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Abstract In this paper, the water cycle algorithm (WCA),
a recently developed metaheuristic method is proposed for
solving multi-objective optimization problems (MOPs). The
fundamental concept of the WCA is inspired by the obser-
vation of water cycle process, and movement of rivers and
streams to the sea in the real world. Several benchmark func-
tions have been used to evaluate the performance of the WCA
optimizer for the MOPs. The obtained optimization results
based on the considered test functions and comparisons with
other well-known methods illustrate and clarify the robust-
ness and efficiency of the WCA and its exploratory capability
for solving the MOPs.

Keywords Multi-objective optimization · Water cycle
algorithm · Pareto-optimal solutions · Benchmark function ·
Metaheuristics

1 Introduction

Many problems in engineering and other fields of research
can be considered as optimization problems aimed at finding
an optimum design solution. To simulate a real-life problem
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for a real-life situation, a designer should investigate numer-
ous objectives for obtaining the optimum design, while the
given problem approaches its real-life nature as the number
of objectives increases. The real-life optimization situations
may involve solving various objectives, simultaneously.

As the number of objectives increases, the given problem
approaches its real-life nature. Nowadays, researchers prefer
to conduct their problems in real-life situations considering
various objectives, simultaneously.

In contrast to an ordinary optimization problem (having
only a single objective), multi-objective problems (MOPs) do
not have a single solution (Glover and Kochenberger 2003).
Depending on the designer’s decision, an optimum design
solution may be extracted from the set of Pareto front solu-
tions (Deb 2001; Coello et al. 2002).

Among optimization algorithms, metaheuristic methods
have shown their potential for finding the near-optimal solu-
tion to the numerical real-valued test problems (Osman and
Laporte 1996; Blum and Andrea 2003). Over the last decades,
numerous algorithms have been widely used to solve MOPs
(Wang et al. 2012), since MOPs are widely observed in the
domains of science and engineering (Lin and Chen 2013).

Numerous metaheuristic algorithms can provide designers
the flexible means for solving optimization problems. Such
methods are usually based on mathematical rules and models
to imitate natural phenomena or real-life events to conduct
search on the domain space and optimize given problems.

The concepts of metaheuristic algorithms are inspired by
various events in nature such as natural selection and evo-
lution processes used in genetic algorithms (GAs) (Hol-
land 1975) or animal behavior and their search abilities
for finding food such as particle swarm optimization (PSO)
(Kennedy and Eberhart 1995), and social-human evolution
such as imperialist competitive algorithm (Atashpaz and
Lucas 2007).
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Considering multi-objective approaches, a new version of
the non-dominated sorting genetic algorithm (NSGA) (Srini-
vas and Deb 1995) alleviated the shortcomings (i.e., high
computational effort, non-elitist approach, and specifying
sharing parameters) of the NSGA. The improved method is
known as NSGA-II (Deb et al. 2002a). Knowles and Corne
(2000) came up with a new method called the Pareto archived
evolution strategy (PAES). The PAES employs a local search
approach for creating new generations using the population
information from its selection process.

For handling several objective functions, the PSO was not
exempted from the eyes of researchers and was considered in
literature as a multi-objective optimizer (Coello and Lechuga
2002; Mostaghim and Teich 2003; Sierra and Coello 2005).
For instance, Kaveh and Laknejadi (2011) combined the con-
cept of the PSO with their developed method, the charge
system search (CSS), for solving MOPs so called the CSS-
MOPSO.

In addition, recently, many optimizers have been proposed
in literature for tackling MOPs trying to improve and enhance
the exploratory capabilities of non-dominated solutions (Zit-
zler and Thiele 1999; Zitzler et al. 2001; Gao and Wang 2010;
Pradhan and Panda 2012; Wang et al. 2012; Mahmoodabadi
et al. 2013).

In this paper, a recently proposed metaheuristic method
which is based on the water cycle process has been used to
tackle MOPs. The idea of water cycle algorithm (WCA) was
first suggested by Eskandar et al. (2012) and the application
and validation of the WCA was carried out for constrained
optimization problems (Eskandar et al. 2012). The main pur-
pose of this paper is to show the potential and performance
of WCA for solving multi-objective functions.

The remaining of this paper is organized as follows: def-
initions of standard MOPs are given in Sect. 2. In addition,
performance criteria used to have a quantitative assessment
of MOPs are described in Sect. 2. In Sect. 3, detailed descrip-
tions of the WCA and multi-objective water cycle algorithm
(MOWCA) and their concepts are introduced. Section 4 rep-
resents the comparisons of the obtained statistical optimiza-
tion results using the MOWCA with other optimizers for
reported problems in form of tables and figures. Numeri-
cal examples and benchmark functions accompanied with
their mathematical formulations considered in this paper are
provided in Appendix A. Finally, conclusions are drawn in
Sect. 5.

2 Multi-objective problems

The nature of many real-life problems are considered as a
form of MOP. In many fields of science and engineering,
multiple objective functions should be considered and opti-
mized, simultaneously. Therefore, a MOP can be formulated

as follows:

F(X) = [ f1(X), f2(X), . . . , fN (X)]T , (1)

where X = [x1, x2, x3, . . . ] is a vector of design variables.
The simplest approach for the MOPs is to use weighting
factor for each function and add them together based on the
following equation (Haupt and Haupt 2004):

F =
N∑

n=1

wn fn, (2)

where N is the number of objective functions, and wn and fn
are weighting factors and objective functions, respectively.
The major drawback of aforementioned technique (Eq. 2)
is selecting a suitable value for the weighting factors (wn).
Different values of wn give different optimal solutions for
the same fn .

However, the Pareto front approach can be used as an alter-
native approach to solve the MOPs. In the MOPs, there is usu-
ally a set of solution which is defined as Pareto optimal solu-
tions or non-dominated solutions (Coello 2000). The main
purpose of the multi-objective optimization is to find as many
of non-dominated solutions as possible. The non-dominated
solutions are defined as follows (Wang et al. 2012):

(a) Pareto dominance: U = (u1, u2, u3, . . . , un) < V =
(v1, v2, v3, . . . , vn) if and only if U is partially less than
V in the objective space which it means:

{
fi (U ) ≤ fi (V ) ∀i
fi (U ) < fi (V ) ∃i i = 1, 2, 3, . . . N , (3)

where N is the number of objective functions.
(b) Pareto optimal solution: vector U is said to be a Pareto

optimal solution if and only if any other solutions can-
not be detected to dominate U . A set of Pareto optimal
solution is called Pareto optimal front (PFoptimal).

Figure 1 illustrates the concept of Pareto optimal optimiza-
tion technique for bi-objective problems. As can be seen in
Fig. 1, solutions A and B are considered as non-dominated
solutions. The reason is they are not dominated by each other
for given objectives.

To clarify further, the obtained solution A has the mini-
mum value for the f1 compared with solution B. However,
the obtained value for solution A for the f2 is higher than
solution B (see Fig. 1). In contracts, solution C is dominated
by solutions A and B in terms of the minimum values for
both objective functions ( f1 and f2) as shown in Fig. 1. The
solution C is called dominated solution and solutions A and
B are known as Pareto optimal solutions (non-dominated
solutions).
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Fig. 1 Optimal Pareto solutions (A and B) for the two-dimensional
domain

2.1 Performance metrics

In order to have an accurate evaluation for the proposed
MOWCA to solve MOPs, three factors are usually taken into
consideration (Zitzler et al. 2000). These three criteria are
given in the following subsections.

2.1.1 Generational distance metric

Generational distance (GD) metric is defined as a criterion for
the convergence between the Pareto optimal front (PFoptimal)

and generated (calculated) Pareto front (PFg). In fact, it is
a Euclidian distance between the resulting non-dominated
solution and PFoptimal (Kaveh and Laknejadi 2011).

Based on this definition, each algorithm with the mini-
mum GD can have the best performance among others. This
evaluation factor is defined in form of mathematical formu-
lation, however, there are different variants of GD reported
in the literature (Kaveh and Laknejadi 2011; Coello 2004):

GD1 =
(

1

npf

npf∑

i=1

d2
i

)1/2

, (4)

GD2 = 1

npf

( npf∑

i=1

d2
i

)1/2

, (5)

where npf is number of member in PFg and d is the Euclidean
distance between member i th in PFg and nearest member in
PFoptimal. Meanwhile, the Euclidean distance (d) is obtained
based on the following equation:

d(p, q) = d(q, p) =
[

n∑

i=1

( fiq − fip)
2

]1/2

, (6)

where q = ( f1q , f2q , f3q , . . ., fnq) is a point on PFg and
P = ( f1p, f2p, f3p, . . ., fnp) is the nearest member to q in

Fig. 2 Schematic view of GD criterion for the MOPs

PFoptimal. Figure 2 shows schematic view of this performance
meter for two-dimensional space. The best obtained value
for the GD metric is equal to zero which means the PFg can
exactly cover the PFoptimal.

2.1.2 Metric of spacing

Metric of spacing (S) gives an overview about the distribu-
tion of non-dominated solutions along the generated Pareto
front (Kaveh and Laknejadi 2011). In other words, the main
objective of this criterion is to demonstrate and clarify distri-
bution of the non-dominated solutions in the objective space.
Similar to the GD performance metric, the S metric is sug-
gested by researchers having different formulations as given
follows (Kaveh and Laknejadi 2011; Coello 2004):

S1 =

[
1
npf

npf∑
i=1

(di − d̄)2
]1/2

d̄
, (7)

S2 =
[

1

npf − 1

npf∑

i=1

(di − d̄)2

]1/2

, (8)

where d̄ is the mean value of all di . The smallest value of
S shows the best uniform distribution on PFg. If all non-
dominated solutions are uniformly distributed in the PFg,
then, the values of di and d̄ are the same, therefore, the value
of S metric equals to zero.

3 Multi-objective water cycle algorithm

3.1 Water cycle algorithm

The WCA mimics the flow of rivers and streams towards the
sea and derived by the observation of water cycle process. Let
us assume that there are some rain or precipitation phenom-
ena. An initial population of design variables (population of
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streams) is randomly generated after raining process. The
best individual (i.e., the best stream), classified in terms of
having the minimum cost function (for minimization prob-
lem), is chosen as the sea (Eskandar et al. 2012).

Then, a number of good streams (i.e., cost function values
close to the current best record) are chosen as rivers, while all
other streams flow to the rivers and sea. In an N dimensional
optimization problem, a stream is an array of 1 × N . This
array is defined as follows:

A Stream Candidate = [x1, x2, x3, . . . , xN ], (9)

where N is the number of design variables (problem dimen-
sion). To start the optimization algorithm, an initial popula-
tion representing a matrix of streams of size Npop × N is
generated. Hence, the matrix of initial population, which is
generated randomly, is given as (rows and column are the
number of population and the number of design variables,
respectively):

Total Population =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sea
River1

River2

River3
...

StreamNsr+1

StreamNsr+2

StreamNsr+3
...

StreamNpop

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎣

x1
1 x1

2 x1
3 · · · x1

N

x2
1 x2

2 x2
3 · · · x2

N
...

...
...

...
...

x
Npop
1 x

Npop
2 x

Npop
3 · · · x

Npop
N

⎤

⎥⎥⎥⎥⎥⎦
, (10)

where Npop and N are the total number of population and the
number of design variables, respectively. Each of the deci-
sion variable values (x1, x2, . . . , xN ) can be represented as
floating point number (real values) or as a predefined set for
continuous and discrete problems, respectively. The cost of
a stream is obtained by the evaluation of cost function (C)

given as follows:

Ci = Costi = f (xi1, x
i
2, . . . , x

i
N ) i = 1, 2, 3, . . . , Npop.

(11)

At the first step, Npop streams are created. A number of Nsr

from the best individuals (minimum values) are selected as
a sea and rivers. The stream which has the minimum value
among others is considered as the sea. In fact, Nsr is the

summation of number of rivers (which is defined by user)
and a single sea (Eq. 12). The rest of the population (i.e.,
streams flow to the rivers or may directly flow to the sea) is
calculated using the following equation:

Nsr = Number of Rivers + 1︸ ︷︷ ︸
Sea

, (12)

NStream = Npop − Nsr. (13)

Equation (14) shows the population of streams which flow
to the rivers or sea. Indeed, Eq. (14) is part of Eq. (10) (i.e.,
total individual in population):

Population of Streams =

⎡

⎢⎢⎢⎢⎢⎣

Stream1

Stream2

Stream3
...

StreamNStream

⎤

⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎣

x1
1 x1

2 x1
3 · · · x1

N
x2

1 x2
2 x2

3 · · · x2
N

...
...

...
...

...

x
NStream
1 x

NStream
2 x

NStream
3 · · · x

NStream
N

⎤

⎥⎥⎥⎥⎦
.

(14)

Depending on flow magnitude, each river absorbs water from
streams. The amount of water entering a river and/or the sea,
hence, varies from stream to stream. In addition, rivers flow
to the sea which is the most downhill location. The desig-
nated streams for each rivers and sea are calculated using the
following equation (Eskandar et al. 2012):

NSn = round

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣

Costn
Nsr∑
i=1

Costi

∣∣∣∣∣∣∣∣∣

× NStream

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, n = 1, 2, . . . , Nsr,

(15)

where NSn is the number of streams which flow to the specific
rivers and sea. As it happens in nature, streams are created
from the raindrops and join each other to generate new rivers.
Some stream may even flow directly to the sea. All rivers and
streams end up in the sea that corresponds to the current best
solution.

Let us assume that there are Npop streams of which Nsr −1
are selected as rivers and one is selected as the sea. Figure 3a
shows the schematic view of a stream flowing towards a spe-
cific river along their connecting line.

The distance X between the stream and the river may be
randomly updated as the following relation:

X ∈ (0,C × d),C > 1, (16)

where 1 < C < 2 and the best value for C may be chosen
as 2; d is the current distance between stream and river. The
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Fig. 3 a Schematic description of the stream’s flow to a specific river;
b schematic of the WCA optimization process

value of X in relation (16) corresponds to a random number
(uniformly distributed or determined from any appropriate
distribution) between 0 and (C × d).

Setting C > 1 allows streams to flow in different direc-
tions towards rivers. This concept may also be used to
describe rivers flowing to the sea. Therefore, as the exploita-
tion phase in the WCA, the new position for streams and
rivers have been suggested as follows (Eskandar et al. 2012):

−→
X i+1

Stream = −→
X i

Stream + rand × C ×
(−→
X i

River − −→
X i

Stream

)
,

(17)
−→
X i+1

Stream = −→
X i

Stream + rand × C ×
(−→
X i

Sea − −→
X i

Stream

)
,

(18)
−→
X i+1

River = −→
X i

River + rand × C ×
(−→
X i

Sea − −→
X i

River

)
,

(19)

where rand is an uniformly distributed random number
between zero and one. Equations (17) and (18) are for streams

which flow to their corresponding rivers and sea, respectively.
Notations having vector sign correspond to vector values,
otherwise the rest of notations and parameters are considered
as scalar values. If the solution given by a stream is better
than its connecting river, the positions of river and stream
are exchanged (i.e., the stream becomes a river and the river
becomes a stream). A similar exchange can be performed for
a river and the sea.

The evaporation process operator also is introduced to
avoid premature (immature) convergence to local optima
(exploitation phase). Basically, evaporation causes sea water
to evaporate as rivers/streams flow to the sea. This leads
to new precipitations. Therefore, we have to check if the
river/stream is close enough to the sea to make the evapora-
tion process occur. For that purpose, the following criterion
is utilized for evaporation condition:

i f
∥∥∥
−→
X i

Sea − −→
X i

River

∥∥∥ < dmax or rand < 0.1

i = 1, 2, 3, . . . , Nsr − 1,

Perform raining process u sin g Eq. (20)
end

wheredmax is a small number close to zero. After evaporation,
the raining process is applied and new streams are formed in
the different locations (similar to mutation in the GAs). To
further clarify, if evaporation condition is satisfied for any
rivers, the corresponding river together with its streams will
be removed (i.e., evaporated). Afterward, the new streams
which are equal to the number of previous streams and a river
will be generated in new positions using Eq. (20). Hence, in
the new generated sub-population, the best stream will act as
a new river and other streams move toward their new river.

Indeed, the evaporation operator is responsible for the
exploration phase in the WCA. The following equation is
used to specify the new locations of the newly formed
streams:
−→
X new

Stream = L
−→
B + rand × (U

−→
B − L

−→
B ), (20)

where LB and UB are lower and upper bounds defined by the
given problem, respectively. Similarly, the best newly formed
stream is considered as a river flowing to the sea. The rest
of new streams are assumed to flow into the rivers or may
directly flow into the sea.

A large value for dmax prevents extra searches and small
values encourage the search intensity near the sea. There-
fore, dmax controls the search intensity near the sea (i.e., best
obtained solution). The value of dmax adaptively decreases
as follows:

di+1
max = dimax − dimax

Max Iteration
(21)

Infiltration and transpiration are considered as two important
steps in the water cycle process seen in nature. Infiltration is
an important process where rain water is absorbed into the
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Table 1 Pseudo-code of the
WCA

• Set user parameter of the WCA: Npop, Nsr, and Maximum_Iteration.
• Determine the number of streams (individuals) which flow to the rivers and sea using

Eqs. (12) and (13).
• Randomly create initial population of streams.
• Define the intensity of flow (How many streams flow to their corresponding rivers and 

sea) using Eq. (15).
while (t < Maximum_Iteration) or (any stopping condition)

for i = 1 : Population Size (Npop)
Stream flows to its corresponding rivers and sea using Eqs. (17) and (18).
Calculate the objective function of the generated stream

if F_New_Stream < F_river
River = New_Stream;
if F_New_Stream < F_Sea

Sea = New_Stream;
end if

end if
River flows to the sea using Eq. (19).
Calculate the objective function of the generated river

if F_New_River < F_Sea
Sea = New_River;

end if
end for
for i = 1 : number of rivers (Nsr)

if  (norm (Sea - River) < dmax) or (rand < 0.1)
New streams are created using Eq. (20).

end if
end for
Reduce the dmax using Eq. (21).

end while
Postprocess results and visualization

ground, through the soil and underlying rock layers. For the
transpiration step, as plants absorb water from the soil, the
water moves from the roots through the stems to the leaves.
Once the water reaches the leaves, some of it evaporates from
the leaves adding to the amount of water vapor in the air.

However, in the standard WCA (in its current version),
the loss of waters using groundwater or plant absorption was
not considered. In fact, these two steps (i.e., infiltration and
transpiration steps in water cycle processes) are not included
in the standard WCA.

The development of the WCA optimization process is
illustrated by Fig. 3b where circles, stars, and the diamond
correspond to streams, rivers, and sea, respectively. The white
(empty) shapes denote the new positions taken by streams
and rivers. In addition, Table 1 shows the pseudo-code and
step-by-step processes of the WCA in detail.

3.1.1 Similarities and differences with other optimizers

In this subsection, similarities and differences of WCA with
other optimization techniques are highlighted. The PSO
(Kennedy and Eberhart 1995) and ICA (Atashpaz and Lucas

2007) as two common metaheuristic optimizers are selected
for comparison purposes with the WCA. Indeed, every meta-
heuristic algorithm has its own approach and methodology
in finding global optimum solution.

As a similarity among the WCA, PSO, and ICA, we
can say that all methods are categorized as population-
based metaheuristic algorithms; population of particles in
the PSO, population of countries in the ICA, and population
of streams in the WCA. As for the ICA, the WCA utilizes
the concept of grouping for individuals using different strat-
egy.

Except this similarity, their concepts, parameters and oper-
ators are different with each other. The PSO’s concept is
based on the movement of particles (e.g., fishes, birds, etc.)
and their personal and best individual experiences (Kennedy
and Eberhart 1995). The WCA’s notions are derived by the
water cycle process in nature and the observation of how
streams and rivers flow to the sea, while the ICA is inspired by
the imperialistic competition and social–political phenom-
enon in the globe.

The updating formulations for the positions of rivers and
streams differ from the updating formulations used in the
PSO and ICA. The WCA does not use the concept of moving
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directly to the best solution (global best) as used in the PSO.
In fact, the WCA utilizes the concept of moving indirectly
from streams to the rivers and from rivers to the sea (i.e., the
temporal obtained optimum solution).

In contrast, in the ICA, colony’s countries move toward
their relevant imperialist country; however, the imperialist
countries do not have any moment toward the best solution
(i.e., best imperialist country).

In the WCA, rivers [a number of best selected solutions
except the best one (sea), (Eq. 12)] act as guidance points for
guiding other individuals in the population (streams) towards
better positions (see Fig. 3b) and to avoid the search in inap-
propriate regions (see Eq. 17).

It is worth pointing out that rivers, themselves, move
towards the sea (i.e., best obtained solution). They are not
fixed points (see Eq. 19) unlike the imperialist countries in
the ICA. In fact, this procedure (moving streams to the rivers
and, then moving rivers to the sea) leads to indirect move-
ments towards the best solution by the WCA. In fact, the third
movement (moving rivers to the sea, Eq. 19) does not define
in the ICA (Atashpaz and Lucas 2007).

On other hand, in the PSO, individuals (particles) based
on their personal and best experiences attempt to find the
best solution as the searching approach is moving directly
towards the best optimal solution. In addition, in the WCA, a
number of near-best to best selected solutions (rivers + sea)
attract other individuals of population (streams) based on
their goodness of the function values (i.e., intensity of flow)
using Eq. (15). However, in the classical PSO, this process
is not used.

Another difference among the WCA, PSO, and ICA is
the existence of evaporation condition and raining process
in the WCA which corresponds to the exploration phase.
The evaporation condition and raining process provide an
escape mechanism for the WCA to avoid getting trapped in
local optima, while in the PSO, the exploration mechanism
(formulation) is different.

In the PSO, inertia weight (w) (i.e., a user parameter) in
the updating equation (movement equation) is responsible
for the exploration phase and reduces at each iteration, while
in the ICA, based on the revolution probability (i.e., defined
by user), revolution phase is in charge of exploration task.
Table 2 summarizes the differences of three reported opti-
mizers in terms of applied strategies.

3.2 Proposed MOWCA

In order to convert the WCA as an efficient multi-objective
optimization algorithm, it is crucially important to define
predominant features of WCA in a correct way (i.e., sea and
rivers). In standard optimization problems by WCA, only one
objective function should be minimized and in this condition,

a number of best obtained solutions in the population are
selected as a sea (best obtained solution) and rivers.

Nevertheless, for MOPs, there is more than one func-
tion to be minimized (or maximized). Therefore, modifi-
cations required for the standard WCA for selecting sea
and rivers in the multi-objective space. To select the most
efficient (best) solutions in the population as a sea and
rivers, crowding-distance mechanism is used. The concept
of crowding-distance mechanism was first defined by Deb
et al. (2002a).

This parameter is a criterion to show distribution of non-
dominated solutions around a particular non-dominated solu-
tion. Figure 4 illustrates how to calculate crowding-distance
for point i which is the average side length of the cuboid
(Deb et al. 2002a). Lower value for crowding-distance indi-
cates more distribution of the solutions in a specific region. In
MOPs, this parameter is calculated in objective space. Hence,
to compute this parameter for each non-dominated solution,
all non-dominated solutions should be sorted in term of val-
ues for one of the objective functions.

Selection of the sea and rivers from the obtained popula-
tion as the best guide solution for other solutions at each iter-
ation is a vital step in the MOWCA. This affects both the con-
vergence capability of the MOWCA as well as maintaining
a good distribution of non-dominated solutions. Therefore,
for all iterations, crowding-distance for all non-dominated
solutions should be calculated to determine which solutions
have the highest crowding-distance values.

Afterwards, the obtained non-dominated solutions are
designated as sea and rivers and also, the intensity of flow for
rivers and sea are calculated based on the crowding-distance
values. In this situation, most likely, some non-dominated
solutions creates around sea and rivers at next iterations and
their value of crowding-distance amends and reduces.

Moreover, it is significantly important to save the non-
dominated solutions in an archive to generate the Pareto
front sets. This archive is updated at each iteration and dom-
inated solutions are eliminated from the archive and all non-
dominated solutions are added to the Pareto archive.

However, the size of Pareto archive (number of non-
dominated solutions in the archive) is variable in the liter-
ature. Therefore, whenever the number of members in the
Pareto archive increases the Pareto archive size, the crowd-
ing distance is applied again in order to eliminate as many
non-dominated solutions as necessary which have the lowest
crowding-distance values among the Pareto archive mem-
bers.

3.3 Steps and flowchart of MOWCA

The steps of the MOWCA are summarized as follows:
Step 1: Choose the initial parameters of MOWCA: Nsr,

dmax, Npop, Max_Iteration, and Pareto archive size.
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Table 2 Differences among three optimization methods in terms of their approaches for finding global optimum solution

Strategy ICA PSO WCA

Population Countries (imperialists and
colonies)

Particles (e.g., fishes, birds) Streams (including sea and
rivers)

User
parameter

- N_pop 2 - N_pop - N_pop

- Nimp (number of
imperialist countries)

-w (inertia weight) - Nsr (number of rivers +
sea)

-ζ (colonies mean cost
coefficient)

-c1 (personal learning
constant)

-dmax (maximum allowable
distance between river
and sea)

- μ (revolution rate) -c2 (global learning
constant)

- P (revolution probability) -Vmax (maximum velocity)

Global search Revolution: random
changes occur in the
characteristics of some
colonies

Inertia weight (first term of
the movement equation):
w × vti

Evaporation condition:
if 

max( )i i
Sea Rivernorm x x d− <

Perform raining using
Eq. (20)
end if

Local search Assimilation strategy:
moving colonies towards
their imperialist country
(imperialist countries are
fixed point)

The second and third terms
of the movement
equation:

c1r1(pBes
−→
t i − −→

X i ) +
c2r2(gBes

−→
t i − −→

X i )

Moving streams to the
rivers and rivers to the
streams (Eqs. 17–19)

Selection if F_Col (k1)< F_Imp (n1)

Imp. (n) =  Col. (k);

end if

- Calculate the total 

power of an empire(TCn)

- Find the weakest colony

- Assign the weakest 

colony of the weakest 

empire to an empire with 

high probability and 

eliminate an empire with 

no colony

if F3_New < F_Old

Accept New_Particle

if F_New < F_Best

Accept New_Particle

end if

end if

if F_Stream < F_River

River = Stream;

if F_Stream < F_Sea

Stream = Sea;

end if

end if

if F_River < F_Sea

River = Sea;

end if

1 k and n are indexes for colonies and imperialists, respectively, 2 N_pop total number of population, 3 F_∗ value of objective function

Step 2: Generate random initial population and form the
initial streams, rivers, and sea using Eqs. (10), (12), and (13).

Step 3: Calculate the value of multi-objective functions
for each stream using Eq. (11).

Step 4: Determine the non-dominated solutions in the ini-
tial population and save them in the Pareto archive.

Step 5: Calculate crowding-distance for each Pareto
archive member.

Step 6: Select a sea and rivers based on the crowding-
distance value.

Step 7: Determine the intensity of the flow for rivers and
sea based on the crowding distance values using Eq. (15).

Step 8: Streams flow into the rivers using Eq. (17).

Step 9: Streams flow into the sea using Eq. (18).
Step 10: Exchange positions of river and sea with a stream

which gives the best solution.
Step 11: Rivers flow into the sea using Eq. (19).
Step 12: Similar to Step 10, if a river finds better solu-

tion than the sea, the position of river is exchanged with the
sea.

Step 13: Check the evaporation condition using the
pseudo-code given in Subsect. 3.1.

Step 14: If the evaporation condition is satisfied, the rain-
ing process occurs using Eq. (20).

Step 15: Reduce the value of dmax which is a user-defined
parameter using Eq. (21).

123



WCA for solving MOPs 2595

Fig. 4 Schematic view of crowding-distance calculation

Step 16: Determine the new non-dominated solutions in
the population and save them in the Pareto archive.

Step 17: Eliminate any dominated solutions in the Pareto
archive.

Step 18: If the number of member in the Pareto archive is
more than the determined Pareto archive size, go to the Step
19, otherwise, go to the Step 20.

Step 19: Calculate the crowding-distance value for each
Pareto archive member and remove as many members as
necessary with the lowest crowding-distance value.

Step 20: Calculate the crowding-distance value for each
Pareto archive member to select new sea and rivers.

Step 21: Check the convergence criteria. If the stopping
criterion is satisfied, the algorithm will be stopped, otherwise
return to the Step 8.

4 Optimization results and discussions

In this section, 12 MOPs are considered for validating the
performance of the proposed MOWCA. These benchmark
problems are selected from a set of significant past studies in
this area (Fonseca and Fleming 1993; Deb 2002; Freschi and
Repetto 2006; Gao and Wang 2010; Kaveh and Laknejadi
2011). The natures of mentioned problems include various
types of objective functions (quadratic, cubic, polynomial,
and nonlinear) having different number of design variables.
Mathematical formulations of all considered MOPs accom-
panied with their optimal Pareto front are listed in Appen-
dix A.

The proposed MOWCA was coded in MATLAB and the
task of optimization was executed using 30 independent runs.
For all benchmark problems, the initial parameters for the
MOWCA (Ntotal, Nsr, and dmax) were selected as 50, 10, and
1e−5, respectively.

Additionally, the maximum number of iterations varies for
each problem in order to have fair comparisons. In fact, the

maximum number of function evaluations (NFEs) is taken as
the stopping condition, similar to the other methods in this
paper.

Meanwhile, based on the previous studies (Deb et al.
2002a; Freschi and Repetto 2006; Gao and Wang 2010;
Kaveh and Laknejadi 2011; Pradhan and Panda 2012), the
Pareto archive size is set to 100 for all reported MOPs.

Moreover, Eqs. (4) and (7) are used to calculate the
performance parameters (i.e., the GD1 and S1) for test
problems 2, 3, 6, 7, 8, and 9. Similarly, Eqs. (5) and (8)
(i.e., GD2 and S2) are utilized for computing the afore-
mentioned parameters for test problems 1, 4, 5, and 10.
The comparison set adopted for our study is composed of
state-of-the-art techniques covering a wide range of tech-
niques such as the NSGA-II, PAES, MOPSO, charge sys-
tem search and particle swarm optimization (CSS-MOPSO),
and immune system multi-objective optimization algorithm
(ISMOA) (Knowles and Corne 2000; Deb et al. 2002a;
Deb et al. 2002b; Zhang et al. 2009; Kaveh and Laknejadi
2011).

For quantitative and qualitative evaluations, the final sta-
tistical results for these algorithms are evaluated based on
the values obtained for the performance parameters (i.e., GD
and S) and the generated plot for the Pareto front using the
MOWCA. Table 3 shows the statistical optimization results
including the best, mean, worst, standard deviation (SD), and
NFEs used for all of the reported MOPs in this paper using
the MOWCA.

For the DTLZ problems, two cases are considered for bi-
objective and three-objective functions in this paper. From
Table 3, for the DTLZ problems two sets of results are pro-
vided. The first and second rows of Table 3 correspond to bi-
objective and three-functions, respectively, for DTLZ series.

Tables 4 and 5 represent the obtained statistical results
for the GD as performance metric for different optimizers
for the MOPs given in Appendix A. Looking at Table 4,
it can be inferred that the MOWCA has the advantage of
having the smallest value of GD for the DEB, POL, KUR,
ZDT3, ZDT4, ZDT6, and VNT functions, while the MOPSO
and CSS-MOPSO (Kaveh and Laknejadi 2011) indicate bet-
ter GD for the FON and ZDT1 functions, respectively (see
Table 4).

Judging by Table 5, more comparisons have been carried
out using the MOWCA, rank-based multi objective artifi-
cial physics optimization (RMOAPO), simple multi objective
artificial physics optimization (SMOAPO), and multi objec-
tive particle swarm optimization (MOPSO) (Wang and Zeng
2013). In addition, the obtained optimization results given in
Table 5 are based on 10,000 function evaluations.

Looking at Table 5, (similar to Table 4), the MOWCA sur-
passed other reported optimizers obtaining better statistical
results for the GD. The best attained statistical results (i.e.,
mean and SD) are highlighted in bold as shown in Tables 4
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Table 3 Statistical optimization results obtained by the MOWCA for all reported MOPs given in Appendix A

MOPs Best solution Mean solution Worst solution SDa NFEs

GD S GD S GD S GD S

DEB 1.49e−5 0.0016 5.75e−5 2.01e−3 9.10e−5 0.0025 2.03e−5 2.09e−4 4,000

FON 4.69e−3 0.26 5.6e−3 0.35 6.61e−3 0.44 4.84e−4 4.60e−2 10,000

POL 1.71e−2 0.11 2.06e−2 0.17 2.62e−2 0.26 2.07e−3 0.10 10,000

KUR 1.65e−3 0.055 2.65e−3 8.73e−2 0.043 0.27 6.53e−4 5.26e−2 12,000

VNT 2.63e−3 0.014 3.09e−3 2.70e−2 3.61e−3 0.114 2.88e−4 2.13e−2 4,000

ZDT1 2.68e−3 0.202 4.13e−3 0.258 5.69e−3 0.354 7.91e−4 3.42e−2 10,000

ZDT3 7.39e−4 0.465 1.30e−3 0.589 1.81e−3 0.679 3.43e−4 7.35e−2 20,000

ZDT4 1.12e−3 0.132 2.19e−3 0.167 5.23e−3 0.21 1.32e−4 4.57e−3 25,000

ZDT6 3.23e−4 0.84 1.03e−2 0.717 0.018 5.98 1.01e−2 1.11 10,000

DTLZ 2 1.65e−4 1.45e−3 1.78e−4 1.95e−3 1.87e−4 2.44e−3 6.70e−6 3.73e−4 10,000

1.39e−3 0.0221 1.93e−3 0.026 2.25e−3 0.028 2.87e−4 2.14e−3 5,000

DTLZ 4 1.76e−4 1.25e−3 2.06e−4 2.19e−3 2.57e−4 3.03e−3 2.56e−5 4.88e−4 10,000

4.69e−4 3.00e−3 1.79e−3 0.027 3.66e−3 0.086 9.57e−4 2.293−2 5,000

DTLZ 7 1.27e−5 1.23e−4 2.65e−5 3.44e−4 4.99e−5 7.18e−4 1.62e−5 2.70e−4 10,000

3.31e−4 3.82e−4 2.65e−3 0.015 1.81e−2 0.036 5.47e−3 1.21e−2 5,000

a Standard deviation

Table 4 Mean and SD for the GD criterion

MOPs MOWCA NSGA-II PAES MOPSO CSS-MOPSO

Mean SD Mean SD Mean SD Mean SD Mean SD

DEB 0.000057 0.000020 0.023046 0.045429 0.163484 0.441303 0.000118 0.000025 N/A N/A

FON 0.005600 0.000484 0.007174 0.000301 0.028305 0.007129 0.004059 0.004059 0.004942 0.004942

POL 0.020698 0.002076 0.020980 0.002283 0.085626 0.100294 0.022610 0.022610 0.022928 0.022928

KUR 0.002655 0.000653 0.029255 0.027170 0.549140 0.030744 0.008450 0.00051 N/A N/A

VNT 0.003091 0.000288 0.005870 0.017800 0.078100 0.044500 N/A N/A N/A N/A

ZDT1 0.004138 0.000791 0.003731 0.000342 0.004932 0.006013 0.096400 0.096400 0.003048 0.003048

ZDT3 0.001304 0.000343 0.005031 0.000162 0.082004 0.107889 0.068005 0.068005 0.004781 0.004781

ZDT4 0.002195 0.000132 0.003559 0.000589 0.450385 0.063752 0.228776 0.070243 0.003462 0.000380

ZDT6 0.010373 0.010144 0.024666 0.024338 0.011739 0.016882 0.019078 0.019078 0.026345 0.026345

N/A not available

Table 5 Mean and SD for the GD criterion for the DTLZ series

MOPs MOWCA RMOAPO SMOAPO MOPSO

Mean SD Mean SD Mean SD Mean SD

M = 2

DTLZ 2 1.78e−4 6.70e−6 0.0212 0.0043 0.0433 0.0053 0.0469 0.0051

DTLZ 4 2.06e−4 2.56e−5 0.0194 0.0036 0.0231 0.0039 0.0386 0.0047

DTLZ 7 2.65e−5 1.62e−5 N/A N/A N/A N/A N/A N/A

and 5. In fact, the MOWCA offers the best performance
obtaining the lowest GD for the most MOPs (10 out of 12 in
Tables 4 and 5) in this paper and has been placed in first rank
for the GD. On the contrary, the PAES and NSGA-II (Deb
et al. 2002a) have the worst statistical results in terms of the
GD (see Table 4).

In order to have more comparisons with the optimiza-
tion results obtained by the MOWCA, the VNT and DEB
functions were solved using other optimizers given in the
literature. The statistical optimization results found by the
MOWCA are given in Table 3 for the GD. For the VNT
function, vector immune system (VIS) (Freschi and Repetto
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Table 6 Mean and SD for the S metric

MOPs MOWCA NSGA-II PAES MOPSO CSS-MOPSO

Mean SD Mean SD Mean SD Mean SD Mean SD

DEB 0.002016 0.000209 0.00369 0.003372 1.114617 4.434594 0.010392 0.002782 N/A N/A

FON 0.352934 0.046011 0.356864 0.041145 2.914900 0.994202 0.787028 0.098926 0.175515 0.019036

POL 0.170715 0.105542 0.491536 0.056932 4.076686 2.125581 1.089849 0.464838 0.813929 0.608955

KUR 0.087356 0.052608 0.036136 0.010977 0.197532 0.064114 0.09747 0.01675 N/A N/A

VNT 0.027078 0.002138 0.042400 0.009190 0.059400 0.060800 N/A N/A N/A N/A

ZDT1 0.258370 0.034299 0.503569 0.052127 3.765871 1.367000 0.756200 0.145703 0.199631 0.048466

ZDT3 0.589864 0.073595 0.502427 0.047587 2.044142 1.500228 0.794325 0.070546 0.301347 0.042321

DT4 0.167352 0.004576 0.485384 0.052186 2.799198 2.015591 1.081437 0.195925 0.175199 0.031783

ZDT6 0.717644 1.113447 2.151897 2.285011 3.499715 2.217825 3.707637 0.849501 3.179233 1.351519

Table 7 Mean and SD for the S metric for the DTLZ problems

MOPs MOWCA RMOAPO SMOAPO MOPSO

Mean SD Mean SD Mean SD Mean SD

M = 2

DTLZ 2 0.0019 3.73e−4 0.0046 0.0021 0.0073 0.0031 0.0087 0.0037

DTLZ 4 0.0022 4.88e−4 0.0029 0.0036 0.0038 0.0039 0.0053 0.0042

DTLZ 7 3.44e−4 2.70e−4 N/A N/A N/A N/A N/A N/A

Table 8 Mean and SD for the S metric for the DTLZ problems

MOPs MOWCA (5,000) ISMOA (25,000) NSGA-II (25,000)

Mean SD Mean SD Mean SD

M = 3

DTLZ 2 0.026295 0.002137 0.045306 0.003490 0.056743 0.006245

DTLZ 4 0.026709 0.022928 0.039188 0.018554 0.029916 0.027569

DTLZ 7 0.015340 0.012134 0.056493 0.006398 0.059228 0.021574

M = 2

DTLZ 2 0.004079 0.000728 0.004143 0.000238 0.006888 0.000576

DTLZ 4 0.003814 0.001011 0.004265 0.000348 0.005764 0.003064

DTLZ 7 0.000734 0.000598 0.005211 0.000391 0.008157 0.000749

Values in parenthesis mean the NFEs

2006) has obtained its mean GD value of 0.0033 and SD
of 0.00171, while multi objective immune system algorithm
(MISA) (Coello and Cruz Cortés 2005) has attained the val-
ues of 0.00338 and 0.00215 for the aforementioned evalua-
tors, respectively.

Recently, multi-objective cat swarm optimization
(MOCSO) (Pradhan and Panda 2012) was investigated for
solving the Deb benchmark problem using the same con-
ditions and offered the mean and SD values of 0.000769
and 0.000057, respectively. In summary, it can be seen from
Table 3 that the MOWCA offers superiority over the VIS,
MISA, and MOCSO in terms of mean and SD values for the
GD metric.

Accordingly, in Tables 6, 7, and 8, the metric of spacing
(S) is presented for reported MOPs. In order to perform a fair
comparison with corresponding optimizers, the used NFEs
for Tables 6 and 7 are set to 10,000, while for Table 8 the
NFEs is chosen as 5,000.

By observing Table 6, the MOWCA, (as for the CSS-
MOPSO for some cases), obtained the best optimization
results with respect to the average metric of spacing for the
most MOPs in this paper. Also, the PAES Knowles and Corne
(2000) has the weakest performance of all (see Table 6).
Comparing with other optimizers, including the MOPSO,
SMOAPO, and RMOAPO, using 10,000 NFEs (see Table 7
for bi-objective DTLZ problem) for the DTLZ series, the
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MOWCA could find a wide variety of solutions having uni-
form spread and the smallest value for the S metric.

In addition, in Table 8 (for three-objective DTLZ prob-
lem), using different optimizers and different NFEs, the
obtained statistical results are compared. As can be seen in
Table 8, in terms of S metric, the MOWCA has been placed
in the first rank offering the minimum value for the metric of
spacing.

However, the SD values obtained by the ISMOA (Zhang
et al. 2009) are slightly better than those by the MOWCA.
The maximum NFEs for the MOWCA is set to 5,000
which is five times fewer than the 25,000 NFEs con-
sidered for the NSGA-II and ISMOA. Hence, better SD
obtained by the ISMOA can be easily justified by NFEs
against the MOWCA. To be more precise, the ISMOA
required more time for stability of its solutions (Zhang et al.
2009).

However, the ISMOA and NSGA-II could not find non-
dominated solutions with well distribution compared to
the MOWCA (Deb et al. 2002a; Zhang et al. 2009). The
best obtained statistical results are highlighted in bold in
Tables 6, 7, and 8. Moreover, the VIS (Freschi and Repetto
2006), MISA (Coello and Cruz Cortés 2005), and MOCSO
(Pradhan and Panda 2012) were tackled to solve the Deb
and VNT benchmark functions. The values for mean and SD
using the MOCSO for the Deb test problem are 0.009 and
0.0007, respectively, for the metric of spacing.

Likewise, for the VNT function, the mean S and its SD
values obtained by the VIS were 0.0589 and 0.00950, respec-
tively; whereas, the MISA reached values of 0.0710 and
0.00962 for the aforesaid parameters (Coello and Cruz Cortés
2005). From the assessments, it can be seen from Tables 6,
7, and 8 that compared with the VIS, MISA, and MOCSO,
the MOWCA has the advantages of having smaller statistical
values for metric of spacing.

It is worth pointing out that the MOWCA offers acceptable
statistical results for all performance parameters, while for
the NSGA-II (Deb et al. 2002a) the results for the GD metric
are considerably less accurate compared with the MOWCA.
In general, a suitable optimization algorithm should offer
reasonable statistical results for all existing evaluators given
in the literature.

Figure 5 demonstrates the comparisons between the exact
and computed Pareto fronts using the proposed optimizer
for the MOPs given in Table 3. Further, Figs. 6 and 7 show
the final non-dominated solutions obtained by the MOWCA
and their optimal Pareto fronts for the DTLZ series prob-
lems (i.e., DTLZ 2, 4, and 7) having two and three objective
functions, respectively. It is clear that the considered perfor-
mance metrics for the given MOPs using the MOWCA have
smaller values of the GD and S metrics, as shown in Figs. 5,
6, and 7.

5 Conclusions

This paper presented a proposed optimization technique for
solving MOPs called MOWCA. The basic concepts of the
WCA are inspired by observation of the water cycle process
in real world. In this paper, the MOWCA was used for solv-
ing a number of well-known MOPs (i.e., 12 problems). The
efficiency and performance of the MOWCA were carried
out using two popular criteria (i.e., metric of generational
distance and spacing). The obtained statistical results from
performance metrics apparently reveal that the MOWCA
was able to offer solutions close to the full optimal Pareto
front in addition to providing superior quality of solutions
in comparison with other state of the art algorithms consid-
ered in this paper. In general, MOWCA offers competitive
solutions compared with other population based algorithms
based on the reported numerical results in this research.
In fact, although the robustness and exploratory capabil-
ity of the MOWCA depends on the nature and complex-
ity of the problems, the obtained optimization results show
that the MOWCA can be considered suitable and efficient
alternative method, having comparable degree of accuracy
to find the optimal Pareto fronts for different scales of
MOPs.
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Appendix A: Mathematical formulation of studied
MOPs

This Appendix represents the MOPs used in this paper to con-
duct a qualitative assessment for performance and efficiency
of the MOWCA.

(1) Test problem 1–DEB: Deb’s function is a problem with
two design variables. This problem is defined as follows
(Deb 2002):

DEB : min

{
f1(X) = x1

f2(X) = g(X) × h(X)
, (22)

where

g(X) = 11 + x2
2 − 10 cos(2πx2), (23)

h(X) =
{

1 − √
f1/g if f1(X) ≤ g(X)

0 Otherwise

where 0 ≤ x1 ≤ 1, −30 ≤ x2 ≤ 30. (24)

The Pareto optimal front for this problem is convex and
defined as x1ε[0, 1], x2 = 0.
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Fig. 5 Comparisons of optimal Pareto fronts and generated Pareto front using the MOWCA for: a DEB, b FON, c KUR, d POL, e ZDT1, f ZDT3,
g ZDT4, h ZDT6, and i VNT (solid lines and dot points represent the optimal and generated (obtained) Pareto fronts, respectively)
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Fig. 6 Comparisons of optimal Pareto fronts and generated Pareto front using the MOWCA for the bi-objective function: a DTLZ 2, b DTLZ 4,
and c DTLZ 7 (solid lines and dot points represent the optimal and generated (obtained) Pareto fronts, respectively)

(2) Test problem 2–FON: Fonseca and Fleming’s function
(FON) is an eight-design variable function suggested as
follows (Fonseca and Fleming 1993):

FON : min

⎧
⎪⎪⎨

⎪⎪⎩

f1(X) = 1 − exp

(
−

8∑
i=1

(
xi − 1√

8

)2
)

f2(X) = 1 − exp

(
−

8∑
i=1

(
xi + 1√

8

)2
)

where − 2 < xi < 2, i = 1, 2, 3, . . . , 8, (25)

The optimal Pareto front for this bi-objective problem
is x∗

i = [−1/
√

8, 1/
√

8] for i = 1, 2, 3, . . ., 8.
(3) Test problem 3–POL: This function was first introduced

by Poloni (1997) which has been widely analyzed in
the literature (Deb et al. 2002a; Kaveh and Laknejadi
2011). The mathematical formulation proposed by Poloni
(1997) is given as follows:

POL : min

×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(X) = [1 + (A1 − B1)2 + (A2 − B2)2]
f2(X) = [(x1 + 3)2 + (x2 + 1)2]
A1 = 0.5 sin 1 − 2 cos 1 + sin 2 − 1.5 cos 2
A2 = 1.5 sin 1 − cos 1 + 2 sin 2 − 0.5 cos 2
B1 = 0.5 sin(x1) − 2 cos(x1) + sin(x2) − 1.5 cos(x2)

B2 = 1.5 sin(x1) − cos(x1) + 2 sin(x2) − 0.5 cos(x2)

where − π < x1, x2 < π. (26)

The Pareto optimal front for the POL function is non-
convex and discontinuous.

(4) Test problem 4–KUR: This problem, presented by Kur-
sawe (1991), has three design variables having non-
convex and discontinuous Pareto optimal front. The
KUR’s mathematical formulation is as follows (Kursawe
1991):

KUR : min

⎧
⎪⎪⎨

⎪⎪⎩

f1(X) =
n−1∑
i=1

(
−10 exp

(
−0.2

√
x2
i + x2

i+1

))

f2(X) =
n∑

i=1

(
|xi |0.8 + 0.5 sin x3

i

)

where − 5 < xi < 5, i = 1, 2, 3.

(27)

(5) Test problem5–VNT: This problem is a three-dimensional
problem in objective space suggested by Viennet et al.
(1995). This problem has previously been investigated
by many researchers (Freschi and Repetto 2006; Gao and
Wang 2010) and is formulated as follows (Viennet et al.
1995):

VNT = min

×
⎧
⎨

⎩

f (X) = 0.5(x2
1 + x2

2 ) + sin(x2
1 + x2

2 )

f (X) = (3x1 − 2x2 + 4)2/8 + (x1 − x2 + 1)2/27+15
f (X) = (x2

1 + x2
2 + 1)−1 − 1.1 exp(−x2

1 − x2
2 )

where − 3 ≤ x1, x2 ≤ 3. (28)
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Fig. 7 Comparisons of optimal Pareto fronts and generated Pareto front using the MOWCA for the three-objective function: a DTLZ 2, b DTLZ 4,
and c DTLZ 7 (left and right sides represent the optimal and generated (obtained) Pareto fronts, respectively)

It is worth mentioning that the discontinuous Pareto opti-
mal set and having several local Pareto fronts are consid-
ered to be challenging features of the VNT problem (Gao
and Wang 2010).

(6) Test problem 6–ZDT1: The ZDT1 function, was sug-
gested by Zitzler et al. (2000), and has been extensively
investigated (Deb et al. 2002a; Kaveh and Laknejadi
2011). This problem is described as follows:

ZDT1 : min

⎧
⎪⎪⎨

⎪⎪⎩

f1(X) = x1

f2(X) = g(X)[1 − √
x1/g(X)

g(X) = 1 + 9

(
n∑

i=2
xi

)
/(n − 1)

where 0 < xi < 1, i = 1, 2, 3, . . . , 30.
(29)

The ZDT1 problem has 30 design variables and its Pareto
optimal front is convex and defined as x1ε[0, 1], xi = 0,
for i = 2, . . ., 30.
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Table 9 Mathematical
formulations of the DTLZ series
problems

MOPs Objective function

DTLZ 2

f1(x) = (1 + g(xM )) cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) cos(xM−1π/2)

f2(x) = (1 + g(xM )) cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) sin(xM−1π/2)

.

.

.

fM−1(x) = (1 + g(xM )) cos(x1π/2) sin(x2π/2)

fM (x) = (1 + g(xM )) sin(x1π/2)

g(xM ) = ∑
xi∈xM

(xi − 0.5)2

DTLZ 4

f1(x) = (1 + g(xM )) cos(xa1 π/2) cos(xa2 π/2) . . . cos(xaM−2π/2) cos(xaM−1π/2)

f2(x) = (1 + g(xM )) cos(xa1 π/2) cos(xa2 π/2) . . . cos(xaM−2π/2) sin(xaM−1π/2)

.

.

.

fM−1(x) = (1 + g(xM )) cos(xa1 π/2) sin(xa2 π/2)

fM (x) = (1 + g(xM )) sin(xa1 π/2)

g(xM ) = ∑
xi∈xM

(xi − 0.5)2

DTLZ 7

f1(x) = x1
f2(x) = x2
.
.
.

fM−1(x) = xM−1
fM (x) = (1 + g(xM ))h( f1, f2, . . . , fM−1, g)
g(xM ) = 1 + 9

|xM |
∑

xi∈xM
xi

h( f1, f2, . . . , fM−1, g) = M −
M−1∑
i=1

[
fi

1+g(xM )
(1 + sin(3π fi ))

]

(7) Test problem 7–ZDT3: The ZDT3 problem, suggested
by Zitzler et al. (2000), has 30 design variables with a
non-convex and discontinuous Pareto optimal front. The
mathematical formulation of the ZDT3 problem is as fol-
lows (Zitzler et al. 2000):

ZDT3 : min⎧
⎪⎪⎨

⎪⎪⎩

f1(X) = x1

f2(X) = g(X)[1 − √
x1/g(X) − x1

g(X)
sin(10πx1)]

g(X) = 1 + 9

(
n∑

i=2
xi

)
/(n − 1)

where 0 < xi < 1, i = 1, 2, 3, . . . , 30. (30)

The Pareto optimal front is defined as x1ε[0, 1], xi = 0,
for i = 2, 3, 4, . . ., 30.

(8) Test problem 8–ZDT4: The ZDT4 problem, proposed by
Zitzler et al. (2000), has 10 design variables having sev-
eral local Pareto fronts. This problem is given as follows:

ZDT4 : min⎧
⎪⎪⎨

⎪⎪⎩

f1(X) = x1

f2(X) = g(X)[1 − √
x1/g(X)]

g(X) = 1 + 10(n − 1) +
n∑

i=2
[x2

i − 10 cos(4πxi )]
, (31)

where x1ε[0, 1]andxi [−5,5], for i = 2, 3, . . . , 10.
In addition, the optimal Pareto front is defined as
x1ε[0, 1], xi = 0, for i = 2, 3, 4, . . . , 10.

(9) Test problem 9–ZDT6: The ZDT6, introduced by Zitzler
et al. (2000), has 10 design variables with a non-convex
Pareto optimal front. The mathematical formulation of
this problem is given as follows:

ZDT6 : min

⎧
⎪⎪⎨

⎪⎪⎩

f1(X) = 1 − exp(−4x1) sin6(6πx1)

f2(X) = g(X)[1 − ( f1(X)/g(X))2]
g(X) = 1 + 9

[
(

n∑
i=2

xi )/(n − 1)

]0.25

where 0 < xi < 1, i = 1, 2, 3, . . . , 10.

(32)

The Pareto optimal front is characterized as x1ε[0, 1], xi
= 0 for i from 2 to 10 for test problem 9.

(10) Test problem 10–DTLZ series

The DTLZ series, proposed by Deb et al. (2002b), known as
scalable problem, are considered in this paper. The mathe-
matical formulation of DTLZ problems are given in Table 9.
The Pareto optimal front for all DTLZ problems in this paper
is defined as xi = 0.5 in which iεxM . The design space for
considered DTLZ problems is between zero and one.

Two and three objective functions (M = 2 and 3) are
considered for the DTLZ series given in Table 9. The DTLZ
series are minimization problems and the number of design
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variables for these problems is calculated as follows:

n = M + |xM | − 1, (33)

where n and M are the number of design variables and num-
ber of objective functions, respectively. Also, |xM | is set to
10 for all considered problems in this paper.
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