ V max

j
V k

j − V max
j if V k

j > V max
j

(43)

violPk
j =

⎧
⎪⎨

⎪⎩

Pmin
h j − Pk

hj if Pk
hj < Pmin

h j
0 if Pmin

h j ≤ Pk
hj ≤ Pmax

h j
Pk

hj − Pmax
h j if Pk

hj > Pmax
h j

. (44)

By the Eqs. (43) and (44), we can calculate the total violation
Sumviol of the individual. If Sumviol = 0, the individual
is feasible. The Sumviol of the individual is described as
follows:

Sumviol =
T∑

k=1

[
violV k

j + violPk
hj

]
. (45)

According to the description above and the Eq. (5), the total
violation Sumviol and the fitness value Fitness of individu-
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als is calculated. Sumviol and Fitness are the criterions for
comparing and selecting the individuals.

4.5 Update of M , G, Pbest, Gbest in IGSA

Select the best fitness value best(t) and the worst fitness value
worst(t) of individuals in population, and then according to
(20) and (21) update the mass of each individual. The gravi-
tational constant G(t) is calculated by (18).

Due to the introduction of the particle memory charac-
ter and population social information in velocity update of
IGSA, the best previous position of each individual Pbesti (t)
and the best position where all the particles have reached
Gbest(t) are also updated respectively.

The total gravity force acting on each individual and the
acceleration are calculated using (19), (24). And according
to the improved velocity update Eqs. (27) and (28), we can

obtain the moved individual
�

Xi (t + 1) which corresponding
the current individual Xi (t) after move.

4.6 Chaotic mutation

According to the descriptions in Sect. 3.2.2, mutate the indi-
vidual with best fitness value based on the chaotic behav-
ior. If the mutated individual Xnew has a better fitness than
the worst one Gworst in current generation, select Xnew to
replace Gworst in next generation.

4.7 Individuals comparison and population evolution

Calculate the total violation Sumviol and the fitness value
Fitness of the moved individuals

�

Xi (t + 1), and compare

the moved individual
�

Xi (t + 1) with the current individual

Xi (t). Only the moved individual
�

Xi (t + 1) has a better
performance than the current individual Xi (t) in solving the
problem, the moved individual would replace the current one
in next generation. Which guarantees new generation is bet-
ter than the previous generation and the populations always
evolve towards the optimization solution.

If the comparison result is in the three cases described as

following, we can estimate
�

Xi (t +1) is better than Xi (t), and

select
�

Xi (t +1) to be Xi (t +1) in next generation. Otherwise,
Xi (t) is retained to be Xi (t + 1) in new generation.

1. Sumviol(
�

Xi (t + 1)) = 0, Sumviol(Xi (t)) = 0, Fitness

(
�

Xi (t + 1)) < Fitness(Xi (t)).

2. Sumviol(
�

Xi (t + 1)) = 0, Sumviol(Xi (t)) > 0

3. Sumviol(
�

Xi (t + 1))>0, Sumviol(Xi (t))>0, Sumviol

(
�

Xi (t + 1)) < Sumviol(
�

Xi (t)).

4.8 The flow of using IGSA for solving SEEHTS problem

The procedure of using IGSA for SEEHTS problem is
described as follows:

Step 1: Initialize individuals and the parameters of IGSA,
such as NP, G0, α, tmax, μ, c1 and c2.

Step 2: Handle the constraints of the problem to the initial
individuals, calculate the fitness value and total vio-
lation.

Step 3: Update G(t), Pbesti (t), Gbest(t) in IGSA, and cal-
culate the mass Mi (t) of each individual.

Step 4: Calculate the total gravity force and the acceleration
acting on each individual.

Step 5: Update the velocity and position of each individual
according to the improved velocity equation.

Step 6: Modify the moved individuals using the constraints
handling strategy, and calculate the fitness value and
total violation of all individuals.

Step 7: Operate chaotic mutation to the best individual, if
the mutated individual is better than the worst one
in population, replace the worst by the mutated indi-
vidual.

Step 8: Compare the current individual and the correspond-
ing moved individual based on population evolution
rules, select the better one to create the new gener-
ation.

Step 9: If reaching the ending of iteration, stop and select
the best individual as the optimization solution to
the problem. Otherwise, repeat steps 3–8 until tmax

is reached.

5 Numerical example

In order to verify the effectiveness of IGSA, this paper uses
it to solve SEEHTS problem of hydrothermal system com-
posed by a cascade of four hydroplants and three thermal
plants. The scheduling period is 1 day, the time interval is cho-
sen as 1 h which divides 1 day to 24 scheduling intervals. The
hydro system configuration is shown in Fig. 1. The system
loads at each time interval, coefficients of hydro and thermal
plants, reservoir inflows and reservoir limits are taken from
the reference (Basu 2004).

In order to find the optimum parameters setting of IGSA
for SEEHTS problem, many trials have been applied. After a
lot of trials and comparisons, the parameters with best results
used in IGSA for this experiment are chosen as follows: G0 =
110, α = 10, the initial and final value of Kbest are 70 and 2,
respectively, c1 = 1.0, c2 = 0.4, μ = 4. In order to compare
with the results obtained by PSO, DE and other methods
reported in the literatures, the population size NP = 70, the
maximum iteration tmax = 400. The experiment is performed

123



IGSA effectively solves SEEHTS problem 2793

I1 I2 

I3 

I4 

Q1 Q2 

Q3 

Reservior1 Reservior2 

Reservior3 

Reservior4 

Q4 

Fig. 1 Hydraulic system network

on Microsoft Visual Studio 2008, 2 GB RAM, 2.20 MHz
CPU.

Due to the randomness of heuristic optimization algo-
rithm, the result obtained by IGSA in a single trial cannot be
taken as the best solution. To test the stability and effective-
ness of IGSA, this paper runs the experiment 20 times with
different initial populations and the best compromise solution
among these 20 trial results is selected as the best solution
obtained. In the meanwhile, we apply standard GSA in the
experiment with the same setting of parameters to illustrate
the improvement achieved by IGSA compared with GSA.
The results of fitness values of the 20 trial results obtained
by IGSA and standard GSA are given in Table 1.

As shown in Table 1, the minimum, average and maximum
fitness value of IGSA in 20 trials are 104,731.87, 105,784.34
and 107,380.95 respectively, and the corresponding standard
deviation is 805.67. It is clearly seen in Table 1 that IGSA
obtains better quality solutions over standard GSA. In the 20
trials, IGSA can improve the minimum, average and maxi-
mum fitness value about 2.93, 3.26 and 2.49 % when com-
pared to GSA.

In order to demonstrate that IGSA’s results are statisti-
cally better than those obtained by GSA, this paper performs
a Wilcoxon signed-ranks test (García et al. 2009) for detect-
ing significant differences between the performances of two
algorithms. Firstly, we establish an assumption that there is
no significant difference between the results of IGSA and
those of GSA. Then, according to the 20 paired fitness val-
ues, the sum of ranks and the complement of the probability

Table 2 Wilcoxon test applied over the comparison between IGSA and
GSA in fitness value

Comparison Objective function fitness values

R+ R− p value

IGSA-GSA 210 0 0.001
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Fig. 2 Fuel cost and emission in 20 trials obtained by IGSA for SEE-
HTS

of reporting that two samples are the same, called the p value
are computed and shown in Table 2.

From Table 2, it can be seen that the p value is 0.001.
Choose the significance level α = 0.05. Since p < 0.05, we
can reject the previous assumption that two sample are the
same and accept the opposite assumption, that there are sig-
nificant differences between the performances of two algo-
rithms. It is concluded that the performance of IGSA is sta-
tistically better than GSA.

The fuel cost and emission in 20 trials are calculated and
given in Fig. 2. It is obvious in Fig. 2 that the variations of the
cost and emission objectives of the 20 solutions are in small
range. And for SEEHTS problem, the result in 18th trial is
selected as the final optimization solution of IGSA, of which
fuel cost is 43,299.89 $ and emission amount is 17,868.74 lb.
From Fig. 2, it is clearly seen that the best solution gets
the minimum fuel cost and the medium emission amount
among 20 trial results. Compared to the other trial results,
the obtained best solution reduces large fuel cost with a little
compromise of emission. It reveals that the obtained best
solution gets a best balance of minimizing both fuel cost and
emission. The distribution of the fuel cost and emission of
the 20 trial results in functional space is shown in Fig. 3. It

Table 1 The results of fitness values in 20 trials for SEEHTS problem

Method Minimum fitness value Average fitness value Maximum fitness value Standard deviation

IGSA 104,731.87 105,784.34 107,380.95 805.67

GSA 107,895.65 109,350.53 110,120.24 512.84
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Fig. 3 The distribution of the 20 solutions in functional space
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is seen in Fig. 3 that the 20 independent executions are not
non-dominated solutions, which indicates the need of multi-
objective optimization approach as future research.

Variation of the fitness value of the best solution obtained
with iteration numbers of IGSA and standard GSA for SEE-
HTS is shown in Fig. 4. It can be seen that the proposed
IGSA has a smooth convergence curve and a fast convergence
speed when dealing with SEEHTS problem. During the first
50 iterations, the fitness value of the best solution obtained
decreases sharply. It is obvious that IGSA has strong con-
vergence ability at the beginning of iterations. From the 50th
iteration to the end of iterations, the fitness value decreases
slowly and trends to be steady without any improvement,
which means IGSA converges to the global optimization
solution. The fitness value obtained by GSA decreases much
slowly than those of IGSA during the evolutionary process,
which results in the fitness value larger than those of IGSA
at the end of iterations. It is apparent that IGSA has a better
convergence property than standard GSA in solving SEEHTS
problem.
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Fig. 5 Hourly hydroplant discharge for SEEHTS (×104 m3/h)
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Fig. 6 Hourly hydroplant storage for SEEHTS (×104 m3)

The water discharge and storage volume of hydroplants in
each time interval during the schedule horizon are provided
in Figs. 5 and 6, respectively. The power outputs of hydro
and thermal plants are given in Table 3. From Figs. 5 and
6, it can be seen that the optimization solution satisfies the
constraints of hydroplants strictly. In Table 3, the last column
shows the sum of power outputs generated by thermal and
hydroplants. From Table 3, we can see the thermal plant with
the smaller priority index is dispatched more power load in
system. And it is apparent that the power output of each
plant in the hydrothermal system is in feasible region and
the system load balance constraints are satisfied during the
whole scheduling period.

The results obtained by proposed IGSA are compared with
those of standard GSA, QPSO (Sun and Lu 2010), QADEVT
(Lu and Sun 2011), EP (Basu 2004) and DE (Mandal and

123



IGSA effectively solves SEEHTS problem 2795

Table 3 Power generations of hydro and thermal plants for SEEHTS

Time (h) Ph1 (MW) Ph2 (MW) Ph3 (MW) Ph4 (MW) Ps1 (MW) Ps2 (MW) Ps3 (MW) Total load (MW)

1 90.60 52.30 0.00 141.76 175.00 240.34 50.00 750

2 58.49 51.27 23.84 126.61 175.00 294.78 50.00 780

3 62.75 52.11 0.00 149.01 175.00 211.12 50.00 700

4 83.21 53.75 43.32 119.11 175.00 125.60 50.00 650

5 53.74 54.74 3.37 124.14 175.00 209.01 50.00 670

6 64.19 74.91 31.87 191.46 175.00 212.56 50.00 800

7 68.78 56.24 27.52 182.80 175.00 300.00 139.66 950

8 53.74 59.76 20.87 261.43 175.00 300.00 139.20 1,010

9 92.01 56.04 25.01 304.15 175.00 300.00 137.79 1,090

10 74.25 59.95 38.59 292.44 175.00 300.00 139.77 1,080

11 74.62 79.45 32.89 298.43 175.00 300.00 139.60 1,100

12 101.83 87.49 34.69 304.72 175.00 300.00 146.28 1,150

13 95.74 63.80 39.44 296.28 175.00 300.00 139.73 1,110

14 73.61 63.28 41.32 248.88 175.00 288.53 139.38 1,030

15 98.34 57.48 47.33 288.66 175.00 214.57 128.62 1,010

16 69.84 63.13 46.67 266.13 175.00 300.00 139.23 1,060

17 70.49 66.19 48.12 251.17 175.00 300.00 139.03 1,050

18 83.00 88.66 50.65 282.93 175.00 300.00 139.77 1,120

19 82.91 61.14 47.19 265.11 175.00 300.00 138.65 1,070

20 87.23 85.19 42.62 298.21 175.00 222.39 139.36 1,050

21 58.12 82.02 52.54 294.84 175.00 197.48 50.00 910

22 98.06 69.09 53.88 289.12 175.00 124.84 50.00 860

23 77.24 83.60 56.32 283.01 175.00 124.83 50.00 850

24 60.06 75.98 57.88 256.16 175.00 124.92 50.00 800

Chakraborty 2009) in Table 4. In the references above, the
fitness evaluations are not given in the simulation results
section. So the fitness evaluations of other methods in ref-
erences are not presented in Table 4. The fuel cost and emis-
sion of the best solution provided by IGSA are 43,299.89
$ and 17,868.74 lb, respectively. From the comparison with
GSA, QPSO, QADEVT, Fuzzy EP and DE, IGSA reduces
the fuel cost about 1,557.54, 959.11, 95.11, 4,606.11 and
1,614.11$, respectively, during scheduling horizon, while the
corresponding emission is decreased about 223.24, 360.26,
455.26, 8,455.26 and 1,746.26 lb in 1 day. In order to make
the comparison result more visual, the distribution of the
five non-dominated solutions of IGSA and solutions of other
methods in functional space are shown in Fig. 7. It can be
clearly seen from Fig. 7 that all the solutions of the pre-
vious references are dominated by at least one of the non-
dominated solutions of IGSA. It is obvious that when deal-
ing with the SEEHTS problem, IGSA obtains less fuel cost
and smaller emission than all the other optimization algo-
rithms in the references. It is clearly seen in the simulation
results that, IGSA has a good performance to find optimum
solutions and satisfy constraints completely for SEEHTS
problem.

Table 4 Comparison of results obtained by IGSA with those of other
methods

Methods Fuel cost ($) Emission (lb)

IGSA 43,299.89 17,868.74

43,618.92 17,656.99

43,805.93 17,624.25

44,320.44 17,513.91

44,461.12 17,399.40

GSA 44,857.43 18,091.98

QPSO 44,259.00 18,229.00

QADEVT 43,395.00 18,324.00

Fuzzy EP 47,906.00 26,324.00

DE 44,914.00 19,615.00

6 Conclusions and future work

In this paper, an IGSA with new constraints handling strat-
egy has been proposed and applied to solve SEEHTS prob-
lem successfully. The main improvements of the proposed
method are as follows: (1) in order to improve the conver-
gence speed and exploitation ability of GSA, this paper intro-
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Fig. 7 The distribution of the non-dominated solutions of IGSA and
solutions of other methods

duces the particle memory character and population social
information in velocity update process; (2) a mutation oper-
ator based on chaotic behavior is also adopted to overcome
premature convergence and enhances the ability to search for
the global optimum solution. (3) When dealing with the diffi-
cult problem of constraints handling, a modification strategy
by dividing the violation water volume into several parts and
randomly selecting intervals to adjust the water discharge
gradually is proposed to handle the water dynamic balance
constraints. A new symmetrical strategy is utilized by adjust-
ing the violation water volume to the discharge at previous
time intervals in feasible region to meet reservoir storage vol-
umes constraints. In order to keep the water dynamic balance,
it also modifies the equal amount to the discharge at later time
intervals. A strategy based on adjusting the output of the
thermal power plants according to their priority index is also
applied to handle active power balance constraints effectively
in IGSA. Finally, this paper converts the bi-objective prob-
lem into a single one by using the variable weights based on
the time intervals, and then the proposed IGSA is employed
to solve SEEHTS problem of hydrothermal system consist-
ing of a cascade of four hydroplants and three thermal plants.
Simulation results show that IGSA has a good performance
to find good solutions and satisfies all constraints completely
for SEEHTS problem. Compared with other methods such
as QPSO, QADEVT, EP and DE reported in the literatures,
IGSA obtains the better fuel cost and less pollution emis-
sion. It is found that IGSA is feasible and effective in solving
SEEHTS problem.

The limitation of this paper is that the two competing
objectives are converted into a single one to be optimized.
Although the best compromise solution with better fuel cost
and less pollution emission is obtained, the real Pareto opti-
mum solutions cannot be achieved by independent iterations.
Therefore, our future work is to extend the proposed IGSA

to be a multi-objective optimization algorithm. By using
the multi-objective optimization algorithm to solve SEE-
HTS problem, the fuel cost and emission can be optimized
simultaneously and a set of Pareto optimum solutions can be
achieved in one trial without any variable weights.
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