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Abstract Dynamic multiobjective optimization problems
(DMOPs) exist widely in real life, which requires the opti-
mization algorithms to be able to track the Pareto optimal
solution set after the change efficiently. In this paper, novel
prediction and memory strategies (PMS) are proposed to
solve DMOPs. Regarding prediction, the prediction strategy
contains two parts, i.e., exploration and exploitation. Explo-
ration can enhance the ability to search the entire solution
space, making it adapt to the environmental change with a
great extent. Exploitation can improve the accuracy of local
search, making the algorithm to have a faster response to
environmental change particularly in the solution set having
relevance in the environment. In terms of memory, an opti-
mal solution set preservation mechanism is employed, by
reusing the previously found elite solutions, which improves
the performance of the algorithm in solving periodic prob-
lems. Compared with two representative prediction strategies
and a hybrid strategy combining prediction and memory both
on seven traditional benchmark problems and on five newly
appeared ones, PMS has been shown to have faster response
to the environmental changes than the peer algorithms, per-
forming well in terms of convergence and diversity.
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1 Introduction

Many real-world problems are dynamic multiobjective opti-
mization problems (DMOPs), with not only the conflict
among multiple objectives but also the objective function
changing over time (Farina et al. 2004). Dealing with a com-
plex dynamic system, static optimization method has obvious
limitations. On these issues, the research objective is chang-
ing intricately. Traditional evolutionary algorithm’s goal is to
make the population gradually converge to ultimately get a
satisfactory solution set, but this would make the population
lose diversity; especially in the later stages of the evolution,
population will gradually lose ability to adapt to environmen-
tal change, which is the challenge of traditional evolutionary
algorithm in a dynamic environment (Branke 2002; Jin and
Branke 2005; Goh and Tan 2009; Nguyen et al. 2012). To
track the Pareto optimal solution in a timely manner after
change, researchers need to make adjustments to traditional
static multiobjective algorithm (Coello Coello 2006, 2007;
Yang et al. 2013; Li et al. 2013), so that it can quickly respond
to environmental changes.

In recent years, researchers have proposed some dynamic
multiobjective optimization algorithms to adapt DMOPs in
artificial immune algorithm, co-evolutionary algorithm, par-
ticle swarm optimization algorithm, and memetic comput-
ing, which are based on the natural computation methods
(Avdagi’c et al. 2009; Shang et al. 2013; Greeff and Engel-
brecht 2008; Huang et al. 2011; Isaacs et al. 2008; Liu et al.
2011; Wei and Wang 2012; Azevedo and Araujo 2011; Man-
riquez et al. 2010; Cámara et al. 2010; Zheng 2007). These
methods are mostly concentrated on maintaining popula-
tion diversity and adopting the strategy of multi-population.
However, these methods are slightly blind to solve DMOPs,
because the population still relies on the ability to evolve
independently to find the optimal solution after the diversity
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of the population is maintained, and the rate of convergence
is the main problem. As to the way to post for objectives
after change which provides a guiding direction for popula-
tion evolution, it will play a vital role to improve the rate of
convergence and convergence of the algorithm.

Therefore, some scholars have proposed the strategies of
introducing memory (Deb et al. 2007; Zhang 2008; Wang and
Li 2009; Isaacs et al. 2008; Guan et al. 2005; Goh and Tan
2009 and prediction (Hatzakis and Wallace 2006a, b; Zhou et
al. 2007, 2013; Ma et al. 2011 to solve this problem. Mem-
ory strategy reuses the optimal solutions which are previously
searched by the memory to rapidly response to changes in the
new environment. This strategy can achieve good results for
periodic problems, but for non-periodic problems or in the
first period of changing environment, population is still in the
process of blind evolution, and algorithm is difficult to obtain
good convergence. For example, Deb et al. (2007) proposed
a dynamic NSGA-II algorithm, Zhang (2008) proposed a
dynamic multiobjective immune algorithm, and Goh and Tan
(2009) proposed a dynamic competition–cooperation coevo-
lutionary algorithm. These algorithms are simply introduc-
ing memory strategy to solve DMOPs, but the effect is not
very good in the first period and changes in a particular envi-
ronment. After each environmental change, methods based
on prediction provide guidance direction for the population
evolution by the prediction mechanism, and help algorithm
to respond quickly to new changes. And forecast accuracy is
the main difficulty. So far prediction method has few in-depth
studies in DMOPs. Hatzakis and Wallace (2006a) proposed a
feed-forward prediction strategy, referred to as FPS, in 2013,
Zhou and Jin et al. (2013) proposed a population prediction
strategy, referred to as PPS. Prediction strategies are used
in these algorithms to solve the DMOPs, and have achieved
good results, but there are some defects. For example, pre-
diction is not accurate enough in FPS by simply using autore-
gressive model. And PPS has poor convergence due to the
lack of historical information accumulation in the beginning
stage of environmental change.

The combination of memory and prediction is a new trend
to solve DMOPs (Yang et al. 2012). Prediction strategy can
guarantee the algorithm to quickly respond to environmental
changes, and in a timely manner to search for a new optimal
solution set. Meanwhile, the memory strategy can improve
the ability of dealing periodic problems and has reduced the
error rate because of every prediction that may generate. In
recent years, a few researches have used this hybrid strategy
to solve DMOPs (Wang and Li 2009; Helbig and Engelbrecht
2011; Koo et al. 2009), for example, in 2010, Wang and Li
proposed a multi-strategy ensemble evolutionary algorithm,
referred to as dMS-MOEA (Wang and Li 2009), in the same
year, Koo et al. (2009) proposed a predictive gradient strat-
egy, referred to as dMO-EGS. Both these two algorithms use
hybrid strategies which combine memory and prediction to

solve DMOPs, but they have their own defects. In the aspect
of prediction, dMS-MOEA uses an adaptive genetic and dif-
ference operator. In the early stage of running the algorithm,
genetic operator can guarantee rapid convergence. And in the
later stages of running, the difference operator can ensure a
better distribution for the solution set having a better conver-
gence. However, this prediction does not build on the basis
of available information, but only increases the diversity of
population, so this is a blind prediction. dMO-EGS predicts
the evolutionary gradient of current population by recording
the final two previous positions of nondominated population
center which have been searched and the last predictive evo-
lutionary gradients. This gradient prediction applies only to
the same or a similar degree of change in the environment;
when there is a large degree of the environmental change,
the accuracy of prediction is difficult to be guaranteed. In the
aspect of memory, dMS-MOEA produces new individuals
on the basis of the searched final nondominated populations
by the difference operator and Gaussian mutation operation,
and they are stored to the archive. The archive uses Gaussian
local search operator to get a new population. dMO-EGS
stores past population centers and variance vectors of non-
dominated solution set, and then generate new populations
according to the centers and the variance vectors by nor-
mal distribution sampling. Since the sampling process prone
to distortion, so the two strategies are incomplete memory
strategies.

To solve these problems, the paper proposes novel predic-
tion and memory strategies, referred to as PMS. The strat-
egy consists of three parts: (1) exploration operator based on
population evolutionary direction; (2) exploitation operator
based on the direction of nondominated solutions linkage;
(3) memory strategy based on the optimal solution set.

The rest of the paper is organized as follows. Section 2
presents background information. Section 3 describes the
novel PMS in detail. Section 4 introduces the test problems
and evaluation metric. Section 5 gives experimental results
and analysis. Section 6 outlines the conclusions and future
work.

2 Background

2.1 Dynamic multiobjective optimization

A minimization problem is considered here without loss of
generality. The DMOP can be described as (Farina et al.
2004):

⎧
⎪⎨

⎪⎩

min
x∈�

F(x, t) = ( f1(x, t), f2(x, t), . . . , fm(x, t))T

s.t. gi (x, t) ≤ 0 i = 1, 2, . . . , p; h j (x, t) = 0
j = 1, 2, . . . , q
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where t is the time variable, x = (x1, x2, . . . , xn) is the
n-dimensional decision variables bounded by the decision
space �, F = ( f1, f2, . . . , fm) presents the set of m objec-
tives to be minimized the functions of gi ≤ 0 i = 1, 2, . . . , p
and h j = 0 j = 1, 2, . . . , q present the set of inequality and
equality constraints.

Definition 1 Pareto Dominance: p and q are any two indi-
viduals in the population, p is said to dominate q, denoted
by f (p) ≺ f (q) iff fi (p) ≤ fi (q)∀i = {1, 2, . . . ,m} and
f j (p) < f j (q)∃ j ∈ {1, 2, . . . ,m}.
Definition 2 Pareto Optimal Set (PS). x is the decision vari-
able, � is the decision space, F is the objective function, thus
the PS (Coello Coello 2007) is the set of all nondominated
solutions and is defined mathematically as:

PS := {
x ∈ � �|x∗ ∈ �, F(x∗) ≺ F(x)

}

Definition 3 Pareto Optimal Front (PF). x is the decision
variable, F is the objective function, thus the PF (Coello
Coello 2007) is the set of nondominated solutions with
respect to the objective space and is defined mathematically
as:

PF := {y = F(x)|x ∈ PS}
To distinguish between different types of DMOPs, Farina et
al. (2004) identified four different types of DMOPs:

• Type I PS changes with time, but PF remains fixed.
• Type II Both PF and PS change with time.
• Type III PF changes with time, but PS remains fixed.
• Type IV Both PF and PS remain fixed.

In real life, the above four types of changes may occur at
the same time when the problem is changed. However, we
mainly research the first three types of changes.

2.2 General steps of dynamic multiobjective evolutionary
algorithm

Dynamic multiobjective evolutionary algorithm is generally
divided into the following steps:

Step 1. Initialize a population, set the related parameters;
Step 2. Optimization algorithm: this paper chooses RM-

MEDA which will be introduced in Sect. 2.2.1 as the MOEA
optimizer.

Step 3. Change detection: if the environmental change
has been detected, the mechanism of change reaction will
be called to respond to the changes; otherwise, continue to
perform optimization algorithm. A good change detection
operator can exclude external factors related to disturbance,
and determine environmental changes correctly.

Step 4. The mechanism of change reaction: the mech-
anism can respond quickly and correctly to environmental

Fig. 1 Flowchart of DMOEA

change, so that the population can quickly converge to the
new optimal solution set. General mechanism has the fol-
lowing kinds: re-initialize population, parameter adjustment,
dynamic migration, memory and prediction.

Step 5. Judgment of terminal condition.
Figure 1 illustrates the flowchart of dynamic multiobjec-

tive evolutionary algorithm:

2.2.1 RM-MEDA

Estimation of distribution algorithm, referred to as EDA Lar-
rañaga and Lozano (2001), is a class of random optimization
algorithm which newly emerged on the field of evolutionary
computation. Different from genetic algorithm, EDA is built
on the basis of the estimation of distribution of solutions.
EDA describes the distribution of solutions in the solution
space by establishing a probability model, and then gener-
ates new population by random sampling for the probability
model.

Under certain smoothness assumptions, it can be induced
from the Karush–Kuhn–Tucker condition that the PS of a
continuous MOP defines a piecewise continuous (m − 1)-
dimensional manifold in the decision space. Therefore, on
the basis of EDA, combined with the distribution features of
solution set of continuous multiobjective problem, Zhang et
al. (2008) proposed a regularity model-based multiobjective
estimation of distribution algorithm in 2008, referred to as
RM-MEDA.

RM-MEDA can make full use of the global information
provided by current population to generate the new individ-
ual, without the need for local information directly used from
population, which has a strong ability of heuristic optimiza-
tion. Since RM-MEDA utilized the regularity property of
continuous MOPs, it has been verified in Zhou et al. (2013)

123



2636 Z. Peng et al.

to be an excellent optimization algorithm for DMOPs, and
performs better than NSGA-II-DE in the DMOEA frame-
work.

2.3 Performance analysis for three kinds of DMOEA

The method based on prediction is one of the effective ways to
solve DMOPs, which is to generate the next new population
under environmental change by prediction. It can accelerate
the convergence of algorithm to the new optimal solution.
Meanwhile, the way combined with memory which reuses
the past information under the same or similar environment
is another new way to solve DMOPs. This paper mainly dis-
cusses the comparison of two representative prediction strate-
gies and a hybrid strategy combined prediction and memory
and, on this basis, we propose a new PMS to solve DMOPs.

(1) Feed-forward prediction strategy (FPS)
FPS (Hatzakis and Wallace 2006a) records informa-
tion of boundary point on the adjacent PF of objective
space, and predicts the location of PS after environmen-
tal change by autoregressive model (AR). The initial
population in FPS is composed of three parts: the non-
dominated solution set, the dominated solution set and
the solution set by prediction. Nondominated solutions
make the algorithm more conducive to solve the DMOPs
whose PS does not change with time, and dominated
solutions maintain the diversity of population, using the
algorithm to search for the new optimal solution.

(2) Population prediction strategy (PPS)
In PPS Zhou et al. (2013), the optimal solution set is
divided into two parts: the population center and shape.
PPS uses autoregressive model (AR) to predict a new
population center at the next time by storing popula-
tion center on a continuous time series. Meanwhile, it
predicts a new population distribution of the next time
by recording the shape of population in the last two
moments. These two parts make up the initial population
after change.
Comparing these two strategies, FPS produces only a
small part of the new population by prediction, the
majority of its population is inherited from the final pop-
ulation before environmental change; PPS generates a
whole new population by prediction, rather than just a
few initial individuals. With the algorithm running, the
accumulated history information increases in PPS, and
the accuracy of prediction will be improved. Therefore,
at the early stages, PPS is slightly worse than the FPS
in performance due to insufficient historical informa-
tion. At the latter stages, the accumulation of experience
make PPS performance becomes stable, which is better
than FPS (Zhou et al. 2013).

(3) Predictive gradient strategy (dMO-EGS)

dMO-EGS (Koo et al. 2009) consists of three parts:
mutation, prediction and memory.
To increase the diversity of population, firstly, dMO-
EGS performs mutation operation for part of the non-
dominated solutions in current population. Mutation
uses the sampling of normal distribution with expecta-
tion of zero and standard deviation of 0.01. In the aspect
of prediction, dMO-EGS predicts the evolutionary gra-
dient of current population by recording the final two
previous positions of nondominated population center
which have been searched and the last predictive evolu-
tionary gradients, and updates some individuals of the
population with the predicted gradient and the product of
a scaling factor. Meanwhile, we select an individual ran-
domly from the original population and compare with a
new individual. If the new individual is dominated, the
scaling factor will be negated. However, the predictive
gradient is reversed permanently at the end of the updat-
ing only if the scaling factor is negative for at least half of
the time to allow the possibility of random fluctuations.
In the aspect of memory, dMO-EGS designs a memory
method based on center and variance. Firstly, calculate
the center vector Cτ and variance vector C̃τ of the non-
dominated solution set after environmental change, then
Cτ and C̃τ will be combined into a memory item to be
stored. For the each item of the memory, generate new
solutions according to the normal distribution with the
expectation of Cτ and variance of C̃τ .

The three operators in dMO-EGS are effective in increas-
ing the diversity of population, which can better adapt to the
DMOPs whose degree of change is smaller. However, this
gradient prediction of simple correlation based on the solu-
tion set applies only to the same or similar degree of change
in the environment; when there is a large degree of the envi-
ronmental change, the accuracy of prediction is difficult to
be guaranteed. Moreover, the last searched information is not
intact in its memory. This will be prone to distortion in the
course of normal sampling, and there is greater influence on
the convergence of algorithm.

3 Novel PMS for dynamic multiobjective optimization

3.1 Prediction strategy

To solve the problem which cannot respond quickly to
changes in DMOPs, in a timely manner to search for the
optimal solution set of new problem, this paper proposes
a prediction strategy of both exploration and exploitation.
Exploration uses exploration operator based on popula-
tion evolutionary direction, and generates a bunch of guide
individuals in population evolutionary direction to ensure

123



Novel prediction and memory strategies 2637

the algorithm’s ability to search for the optimal solution
space. Exploitation uses exploitation operator based on the
direction of nondominated solutions linkage to improve the
searching accuracy of algorithm under similar environmental
change.

3.1.1 Exploration operator

Whenever the environmental changes, the population will
spontaneously evolve towards the direction of the new Pareto
optimal solutions. So taking advantage of this characteristic,
let the population evolve independently for a short time in
the initial stage of environmental change, then we judge the
evolutionary direction of the population in the current envi-
ronment by recording the different center positions of current
population before and after the change.

Figure 2 illustrates the principle of exploration operator,
for the final searched population (Populationt−1) in the last
time, and the new population (Populationt−1 + �t) after
evolving spontaneously for time �t , it is the connecting
direction between these two different population center posi-
tions at different time that represents the predicted popula-
tion evolutionary direction. On this basis, firstly, evenly select
several initial individuals from current population, and then
a certain number of individuals are evenly distributed from
the initial individuals to the boundary of the decision space
according to the predicted direction, which corresponds to
the guide individual in Fig. 2. After nondominated sort-
ing these individuals, the relatively better individuals are
selected, namely, the individuals which are closest to PSt

and connected by dotted lines.

Populationt-1

PSt-1

PSt
Population center

Guide-individual

X1

X2

Populationt-1+ t

Fig. 2 Principle of exploration operator

X1
 

X2
Non-dominated solutions center

Population center

Dominated individual

Fig. 3 The impact of judging the evolutionary direction when popula-
tion is not fully convergent

Determining operator for the predicted population evolu-
tionary direction is defined as:

∂ = {∂1, ∂2, . . . , ∂i , . . . , ∂n}
=

{
Ct+�t

1 −Ct
1,C

t+�t
2 −Ct

2, . . . ,C
t+�t
i

−Ct
i , . . . ,C

t+�t
n −Ct

n

}
, (1)

where ∂ represents evolutionary direction vector of popula-
tion in decision space, i = 1, 2, . . ., n. Ct is the population
center at time t, Ct+�t is the population center after popula-
tion evolve spontaneously for time �t .

As the center of nondominated solutions represents the
position of population center best, so this can avoid the sit-
uation illustrated in Fig. 3. When the population is not com-
pletely converged, the number of nondominated solutions is
smaller than the size of population, so there may be a small
number of poor individuals affecting the center of the whole
population. Therefore, to define the position of population
center in formula (1) more accurately, the center of nondom-
inated solutions will be indicated by the position of popu-
lation center. Let Pt

non−do = {
xt

}
represents nondominated

solutions at time t, and then the position of population center
is defined as:

Ct
i = 1

∣
∣Pt

non−do

∣
∣

∑

xti ∈Pt
non−do

xti (2)

where
∣
∣Pt

non−do

∣
∣ is the size of nondominated solutions, xti

is the individual at time t, i = 1, 2, . . ., n. Determine the
population evolutionary direction by calculating the position
of population center each dimension in the decision space
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before and after the change. The results are denoted by a set
of vectors that forward is positive and backward is negative.

The judgment about population evolutionary direction
provides a basis for predicting the location of Pareto optimal
solutions more accurately, for which the exploration opera-
tor is needed to obtain a bunch of guide individuals on the
direction. Firstly, the method of calculating the crowding dis-
tance (Deb et al. 2002) of current population will be used in
the decision space, so that it can get some initial individuals
more evenly. From the initial individuals to the boundary of
the decision space, a bunch of detecting individuals are dis-
tributed equal distance intervals according to the direction
predicted in formula (1). Finally, we get ObSize guide indi-
viduals by a nondominated sorting. Exploration algorithm
based on population evolutionary direction is described in
Algorithm 1.

3.1.2 Exploitation operator

Changes in the environment present regularity in many cases;
the current environment may have the same or similar degree
of change with the previous environment. Therefore, tak-
ing advantage of this feature is conducive to improve the
searching accuracy of algorithm under similar environmental
changes. As shown in Fig. 4, the connection vectors between

centers of the final searched populations under each environ-
ment change represent the degree of change in the environ-
ment, and the connection vector on the adjacent time series
may have similar direction and distance. In the current envi-
ronment, based on the connection vector of a recent time

X2

X1

PSt-3

PSt-2

PSt-1

PSt

Acceptable
deviation

May be a similar
direction and distancePopulation

center

Predicted
solution

Fig. 4 Principle of exploitation operator
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series, some predicted solutions can be produced; there will
be some errors between these solutions and the true Pareto
optimal solutions, but these errors are within the acceptable
range.

This paper adopts an exploitation operator based on the
direction of nondominated solutions linkage. Exploitation
operator is defined as:

x(t + 1) = x(t) + C(t) − C(t − 1), (3)

where C(t) is the center of nondominated solutions obtained
according to the formula (2) at time t,C(t−1) is the center of
nondominated solutions at time t−1. We predict the new opti-
mal solutions, according to the center of nondominated solu-
tions before and after the change of two recent different envi-
ronments. Exploitation algorithm based on the direction of
nondominated solutions linkage is described in Algorithm 2.

3.2 Memory strategy

For periodic DMOPs, the optimal solution under the new
environment may return to the past-searched position. There-
fore, making full use of the past-searched optimal solutions
can speed up the convergence rate which is equivalent to iter-
ate on the original searching process. This paper proposes a
memory strategy based on optimal solution set preservation
mechanism. When the environment changes, we nondom-
inating sort these stored individuals in memory pool, and
select optimal individuals which adapt best to the new envi-
ronment. After that, we store the nondominated individuals
of current population to memory pool.

As shown in Fig. 5, the individuals stored in memory pool
are optimal with best convergence and diversity in past envi-
ronment. These individuals can cover a period of environ-
mental changes and apply to different environmental changes
which have been detected. When a new change is detected,
the optimal individuals in the last same environment will be

Current populationCurrent population

t1t2tctc+1

A period

Memory pool

Non-dominated
selection

Store

Retrieve

The selected optimal individuals
for new environment

Fig. 5 Principle of memory strategy

selected by nondominated selection, and continue to evolve
in new environment after retrieval. So the effect of distor-
tion can be avoided due to normal distribution sampling by
reusing directly the optimal solutions which are previously
searched. This method improves searching accuracy and con-
vergence speed. When the size of memory pool exceeds the
value of set, we use the principle of FIFO to update memory
pool, which ensures that the algorithm does not consume too
much extra storage space and evaluation. Memory algorithm
based on optimal solution set is described in Algorithm 3.

3.3 Detailed description of PMS

PMS iterates under the general framework of DMOEA, the
purpose is to obtain new initial population after each envi-
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ronmental change, so that the new population can quickly
respond to changes and track to the new optimal solutions.
The PMS is described in detail in Algorithm 4.

4 Test instances and performance metrics

4.1 Test instances

This section presents the DMOPs test problems used in the
experiment. FDA test suite has been proposed in Farina et
al. (2004) and is often used to examine the performance of

DMOEA. DMOP test suite has been proposed in Goh and
Tan (2009) and is an extension to the FDA. The two test
suites are linear correlation between the decision variables.
F5–F9 proposed in Zhou et al. (2013) are the new DMOPS
test problems. The characteristic of F5–F9 is nonlinear cor-
relation between the decision variables. Especially for F9,
the environment changes smoothly in most cases and, occa-
sionally, the Pareto set jumps from one area to another area,
and the difficulty of convergence is larger.

(1) FDA and DMOP test suite
FDA test suite is proposed by Farina and Deb et al. for

assessing the performance of DMOEA. Four test problems
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Table 1 Test problems of FDA and DMOP

Problems Search space Objectives, PF, PS Remarks

FDA1 [0, 1] × [−1, 1]n−1 f1(x) = x1, f2(x) = g · h
g(x) = 1 +

n∑

i=2
(xi − G(t))2, h(x) = 1 − √

f1/g

G(t) = sin(0.5π t), t = 	τ/τT 
 /nT
PS(t) : 0 ≤ x1 ≤ 1, xi = G(t), i = 2, . . . , n
PF(t) : 0 ≤ f1 ≤ 1, f2 = 1 − √

f1

Two objectives PF is

fixed PS changes

FDA2 [0, 1] × [−1, 1]n−1 f1(x) = x1, f2(x) = g · h

g(x) = 1 +
n/2∑

i=2
x2
i , h(x) = 1 −

(
f1
g

)(H(t)+
n∑

i=n/2+1
(xi−H(t))2)−1

H(t) = 0.75 + 0.7 sin(0.5π t), t = 	τ/τT 
 /nT
PS(t) : 0 ≤ x1 ≤ 1, xi = 0, i = 2, . . . , n/2, x j = −1, j = n/2 + 1, . . . , n

PF(t) : 0 ≤ f1 ≤ 1, f2 = 1 − f H(t)−1

1

Two objectives PF
changes PS is fixed

FDA3 [0, 1] × [−1, 1]n−1 f1(x) = x F(t)
1 , f2(x) = g · h

g(x) = 1 + G(t) +
n∑

i=2
(xi − G(t))2, h(x) = 1 − √

f1/g

G(t) = |sin(0.5π t)| , F(t) = 102 sin(0.5π t), t = 	τ/τT 
 /nT
PS(t) : 0 ≤ x1 ≤ 1, xi = G(t), i = 2, . . . , n

PF(t) : 0 ≤ f1 = x F(t)
1 ≤ 1, f2 = (1 + G(t))(1 −

√
f1

1+G(t) )

Two objectives PF

changes PS changes

FDA4 [0, 1]n f1(x) = (1 + g) cos(0.5πx2) cos(0.5πx1)

f2(x) = (1 + g) cos(0.5πx2) sin(0.5πx1)

f3(x) = (1 + g) sin(0.5πx2)

g(x) =
∣
∣
∣
∣

n∑

i=3
(xi − G)2

∣
∣
∣
∣

G(t) = sin(0.5π t), t = 	τ/τT 
 /nT
PS(t) : 0 ≤ x1, x2 ≤ 1, xi = G(t), i = 3, . . . , n
PF(t) : f1 = cos(u) cos(v), f2 = cos(u) sin(v)

f3 = sin(u), 0 ≤ u, v ≤ π/2

Three objectives PF

is fixed PS changes

DMOP1 [0, 1] × [−1, 1]n−1 f1(x) = x1, f2(x) = g · h
g(x) = 1 + 9

n∑

i=2
x2
i , h(x) = 1 −

(
f1
g

)H(t)

H(t) = 1.25 + 0.75 sin(0.5π t), t = 	τ/τT 
 /nT
PS(t) : 0 ≤ x1 ≤ 1, xi = 0, i = 2, . . . , n

PF(t) : 0 ≤ f1 ≤ 1, f2 = 1 − f H(t)
1

Two objectives PF
changes PS is fixed

DMOP2 [0, 1] × [−1, 1]n−1 f1(x) = x1, f2(x) = g · h
g(x) = 1 +

n∑

i=2
(xi − G(t))2, h(x) = 1 −

(
f1
g

)H(t)

G(t) = sin(0.5π t), H(t) = 1.25 + 0.75 sin(0.5π t), t = 	τ/τT 
 /nT
PS(t) : 0 ≤ x1 ≤ 1, xi = G(t), i = 2, . . . , n

PF(t) : 0 ≤ f1 ≤ 1, f2 = 1 − f H(t)
1

Two objectives PF

changes PS changes

DMOP3 [0, 1] × [−1, 1]n−1 f1(xr ) = xr , f2(x\xr ) = g · h
g(x) = 1 +

x\xr∑

i=1
(xi − G(t))2, h(x) = 1 −

√
f1
g

G(t) = sin(0.5π t), r = ∪(1, 2, . . . , n), t = 	τ/τT 
 /nT
PS(t) : 0 ≤ x1 ≤ 1, xi = G(t), i = 2, . . . , n
PF(t) : 0 ≤ f1 ≤ 1, f2 = 1 − √

f1

Two objectives PF is

fixed PS changes

FDA1–FDA4 will be used in this paper. DMOP test suite has
been proposed by Goh and Tan et al. and is an extension of
the FDA. Table 1 lists all the seven test problems and their PF
and PS in detail. FDA4 is a three-objective problem among
them.

(2) F5–F9 test suite

F5–F9 are newly proposed by Zhou and Jin et al.,
which have nonlinear correlation between decision variables.
Among them, F5-F7 are two-objective problems, F8 is a
three-objective problem, and F9 is a complicated problem
which is more difficult to converge than other test problems.
Table 2 lists all the five test problems and their PF and PS in
detail.

123



2642 Z. Peng et al.

Table 2 Test problems of F5–F9

Problems Search space Objectives, PF, PS Remarks

F5 [0, 5]n f1(x) = |x1 − a|H(t) + ∑
i∈I1 y

2
i

f2(x) = |x1 − a − 1|H(t) + ∑
i∈I2 y

2
i

yi = xi − b − 1 + |x1 − a|H(t)+ i
n , H(t) = 1.25 + 0.75 sin(π t)

a = 2 cos(π t) + 2, b = 2 sin(2π t) + 2, t = 	τ/τT 
 /nT
I1 = {i |1 ≤ i ≤ n, i odd} , I2 = {i |1 ≤ i ≤ n, i is even}
PS(t) : a ≤ x1 ≤ a + 1, xi = b + 1 − |x1 − a|H(t)+ i

n , i = 2, . . . , n
PF(t) : f1 = sH(t), f2 = (1 − s)H(t), 0 ≤ s ≤ 1

Two objectives PF

changes PS changes

F6 [0, 5]n f1(x) = |x1 − a|H(t) + ∑
i∈I1 y

2
i

f2(x) = |x1 − a − 1|H(t) + ∑
i∈I2 y

2
i

yi = xi − b − 1 + |x1 − a|H(t)+ i
n , H(t) = 1.25 + 0.75 sin(π t)

a = 2 cos(1.5π t) sin(0.5π t) + 2, b = 2 cos(1.5π t) cos(0.5π t) + 2
t = 	τ/τT 
 /nT
I1 = {i |1 ≤ i ≤ n, i is odd, } I2 = {i |1 ≤ i ≤ n, i is even}
PS(t) : a ≤ x1 ≤ a + 1, xi = b + 1 − |x1 − a|H(t)+ i

n , i = 2, . . . , n
PF(t) : f1 = sH(t), f2 = (1 − s)H(t), 0 ≤ s ≤ 1

Two objectives PF

changes PS changes

F7 [0, 5]n f1(x) = |x1 − a|H(t) + ∑
i∈I1 y

2
i

f2(x) = |x1 − a − 1|H(t) + ∑
i∈I2 y

2
i

yi = xi − b − 1 + |x1 − a|H(t)+ i
n , H(t) = 1.25 + 0.75 sin(π t)

a = 1.7(1 − sin(π t)) sin(π t) + 3.4, b = 1.4(1 − sin(π t)) cos(π t) + 2.1
t = 	τ/τT 
 /nT
I1 = {i |1 ≤ i ≤ n, i is odd} , I2 = {i |1 ≤ i ≤ n, i is even}
PS(t) : a ≤ x1 ≤ a + 1, xi = b + 1 − |x1 − a|H(t)+ i

n , i = 2, . . . , n
PF(t) : f1 = sH(t), f2 = (1 − s)H(t), 0 ≤ s ≤ 1

Two objectives PF

changes PS changes

F8 [0, 1]2 × [−1, 2]n−2 f1(x) = (1 + g) cos(0.5πx2) cos(0.5πx1)

f2(x) = (1 + g) cos(0.5πx2) sin(0.5πx1)

f3(x) = (1 + g) sin(0.5πx2)

g(x) =
n∑

i=3
(xi − ( x1+x2

2 )H(t) − G(t))2

G(t) = sin(0.5π t), H(t) = 1.25 + 0.75 sin(π t)
t = 	τ/τT 
 /nT
PS(t) : 0 ≤ x1, x2 ≤ 1, xi = ( x1+x2

2 )H(t) + G(t), i = 3, . . . , n
PF(t) : f1 = cos(u) cos(v), f2 = cos(u) sin(v), f3 = sin(u)

0 ≤ u, v ≤ π/2

Three objectives PF

changes PS changes

F9 [0, 5]n f1(x) = |x1 − a|H(t) + ∑
i∈I1 y

2
i

f2(x) = |x1 − a − 1|H(t) + ∑
i∈I2 y

2
i

yi = xi − b − 1 + |x1 − a|H(t)+ i
n , H(t) = 1.25 + 0.75 sin(π t)

a = 2 cos(( t
nT

−
⌊

t
nT

⌋
)π) + 2, b = 2 sin(2( t

nT
−

⌊
t
nT

⌋
)π) + 2

t = 	τ/τT 
 /nT
I1 = {i |1 ≤ i ≤ n, i is odd} , I2 = {i |1 ≤ i ≤ n, i is even}
PS(t) : a ≤ x1 ≤ a + 1, xi = b + 1 − |x1 − a|H(t)+ i

n , i = 2, . . . , n
PF(t) : f1 = sH(t), f2 = (1 − s)H(t), 0 ≤ s ≤ 1

Two objectives PF

changes PS changes

4.2 Performance metrics

Some metrics have been designed for dynamic optimiza-
tion (Cámara et al. 2009; Tantar et al. 2011; Helbig and
Engelbrecht 2013). In this paper, we firstly introduce the
dynamic generational distance (DGD) (Goh and Tan 2009)
and inverted generational distance (DIGD) (Zhou et al. 2013)
metric for DMOPs. The DGD and DIGD metrics are defined
as follows:

DGD = 1

|T |
∑

t∈T
GD(PFt , Pt ),

GD(PFt , Pt ) =
∑

v∈Pt d(PFt , v)

|Pt |
DIGD = 1

|T |
∑

t∈T
IGD(PFt , Pt ),

IGD(PFt , Pt ) =
∑

v∈PFt d(v, Pt )
∣
∣PFt

∣
∣

(4)
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where PFt is a set of uniformly distributed Pareto optimal
points in the PF at time t, and Pt is the solution obtained

at time t. d(PFt , v) = minu∈PFt

√
∑m

j=1

(
f (u)
j − f (v)

j

)2

is the distance between v and PFt , d(v, Pt ) = minu∈Pt√
∑m

j=1

(
f (v)
j − f (u)

j

)2
is the distance between v and Pt ,

T is a set of discrete time points in a run and |T | is the car-
dinality of T. DGD evaluates convergence of the algorithm,
DGD value is lower, and the solution obtained set has better
convergence. DIGD is a comprehensive metric to evaluate
the convergence and distribution; lower DIGD value means
that solution set obtained has a better convergence and dis-
tribution.

5 Experiments

5.1 Compared strategies and parameter settings

The novel strategy which proposed in this paper is denoted as
PMS, and in this section, PMS will be compared to other three
strategies: forward-looking prediction strategy (FPS) (Hatza-
kis and Wallace 2006a), PPS (Zhou et al. 2013), and predic-
tive gradient strategy(dMO-EGS) (Koo et al. 2009) (Since
only we compared the impact between different strategies for
solving DMOPs, so in this section, mutation, PMS in dMO-
EGS are denoted as MPMS, and integrated into an unified
optimization algorithm), we choose RM-MEDA mentioned
in Sect. 2.2.1 as the MOEA optimizer. In PMS, the number
of guide individual in exploration operator is Obsize = 10,
the number of initial individual is OP = 10, the number of
aliquots is OB = 9, and the time of evolving independently
is �t = 2. The number of selected optimal individuals from
memory pool is Msize = 5 (Three objectives: 10). Other para-
meter settings of three strategies use the given setting in Zhou
et al. (2013) and Koo et al. (2009). The detailed settings of
other parameters are shown in Table 3.

Since the proposed PMS in this paper and MPMS in dMO-
EGS need to consume a certain number of evaluations in the
prediction and memory, to be fair, the algorithm iterations
require removing the number of evaluations consumed at
every environmental change and reduce the corresponding
number of iterations. Therefore, the frequency of change is
set to be τT = 22 in PMS and τT = 23 in MPMS. We run
each algorithm 30 times for each test instance independently.
Each simulation runs for 2,500 generations (PMS: 2,200 gen-
erations, MPMS: 2,300 generations) and each strategy tracks
to 100 times of environmental changes. As the dynamic test
problems introduced in Sect. 4.1 are all periods, according
to the parameter setting of nT , the environment will change
periodically with unequal frequency ranging from 2 to 40 in
FDA and DMOP test suites, and change with the frequency of

Table 3 Other parameters setting for experiment

Parameter Value

Population size (N) Two objectives:
N= 100; three
objectives: N= 200

Frequency of change
(τT )

25

Severity of change (nT ) 10

Dimensions of the
decision space (n)

20

In FPS and PPS number
of cluster

5

In FPS and PPS AR
model order

3

In FPS and PPS length
of history mean point
series

23

In FPS probability in
prediction model

0.9

In MPMS number of
outdated solutions to
retain

40

In MPMS number of
individuals selected in
prediction

30

In MPMS size of
memory archive

100

In MPMS number of
evaluations allocated
for retrieval

10

In MPMS number of
memory items retrieve

10

40 in F5–F9 test suite. So to discuss the performances of dif-
ferent strategies in each period, the result of the experiment
is divided into three stages except for the first environmen-
tal change. Each stage tracks to 33 times of environmental
changes and its average is taken as the result.

5.2 The statistical results of evaluation

5.2.1 Results on FDA and DMOP

The statistical results of DGD and DIGD on FDA and DMOP
over 30 runs can be found in Table 4. It is clear from Table 4
that:

(1) Besides FDA2 and DMOP1 whose PS is fixed, the mean
DGD and DIGD of PMS are less than the other three
strategies, and the metric values are relatively average
in three stages, and become more and more stable. Espe-
cially in the first stage, the metric values are greatly better
than the other three strategies.
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Table 4 Statistical result of DGD and DIGD metrics for four strategies on FDA and DMOP

Problems Statistic DGD DIGD

FPS PPS MPMS PMS FPS PPS MPMS PMS

FDA1 Mean 0.0459 0.0491 0.0446 0.0117 0.0302 0.0320 0.0289 0.0118

1st stage 0.1072 0.1377 0.1073 0.0201 0.0609 0.0836 0.0618 0.0186

2nd stage 0.0145 0.0048 0.0139 0.0079 0.0141 0.0063 0.0132 0.0087

3rd stage 0.0159 0.0048 0.0127 0.0072 0.0157 0.0062 0.0118 0.0082

FDA2 Mean 0.0165 0.0155 0.0148 0.0152 0.0083 0.0086 0.0074 0.0077

1st stage 0.0254 0.0225 0.0214 0.0215 0.0137 0.0139 0.0112 0.0121

2nd stage 0.0123 0.0119 0.0110 0.0120 0.0056 0.0059 0.0056 0.0056

3rd stage 0.0119 0.0121 0.0119 0.0121 0.0055 0.0060 0.0055 0.0055

FDA3 Mean 0.1386 0.1107 0.0942 0.0755 0.0436 0.0564 0.0282 0.0120

1st stage 0.1417 0.1707 0.0978 0.0479 0.0673 0.1121 0.0611 0.0177

2nd stage 0.1282 0.0911 0.0934 0.0858 0.0215 0.0257 0.0095 0.0081

3rd stage 0.1460 0.0702 0.0915 0.0927 0.0421 0.0315 0.0141 0.0102

FDA4 Mean 0.1424 0.1115 0.1129 0.1087 0.0984 0.0904 0.0831 0.0816

1st stage 0.1662 0.1333 0.1358 0.1321 0.1097 0.0988 0.0911 0.0885

2nd stage 0.1197 0.0968 0.0973 0.0961 0.0914 0.0855 0.0787 0.0783

3rd stage 0.1414 0.1044 0.1057 0.0978 0.0941 0.0869 0.0794 0.0779

DMOP1 Mean 0.0027 0.0051 0.0052 0.0039 0.0052 0.0076 0.0086 0.0056

1st stage 0.0042 0.0075 0.0109 0.0074 0.0072 0.0116 0.0165 0.0078

2nd stage 0.0021 0.0039 0.0023 0.0022 0.0044 0.0057 0.0046 0.0046

3rd stage 0.0018 0.0039 0.0023 0.0021 0.0042 0.0056 0.0046 0.0044

DMOP2 Mean 0.0685 0.0730 0.0497 0.0310 0.0524 0.0572 0.0330 0.0148

1st stage 0.1671 0.2099 0.1066 0.0758 0.1225 0.1594 0.0588 0.0277

2nd stage 0.0159 0.0045 0.0227 0.0083 0.0157 0.0062 0.0211 0.0082

3rd stage 0.0225 0.0045 0.0198 0.0090 0.0191 0.0059 0.0190 0.0085

DMOP3 Mean 0.0435 0.0456 0.0352 0.0089 0.0321 0.0339 0.0286 0.0092

1st stage 0.0972 0.1271 0.0732 0.0127 0.0664 0.0892 0.0544 0.0122

2nd stage 0.0163 0.0050 0.0139 0.0072 0.0151 0.0064 0.0142 0.0081

3rd stage 0.0170 0.0046 0.0185 0.0067 0.0147 0.0061 0.0173 0.0072

(2) In the latter two stages, the DGD and DIGD of PPS
are relatively average and slightly better than the PMS.
But overall, the metric values are similar to PMS. On
FDA2, FDA3 and DMOP1 these three test problems,
PMS shows better performance than PPS.

(3) On FDA4 which is a three-objective problem, the DGD
and DIGD of PMS are better than the other three strate-
gies in each stage.

It is not hard to explain the results, mainly because the explo-
ration operator of PMS does not need the accumulation of
experience, combined with the introduction of exploitation
operator, which cannot only improve the depth of search, but
also improve the accuracy of search. Therefore, it is able to
respond more quickly to changes in the environment. Mean-
while, with the combination of two kinds of operators, the
algorithm can adapt not only to a greater degree of environ-
mental change, but also to the environment whose degree of

change is smaller or similar. Compared with FPS which uses
AR model and MPMS that uses predictive gradient, the pre-
diction of PMS is more accurate, so PMS is greatly better
than the other three strategies in the first stage. For problem
whose PS is fixed, the diversity of the population will hin-
der the rapid convergence of population. So on FDA2 and
DMOP1 in these two test problems whose PS is fixed, the
stored portion of the previous population will improve the
convergence of the algorithm.

In addition, since the environmental periodic changes and
the accumulation of experience, the convergence and diver-
sity of PPS, MPMS and PMS will stabilize in the latter two
stages due to the introduction of memory strategy. But the
memory of MPMS is an incomplete memory strategy, so the
performance is not as good as PPS and PMS. PPS predicts on
the basis of memory, which is slightly better than the PMS on
simple linear problem, but overall the difference is small. And
on FDA3, the accumulated experience of PPS is not enough
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Table 5 Statistical result of DGD and DIGD metrics for four strategies on F5–F8

Problems Statistic DGD DIGD

FPS PPS MPMS PMS FPS PPS MPMS PMS

F5 Mean 0.2823 0.1860 0.0770 0.0131 0.0916 0.0765 0.0471 0.0167

1st stage 0.3855 0.5196 0.1148 0.0176 0.1222 0.1933 0.0455 0.0188

2nd stage 0.2182 0.0231 0.0612 0.0125 0.0716 0.0204 0.0498 0.0157

3rd stage 0.2433 0.0153 0.0551 0.0093 0.0811 0.0157 0.0459 0.0155

F6 Mean 0.0563 0.0890 0.0845 0.0223 0.0382 0.0395 0.0328 0.0151

1st stage 0.0661 0.2363 0.2055 0.0453 0.0545 0.0879 0.0544 0.0219

2nd stage 0.0575 0.0182 0.0189 0.0115 0.0312 0.0175 0.0182 0.0123

3rd stage 0.0452 0.0126 0.0291 0.0102 0.0288 0.0131 0.0259 0.0112

F7 Mean 0.0589 0.1686 0.1485 0.0198 0.0413 0.0543 0.0741 0.0203

1st stage 0.0712 0.4795 0.1314 0.0313 0.0460 0.1361 0.0933 0.0289

2nd stage 0.0490 0.0142 0.2813 0.0146 0.0351 0.0143 0.0941 0.0172

3rd stage 0.0565 0.0120 0.0327 0.0136 0.0427 0.0125 0.0350 0.0147

F8 Mean 0.6016 1.2140 0.2253 0.1566 0.2123 0.3825 0.1067 0.0965

1st stage 1.1380 1.5452 0.4218 0.2583 0.3597 0.4645 0.1371 0.1183

2nd stage 0.2944 0.9951 0.1130 0.0934 0.1322 0.3220 0.0849 0.0818

3rd stage 0.3723 1.1017 0.1412 0.1181 0.1451 0.3611 0.0980 0.0895

Table 6 Statistical result of DGD and DIGD metrics for four strategies on F9

Problems Statistic DGD DIGD

FPS PPS MPMS PMS FPS PPS MPMS PMS

F9 Mean 0.2887 0.4251 0.1423 0.0705 0.1421 0.2386 0.1104 0.0420

1st stage 0.4495 1.0362 0.1897 0.1607 0.2284 0.5660 0.1473 0.0801

2nd stage 0.1354 0.1207 0.0951 0.0292 0.0780 0.0711 0.0877 0.0248

3rd stage 0.2811 0.1183 0.1422 0.0215 0.1198 0.0788 0.0963 0.0210

to make accurate predictions, which need more times iter-
ation of algorithm, so the average performance metrics of
PMS are better than PPS on FDA3.

On FDA4 which is a three-objective problem, perfor-
mance of four strategies is not very different, and PMS
performs better than the other three strategies at each
stage, which indicates that PMS is more suitable for high-
dimensional DMOPs.

5.2.2 Results on F5–F8

The statistical results of DGD and DIGD on F5–F8 over 30
runs can be found in Table 5. F5–F8 are harder than FDA and
DMOP because of the nonlinear correlation between deci-
sion variables. Since the same overhead is assigned to all the
algorithms on all the test problems, the statistical results on
F5–F8 are worse than those on FDA and DMOP. However,
according to Table 5, it is clear that the advantage of PMS is
more obvious in solving such problems. Except for the latter
two stages of F7, PPS is slightly better than PMS, the other

performance metrics of PMS at each stage are better than the
other three strategies.

5.2.3 Results on F9

The statistical results of DGD and DIGD on F9 over 30 runs
can be found in Table 6. The experimental results are similar
to those in the previous section. PMS also performs relatively
stable convergence and diversity on complicated problems.

5.3 Comparison of distribution of final populations obtained

To visually analyze the performance of each strategy, we
choose these five typical test problems, FDA1, DMOP2, F5,
F6, and F9, and draw the distribution of final populations
obtained for four strategies for solving different problems at
different time, shown in Figs. 6, 7, 8, 9, 10.

By comparison, it is not hard to come with the same con-
clusion as in Sect. 5.2, the convergence and diversity of PMS
are far better than FPS and PPS at the beginning stages of
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(a) FPS 

(b) PPS 

(c) MPMS 

(d) PMS 

Fig. 6 Solution sets founded by four strategies at six different time steps on FDA1

environmental change, which indicates that PMS is able to
respond to environmental changes more quickly and accu-
rately. There will be several times when the convergence
and diversity of MPMS are poor, indicating that when a
greater degree of environmental changes occurs, MPMS can-
not make accurate prediction. To the later stage of running,
PMS is the same as PPS, which has a better convergence
and distribution, and slightly better than PPS on the nonlin-
ear problems. As to the ability to solve complicated problem
F9, the advantage of PMS is more obvious; the other three
strategies cannot achieve better convergence and distribution,
while the PMS can more accurately track to a new optimal
solutions and obtain Pareto optimal solution set with better
convergence and distribution. It indicates that PMS is more

suitable for solving complicated nonlinear problems than the
other three strategies.

5.4 Influence of different strategies

To consider the influence and necessity of each strategy, we
choose FDA1, DMOP2, F6 and F7 to test. The results of
average DIGD values versus the time with different strategies
are shown in Fig. 11.

From Fig. 11, we can see that the algorithm which only
employs prediction strategy performs well in terms of con-
vergence and diversity at the early stages. Especially for solv-
ing the FDA1 and DMOP2 with linear correlation between
the decision variables, the average DIGD of obtained solu-
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Fig. 7 Solution sets founded
by four strategies at eight
different time steps on DMOP2

(a) FPS (b) PPS

(c) MPMS (d) PMS

(a) FPS (b) PPS

(c) MPMS (d) PMS
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Fig. 8 Solution sets founded
by four strategies at eight
different time steps on F5

(a) FPS (b) PPS

(c) MPMS (d) PMS

(a) FPS (b) PPS

(c) MPMS (d) PMS
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Fig. 9 Solution sets founded
by four strategies at eight
different time steps on F6

(a) FPS (b) PPS

(c) MPMS (d) PMS

(a) FPS (b) PPS

(c) MPMS (d) PMS
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Fig. 10 Solution sets founded
by four strategies at eight
different time steps on F9

(a) FPS (b) PPS

(c) MPMS (d) PMS

(a) FPS (b) PPS

(c) MPMS (d) PMS
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Fig. 11 The average DIGD over 30 runs versus time on a FDA1, b DMOP2, c F6 and d F7

tions is well. But for F6 and F7 with nonlinear correlation
between the decision variables, some deviations may be gen-
erated in the prediction, leading to the poor performance of
the obtained solutions.

The algorithm which only employs memory strategy has
the worst performance. The reason might be that the envi-
ronment does not form a periodic change at the early stages.
The stored history optimal solutions cannot help the popu-
lation to evolve in current environment. But with the envi-
ronmental periodic change, the memory strategy makes the
performance of algorithm gradually improved by reusing the
previously searched elite solutions. To further confirm the
conclusion, we choose DMOP2 and draw the distribution
of final obtained populations of the algorithm which only
employs memory strategy in the same environment of dif-
ferent periods, shown in Fig. 12. We can see the change of
performance of obtained solutions in the same environment
of different time, which shows a gradual improved trend.

The strategy of combining prediction and memory has the
best performance. The prediction can guarantee the algorithm

to quickly respond to environmental changes, and in a timely
manner to search for a new optimal solution set. Meanwhile,
the memory strategy can improve the ability of dealing peri-
odic problems and has reduced the error rate because of every
prediction that may generate. The results indicate that PMS
is very promising for dealing with dynamic environments.

6 Conclusions and future work

In this paper, we have proposed novel PMS to enhance
the performance of multiobjective optimization evolution-
ary algorithms in dealing with dynamic environments. In the
proposed prediction strategy, the combination of exploration
and exploitation provides the basis for the algorithm to accu-
rately predict the new optimal solution set, which acceler-
ates the speed of response to environmental change; thus
the optimal solution set can be obtained with good conver-
gence and diversity at the initial stages. Meanwhile, the mem-
ory strategy allows the algorithm to better adapt to periodic
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Fig. 12 Solution sets founded by memory strategy at five different time steps on DMOP2

problems, so that the algorithm can obtain a stable optimal
solution set in the late stages of running. Compared with
other three strategies both on seven traditional benchmark
problems and on five newly appeared ones, PMS has shown
faster response to the environmental changes than peer strate-
gies in solving whether linear or nonlinear problems, with
its solution set having better convergence and diversity. It
has highlighted superiority for solving complicated nonlin-
ear problems. Finally, please note that, when the population
is not completely converged, the judgment errors may occur
about evolutionary direction of the population in the cur-
rent environment by recording the different center positions
of nondominated solutions before and after the change. The
prediction is not accurate and convergence is not good under
some environmental changes. Therefore, our future work will
be designing a more accurate prediction model. Furthermore,
our focus in the future will also be the influence of different
optimization algorithms for solving different problems.
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