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Abstract The study is focused on a development of a
global structure in a family of distributed data realized on
a basis of locally discovered structures. The local structures
are revealed by running fuzzy clustering (Fuzzy C-Means),
whereas building a global view is realized by forming global
proximity matrices on a basis of the local proximity matrices
implied by the partition matrices formed for the individual
data sets. To capture the diversity of local structures, a global
perspective at the structure of the data is captured in terms
of a granular proximity matrix, which is built by invoking a
principle of justifiable granularity with regard to the aggrega-
tion of individual proximity matrices. The three main scenar-
ios are investigated: (a) designing a global structure among
the data through building a granular proximity matrix, (b)
refining a local structure (expressed in the form of a parti-
tion matrix) by engaging structural knowledge conveyed at
the higher level of the hierarchy and provided in the form
of the granular proximity matrix, (c) forming a consensus-
building scheme and updating all local structures with the
aid of the proximity dependences available at the upper layer
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of the hierarchy. While the first scenario delivers a passive
approach to the development of the global structure, the two
others are of an active nature by facilitating a structural feed-
back between the local and global level of the hierarchy of
the developed structures. The study is illustrated through a
series of experiments carried out for synthetic and publicly
available data sets.
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1 Introduction

Clustering is about revealing a structure in a single data set.
Distributed clustering is concerned with the same problem
present in situations where there is a family of data sets for
which clustering is carried out separately. The term distrib-
uted clustering is quite often encountered in the literature.
Furthermore, this type of clustering quite often comes with a
remarkable variety of terminology, methods, evaluation mea-
sures, extensions (Corsini et al. 2005; Pedrycz and Rai 2008;
Pedrycz 2005) and applications (Coppi et al. 2010; Graves
et al. 2012; Peters 2011). The results of clustering are conve-
niently interpreted as information granules in the sequel ben-
efiting from a wealth of conceptual developments of Granular
Computing (Apolloni et al. 2006; Pedrycz 2013, 2007). Like-
wise the distributed nature of the data may imply cases when
objects (patterns) are described in different feature spaces or
all data sets are in the same feature space (Mali and Mitra
2003; Pedrycz and Rai 2008). There are also combinations
of these two alternatives (Pedrycz and Rai 2008).

There are two essential aspects that have to be raised with
regard to distributed clustering:
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(i) away of communicating local findings (viz. the structure
of the local data). The locally formed structures of the
data (expressed in terms of partition matrices and pro-
totypes) need to be compared. If we are concerned with
different patterns, however, all of them are expressed in
the same feature space, the structural signatures of the
data that can be compared across the data come in the
form of the prototypes of the clusters. For the same data
(patterns), which are formed in different feature spaces,
the local partition matrices are viable constructs using
which we can build more abstract constructs (proximity
matrices), which in the sequel can initiate some shar-
ing findings across the sets of data. We stress that a
direct comparison of partition matrices is not feasible as
there are different numbers of clusters and there is no
correspondence among the clusters constructed for the
individual data sets.

(ii) away of building a global viewat the data. There are two
variants. Depending whether locally available results are
refined or left intact we distinguish between active and
passive approaches.

In this study, we are concerned with a category of objec-
tive function-based clustering in which the results of clus-
tering come in the form of partition matrices and prototypes
(or other numeric representatives). K-Means and Fuzzy C-
Means (FCM) (Bezdek 1981) are highly visible alternatives
of the clustering methods falling under this category. To facil-
itate a sound comparison of local structures, one has to look at
them from a more general and abstract point of view than the
one being conveyed by partition matrices. Proximity matrices
(Bezdek 1981; Pedrycz 2005) come here as a viable alterna-
tive as they are abstracted from the number of clusters. Their
dimensionality is N×N meaning that all locally formed prox-
imity matrices can be compared (matched) as their dimen-
sionality does not depend explicitly upon the number of clus-
ters. The usage of proximity matrices in clustering prob-
lems has been reported in so-called proximity-based clus-
tering, see (Graves et al. 2012; Pedrycz et al. 2004; Pedrycz
2004).

The main objective of this study is to develop a general
concept of distributed clustering based on the principles of
Granular Computing (Pedrycz et al. 1998) and their con-
structs (Apolloni et al. 2006; Pedrycz et al. 2004). Here our
focus is on the data described in different feature spaces,
which implies that a communication vehicle is established in
terms of proximity matrices. Based on this form of interac-
tion, we discuss three main conceptual settings. The one is
of a passive nature, which concentrates on a granular char-
acterization of proximity-based structure with the invocation
of granular proximity matrices of a global character. The two
other active-like alternatives invoke some structural feedback

to refine local structures on a basis of the global result (viz.
a granular proximity matrix).

Our investigations come with several well-articulated
aspects of originality. The formulation of the problem is orig-
inal: although some facets of collaborative clustering have
been investigated in the literature, those approaches focus
on the passive mode meaning that the results of clustering
are aggregated, however, an active facet is not considered
at all meaning that no mechanisms adjusting local cluster-
ing findings were developed given some global findings. Let
us recall that a passive mode implies that the locally avail-
able clustering results are provided and some aggregation
mechanism is invoked, which gives rise to a general (global)
view of the results. In this process, irrespectively of the result
obtained at the global level, the local structures (clusters) are
not modified (affected). In contrast, when talking about an
active mode, a feedback loop is being formed so that in an
iterative fashion the local results give rise to some global
results. In the sequel, those are contrasted with the results
available at the lower level and as a result the local results
are modified following a certain adjustment strategy so that
in the next iteration there is some improvement observed at
the level of the global results.

It is worth noting that there have been some interesting
earlier studies on interval-valued clustering, cf. (Souza and
Carvalho 2004; Gacek and Pedrycz 2013; Hathaway et al.
1996; Pedrycz et al. 1998; Hwang and Rhee 2007; Mali and
Mitra 2003; Wong and Hu 2013; Zhang et al. 2014). There
is, however, an important difference between the undertaken
research and the previous line of investigation. Here we are
concerned with numeric data whereas information granules
come as a result of reconciliation of results and are reflec-
tive of the diversity of the local findings. The previous stud-
ies were focused on granular clustering, more specifically,
interval-valued data

The paper is structured as follows. In Sect. 2, we highlight
an essence of the problem and identify a role of information
granularity being played in this setting. In the sequel, we
briefly outline the essence of the main classes of problems
(Sect. 3). In Sect. 4, all associated optimization problems are
formulated and solved. More specifically, we discuss a way
of forming granular proximity matrices through the use of the
principle of justifiable granularity (Pedrycz 2013), and look
at the techniques of refining local partition matrices based
on the gradient-based optimization and particle swarm opti-
mization (PSO) as well as a hybrid of these two techniques.
Two ways of characterization of granular proximity matrices
are discussed. Numeric studies are covered in Sect. 5.

In the study, we adhere to the standard notation encoun-
tered in pattern recognition, clustering and system modeling.
To emphasize the origin of the locally available data and the
resulting constructs, we use indexes placed in square brack-
ets, say c[ii], U [ii], uik[ii], etc.
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2 The essence of the problem and underlying facet
of information granularity

Let us consider a collection of p data sets D1,D2, . . .,Dp

originating from a certain problem. For instance, those
sets could be data describing a certain system for which
formed are individual, local views associated with their local
data. The data originated from different collections may be
described in different feature spaces F1,F2, . . . ,Fp. In gen-
eral, we also assume that some data points are shared among
the data sets meaning that an intersection of them is non-
empty, namely D = D1 ∩D2 ∩ · · · ∩Dp card (D) = N . For-
mally speaking, a selected object ok belonging to the inter-
section of D1,D2, . . ., and Dp comes with its own vectors of
features xk[1], xk[2], …,xk[p] defined in the corresponding
feature spaces. The data {xk[i i]}, k = 1, 2, …N forming the
data set Di i are clustered in the corresponding feature space
resulting in the corresponding partition matrix U [ii]. Clus-
tering is completed for other data sets subsequently giving
rise to partition matrices U [1], U [2],…, and U [p], respec-
tively. In general, the number of clusters associated with these
partition matrices, namely c[1], c[2],.., and c[p], could vary
from one data set to another. The partition matrices formed
in this way exhibit a local character, viz. they are concerned
with the findings being confined to the given feature space
and produced for the particular locally available data set.
Our key objective of this study is to discover (or reconcile)
a global structure in the data based on the reconciliation of
the local views conveyed through the already constructed
partition matrices.

There are two essential and general observations to be
made here in the context of the problem under study:

(a) It is apparent that any aggregation of the partition matri-
ces is not feasible because of the fact that the number of
clusters could vary from one partition matrix to another.
To proceed with any comparison of partition matrices,
this process cannot be realized directly but through com-
paring proximity matrices induced by the corresponding
partition matrices.

(b) as the resulting proximity matrices exhibit an evident
diversity, we may contemplate to use an aggregation

mechanism that fully reflects and quantifies this diver-
sity. This, in turn, brings a concept of granular proxim-
ity matrices as the constructs capturing this facet of the
existing variety among the local proximity matrices.

In the study, when developing a structure of a global
nature, we rely on the fundamental concept of proximity
matrices implied by partition matrices. Recall that for any
partition matrix U [ii]= [uik[ii]], i = 1, 2,…, c[ii], k = 1, 2,
…, N , the corresponding proximity matrix P[ii] = [pkl [ii]]
comes in the following form

pkl [i i] =
c[i i]∑

i=1

min(uik[i i], uil [i i]) (1)

k, l = 1, 2,…, N .
It is instructive to provide a brief example to highlight the

essence of the approach, motivate its origin, and shed light
at the multistep processing dwelling on a formation of prox-
imity matrices. The five two-dimensional data positioned in
several feature subspaces are shown in Fig. 1.

It is apparent that the structures vary from one feature
space to another. Assume that the partition matrices U [1],
U [2], and U [3] have the following entries which reflect a
distribution of the data. Likewise, by visualizing the struc-
tures of the data, the number of clusters varies from 2 to 3.

U [1] =
[

0.9 0.8 0.3 0.1 0
0.1 0.2 0.7 0.9 1

]

U [2] =
⎡

⎣
1.0 0.1 0.9 0.0 0.0
0.0 0.8 0.1 0.0 0.0
0.0 0.1 0.0 1.0 1.0

⎤

⎦

U [3] =
[

1.0 0.1 0.2 0.3 1
0.0 0.9 0.8 0.7 0

]

In light of the varying dimensionality of these matrices, they
cannot be compared directly. Instead, we have to consider
some constructs built at the higher level of generality whose
representation does not explicitly involve the number of clus-
ters. Here, the corresponding proximity matrices are formed.
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Fig. 1 Example data positioned in three subspaces
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These proximity matrices are determined following (1) and
come in the form

P [1] =

⎡

⎢⎢⎢⎢⎣

1.0 0.3 0.4 0.2 0.1
1.0 0.5 0.3 0.2

1.0 0.8 0.7
1.0 0.9

1.0

⎤

⎥⎥⎥⎥⎦

P [2] =

⎡

⎢⎢⎢⎢⎣

1.0 0.1 0.0 0.0 0.0
1.0 0.2 0.1 0.1

1.0 0.0 0.0
1.0 0.0

1.0

⎤

⎥⎥⎥⎥⎦

P [3] =

⎡

⎢⎢⎢⎢⎣

1.0 0.1 0.2 0.3 0.0
1.0 0.9 0.8 0.1

1.0 0.9 0.2
1.0 0.3

1.0

⎤

⎥⎥⎥⎥⎦

The proximity matrices exhibit different entries and as a
result of their summarization produces the construct at the
next level of generality, namely, a granular proximity matrix.

The granular proximity matrix visualizes an emergence
of groups of data that are kept close to each other. One can
observe a jump in the values of the entries pointing at the
occurrence of the well-formed clusters.

3 Main classes of problems

We can distinguish three general categories of problems
where the fundamental ideas outlined so far can be fully
exploited. The essence of these problems is visualized
through a series of figures that help contrast different tasks
being studied here.

3.1 Formation of a general description of data

The underlying objective of this problem is to describe the
data at the global level by aggregating individual findings
conveyed by the locally available proximity matrices, see
Fig. 2.

The granular character of the proximity matrix formed at
the upper level of hierarchy quantifies the diversity of the
local structures. The entries of the granular proximity matrix
G(P) = [p−

kl , p
+
kl ], k, l = 1, 2, . . ., N , which are intervals

with the lower and upper bounds p−
kl and p+

kl , quantify a
strength of linkage occurring between a pair of data, say k
and l.

U2

Pi

U1

P1

G(P)

Ui

P2

Up

Pp

Fig. 2 Building a general description of structure—from local prox-
imity matrices P1, P2, . . ., Pp to granular proximity matrix of global
character G(P)
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Fig. 3 Updating partition matrix Ui by invoking a feedback loop
involving a global proximity matrix at the upper level of the hierar-
chy
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G(P)
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Up
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Fig. 4 Building consensus on a basis of a collection of local proximity
matrices: observe a feedback loop involving all partition matrices and
the global granular proximity matrix

3.2 Refinement of the locally discovered structure of data

In this situation, we are focused on a certain locally available
data and attempt to reconcile the findings by augmenting
(affecting) the already constructed partition matrix by the
additional source of structural knowledge formed at the upper
level of the hierarchy, see Fig. 3. In light of the structure
of the auxiliary knowledge, this development falls under an
umbrella of so-called knowledge-based clustering,

The optimization mechanism is the one discussed in depth
in Sect. 4.2.

3.3 Building consensus

In this scenario, we are concerned with a reconciliation of the
structural findings obtained locally. The consensus building
is an iterative process as illustrated in Fig. 4.

The result formed at the global level is used to adjust the
individual partition matrices U1,U2, . . .,Up. The optimiza-
tion is realized following the scheme outlined in the previous
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section. The updated partition matrices are used to build prox-
imity matrices and those give rise to the granular proximity
matrix. In turn, the new proximity matrix offers a navigation
of optimization of the local partition matrices and the itera-
tions are continued. The convergence of the process becomes
critical and for this a suitable index needs to be established.

4 Associated optimization problems, their solutions and
characterizations

The three categories of problems outlined in the previous
section call for a certain way of formulating the ensuing opti-
mization problem, building its solution and finally character-
izing the quality of the obtained solutions. We come up with
some design procedures and show their arrangement when
solving the three categories of problems formulated above.

4.1 Development of granular proximity matrix

A formulation of a granular proximity matrix is a com-
mon task encountered in the three classes of problems
discussed above. Given a collection of proximity matri-
ces P[1], P[2], . . ., P[p] we realize a granular proximity
matrix G(P) so that the inherent granularity of this con-
struct is captured and quantified. Proximity matrices exhibit
an inherent diversity. Being cognizant of this fact, we can
assume that the aggregation result is a granular proxim-
ity matrix G(P) whose entries are intervals located in the
[0,1] interval. In other words, the granular proximity matrix
comes with interval-values entries,G(P) = [g−

kl , g
+
kl ], k, l =

1, 2, . . ., N The interval-valued character of the construct is
reflective of the variability in the local findings.

The construction of the granular proximity matrix G(P)

realized for individual entries of the matrix is realized by
invoking a principle of justifiable granularity (Pedrycz 2013).
In a nutshell, this principle states that when aggregating some
numeric experimental evidence, in the face of the diver-
sity of the existing pieces of evidence, the result is a cer-
tain information granule (instead of another numeric out-
come) such that it is supported enough by the experimen-
tal data while simultaneously demonstrating sufficient speci-
ficity thus coming with a well-conveyed semantics. The prin-
ciple is applied to the individual entries of the proximity
matrices. Let us consider the (k, l)-th entry of the prox-
imity matrices P[1], P[2], . . ., P[p], namely consider a set
P = {pkl [1], pkl [2], . . ., pkl [p]}. We also assume that some
initial numeric representative (say mean or median) of P is
provided. For the (k, l)-th entry we denote it by mkl .

In the simplest scenario, the principle of justifiable granu-
larity gives rise to an interval representation [g−

kl , g
+
kl ] of the

data through the maximization of the coverage of the data
(the requirement of sufficient experimental evidence) and the

specificity of the information granule (semantics constraint)
where these two fundamental requirements are expressed as
follows (below we are concerned with the upper bound of
the interval; the determination of the lower bound is realized
in the same manner).

experimental evidence
(coverage of data) f1(p+

kl )=card {pkl |pkl > mkl }
specificity requirement f2(p+

kl )=exp(−α |mkl− pkl |), α≥0
(2)

It is apparent that these two requirements are in conflict;
any improvement of one of them deteriorates the perfor-
mance of another one. A compromise is set up when the
product of the terms V = f1 ∗ f2 attains its maximal value.
In other words, the optimal upper bound of the interval, say
g+
kl = arg MaxgV (g) is achieved.

In the sequel, the optimal bound, bopt , is obtained as a
result of the following optimization problem

bopt = arg Max V (3)

The range of possible values of α requires some clarifi-
cation. The smallest value of α is equal to 0; in this case,
the corresponding optimal bounds of a and b are the lowest
and highest values of zk , aopt = arg min {z1, z2, . . ., zN } and
bopt = arg max {z1, z2, . . ., zN }. The higher the value of α,
the more specific the resulting interval. In other words, the
maximal value of α is the one, which results in the short-
est interval. To come up with the detailed computing, let us
consider a subset of the original data {z1, z2, . . ., zN } whose
elements are greater than the numeric representative. Fur-
thermore arrange them in an increasing order which yields
a set {p1, p2, . . .pM } where r1 < r2 < . . . and M < N .
Likewise, the associated sequence of the weights is given as
w1, w2, . . .wM . The maximal value of α, αmax is then the
one, which satisfies all inequalities listed below.

exp(−α|m − r1|) > (w1 + w2) ∗ exp(−α|m − r2|)
w1 ∗ exp(−α|m − r1|) > (w1 + w2 + w3) ∗ exp(−α|m − r3|)
. . . .

w1 ∗ exp(−α|m − r1|) > (w1 + w2 + w3 + . . . + wM )

∗exp(−α|m − rM |)

(4)

The same process is realized for the value of α associated
with the lower bound; the result is denoted by αmax’. Now
we can realize normalization by admitting a unified [0,1]
range of values of α which helps us form a series of intervals
being formed by a single value of a for their lower and upper
bounds. In other words for any value of α it is transformed
to its internal value by scaling it to α ∗ αmax and α ∗ αmax’,
respectively. It is worth noting that these intervals indexed
by successive values of α are α-cuts of a certain fuzzy set.
In other words, here the result of the principle of justifiable
granularity becomes a fuzzy set.

This procedure is directly applicable to the construction
of granular partition matrix G(P).

123



2756 W. Pedrycz et al.

The two main steps are envisioned here:

(i) formation of clusters and partition matrices for D1,D2,

. . .Dp, viz. U [1], U [2] ,…, U [p].
(ii) building proximity matrices P(U [1]), P(U [2]), . . .

P(U [p]). Note that they are produced for all pairs of
the data belonging to D.

(iii) use of the principle of justifiable granularity to form the
granular construct G(P). The interval-valued proximity
matrix is built for a certain predetermined value of α.

4.2 Refinement of local partition matrix

The crux of this scenario has been captured in Fig. 4. From the
optimization perspective, we first form a granular proximity
matrix G(P) and afterwards use it in the refinement of some
locally constructed partition matrix.

For some given partition matrixU [ii], we proceed with its
modifications (adjustments) in such a way that P(U [ii]) is
“contained” in G(P) to the highest extent. The adjustments
are made possible by engaging an idea of optimal allocation
of information granularity. The underlying idea is to adjust
the entries of U [i i], i i = 1, 2, . . ., p in such away that the
modified partition matrix produces a proximity matrix whose
values are included in the interval-valued entries of G(P).

In what follows we elaborate on a detailed algorithm. As
the method is the same for any local partition matrix, we omit
the index (ii) and use a simplified notation U = [uik], i =
1, 2. . .c, k = 1, 2, ..N (as noted earlier we are concerned
with the data belonging only to the intersection of the local
data, namely D). The entries of G(P) are intervals denoted
as [g−

kl , g
+
kl ], k, l = 1, 2, . . ., N . To express the request of

inclusion we introduce the following criterion

V (U ) = ||P(U ) ∈ G(P)|| (5)

Here ||a ∈ A|| stands for a degree of inclusion of numeric
value “a” in the interval A. Obviously one can study here
Boolean (0-1) predicates however its multivalued counterpart
of the inclusion predicate is more suitable for optimization
purposes as it offers some desirable aspects of continuity
assuming truth values ranging from 0 to 1.

Let us rewrite (5) using a multivalued inclusion predicate
(φ)

V (U ) =
N∑

k,l=1

(pklϕg
+
kl)(g

−
klϕpkl) (6)

where pkl is the entry of the proximity matrix for the pair
of (k, l) data. In more detail the inclusion predicate shown
above is defined in the following form

aφb =
{

1 if a ≤ b
b/a, if a > b

(7)

a, b ∈ [0,1].

The adjustment of the entries of the partition matrix is
done in an iterative fashion by following the gradient-based
optimization scheme

ust (iter + 1) = ust (iter) − ξ
∂

∂ust
V (U ) (8)

ξ > 0 is a certain learning rate controlling intensity of the
learning process .

Proceeding with the detailed formulas of the gradient we
complete the following calculations

∂V

∂ust
=

∑
k,l

[
∂(pklϕg

+
kl)

∂ust
(g−

klϕpkl) + ∂(g−
klϕpkl)

∂ust
(pklϕg

+
kl)

]

(9)

s = 1, 2, . . ., c and (k, l) pertains top the pair of data in
D. Proceeding with the detailed calculations, we note that
∂(pklϕg

+
kl )

∂ust
= ∂(pklϕg

+
kl )

∂pkl
∂pkl
∂ust

. This yields

∂(pklϕg
+
kl )

∂pkl
= ∂

∂pkl

⎧
⎨

⎩
1, if pkl ≤ g+

kl
g+
kl
pkl

, if pkl > g+
kl

=

⎧
⎪⎨

⎪⎩

0, if pkl ≤ g+
kl

−g+
kl

p2
kl

, if pkl > g+
kl

(10)

∂pkl
∂ust

= ∂

∂ust

c∑

w=1
min(uwk ,uwl ) =

c∑

w=1

∂

∂ust
min(uwk ,uwl )

(11)

and in the sequel we have

∂

∂ust
min(uwk, uwl)

=
{

1 if (uwk ≤ uwl,w=s, k=t) or (uwl ≤ uwk,w=s, k=t)

0, otherwise

(12)

Proceeding with the second part of the (9), the detailed for-
mula reads as follows

∂(g−
klϕpkl )

∂pkl
= ∂

∂pkl

{
1 if g−

kl ≤ pkl
pkl
g−
kl

, if g−
kl > pkl

=
{

0, if g−
kl ≤ pkl

1
g−
kl

, if g−
kl > pkl

(13)

Note that to retain the values of the partition matrix in the
unit interval, a clipping operation, if required, is invoked that
is at any iteration the values of ust (iter+1) are kept within
the [0,1] interval. Furthermore, we complete an additional
normalization operation to keep the sum of the values of ust
(being summed over “s” for any “t”) equal to 1. The initial
point of the iteration scheme is the original partition matrix
locally available for each data.

The gradient-based mechanism can be considered as a
stand-a-lone optimization scheme or could be considered in
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Fig. 5 Plots of synthetic data
sets

conjunction with more advanced population-based optimiza-
tion such as Particle Swarm Optimization (PSO) and estab-
lishes a hybrid optimization scheme in which both of these
optimization mechanisms are arranged in a certain sequence
with an ultimate intent of avoiding local minima.

With regard to the optimization, several hybridizations of
the generic optimization mechanisms are worth investigat-
ing, namely, tandems of PSO-gradient method and gradient
optimization- PSO where we capitalize on the key properties
of these techniques. PSO as the population-based technique
is beneficial in realizing a global-oriented search, whereas the
gradient-oriented method comes with a very detailed search
capabilities, however, it is also prone to being stuck in pos-
sible local minima. A hybrid scheme of the form of PSO
followed by the gradient-based technique comes as a sound
alternative emphasizing the advantages of the contributing
methods.

4.3 A general scheme of consensus building

In contrast to the two previously outlined processes in which
granular proximity matrices are involved, consensus build-
ing is an iterative process and its dynamics comes into play.
We proceed in an iterative fashion by forming a granular
proximity matrix G(P) on the basis of locally formed par-
tition matrices (proximity matrices) and then update each
U [1],U [2], . . .,U [p] as discussed in the second scheme.
Then these updated partition matrices lead to the proxim-
ity matrices and subsequently the new granular proximity
matrix is produced. This complete iterative loop is repeated.
The process is monitored with respect to its convergence.
Some parameters of the method, especially the values of α

can impact the convergence process and their impact can be
assessed in an experimental fashion.

Fig. 6 Granular proximity matrix for D1. A sudden jump in the levels
of brightness (resemblance values) occurring along the 30th data point
is a result of the occurence of two well-formed clusters, see Fig. 8. The
first one involves the first 30 data points while the rest of the data (from
31 to 50) form the second cluster

4.4 Characterization of granular proximity matrices

There are several indicators that can be used as sound descrip-
tors of the produced granular proximity matrix supporting
also the quality of the convergence process encountered in
consensus building.

Linkage analysis

As the matrixG(P) is of granular character, its quantification
of content is realized as interval-valued strength of linkage
or a fuzzy set of linkage. Moving at the more synthesized
level of description by summing the elements of the k-th row
of the matrix, namely
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Fig. 7 Bounds of the linkage
levels obtained for the granular
proximity matrix for a α=0.3, b
α=0.6 and c α=1

[ak, bk] = 1

N − 1

N∑

l=1
l �=k

[
g−
kl , g

+
kl

]

=

⎡

⎢⎢⎣
1

N − 1

N∑

l=1
l �=k

g−
kl ,

1

N − 1

N∑

l=1
l �=k

g+
kl

⎤

⎥⎥⎦ (14)

we can identify data that are potential outliers—those are
those data points for which the interval [ak , bk] becomes
located close to zero. Furthermore, the length of the inter-

val, namely |bk − ak |, becomes reflective of the diversity of
the evaluations of proximity values of the k-th data deliv-
ered locally. This allows us to rank the data in terms of their
associations with other data and tag outliers.

Overall granularity of granular proximity matrix

This index is useful when building consensus in an itera-
tive process. The updated partition matrices are used to build
proximity matrices and those give rise to the granular prox-
imity matrix. In turn, the new proximity matrix offers a navi-
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Fig. 8 Performance index V in
the course of optimization
(reported in successive
generations of PSO or iterations
of the gradient-based
optimization) (α = 0.3) using
a gradient-based method, b
PSO, c gradient- PSO and d
PSO-gradient

gation of optimization of the local partition matrices and the
iterations are continued. The convergence of the process can
be monitored by an overall level of granularity of the granular
partition matrix, denoted by Gran produced in the successive
iteration steps,

Gran = 1

N 2 − N

∑

k,l
k �=l

(g+
kl − g−

kl ) (15)

The decreasing values of this index are indicative of the
reduced diversity of the locally formed structures and in this
way they point at the increasing agreement among different
locally produced views.

5 Numeric studies

In this section, a series of experiments involving both syn-
thetic and real-world data are presented to illustrate how dif-
ferent schemes discussed above operate and a form of the
results formed. In all experiments, we consider Fuzzy C-
Means (FCM) algorithm (Bezdek 1981) run with the fuzzi-
fication coefficient set to 2, m = 2.

5.1 Synthetic data

Here, we consider 15 synthetic data sets, both two- and three-
dimensional ones, coming as mixtures of data governed by
Gaussian distributions with some mean vectorsm and covari-
ance matrices �, N(m, �). The statistical characteristics of
the data are summarized in Table 1 while Fig. 5 displays
their distribution in the corresponding feature spaces. Each
set consists of 50 data points. As we assume the knowledge
of the structure of the data, the number of clusters was set as
cp[1], cp[2]. . ..cp[i i], i i = 1, 2..c[p]

In the sequel, we elaborate on the three models of building
global structures of data or reconciling structural character-
istics of the local nature.

Formation of granular proximity matrix The objective is to
build a granular proximity matrix of a general nature posi-
tioned at the upper level of the hierarchy. As discussed, we
first form a collection of proximity matrices and afterwards
form their granular generalization. For illustration, Fig. 6
visualizes a proximity matrix obtained for D1.

Figure 6 Granular proximity matrix forD1. A sudden jump
in the levels of brightness (resemblance values) occurring
along the 30th data point is a result of the occurence of two
well-formed clusters, see Fig. 8. The first one involves the
first 30 data points while the rest of the data (from 31 to 50)
form the second cluster.

The granular proximity matrix visualizes an emergence
of groups of data that are kept close to each other. One can
observe a jump in the values of the entries pointing at the
occurrence of the well-formed clusters.

The formation of granular proximity matrix was consid-
ered for several values of α. Proceeding with the link analysis,
we obtain the results shown in Fig. 7. The link analysis helps
us visualize the points that weakly linked with the rest of the
data as well as highlight those for which the length of the
interval is excessively large.

These results are reported for several values of α (namely,
0.3, 0.6, and 1). There is a visible tendency of a stronger and
visible revealing of the outliers when the levels of binding
locally available structures are made stronger. For instance, as
shown in Fig. 7c, it is apparent that there are some collections
of data (those indexed as 1–5 and 35–50) which are different
with regard to the locally present structures.

Involvement of global granular results in the enhance-
ments of the local partition matrix. Here, as discussed ear-
lier, the optimization strategy involves plain gradient-based
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Fig. 9 Partition matrix for D 1
a obtained locally, b refinement
realized when α = 0.3 and
c refinement realized when
α = 0.6

method and PSO as well as several of their hybrid approaches
combining these generic methods.

The results are reported in terms of the performance index
V whereas the initial learning rate was set to ξ = 0.01.

The hybrid optimization method PSO-gradient, Fig. 8d,
outperforms other optimization schemes. The partition
matrix U generated with the use of the PSO method, Fig.
8b, serves as a sound initial condition for the gradient-based
method, which is helpful in carrying out fine-tuning of the

entries of U . For the other hybrid method (gradient-PSO)
Fig. 8c, it is clearly shown that PSO does not produce further
improvement for V as it is eventually stuck in some local
maxima.

It is noted that the value of the learning rate ξ was made
quite low with intent of making the process stable when it
comes to the fine-tuning phase of the entries of G(P). Fur-
thermore, we have adopted some dynamic changes of the
values of the learning rate. If the value of V decreases in a
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certain iteration, this iteration is ignored and the value of ξ

is decreased, say being made 0.75*ξ . Next we continue the
learning with this new value of ξ until V decreases again,
etc.

Fig. 10 Proximity matrix of after refinement partition matrix
(α = 0.3) obtained for D1

The original partition matrix (formed locally) and its
refinement produced by the involvement of the granular prox-
imity matrix are shown in Fig. 9.

While the local structure is quite apparent, the refine-
ments guided by the globally produced structure lead to some
changes of the structure. This is not surprising as some global
structure is considered and its impacts become clear.

The results obtained after the detailed refinements of par-
tition matrix are visualized in Fig. 10.

Figure 9 reveals some interesting relationships. When only
local data are considered, there is a well-delineated structure,
which points at two clusters. For the increasing values of α,

α = 0.3 and 0.6, we witness an increasingly influential impact
of the global structure so the clusters are not as distinct as
in the first case. Obviously, this is not surprising, as now we
have started accommodating a global view (structure), which
might not be in full agreement with the local topology of the
data. Furthermore, the partition matrices displayed in this
figure identify data points, which are mostly impacted by the
global structure. This is a useful insight into the nature of the
individual data, which helps pinpoint the elements, which are

Fig. 11 Overall granularity obtained in successive iterations of the consensus-building process; results are shown for two selected values of
α = 0.3 and 0.8

Fig. 12 Bounds of the linkage
levels of the granular proximity
matrix for produced as a result
of consensus formation with
α = 0.3

123



Distributed proximity-based granular clustering 2763

Fig. 13 proximity matrix for
D1 as a result of
consensus-building process
(α = 0.3)

Fig. 14 Partition matrix
obtained for D1 as a result of
consensus-building process
(α = 0.3)

Fig. 15 Objective functions
produced when clustering
individual locally available data

the least compatible with the global structure revealed at the
higher level of the hierarchy.

Consensus building The most essential aspect of this process
is concerned with the iterative process of forming consensus
and its convergence. The results obtained when running the
hybrid method (PSO-gradient option) are included in Fig. 11.

Table 2 Number of clusters based on the inspection of the objective
function

D1 D2 D3 D4

c 5 7 5 4

The results of link analysis coming as a result of consensus
formation are visualized in Fig. 12.
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Fig. 16 Partition matrices obtained for the local data sets

Fig. 17 Proximity matrices formed for the locally formed partition matrices

Fig. 18 Bounds of the linkage
levels of the granular proximity
matrix for α = 0.4 for public set

It is also instructive to show how partition and proximity
matrices changed once the consensus-building process has
been completed; the results provided in the form of the gray
scaled image are reported in Fig. 13.

The plots shown in Fig. 14 are useful in flagging the ele-
ments whose membership grades change significantly (in
comparison with other data points). They could be candidates
for further examination as their changed cluster membership
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Fig. 19 Overall granularity reported in successive iterations; α = 0.4

Fig. 20 Partition matrices as a result of consensus formation

Fig. 21 Proximity matrices for partition matrices in Fig. 19, as result of consensus formation
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Fig. 22 Bounds of the linkage
levels of the granular proximity
matrix for α = 0.4 for public set,
as a result of consensus
formation

may stipulate characteristics that become revealed only in
the presence of some external sources of knowledge.

Experiments with real-world data
We study here one of the publicly available real-world

data (https://archive.ics.uci.edu/ml/datasets/Breast+Tissue),
namely Breast tissues. This data set is concerned with electri-
cal impedance measurements of freshly excised tissue sam-
ples from the breast. The features include the following:

1. I0 Impedivity (ohm) at zero frequency
2. PA500 phase angle at 500 KHz
3. HFS high-frequency slope of phase angle
4. DA impedance distance between spectral ends
5. AREA area under spectrum
6. A/DA area normalized by DA
7. MAX IP maximum of the spectrum
8. DR distance between I0 and real part of the maximum

frequency point
9. P length of the spectral curve

For the purpose of this experiment, we split the data into
four data sets by choosing several subsets of features in which
the features are naturally related; each set is composed from
106 samples with the following subsets of features

D1: 1, 7
D2: 4, 8
D3: 2, 3, 9
D4: 5, 6

Proceeding with the fuzzy clustering realized with the use
of the FCM algorithm, we determine local structures. The
number of clusters is determined by inspecting the behavior
of the minimized objective function being treated as a func-
tion of “c” and determining a “knee” point of the curve; refer
to Fig. 15.

By inspecting the plots of the obtained objective function,
we can choose a suitable value of the number of clusters, it

is the one at which a knee point of the relationship is visible.
Adhering to this visual criterion, we select the numbers of
clusters reported in Table 2.

The partition and proximity matrices are visualized in
Figs. 16 and 17.

Considering α = 0.4 when running the principle of justi-
fiable granularity, we obtain the results shown in Fig. 18.

The result reported in terms of overall granularity, parti-
tion matrices, proximity matrices and linkage associated with
the granular proximity matrix are shown in Figs. 19, 20, 21
and 22.

6 Conclusions

In this study, we have conceptualized, developed the algo-
rithmic setting, and experimented with granular proximity
matrices. It has been demonstrated that granularity of these
matrices plays an important role in the realization of collab-
orative processes of forming views at the global structures
not only facilitating this process, but also quantifying the
diversity of locally available structures through the associ-
ated level of information granules of the granular proximity
matrix. The guidance offered by global granular proximity
matrices is an example of a realization of a structural feed-
back loop which augments the clustering processes by aux-
iliary sources of knowledge.

There are two open directions, which are worth further
investigations:

Formation of structures exhibiting a higher type of gran-
ularity Higher level structures such as granular2 proximity
matrices (if a hierarchy having three levels is present) can be
discussed.

Exploration of various formal ways of realizations of
granular proximity matrices. While in this study, we are con-
cerned with interval-valued proximity matrices (and this has
been done for illustrative purposes), detailed considerations
could involve other formalisms such as, e.g., fuzzy sets, rough
sets and shadowed sets.
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