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Abstract Image segmentation techniques have been wid-
ely applied in many fields such as pattern recognition and
feature extraction. For the primate visual attention model,
the perceptual organization is an important process to auto-
matically extract the desirable features. In this article, we
propose a new method called an automatic multilevel thresh-
olding algorithm using the stratified sampling and Tabu
Search (AMTSSTS) by imitating the primate visual percep-
tual behaviors. In the AMTSSTS algorithm, a gray image is
treated as a population with the gray values of pixels as the
individuals. First, the image is evenly divided into several
strata (blocks), and a sample is drawn from each stratum.
Second, a Tabu Search-based optimization is applied to each
sample to maximize the ratio between mean and variance
for each sample. The threshold number and threshold values
are preliminarily determined based on the optimized sam-
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ples, and are further optimized by a deterministic method
which includes a new local criterion function with property
of local continuity of an image. Results of extensive simula-
tions on Berkeley datasets indicate that AMTSSTS can obtain
more effective, efficient and smooth segmentation, and can
be applied to complex and real-time environments.

Keywords Image segmentation · Multilevel thresholding ·
Intelligent optimization algorithms · Stratified sampling ·
Tabu Search

1 Introduction

Image segmentation is an essential and important operation
for feature extraction, pattern recognition and classification.
It is the process of assigning a label to every pixel in an image.
Pixels with the same annotated label constitute a region, and
the pixels inside this region share similar visual characteris-
tics. Each region is homogeneous and connected. The union
of any two spatially adjacent regions is not homogenous.

For intensity images, there are four popular approaches:
threshold techniques, edge-based methods, region-based
techniques, and connectivity-preserving relaxation methods.
Of these, the image thresholding methods are the most widely
used in image segmentation. The thresholding techniques
involve bi-level thresholding and multilevel thresholding.
Bi-level thresholding techniques classify the pixels into two
groups; the first group includes the pixel values that are above
a certain threshold value and the second group includes the
pixel values that are below the threshold value. Multilevel
thresholding techniques divide the pixels into several classes;
that is, for the pixels that can be grouped as the same class,
their pixel values should be within a certain range of thresh-
old values.
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Many image thresholding methods can be found in Ma et
al. (2010), Sezgin and Sankur (2004). In general, the thresh-
olding methods can be also classified into parametric and
nonparametric approaches. In the parametric approaches, the
gray-level distribution of each class has a probability den-
sity function that is generally assumed to obey a Gaussian
distribution and will attempt to find an estimate of the para-
meters of distribution that will best fit the given histogram
data. In the nonparametric approaches, they find the thresh-
olds that separate the gray-level regions of an image in an
optimal manner based on discriminating criteria such as the
between-class variance, entropy, etc. They are easy to extend
to multilevel thresholding; however, the amount of threshold-
ing computation significantly increases with this extension.
To overcome this problem, some recent multilevel threshold-
ing techniques based on intelligent optimization algorithms
(IOAs) have been proposed and shown promising results.
However, they still suffer from many problems. We will dis-
cuss these problems in Sect. 2.

The structure of this paper is as follows. Section 2 intro-
duces the related work. Section 3 formulates our problem,
and presents the related methods and our proposed algo-
rithm. Section 4 provides rigorous discussion regarding our
proposed algorithm from the three different aspects: the
optimization method, the sampling method, and algorith-
mic complexity. Section 5 discusses the experimental results.
Finally, Sect. 6 concludes our findings and further work in
the future research.

2 Related work

IOAs that were proposed for the multilevel thresholding are
divided into several categories, genetic algorithms (GAs)
(Hammouche et al. 2008; Bosco 2001; Lai and Chang 2009;
Lin et al. 2010; Yin 1999; Yang et al. 2003; Lai and Tseng
2004; Cao et al. 2008), particle swarm optimization algo-
rithms (PSOs) (Chander et al. 2011; Yin 2007; Zahara et al.
2005; Gao et al. 2010; Fan and Lin 2007), ant colony opti-
mization algorithms (ACOs) (Malisia and Tizhoosh 2006;
Tao et al. 2008), artificial neural networks (ANNs) (Yang et
al. 2003; Bhattacharyya et al 2011), fuzzy computing algo-
rithms (FCs) (Chen and Zhang 2004; Li and Staunton 2007;
Tan and Isa 2011), simulated annealing algorithms (SAs)
(Hou et al. 2006), and honey bee mating optimization algo-
rithms (HBMOs) (Horng 2010).

Hammouche et al. (2008) proposed a fast multilevel
thresholding technique based on GA. This technique emplo-
yed wavelet transform to reduce the length of the histogram,
but it was time consuming to choose the appropriate number
of thresholds and threshold values by optimizing the auto-
matic thresholding criterion (ATC) proposed by Yen et al.
(1995) cited in Hammouche et al. (2008). Lai and Chang

(2009) proposed a clustering-based approach using a hierar-
chical evolutionary algorithm (HEA) for automatic medical
image segmentation with the help of the particular property
of HEA, but this approach initialized the number of regions
randomly. Chander et al. (2011) proposed a new variant of
PSO for image segmentation, of which an iterative procedure
was proposed to obtain initial thresholds, however, its com-
putational time was still somewhat expensive. Yin (2007)
developed a recursive programming technique for comput-
ing the minimum cross entropy thresholding (MCET) objec-
tive function which stores the results of preceding tries as
the basis for the computation of succeeding ones; it can
reduce the order of magnitude of computing the multilevel
thresholds to some extent. Gao et al. (2010) proposed the
quantum-behaved PSO method, which employed the coop-
erative method (CQPSO) to conquer the curse of dimen-
sionality. Although the cooperative method ensured that the
search space was searched more thoroughly and the chances
of finding better solutions were improved, it increased com-
putational complexity. Tao et al. (2008) proposed a fuzzy
entropy method that incorporated the ACO method for the
segmentation of infrared images. The ACO method was used
to obtain the optimal combination of the fuzzy parameters;
however, how to automatically decide the threshold num-
ber in these works (Yin 2007; Zahara et al. 2005; Gao et al.
2010; Fan and Lin 2007; Malisia and Tizhoosh 2006; Tao et
al. 2008; Chang and Chung 2001; Bhattacharyya et al 2011)
was not mentioned.

Chen and Zhang (2004) proposed two variants of fuzzy
C-means (FCM) clustering method with spatial constraints
for image segmentation, which were robust to noise and out-
liers. Chuang et al. (2006) presented a fuzzy C-means algo-
rithm that incorporated spatial information into the mem-
bership function for image segmentation, which was also
a powerful method for noisy image segmentation. Li and
Staunton (2007) proposed a modified fuzzy C-means seg-
mentation method for uneven illumination images, which
was based on both pixel intensity and the average inten-
sity of its neighborhood that was within a segment of the
biased illumination field. The FCM method has been a popu-
lar algorithm in computer vision and pattern recognition due
to its clustering validity and simplicity of implementation,
but it often encounters two unavoidable difficulties of decid-
ing the threshold number and obtaining the initial thresh-
olds that are properly distributed. In addition, the papers
in Chen and Zhang (2004), Chuang et al. (2006), Li and
Staunton (2007) did not cover the method of automatically
deciding the threshold number, either. Later, Tan and Isa
(2011) presented a novel histogram thresholding fuzzy C-
means hybrid (HTFCM) approach for color image segmen-
tation, which consists of the histogram thresholding module
and the FCM module. The histogram thresholding module
was a good solution to overcome the two problems of FCM
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that were mentioned above, but it still had higher compu-
tational complexity in comparison with the technique that
uses the stratified sampling technique in this paper. In Hou
et al. (2006), Horng (2010), the authors did not discuss the
problem of automatically choosing the threshold number,
either.

Although many segmentation methods based on IOAs
have been used to reduce the computational time in thresh-
olding, they are limited in the following three aspects. First,
the threshold number is predetermined, which implies that
users must identify the number of regions beforehand; how-
ever, this demand is strict and costly in practice. Second,
they need preprocessing to reduce or remove the noise to
enhance the convergence rate or to improve the stability using
some special techniques (Hammouche et al. 2008; Gao et al.
2010; Chen and Zhang 2004). Third, the IOA is employed
to optimize the global criterion function based on between-
class variance (Otsu 1979), entropy (Li et al. 1995; Cheng
and Lui 1997; Huang and Wang 1995) and minimum bayes
error (Kittler and Illingworth 1986; Ye and Danielsson 1988);
however, no consideration is given to local continuity of an
image.

To rectify these limitations, an automatic multilevel
thresholding algorithm (AMTSSTS) using stratified sam-
pling and Tabu Search is proposed. This method is based
on the study that higher visual processes of primate visual
system appear to select a subset of available sensory informa-
tion before further processing (Tsotsos et al. 1995; Itti et al.
1998). The fundamental idea of AMTSSTS is “forecasting +
optimization”. “Forecasting” corresponds to “select a subset
of available sensory information”, and “optimization” corre-
sponds to “further processing”. Hence, AMTSSTS is very
different from aforementioned algorithms. In AMTSSTS,
the threshold number and threshold values are automati-
cally forecasted by the prediction method combining strati-
fied sampling with Tabu Search, and then they are optimized
by an optimization algorithm. In addition, instead of the
global criterion function based on between-class variance or
entropy method, we did propose a new local criterion func-
tion, because each of the pixels in a region is similar with
respect to some characteristics or computed properties such
as intensity and texture.

3 The proposed method

3.1 Problem formulation

A formal definition of segmentation is given below (1). Let
I be an image and H be a homogeneity predicate defined
over connected pixel groups. The image I is then partitioned
into a set of different regions {R1, R2, . . . , RM}, which is
formulated as follows:

M⋃

i=1
Ri = I with Ri ∩ R j = ∅, i �= j.

∀i, H(Ri ) = true.
∀Ri and R j adjacent, H(Ri ∪ R j ) = false.

(1)

In the following subsections, we will describe our proposed
algorithm in detail.

3.2 Tabu Search

The Tabu search algorithm (Glover 1989, 1990) proposed by
Glover was successfully applied to different combinatorial
problems such as planning and scheduling problems (Glover
and Laguna 1997). It was an iterative heuristic optimization
method based on the local search techniques that started from
a feasible solution. This method moved to another solution
at each iteration by trying to search unexplored regions of
the solutions space, and it also attempted to avoid repetitions
with the help of a tabu list. This list is a short-term memory
mechanism containing solutions that have been visited in
the recent past (less than tt iterations ago, where tt called
the tabu tenure is the number of previous solutions to be
stored). Note that the Tabu Search algorithm excludes the
solutions in the tabu list. Moreover, a variation of a tabu list
prohibits solutions that have certain attributes or prevents
certain moves. The new solution selected at each iteration
is the best one belonging to N (s), the neighborhood of the
current solution s. In general, the neighborhood contained all
the solutions that could be obtained from s using non-tabu
moves. However, the tabu list raised the problem that might
hinder some excellent solutions, which might not have been
visited. That is to say, when a single attribute was marked as
a tabu, this typically resulted in more than one solution being
tabu. Some of these solutions that must now be avoided could
be of excellent quality and might not have been visited. To
mitigate this problem, “aspiration criteria” are introduced to
override a solution’s tabu state.

The Tabu Search heuristic follows the general guidelines
(Glover and Laguna 1997). Let s and s∗ denote the current
and best known solutions, respectively. G is the iteration
counter and is used to control the loop in the following pseudo
code (as shown in Fig. 1). H is the tabu list.

In the following section, we will present our AMTSSTS
framework.

3.3 Framework of AMTSSTS

In our method, we treat any pixel value of a gray image as
an individual over the population. The proposed AMTSSTS
method consists of four main steps: first, an image is evenly
divided into some image blocks (strata), and a sample con-
taining a group of pixels is taken from each stratum; sec-
ond, every sample is optimized by the Tabu Search algorithm
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Fig. 1 The Tabu Search algorithm

Fig. 2 The process of AMTSSTS

whose fitness function is the ratio of its mean and variance;
third, the threshold number and threshold values are fore-
casted according to the optimized samples; and finally, the
threshold number and threshold values are optimized by an
optimization algorithm. The process of AMTSSTS is shown
in Fig. 2. An example of using our segmentation method is
further displayed in Fig. 3.

3.3.1 Stratified sampling

Stratified sampling is a method of sampling from a popula-
tion. In a stratified sample, the sampling frame is divided into
non-overlapping groups or strata, e.g., geographical areas,
age groups, or genders. A random or systematic sampling
technique is then applied within each stratum. This often
improves the representativeness of the sample by reducing
sampling error. Stratification always achieves great precision
provided that the strata have been chosen so that members
of the same stratum are as similar as possible with regard
to the characteristic of interest. The bigger the differences
are between the strata, the greater the gain is in precision.
The fitness function in our Tabu Search method is designed
according to this principle.

An intensity image I is treated as a population which con-
tainsm × n gray values. We can predict the number of objects
in an image by stratified sampling. The sampling method is
as follows: an image I is evenly divided into ω strata (as
shown in Fig. 4 (ω =16)). A sample is then drawn from the
middle part of each stratum. The choice of selecting a sample
size is discussed in Sect. 4.

3.3.2 The optimization method of samples using Tabu
Search

This step is to optimize each sample separately using Tabu
Search. The optimized samples can contain salient informa-
tion about the threshold number and threshold values, and
it will be more efficient if the parallelism among samples is
developed. The steps and features of our Tabu Search method
are described as follows:

1. Fitness function
All the samples of an image are arranged from left to right
and top to bottom orientation. They are denoted as ω1,
ω2, …, ω16. The mean and variance of ωi are mi and si;
respectively, where i = 1, 2,…,16. The fitness function
of each sample designed according to Sect. 3.3.1, is then
formulated as fi = mi/si . Note that we prefer a larger
fi , mi , and the smaller si (In the program, the variance
si adds 0.0001 temporarily when estimating fi so as to
avoid the exception of dividing by zero raised.)

Fig. 3 An example of our segmentation method: a the original image, b the initial sample, c the optimized sample, and d the segmented image
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Fig. 4 The initial position of stratified sampling

2. Initialization
The initial solutions are generated by Stratified Sampling.
Only one solution (sample) is drawn from each stratum.

3. Neighborhood
An initial solution s in each stratum has eight types of
moves according to the direction of movement in the cor-
responding stratum. These are classified as “up move ”,
“top-right move”, “right move”, “bottom-right”, “down
move”, “bottom-left”, “left move”, and “top-left move”.
After the current solution s selects a move randomly, the
new solution s′at each iteration is generated. Note that
the move in every direction follows uniform distribution.
More types of moves are needed to yield better solution;
however, this increase causes more computational bur-
den.

4. Tabu list, Tabu tenure, aspiration criteria
The Tabu list of each stratum is shown in Table 1. The
status of each direction is initially set to 0 (if applicable).
If s′is better than s, then s ← s′, or else the move is
forbidden and the corresponding direction is set to 1 (if
not applicable). When all kinds of moves are forbidden,
the Tabu list will be reinitialized. This is the aspiration
criterion and the tabu tenure strategy in our algorithm.

5. Stopping criteria
The search stops after a fixed number of generations is
performed or after a maximum number of consecutive
generations with no improvement in the best solution. In
our experiment, we adopt the former, and G is set to 20.

3.3.3 The forecasting method for the number of threshold
and threshold values

The third step is to forecast the threshold number and thresh-
old values based on the optimized samples. The forecasting
results fall into two categories:

1. m1 = m2 = · · · = m16, the threshold number is equal to
1. This is the lower limit of the threshold number in our
experiments given in Sect. 5.

2. ∃i, j , mi �= m j , where i �= j or ∃u,v , su �= sv , where
u �= v, u, v =1,…,16, the threshold number is greater
than 1 and not greater than 16. The upper limit of the
threshold number is 16.

The procedure of our forecasting method is described as fol-
lows:

1. ω1 is treated as a benchmark threshold value of the
first category, if the mean of ωi is between m1×
(1−rangeMean) andm1× (1 + rangeMean), and the vari-
ance is between s1 × (1 − rangeStd) and s1 × (1 +
rangeStd), then ωi belongs to the first category. The
rangeMean and rangeStd are measured in percentage,
and their ranges are between 0 and 100 %. In our experi-
ment, the gray levels of an image range over [0, 255].

2. In the same way, we treat the first sample ω j that
is not yet categorized so far as another benchmark
threshold value; if the mean of ωi (i = j ,…, 16) is
betweenm j× (1-rangeMean) andm j×(1+rangeMean);
and the variance is between s j × (1 − rangeStd) and
s j × (1 + rangeStd), then ωi belongs to the second
category.

3. All the benchmark threshold values are the forecasting
threshold values, the number of which is the threshold
number. Empirically, rangeMean can be set to 30 % in
mi× (1 ± rangeMean) and rangeStd can be set to 20 %
in si× (1 ± rangeStd).

3.3.4 The deterministic optimization algorithm

The fourth step is to further optimize the threshold number
and threshold values obtained from the above by implement-
ing a deterministic method which is described in Sect. 4.

4 Algorithm theoretical analysis

4.1 Design and analysis of the deterministic optimization
algorithm

Let the gray levels of an image range over [0, L] and h(i)
denotes the occurrence of gray level i . Let:

N = h(0) + · · · + h(i) + · · · + h(L)

Pi = h(i)/N
(2)

Table 1 The initialization of
Tabu list Up Top-right Right Bottom-right Down Bottom-left Left Top-left

0 0 0 0 0 0 0 0
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Assuming that there are M thresholds: {t1, t2, . . ., tM}, (1≤
M ≤ L − 1), which divide the original image into M +1
classes represented as:

C0 = {0, 1, . . ., t1}, . . .,C1 = {t1 + 1, t1 + 2, . . ., t2}, . . .,
CM = {tM + 1, tM + 2, . . ., L}.

For multilevel thresholding, the formula based on Otsu’s
(Otsu 1979) method is computed as follows:

D(t1, t2, · · · , tM ) =
M−1∑

j=0

M∑

k= j+1
ω jωk(u j − uk)2

ω j−1 =
t j∑

i=t j−1+1
Pi , u j−1 =

t j∑

i=t j−1+1
i × Pi/ω j−1,

(3)

where t0 = 0. The optimal thresholds t∗1 , t∗2 ,…, t∗M are the
gray levels that maximize (3),

i.e.,

t∗1 , t∗2 , . . . , t∗M = argmaxD(t1, t2, . . . , tM )

In the Otsu’s method, we exhaustively search for the optimal
threshold by maximizing inter-class variance. The k-means
clustering aims to partition the n observations into k sets (k ≤
n) by minimizing the within-cluster sum of squares. They
both adopt the Euclidean distance measure as the similarity
metric and squared error metric as the criterion function.
The Otsu’s method is extensively employed as the global
criterion function of an image (Gao et al. 2010). Because an
image has the property of local continuity, we believe that a
local criterion function will be better for image thresholding.
Therefore, a new local criterion function (4) is designed in
the proposed algorithm.

f (v∗
r ) = |v∗

r × Pv∗
r

−
tr+1∑

i=tr−1

i × Pi/(tr+1 − tr−1 + 1)|,

v∗
r ∈ [tr−1, tr+1] (4)

Assuming that the set of the forecasting threshold values
FC = {t1, t2 ,…, tM}, t1 ≤ t2 ,…, ≤ tM , is arranged on
a line segment (see Fig. 5). Let tr denote an arbitrary fore-
casting threshold value and t∗r be the corresponding optimal
threshold value. We obtain t∗r by Eq. (5).

t∗r = arg min |v∗
r × Pv∗

r
−

tr+1∑

i=tr−1

i × Pi/(tr+1 − tr−1 + 1)|,

v∗
r ∈ [tr−1, tr+1] (5)

When we obtain the first optimal threshold value t∗1 , FC
is immediately upgraded to F ′

C = {t∗1 , t2, . . . , tM}. Conse-
quently, the second optimal threshold value t2∗ is obtained
according to F ′

C , until F ′
C = {t∗1 , t∗2 , . . . , t∗M}, which is the

set of the optimized threshold values.

Fig. 5 The location of threshold values

Fig. 6 The optimization of threshold values

Moreover, the threshold number will sometimes decrease
after it is optimized: that is, when two optimized threshold
values are the same or similar, the threshold number will
decrease (see Fig. 6).

Assuming that t∗r−1 is obtained, a possible case that t∗r will
be equal to t∗r−1 is presented as follows:

t∗r−1 = arg min |v∗
r−1 × Pv∗

r−1
−

∑tr
i=t∗r−2

i × Pi

tr − t∗r−2 + 1
|,

v∗
r−1 ∈ [t∗r−2, tr ] (6)

t∗r = arg min |v∗
r × Pv∗

r
−

∑tr+1
i=t∗r−1

i × Pi

tr+1 − t∗r−1 + 1
|, v∗

r ∈ [t∗r−1, tr+1]
(7)

Theorem 1 Let A =
∑tr

i=t∗r−2
i×Pi

tr−t∗r−2+1 =
∑tr+1

i=t∗r−1
i×Pi

tr+1−t∗r−1+1 ,A ≤
t∗r−1 × Pt∗r−1

(or A ≥ t∗r−1 × Pt∗r−1
) and f (i) = i × Pi is

a strictly monotone increasing (or decreasing) function in
[tr , tr+1], then t∗r = t∗r−1.

Proof See Appendix ��

4.2 Analysis of the stratified sampling method

The stratified sampling technique is similar to cluster analy-
sis, which is the assignment of a set of observations into sub-
sets (called clusters), so that observations in the same cluster
are similar. This sampling is a method of sampling from a
population, so it has lower computational complexity. How-
ever, Clustering needs to analyze all the pixels, and many
clustering algorithms require the specification of the num-
ber of clusters, prior to the execution of the algorithm. What
important is that an image has the property of local conti-
nuity and similarity, so it seems that the stratified sampling
method is much suitable for automatic multilevel threshold-
ing.

When we open our eyes on a scene, our visual system can
automatically segment it into a set of objects in the scene. In
computer vision, how many samples should we draw from
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an image and how large should each sample be to represent
the scene (image) better? We think it must be related to the
content, size, and grayscale of an intensity image. There-
fore, a thorough analysis is given in the following subsec-
tion.

4.2.1 Analysis on the number of samples

The segmented results of the two images are shown in Table
2. “a × b” denotes the number of rows of the samples is
a and the number of columns is b. The sample size is 20
× 20 = 400. “Forecasted” denotes the forecasted thresh-
olds by the forecasting method above, and “Optimized”
denotes the optimized thresholds by the optimization algo-
rithm above. From Table 2, the following observations can
be made: the greater the number of samples is, the more
the same/similar elements will sit between the set of “Fore-
casted” threshold values and the set of “Optimized” thresh-
old values, but the higher the algorithmic complexity. The
experimental results of other images show the same conclu-
sion.

4.2.2 Analysis on the sample size

The experimental results of the four images are shown in
Table 3. “c × d” denotes the sample size. From Table 3, we
can conclude that the smaller the sample size is, the better its
corresponding fitness is in general. The experimental results
of other images show the same conclusion. But if the sample
size is too small, it cannot represent the image better.

4.2.3 Analysis of time complexity

The computational time of the thresholding methods based
on the Otsu’s method is very expensive when the exhaus-
tive search is applied. For M thresholds, the complexity
is O(LM ), which grows exponentially with the threshold
number. For AMTSSTS, the complexity of the Tabu Search
method is O(G ∗ ω ∗ t t), the complexity of the forecasting
method is O(ω ∗ (ω − 1)/2), the complexity of the deter-
ministic optimization algorithm is O(M ∗ L); where G is
the generation number, ω is the number of samples, tt is the
Tabu tenure. A simple calculation shows that AMTSSTS has
lower complexity and is insensitive to the threshold number,
which is also shown in Table 5.

5 Experiments

5.1 Setup

We compare the performance of the proposed AMTSSTS
algorithm with other algorithms. They are (1) the clustering- Ta
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Table 3 The experiment on the sample size

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f12 f13 f14 f15 f15 f16

376001.jpg

30×30 18.23 15.47 16.39 11.91 18.31 11.33 12.27 14.95 10.67 17.53 17.79 16.69 13.23 24.47 14.98 12.95

20×20 23.32 16.47 16.69 15.86 18.75 20.20 14.75 16.51 13.40 22.63 17.32 19.77 16.93 27.63 17.97 12.85

10×10 29.62 26.49 20.58 18.29 18.34 21.02 22.18 18.03 37.31 73.20 20.68 21.47 25.92 51.15 70.97 44.18

170057.jpg

30×30 31.45 38.88 25.34 16.11 28.29 27.43 16.01 14.61 21.75 19.95 17.46 11.87 16.15 20.02 22.76 13.30

20×20 45.14 49.48 29.45 18.95 36.95 32.30 19.50 15.35 28.44 25.09 18.07 12.99 16.24 20.43 21.13 13.44

10×10 54.34 62.86 55.0.8 19.42 49.22 15.57 29.75 25.64 42.65 27.40 26.92 16.33 27.84 29.12 30.53 17.48

35008.jpg

30×30 13.23 23.64 19.18 42.08 24.59 18.31 18.13 45.93 16.78 14.22 17.08 33.90 22.64 15.45 13.68 17.13

20×20 23.91 41.56 27.90 89.47 33.82 46.16 21.60 47.68 27.44 13.28 21.16 59.70 34.33 20.22 33.54 29.06

10×10 141.64 63.68 54.06 144.73 130.75 133.29 86.63 170000 62.28 17.56 80.65 131.71 262.63 59.31 137.74 44.02

253055.jpg

30×30 2550000 258.09 179.04 94.34 42.90 35.52 37.94 308.89 35.95 19.58 18.79 20.48 29.75 19.53 22.26 23.80

20×20 2550000 820.96 567.42 123.99 134.71 53.27 48.99 311.89 57.59 23.58 22.45 30.22 36.20 19.85 24.51 27.67

10×10 2550000 1948.70 975.07 203.23 418.59 258.37 120.78 654.99 171.48 106.37 70.86 76.10 41.20 30.23 30.80 26.63

based approach using a hierarchical evolutionary algorithm
(CHEA) (Lai and Chang 2009), (2) the quantum-behaved
PSO algorithm employing the cooperative method (CQPSO)
(Gao et al. 2010), and (3) the maximum entropy-based
honey bee mating optimization thresholding (MEHBMOT)
method (Horng 2010). CHEA can automatically determine
the threshold number. For CQPSO and MEHBMOT, their
threshold numbers are preset to values estimated by the pro-
posed method.

The experiments are implemented on the Berkeley seg-
mentation data set (Research 0000). The segmented results
of nine images are shown in Fig. 9. Figures 7 and 8 dis-
play these nine original images with their corresponding his-
tograms. In AMTSSTS, the image is 8-bit grayscale and the
size is 481×321. The sample size is 10×10 and the num-
ber of samples is 16; that is, the upper limit of the threshold
number is 16 and it is also easy to distinguish between the
levels of brightness by human eyes. The other parameters of
AMTSSTS are given in Sect. 3.3 and the parameters of other
algorithms are set the same as described in their correspond-
ing paper, except that the generation numbers in CQPSO and
MEHBMOT are set to 100. We then conduct our experiments
on a Compad notebook, with 512 MB RAM and a single
core 1.6 GHz CPU, Microsoft Windows XP, and Matlab 7.2.
Moreover, three aspects of the performance evaluation are
taken into consideration in the experiments: (1) the compari-
son of segmentation results, (2) the comparison of threshold
values, peak signal to noise ratio (PSNR), and computation
time, and (3) the ability to conquer “the curse of dimension-
ality”. In our experiments, when two thresholds satisfy the
condition that the absolute value of their difference is not

more than 5, we will unify them. Consequently, the thresh-
old number obtained through the experiments may be less
than M ; i.e., the initial number of thresholds in CQPSO and
MEHBMOT.

5.2 Results

5.2.1 Comparison of segmentation results

Figure 9 displays the visual interpretation of the segmenta-
tion results. The findings show that our method outperformed
others in terms of segmentation quality; in particular, those
images of Fig. 9a–f, h images. When the segmented images
are enlarged, the following findings are observed: in Fig. 9a,
our method obtained the clearer results with 7 thresholds than
those of CHEA with 6 thresholds. In Fig. 9c, the segmented
result of our method was absolutely clear, except that the
upper of the sky was dim. Although CHEA removed the blur
of the sky, the bridge and boat were blurred. CQPSO obtained
even worse results than those of CHEA. MEHBMOT could
clearly separate the sky and water, but the scene was a bit
obscured and gloomy. In Fig. 9d, the result of CHEA was
more blurred than that of our method and the writing was
illegible; the result of CQPSO was also a bit vague. The
results of MEHBMOT and our method were similar. In Fig.
9f, the three faces of the results of CHEA and CQPSO were
vague and the profiles were not very clear. However, our
method and MEHBMOT showed promising results and the
segmentation result of our method was much clear and pre-
cise. In Fig. 9h, our method also produced a more continuous
and smoother segmentation result than others.
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(a) 249087.jpg (b) 43074.jpg       (c) 22090.jpg

(d) 65019.jpg (e) 216053.jpg (f) 376001.jpg

 170057.jpg      (h) 35008.jpg (i) 253055.jpg(g)

Fig. 7 The nine original images

5.2.2 Comparison of threshold values, PSNR, computation
time

In this section, we use peak signal to noise ratio (PSNR)
(Horng 2010; Arora et al. 2008) to evaluate the quality of
segmented images. PSNR is defined and measured in decibel
(dB), and as follows:

PSNR = 20 log10

(
255

RMSE

)

, (8)

where RMSE is the root mean-squared error defined as:

RMSE =
√∑m

i=1

∑n

j=1
(I (i, j) − I ′

(i, j))/(m × n),

(9)

where I and I ′ are the original and segmented images of
size m × n, respectively. A larger value of PSNR means
that the quality of the segmented image is better. Further-
more, as the threshold number increases, the PSNR tends
to be larger. Table 4 shows the comparative analyses of
AMTSSTS, CHEA, CQPSO, and MEHBMOT in terms of
threshold values, PSNR, and computational time over differ-
ent images. CHEA was the slowest among the four meth-
ods. For AMTSSTS, the computation time was insensitive
to the threshold number and was faster than other algo-

rithms. The PSNR of images ‘a1’, ‘b1’, ‘e1’, ‘f1’ and ‘h1’
(as shown in Fig. 9) was the largest among the four meth-
ods. The PSNR of image ‘i1’ in Fig. 9 was smallest and the
PSNR values of the images ‘c1’, ‘d1’ and ‘g1’ were close to
the best. Moreover, the visual inspection of the segmented
images shows that AMTSSTS can obtain clearer and more
complete segmentation images for video image compres-
sion.

Note that in Table 4, M was predetermined in CQPSO and
MEHBMOT according to that estimated by AMTSSTS; M
was automatically determined in CHEA and AMTSSTS.

5.2.3 Curse of dimensionality

To verify the searching ability of our proposed method on
high dimensionality, we tested each image, with small values
of rangeMean and rangeStd. Table 5 shows the mean com-
putation time (seconds) for 100 runs. This is also consistent
with earlier findings suggesting that our proposed method is
robust under high dimensionality.

6 Conclusion and future work

This article proposed the AMTSSTS algorithm for automat-
ing the multilevel thresholding selection procedure using
stratified sampling and a new local criterion function, which
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Fig. 8 The nine corresponding histograms of the original images

extends our preliminary research (Jiang et al. 2012). It
has been shown in the previous sections, with the help of
results obtained for nine benchmark images, that the pro-
posed method was able to converge rapidly and to produce
better segmentation results than several new and developed
methods from recent years. In addition, the algorithm has
the following characteristics: (a) it does not need to con-
sider any auxiliary or extra image information such as con-
textual or textual properties. The threshold number does not
need to be known in advance, (b) AMTSSTS avoids ana-
lyzing histograms and has a lower computing complexity
that is almost independent from the threshold number, and
(c) the proposed algorithm can produce effective, efficient,
and smoother results. We also presented the detailed analy-
sis from three aspects: its optimization method, sampling
method and algorithmic complexity.

In our future research, we will further attempt to find a bet-
ter method to forecast the threshold values and its numbers,
with the help of statistical methods and the theory of com-
puter vision. Furthermore, we will apply it to complex and
real-time image analysis problem, such as automatic target
recognition and medical image analysis.

Appendix: Proofs for Sect. 4

Proof of Theorem 1
Proof Let β = |t∗r−1 × Pt∗r−1

− A|.
According to Eqs. (6) and (7), we have,

min |v∗
r × Pv∗

r
−

∑tr+1
i=t∗r−1

i × Pi

tr+1 − t∗r−1 + 1
| = min
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Fig. 9 Comparison of
segmentation results: (a1)–(i1)
the segmentation results of our
method, (a2–i2) the
segmentation results of CHEA,
(a3–i3) the segmentation results
of CQPSO, and (a4–i4) the
segmentation results of
MEHBMOT

(a1) (a2) (a3)            (a4)

(b1)              (b2)             (b3) (b4)

(c1)              (c2)          (c3)           (c4)

(d1)              (d2)              (d3)          (d4)

(e1)              (e2)              (e3)          (e4)

(f1)               (f2)              (f3)          (f4)

(g1)            (g2)             (g3)               (g4)

(h1)           (h2) (h3)              (h4)

(i1)          (i2)             (i3)              (i4)
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Table 4 Comparison of threshold values, uniformity, computation

Method M Threshold value PSNR CPU time (s)

249087.jpg AMTSSTS 7 64-102-123-141-170-189-232 23.5496 0.346206

CHEA 6 34-97-137-167-236-252 22.7643 6.866401

CQPSO 6 20-28-97-103-111-249 13.6371 4.070220

MEHBMOT 7 39-107-123-166-178-186-249 21.6123 3.231057

43074.jpg AMTSSTS 7 64-88-113-129-166-179-218 24.2997 0.351059

CHEA 7 22-39-47-58-68-181-196 10.4783 6.128226

CQPSO 5 28-49-57-141-147 11.1121 3.541111

MEHBMOT 7 15-36-54-83-93-104-117 11.8353 3.434535

22090.jpg AMTSSTS 7 70-107-124-153-218 18.3303 0.419265

CHEA 8 12-21-35-75-105-119-146-194 12.2338 5.689608

CQPSO 5 51-67-82-95-107 8.7573 3.467276

MEHBMOT 5 47-90-140-178-235 24.4017 2.915946

65019.jpg AMTSSTS 8 18-143-150-161-177-197-203-217 18.4390 0.353223

CHEA 7 18-25-36-51-76-120-228 13.1588 5.746528

CQPSO 7 57-68-83-90-130-147-156 15.7061 3.387223

MEHBMOT 7 27-58-86-138-148-187-212 22.5091 3.448367

216053.jpg AMTSSTS 8 60-83-118-149-157-176-200-230 22.7950 0.346077

CHEA 7 16-22-85-97-120-134-149 13.9575 6.058972

CQPSO 8 85-94-103-109-120-134-153-173 16.5322 4.083998

MEHBMOT 8 57-94-122-148-161-185-200-236 21.2126 3.360095

376001.jpg AMTSSTS 7 43-62-126-145-164-193-227 24.8587 0.335823

CHEA 6 16-30-40-54-118-226 11.0668 5.798094

CQPSO 5 18-51-57-100-107 9.4820 3.019550

MEHBMOT 7 100-112-127-152-171-185-237 19.2043 3.440645

170057.jpg AMTSSTS 5 101-128-153-160-172 17.9138 0.380617

CHEA 9 17-36-42-53-88-105-154-206-235 14.7946 5.678565

CQPSO 5 47-90-208-216-227 21.0741 3.180481

MEHBMOT 5 40-69-119-155-188 17.6656 3.250963

35008.jpg AMTSSTS 8 29-52-85-111-149-176-199-234 23.8800 0.361907

CHEA 8 12-20-34-48-72-84-130-249 10.1670 5.626506

CQPSO 6 44-51-117-140-178-237 18.6445 3.023091

MEHBMOT 8 43-58-79-93-130-164-186-216 21.5595 3.563338

253055.jpg AMTSSTS 6 116-124-138-198-227-249 16.3590 0.387195

CHEA 6 13-75-94-128-158-246 19.1991 6.101050

CQPSO 5 95-123-137-159-171 18.2997 3.061366

MEHBMOT 6 96-113-133-158-167-223 21.3524 3.015020

Table 5 Computation time with M = 6, 9, 12, 16

M 249087.jpg 43074.jpg 22090.jpg 65019.jpg 216053.jpg 376001.jpg 170057.jpg 35008.jpg 253055.jpg

6 0.347164 0.352324 0.340573 0.387256 0.32609 0.369940 0.366950 0.356532 0.365436

9 0.418990 0.383675 0.365989 0.384778 0.364941 0.372522 0.393571 0.372593 0.380177

12 0.431369 0.393772 0.395658 0.388693 0.377185 0.385911 0.387471 0.375669 0.385629

16 0.470666 0.416313 0.473496 0.390792 0.381030 0.446923 0.414797 0.388894 0.415822
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|v∗
r−1 × Pv∗

r−1
−

∑tr
i=t∗r−2

i × Pi

tr − t∗r−2 + 1
| = β, v∗

r ∈ [t∗r−1, tr ).

When v∗
r ∈ [tr , tr+1], f (v∗

r ) is a strictly monotone increasing
function, hence |v∗

r × Pv∗
r

− A| > β. So, we can obtain the
function

|v∗
r × Pv∗

r
−

∑tr+1
i=t∗r−1

i × Pi

tr+1 − t∗r−1 + 1
|, v∗

r ∈ [t∗r−1, tr+1],

which can get the minimum value when v∗
r = t∗r−1 in Eq.

(7); i.e., t∗r = t∗r−1. The similar method for the caseA ≥
t∗r−1 × Pt∗r−1

.
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